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Commutation Error in Reduced Order Modeling of
Fluid Flows

B. Koc - M. Mohebujjaman - C. Mou -
T. Iliescu

Abstract For reduced order models (ROMs) of fluid flows, we investigate
theoretically and computationally whether differentiation and ROM spatial
filtering commute, i.e., whether the commutation error (CE) is nonzero. We
study the CE for the Laplacian and two ROM filters: the ROM projection
and the ROM differential filter. Furthermore, when the CE is nonzero, we
investigate whether it has any significant effect on ROMs that are constructed
by using spatial filtering. As numerical tests, we use the Burgers equation with
viscosities ¥ = 107! and v = 1072 and a 2D flow past a circular cylinder at
Reynolds numbers Re = 1 and Re = 100. Our investigation shows that: (i)
the CE exists; and (ii) the CE has a significant effect on ROM development
for low Reynolds numbers, but not so much for higher Reynolds numbers.
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1 INTRODUCTION

Reduced order models (ROMs) [4I41[18,[19,27.[34] have been used for decades
in the efficient numerical simulation of fluid flows [2}[3681TL12L17L1924]
2'7321[38/[401391[46]. However, when the ROM dimension is too low to cap-
ture the relevant flow features, ROMs are generally supplemented with a Cor-
rection term [ILELI5I6LTI2T12729,36,42]. In our recent work [44], we have
shown that this Correction term can be explicitly calculated and modeled with
the available data by using the ROM projection as a spatial filter. We note
that ROM spatial filtering has also been used to develop large eddy simula-
tion ROMs, e.g., approximate deconvolution ROMs [45] and eddy viscosity
ROMs [BLI9L27,3335L[42]. In all these ROMs, it has been been assumed the
differentiation and ROM spatial filtering commute:

o _om

where u is a flow variable (such as velocity) and x is a spatial direction. In
this paper, we investigate whether there exists a commutation error (CE), i.e.,
whether equality holds. In particular, we investigate whether there is a CE
for the Laplacian, which plays a central role in fluid dynamics:

Au = Au. (2)

To our knowledge, this represents the first investigation of the CE in a ROM
context.

When the CE exists, we also investigate whether it has any significant effect
on the ROM itself. To this end, we consider the recently proposed data-driven
correction ROM (DDC-ROM) [44], in which the Correction term (which is
generally added to improve the ROM’s accuracy) is modeled using the avail-
able data [10,22L231[30L3T]. To investigate the effect of the CE on the DDC-
ROM, we also consider the commutation error DDC-ROM (CE-DDC-ROM),
in which available data is used to model not only the Correction term, but also
the CE. Finally, we use the ideal CE-DDC-ROM (ICE-DDC-ROM), which is
the DDC-ROM supplemented with a fine resolution representation (i.e., with-
out any additional modeling) of the Correction term. When the CE-DDC-
ROM and the ICE-DDC-ROM yield more accurate results than the standard
DDC-ROM, we conclude that the CE has a significant effect on the DDC-ROM
and, therefore, should be modeled. As numerical tests, we use the Burgers
equation with viscosities ¥ = 107! and v = 1073 and a 2D flow past a circular
cylinder at Reynolds numbers Re =1 and Re = 100.

The paper is organized as follows: The reduced order modeling prelimi-
naries are provided in Section [2] In Section [3] a detailed derivation of the
commutation error is given. In Section [4] we discuss the effects of the commu-
tation error on ROMs that are constructed by using spatial filtering. Numer-
ical experiments are given in Section [5) and conclusions and future research
directions are outlined in Section [Gl
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2 REDUCED ORDER MODELING

To compute the ROM basis functions, we use the proper orthogonal decompo-
sition (POD) [I3L[19,27,41], which we briefly describe in this section. We em-
phasize, however, that our theoretical and computational developments carry
over to other ROM basis functions, such as the dynamic mode decomposi-
tion [37]. The snapshots {u},u?,---,uf} are the finite element (FE) solu-
tions of at M different time instances. The POD seeks a low-dimensional basis
that approximates the snapshots optimally with respect to a certain norm.
The commonly used L? norm will be used in this paper. The solution of the
minimization problem is equivalent to the solution of the eigenvalue problem
YYTMh¢j =Xj@;, j=1,---, Ny, where ¢; and A; denote the vector of the
FE coefficients of the POD basis functions and the POD eigenvalues, respec-
tively, Y denotes the snapshot matrix, whose columns correspond to the FE
coeflicients of the snapshots, M}, represents the FE mass matrix, and Ny, is the
dimension of the FE space X". The eigenvalues are real and non-negative, so
they can be ordered as follows: \y > Ao > - > A\g > Agp1 = -+ = Ay, =0,
where d is the rank of the snapshot matrix Y. The ROM basis consists of the
normalized functions {¢;}’_;, which correspond to the first r < N}, largest
eigenvalues. Thus, the ROM space is defined as X" := span{¢,, ¢, - , P, }.

3 COMMUTATION ERROR (CE)

As a mathematical model, we consider the incompressible time-dependent
Navier-Stokes equations (NSE):

%—?—uAu—ku-Vu—&-Vp:O 2 x(0,7], (3)
V-u=0 x(0,T], 4)
u=g(x) 0§ x(0,T], (5)

where u is the velocity, p the pressure, v the kinematic viscosity, T the sim-
ulation time, and {2 the domain of the fluid. We use the initial condition
u(x,0) = ugp(x). In this paper, we assume that 2 C R? d € {2,3}, is a
convex polygonal or polyhedron domain with boundary 9f2. The discrete FE
velocity and pressure spaces are denoted by X" and Q", respectively. We de-
note the usual L?({2) norm and inner product with |- || and (-, -), respectively.
To derive the commutation error due to filtering, we apply a continuous filter
to (3). This yields the filtered-NSE (F-NSE), which have been used to develop
LES models [7]:

o - —
E—VAU-F(U-V)U-FVPZO. (6)
The F-NSE @ eliminate the small length scales in the continuous NSE (3)).
For this reason, a ROM for @ needs fewer POD modes than a ROM for ({3)
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to achieve a fixed numerical accuracy. However, to develop practical ROMs for
the F-NSE @, we must first investigate the commutation error, i.e., whether
filtering and differentiation commute. The commutation error (CE) for a spa-
tial derivative is defined in [7] as

8xk al'k ’ (7)

where x is the spatial variable. In this paper, we are particularly interested in
the CE for the Laplacian term. Similarly to , we define the Laplacian CE
as

Ealul(x) = Au(x) — Au(x). (8)

3.1 ROM SPATIAL FILTER

To develop practical ROMs from the F-NSE @, we need to replace the con-
tinuous filter in @ with discrete filters. In this paper, we use the differential
and projection ROM filters.

The ROM differential filter (DF) [43] is defined as: Let ¢ be radius of DF;
for fixed r < d and a given ug € X", the differential filter seeks agPt e X
such that

((1 ~52A ) agPr, qﬁi) = (ua, ), Vi=1,..,r 9)
By using ROM approximations for both @g?F and ug (i.e., wg”t = erl(ar)j b,
j=
Ug = i(ad)j¢j), we obtain the following dynamical system:
j=
(M, +6%S,) a, = M, 4 aq, (10)

where M, = (¢;,¢;), i, = 1,..,7, Moxa = (¢, ;) i = 1,..,r, j=1,..d,
S, = (Ve¢;,Ve;), i,j=1,..,r, and a, and a4 represent coefficient vectors in
azPF and ug, respectively.

For fixed 7 < d and a given ug € X", the ROM projection filter [28,42]

seeks wy” € X7 such that

(Tdr,¢i) = (ud,gbi), Vi=1,..r. (11)

By expanding wg" and ug in terms of the POD basis, we obtain the following
dynamical system:

Mr a, = Mr><d aq, (12)

where a, and a4 are the coefficient vectors in uy" and ug, respectively.
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3.2 FILTERED-ROM

In Section [3:1] we defined two ROM spatial filters: the ROM differential filter
and the ROM projection filter. In this section, we take another step in the
development of practical ROMs from the F-NSE @ and replace the continuous

velocity u in @ with its most accurate approximation in the snapshot space,
d
ie., with ug = Y~ (@q);¢;, where d is the rank of the snapshot matrix: Vi =

j=1
1.7
Jdugq _ SR
(5 .) - vidwn o)+ (@a Vywso) +7i=0. (13
where
Ti = _<T5FS7 7;)7 (]‘4)
575 = (g - Vg — (ug - V)ug. (15)

The filter — in the sub-filter scale stress tensor 7579 is either —" (i.e., the
ROM projection filter ) or —PF (i.e., the ROM differential filter (9))).

We note that — is an r-dimensional system for the unknown ug €
X7. For clarity, we denote the unknown wy as

r

Ug = U, = Z(ar)igbi. (16)

i=1

Using in —, we get: Vi=1,...,r

(8(;;7@) +v(Vur, Vo) + (ur - V)u,, ;) + 7 =0, (17)

where

T = _(Tsta ¢z)7 (18)
5F5 = (u, - V)u, — (ug - V)ug. (19)

Since does not depend only on u,, it is not a closed system. To close
it, we need to solve the ROM closure problem, to look for (ug - V)ug = f(u,).
Once a ROM closure model is found, the large eddy simulation ROM (LES-
ROM) (13)-(15) becomes practical. The most commonly used ROM closure
models have been of eddy viscosity viscosity type [42]. Alternative ROM clo-
sure models, inspired from image processing and inverse problems (i.e., the
approximate deconvolution ROM [45]) and data-driven modeling (i.e., the
data-driven correction ROM [44]) have been recently proposed. We emphasize
that all these LES-ROMs assume that filtering and differentiation commute.
In what follows, we investigate this assumption.
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3.3 CE WITH DIFFERENTIAL FILTER

By using the ROM differential filter, the Laplacian CE in can be written
as:

Ealug] = AugPF — A", (20)

where —PF represents the ROM differential filter. We denote with a.., ag4, b,

. . . —DF )
and ¢, the coefficient vectors of @z, ug, Aug?", and Auy ~ , respectively.
We start evaluating Awg? !

(Aug"F, ¢;) = —(Vug"",ve,), Vi=1,..r (21)
Its corresponding dynamical system is
M, b, =-S5, a,. (22)

Using and gives

b, = —M; 'S, (M, + §S,) " M, x4 a. (23)

———DF . . . . .
Next, we evaluate Augy . Using equation @, we write the following equation
——DF
for Aug

((1 - 52A)AudDF,¢i) — (Auad), Vie1,.or (24)
Its corresponding dynamical system is
(M, + 6%5,) ey = —Srxq Gas (25)
which yields
cr=—(M, + 52Sr)_15r><d ag. (26)

Since the right hand sides of equations and are not equal, we conclude
that for the ROM differential filter, the Laplacian CFE is nonzero:

T

Ealud = (be —cr) 5 # 0. (27)

Jj=1
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3.4 CE WITH PROJECTION FILTER

By using the ROM projection filter, the Laplacian CE in can be written
as

Enlug) == Aug” — Auy’, (28)

r

where —" represents the ROM projection filter. We denote with a.., aq4, b,

and ¢, the coefficient vectors of the basis functions in wg", ug, Aug’, and
T . . —

Auyg , respectively. We start evaluating Awg” :

(Aug", ¢;) = —(Vug",Ve,), Vi=1,..r. (29)
Its corresponding dynamical system is
M, b, =-S5, a,. (30)

Using and we have
b, = M 'S, M "M,+q ag. (31)

Next, we evaluate Aug . By using for Auy , we write the following equa-
tion for Awug":

(Bud’, ¢) = (Aug, ¢;) = ~(Vua, Vey),  Vi=1...r. (32
Its corresponding dynamical system gives
c, = —Mr‘lerd agq, (33)

Again, since the right hand sides of the equations and are not equal
we conclude that for the ROM projection filter, the Laplacian CE is nonzero:

T

SA[ud] = Z (br — Cr)j d)j £ 0. (34)

j=1

4 EFFECT OF COMMUTATION ERROR ON DDC-ROM

In this section, we investigate the effect of the commutation error on three
LES-ROMs that are built from equations — supplemented with the
Laplacian CE . The first LES-ROM that we investigate is the data-driven
correction ROM (DDC-ROM) [44], which utilizes available data to construct
an r-dimensional model for the Correction term 7 in —; the DDC-
ROM, however, does not include a model for the Laplacian CE (8)). The sec-
ond LES-ROM that we consider is the ideal CE data-driven correction ROM
(ICE-DDC-ROM), which is the DDC-ROM supplemented with an exact (fine)
resolution Laplacian term. The third LES-ROM that we investigate is
the commutation error DDC-ROM (CE-DDC-ROM), which is the DDC-ROM
supplemented with an r-dimensional data-driven model for the Laplacian CE
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. In Section [5 we investigate numerically whether the Laplacian CE has
any effect on the DDC-ROM, i.e., whether the ICE-DDC-ROM and the CE-
DDC-ROM yield more accurate results than the standard DDC-ROM. In this
section, we outline the construction of the DDC-ROM, ICE-DDC-ROM, and
CE-DDC-ROM.

First, we briefly derive the standard Galerkin-ROM (G-ROM). The POD
approximation of the velocity is defined as

s

’U,T(X, t) = Z(ar)j¢j (X)v (35)

Jj=1

where {(a,);}7_; are the sought time-depending coefficients, which are found
by solving the following system of PDEs: Vi =1, ..., 7,

ou,
(%) (T va) + (0 Dung) =0, (0

where we assume that the modes {¢;, ¢, -+, @, } are perpendicular to the
discrete pressure space. This assumption holds if in snapshot creation we use
standard mixed FE (such as Scott-Vogelius, or the mini-element; see, e.g., [9,
20]). Plugging into gives the Galerkin ROM (G-ROM):

d, = Aa, + a Ba,, (37)

where the elements of the operators A and B are A;,, = —v(V¢,,, Ve,) and
Bimn = —(¢,, - V,,0,), 1 < i, m, n < r. The CE-DDC-ROM and ICE-
DDC-ROM frameworks need two steps to be constructed. In the first step,
we use ROM spatial filtering to derive the ezact mathematical formula for
the Correction term. To construct the DDC-ROM, ICE-DDC-ROM, and CE-
DDC-ROM, we start with equations -, to which we add the Laplacian

CE ®):Vi=1,---,r

(aa“t’",cbi) +v(Vur, Vo) + ((ur - V)u,. )
+v(alud @) + (1777, 6:) = 0. (38)

Equation yields the following dynamical system:
d, = Aa, +a'Ba, +&cp + T, (39)

where A and B are same as in and the components of Eog and T are
given by: Vi =1,...,7

(Ecr)i = —v(Ealudl, é; ), (40)
i =—(12F5, ¢;). (41)
To construct the DDC-ROM [44], we make the following ansatz:

r(a,) =~ 79" (a,) = Aa, + a, Ba,. (42)
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To compute the operators A and B in , we use data-driven model-
ing ensuring the highest accuracy of the vector 7. To this end, we solve the
following unconstrained optimization problem:

M
3 true ansatz 2
min T ti) —T t; . 43
Aemrxr E | (t;) 2l (43)

EGRTX‘I‘XT‘ j=1

The data-driven correction ROM (DDC-ROM) has the following form:

d,=(A+ Aa, +a'(B+ B)a,, (44)

where the operators A and B are the G-ROM operators in and the op-
erators A and B are the solution of the unconstrained minimization problem

@).

The ideal commutation error DDC-ROM (ICE-DDC-ROM) is obtained by
adding a high-accuracy (i.e., from fine resolution numerical data) representa-
tion of the Laplacian CE (8):

d, = (A+ Aa, +a (B+Ba, +Ecp. (45)
To construct the CE-DDC-ROM, we make the following ansatz:
(T +&cp)(a,) = (T4 Ecp)™%(a,) = Aa, + a, Ba,. (46)

To compute the operators A and B in (@6), we use data-driven modeling
ensuring the highest accuracy of the vector 7+ Ecg. To this end, we solve the
following unconstrained optimization problem:

M
AHIlRin Z ||(T +€CE)true(tj) . (T + ECE)ansatz(tj)HZ ) (47)
e X7 :1
BeRrxrxv‘

The commutation error data-driven ROM (CE-DDC-ROM) has the following
form:

a'r:(A—i—fl)ar—i—a,T(B—i—B)ar, (48)

where the operators A and B are the G-ROM operators in and the op-
erators A and B are the solution of the unconstrained minimization problem

&D.
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5 NUMERICAL EXPERIMENTS
In this section, we investigate numerically the following questions:
(Q1) Does the commutation error exist?
(Q2) If it exists, does the commutation error have a significant effect on

ROMSs?

To answer the first question, we evaluate numerically the Laplacian CE and
compute its average, i.e., |[|Ea[wa]||r2(12), which is calculated as follows:

% Jo |EalualPdt \/ Y (br(t) — en(t))' + My  (by (1) = (1) At
T T ’

To answer the second question, we test the following ROMs: the DDC-ROM
(4], the ICE-DDC-ROM (6)), and the CE-DDC-ROM ([{48). We emphasize
that the ICE-DDC-ROM and CE-DDC-ROM include a representation of the
Laplacian CE 7 whereas the DDC-ROM does not. Thus, if the ICE-DDC-
ROM and CE-DDC-ROM yield more accurate results than the DDC-ROM,
we conclude that the CE plays a significant role in ROM development. In our
numerical investigate, we consider two test problems: the 1D viscous Burgers
equation (Section and the 2D channel flow past a circular cylinder (Section
. We compute the ROM error as the difference between the DNS solution
projected onto the ROM space and the ROM solution.

5.1 EXPERIMENT 1: BURGERS EQUATION

In our first experiment, we consider the Burgers equation:

{ Up — VUgy +uugy =0, x€][0,1], t €0,1] (49)

uw(0,t) =u(l,t) =0, tel0,1].

The DNS results are obtained by using a linear FE scheme with mesh
width h = 1/2048 and timestep size At = 1073. To investigate the effect of
initial conditions, we consider a smooth initial condition (Section and a
non-smooth initial condition (Section . Furthermore, to investigate the
effect of the viscosity parameter, we consider two viscosity values: v = 107!

(Section and [5.1.2)) and v = 1073 (Section [5.1.3)).
5.1.1 SMOOTH INITIAL CONDITION

We consider the initial condition

_ 2vufmsin(nx)

ug(x) = o Beos(nz) x € [0,1], (50)

where a =5 and § = 4.
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r 0 [l€alualllpzr2) | 4 [[€alualllpz (L2
2 | 1.00e-01 1.40e+00 5 | 1.00e-01 1.37e+00
2 1.00e-02 1.56e-01 5 1.00e-02 8.98e-02
2 1.00e-03 1.53e-01 5 1.00e-03 1.26e-03
2 1.00e-04 1.54e-01 5 1.00e-04 8.26¢-04
3 | 1.00e-01 1.37¢.+00 6 | 1.00e-01 1.37¢-+00
3 [ 1.00e-02 8.21e-02 6 [ 1.00e-02 9.00e-02
3 | 1.00e-03 3.21e-02 6 | 1.00e-03 9.69e-04
3 | 1.00e-04 3.22¢-02 6 | 1.00e-04 1.15e-04
1| 1.00e-01 1.37¢1+00 7 [ 1.00e-01 1.37¢100
1 [ 1.00e-02 8.7Te-02 7 [ 1.00e-02 9.00e-02
4 [ 1.00e-03 5.540-03 7 [ 1.00e-03 9.63¢-04
4 [ 1.00e-04 5.47¢-03 7 [ 1.00e-04 9.64¢-06

Table 1 Burgers equation, ROM differential filter, smooth initial condition, » = 10—, and
d = T: Average CE for different § and r values.

I3 2 3 4 5 6
[€alualll 22, | 1.5%e-01 | 3.22e-02 | 5.47¢-03 | 8.26e-04 | 1.15¢-04 | 0

3

Table 2 Burgers equation, ROM projection filter, smooth initial condition, v = 10~!, and
d = 7: Average CE for different r values.

First, we address (Q1), i.e., whether the CE exists. For various r and §
values, we list the CE computed by using the ROM differential filter (Table
and the ROM projection filter (Table . The main conclusion is that the
CE exists for both filters, especially for low 7 values. We also observe that as
r increases, the CE decreases. Finally, we note that, for the ROM differential
filter (Table , for a fixed r value, as § decreases, the CE decreases.

I G-ROM B DDC-ROM B ICE-DDC-ROM 5 CE-DDC-ROM
2 1.78e-03 1.00e-05 1.32e-03 1.00e-04 1.46e-05 1.00e-04 1.48e-05
3 1.93e-04 1.00e-05 1.55e-04 1.00e-06 1.73e-07 1.00e-06 1.55e-07
4 2.00e-05 1.00e-04 1.69e-05 1.00e-06 9.46e-08 1.00e-06 9.49e-08
5 2.03e-06 1.00e-04 1.77e-06 1.00e-05 9.23e-08 1.00e-05 9.25e-08
6 2.23e-07 1.00e-05 2.02¢-07 1.00e-05 9.37e-08 1.00e-05 9.38e-08
7 9.56¢-08 1.00e-05 9.55e-08 1.00e-08 9.56¢-08 1.00e-05 9.56e-08

Table 3 Burgers equation, ROM differential filter, smooth initial condition, » = 1071,
and d = 7: Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for
different ¢ and r values.

Next, we address (Q2), i.e., whether the CE has a significant effect on
ROMs. To this end, we test the DDC-ROM , the ICE-DDC-ROM ,
and the CE-DDC-ROM . We note that the ICE-DDC-ROM and CE-DDC-
ROM include a representation of the Laplacian CE , whereas the DDC-
ROM does not. For various r and ¢ values, we list the ROM error computed
by using the ROM differential filter (Table [3)) and the ROM projection filter
(Table[d). We observe that the ICE-DDC-ROM and CE-DDC-ROM errors are
consistently lower than the DDC-ROM error. We emphasize that, for low r
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r | G-ROM | DDC-ROM | ICE-DDC-ROM | CE-DDC-ROM
2 | 1.78e-03 1.32e-03 1.46e-05 1.48e-05
3 | 1.93e-04 1.55e-04 1.73e-07 1.55e-07
4 | 2.00e-05 7.40e-06 8.72e-08 8.90e-08
5 | 2.03e-06 7.29e-07 9.23e-08 9.25e-08
6 | 2.23e-07 1.60e-07 9.35¢-08 9.35e-08
7 | 9.56e-08 9.56¢-08 9.56¢-08 9.56¢-08

Table 4 Burgers equation, ROM projection filter, smooth initial condition, v = 10—, and
d = T: Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for
different r values.

values, the ICE-DDC-ROM and CE-DDC-ROM errors are two and even three
orders of magnitude lower than the DDC-ROM error. Thus, we conclude that
the CE plays a significant role in ROM development. Tables [3] and [4] also show
that, as r increases, the DDC-ROM error approaches the ICE-DDC-ROM and
CE-DDC-ROM errors.

5.1.2 NON-SMOOTH INITIAL CONDITION

In this section, we investigate the effect of non-smooth initial conditions on
the results obtained in Section To this end, we consider the following

initial condition:
1, x€(0,1/2],
= 51
uo(@) { 0, xe(1/21]. (51)

As in Section we start by addressing (Q1), i.e., whether the CE
exists. For various r and § values, we list the CE computed by using the ROM
differential filter (Table [f)) and the ROM projection filter (Table [6]). We draw
the same main conclusion as in Section E.I.1t The CE exists for both filters.
This time, however, as r increases, the CE does not decrease. Furthermore,
for the ROM differential filter (Table [5]), we note that for low r values, as §
decreases, the CE increases.

Next, we address (Q2), i.e., whether the CE has a significant effect on
ROMs. As in Section we test the DDC-ROM ([44), the ICE-DDC-ROM
(46)), and the CE-DDC-ROM . We note again that the ICE-DDC-ROM
and CE-DDC-ROM include a representation of the Laplacian CE ({8]), whereas
the DDC-ROM does not. For various r and § values, we list the ROM error
computed by using the ROM differential filter (Table @ and the ROM projec-
tion filter (Table . We draw the same main conclusion as in Section
The ICE-DDC-ROM and CE-DDC-ROM errors are consistently lower than
the DDC-ROM error. Furthermore, for low r values, the ICE-DDC-ROM and
CE-DDC-ROM errors are one and even two orders of magnitude lower than
the DDC-ROM error. Thus, we conclude again that the CE plays a significant
role in ROM development. Tables [7] and [§] also show that, as r increases, the
DDC-ROM error approaches the ICE-DDC-ROM and CE-DDC-ROM errors.
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r 4 alualllp2zey | T d [[€alualllpz(r2)
2 | 1.00e-01 1.85e4-00 9 1.00e-01 2.13e4-00
2 | 1.00e-02 1.12e4-00 9 1.00e-02 2.25e401
2 | 1.00e-03 1.90e+4-00 9 1.00e-03 7.12e4-02
2 | 1.00e-04 4.18e+4-00 9 1.00e-04 1.27e+02
2 | 1.00e-05 4.29e4-00 9 1.00e-05 1.17e+02
3 | 1.00e-01 2716100 11 | 1.00e-01 2.13¢100
3 [ 1.00e-02 6.70e+00 11 | 1.00e-02 2.14e101
3 | 1.00e-03 1.07e+401 11 | 1.00e-03 7.14e4-02
3 | 1.00e-04 2.68e4-01 11 1.00e-04 8.15e+01
3 | 1.00e-05 2.75e+01 11 1.00e-05 3.59e4-01
5 | 1.00e-01 2.13¢100 17 | 1.00e-01 2.13¢100
5 [ 1.00e-02 5.00e 101 17 | 1.00e-02 2.13¢101
5 [ 1.00e-03 2.35¢402 17 | 1.00e-03 6.36¢102
5 [ 1.00e-04 3.15¢102 17 | 1.00e-04 1.10e+02
5 | 1.00e-05 3.25e+02 17 | 1.00e-05 1.29e+00
7 | 1.00e-01 2.11e100 10 | 1.00e-01 2.13¢100
7 | 1.00e-02 2.90e+01 10 | 1.00e-02 2.13¢401
7 [ 1.00e-03 6.25¢102 19 | 1.00e-03 6.05¢102
7 [ 1.00e-04 2.95¢102 19 | 1.00e-04 1.20¢+02
7 [ 1.00e-05 3.04¢ 102 19 | 1.00e-05 1.29¢+00

Table 5 Burgers equation, ROM differential filter, non-smooth initial condition, v = 10~1,
and d = 19: Average CE for different § and r values.

r | 2 3 5 7 9 11 17
l HSA[ud]HLg(LQ) [ 4.29¢+00 [ 2.75e+01 [ 3.25¢+02 [ 3.04e+02 [ 1.17e+02 [ 3.60e+01 [ 5.27e-01 l

Table 6 Burgers equation, ROM projection filter, non-smooth initial condition, v = 1071,
and d = 19: Average CE for different r values.

T G-ROM 5 DDC-ROM & ICE-DDC-ROM 5 CE-DDC-ROM
2 7.27e-03 1.00e-05 6.93e-03 1.00e-03 2.67e-04 1.00e-02 1.07e-03
3 1.51e-02 1.00e-04 8.16e-03 1.00e-04 5.85e-05 1.00e-02 1.36e-03
5 4.22e-03 1.00e-04 4.22e-03 1.00e-07 5.97e-07 1.00e-04 3.13e-04
7 9.59e-04 1.00e-04 9.59e-04 1.00e-07 1.32e-07 1.00e-04 6.27e-05
9 2.34e-04 1.00e-04 2.35¢-04 1.00e-06 1.42¢-07 1.00e-05 2.07e-06
11 5.44e-05 1.00e-07 5.56e-05 1.00e-07 1.38e-07 1.00e-06 1.48e-07
17 4.97e-07 1.00e-07 5.06e-07 1.00e-07 1.35e-07 1.00e-07 1.19e-07
19 1.30e-07 1.00e-07 1.30e-07 1.00e-07 1.30e-07 1.00e-07 1.30e-07

Table 7 Burgers equation, ROM differential filter, non-smooth initial condition, v = 1071,
and d = 19: Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM
for different § and r values.

5.1.3 LOWER VISCOSITY (v =1073)

In this section, we investigate the effect of lower viscosity on the results ob-
tained in Sections [5.1.1] and For clarity, we only present results for the
smooth initial conditions used in Section the results for the non-smooth
initial condition used in Section were similar. As in the previous sections,
we start by addressing (Q1), i.e., whether the CE exists. For various r and §
values, we list the CE computed by using the ROM differential filter (Table @
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r G-ROM | DDC-ROM | ICE-DDC-ROM | CE-DDC-ROM
2 7.27e-03 6.93e-03 2.71e-04 3.71e-03
3 1.51e-02 8.14e-03 5.89e-05 3.84e-03
5 4.22¢e-03 4.22¢e-03 5.97e-07 3.14e-04
7 | 9.59e-04 9.59e-04 1.32e-07 6.44e-05
9 | 2.34e-04 2.34e-04 1.39e-07 4.26-06
11 | 5.44e-05 5.44e-05 1.30e-07 1.28¢e-07
17 | 4.97e-07 5.00e-07 1.34e-07 1.15e-07
19 | 1.30e-07 1.30e-07 1.30e-07 1.30e-07

Table 8 Burgers equation, ROM projection filter, non-smooth initial condition, v = 10~1,
and d = 19: Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM
for different r values.

and the ROM projection filter (Table . We draw the same main conclusion
as in Sections (.11 and B.1.2t The CE exists for both filters.

r 4 [[€alualllL2(r2)
1 1.00e-01 3.61e-04
1 1.00e-02 4.39e-04
1 1.00e-04 4.40e-04
1 | 1.00e-06 4.40e-04
2 1.006-01 2.09¢-06
2 [ 1.00e-02 1.28¢-06
2 | 1.00e-04 4.32¢e-06
2 | 1.00e-06 4.32e-06
3 | 1.00e-01 1.36e-15
3 [ 1.00e-02 180e-17
3 [ 1.00e-04 3.80e-17
3 [ 1.00e-06 37de-17

Table 9 Burgers equation, ROM differential filter, smooth initial condition, v = 103, and
d = 3: Average CE for different § and r values.

r 1 2
||5A[Ud]||L2(L2) 4.40e-04 | 4.32¢-06 | O

w

Table 10 Burgers equation, ROM projection filter, smooth initial condition, v = 1073,
and d = 3: Average CE for different r values.

Next, we address (Q2), i.e., whether the CE has a significant effect on
ROMs. As in Sections and we test the DDC-ROM , the ICE-
DDC-ROM , and the CE-DDC-ROM . We note again that the ICE-
DDC-ROM and CE-DDC-ROM include a representation of the Laplacian CE
, whereas the DDC-ROM does not. For various r and § values, we list the
ROM error computed by using the ROM differential filter (Table and the
ROM projection filter (Table . We draw the same main conclusion as in
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Sections [5.1.1] and B.1.2t The ICE-DDC-ROM and CE-DDC-ROM errors are
consistently lower than the DDC-ROM error. Furthermore, for low r values,
the ICE-DDC-ROM and CE-DDC-ROM errors are two and even three orders
of magnitude lower than the DDC-ROM error. Thus, we conclude again that
the CE plays a significant role in ROM development. We also note that, for
the Burgers equation, the lower viscosity (v = 1072) results are similar to the
higher viscosity (v = 107!) results.

s G-ROM B DDC-ROM S ICE-DDC-ROM 5 CE-DDC-ROM
1 2.21e-07 1.00e-03 5.81e-08 1.00e-05 3.50e-10 1.00e-06 4.07e-10
2 9.33e-10 1.00e-08 6.68e-10 1.00e-08 5.35e-13 1.00e-08 5.37e-13
3 3.46e-12 1.00e-08 3.46¢e-12 1.00e-08 3.46¢e-12 1.00e-08 3.46¢-12

Table 11 Burgers equation, ROM differential filter, smooth initial condition, v = 1073,
and d = 3: Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for
different ¢ and r values.

r | G-ROM | DDC-ROM | ICE-DDC-ROM | CE-DDC-ROM
1| 2.21e-07 1.35e-07 3.49¢-10 4.07e-10
2 | 9.33e-10 6.68¢-10 5.35e-13 5.37e-13
3 | 3.46e-12 3.46e-12 3.46e-12 3.46e-12

Table 12 Burgers equation, ROM projection filter, smooth initial condition, v = 1073,
and d = 3: Average error in G-ROM, DDC-ROM, ICE-DDC-ROM, and CE-DDC-ROM for
different r values.

5.2 EXPERIMENT 2: FLOW PAST A CIRCULAR CYLINDER
In our second experiment, we consider a 2D channel flow past a circular cylin-

der. The domain is a 2.2 x 0.41 rectangular channel with a radius = 0.05
cylinder, centered at (0.2,0.2), see Fig. [1] No slip boundary conditions are

2.2

Io.l 0.41

0.2

0.2

Fig. 1 Channel flow around a cylinder domain.

prescribed on the walls and cylinder, and the inflow and outflow profiles are
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given by [25126]

6
ul(oa y7t) u1(22,y,t) = my(041 - y)a

UQ(Oa y7t) = U2(2.2,y,t) = Oa

where u = (uy, us). Even though the parabolic outflow condition is not physi-
cal, the Dirichlet boundary condition is often used for ROMs, since it reduces
the theoretical and computational complexities. There is no forcing (f = 0)
and the flow starts from rest. We run the DNS of the NSE — from rest
(t = 0) until the simulation time ¢ = 17. We use the point-wise divergence-
free, LBB stable (P, P{*¢) Scott-Vogelius FE pair on a barycenter refined
regular triangle mesh. The mesh provides 16178 velocity, and 11907 pressure
degrees of freedom. The time step size At = 0.002 is used for both DNS and
ROM time evolution. We utilize the commonly used linearized BDF2 temporal
discretization, together with the FE spatial discretization. On the first time
step, we use a backward Euler scheme so that we have two initial time step
solutions required for the BDF2 scheme. The scheme for n =1,2,--- | is: Find
(up ™ pith) € (X", QM) satistying for every (vy,qp) € (X", Q"),

SUZH —4up + 'UJZ*l
2At

,vh> + ((2uy — uﬁfl) . V'u,ZH, vp)

—(pp ™V vn) + v(Vupt Vo) =0, (52)
(V- un,qn) = 0. (53)

We collect 2500 snapshots at each time step from ¢t = 5 to ¢ = 10 to construct
the ROM basis.

5.2.1 REYNOLDS NUMBER Re =1

In this section, we present numerical results for Re = 1, which corresponds
to v = 0.1. As in Section we address questions (Q1) and (Q2). We start
with (Q1), i.e., whether the CE exists. For various r and § values, we list
the CE computed by using the ROM differential filter (Table and the
ROM projection filter (Table . The main conclusion is that the CE exists
for both filters, just as for the Burgers equation in Section [5.1] However, the
CE in Tables [I3] and [[4] is much lower than the CE for Burgers equation in
Section [5.11

Next, we address (Q2), i.e., whether the CE has a significant effect on
ROMs. To this end, we test the DDC-ROM , the ICE-DDC-ROM ,
and the CE-DDC-ROM . We note that the ICE-DDC-ROM and CE-DDC-
ROM include a representation of the Laplacian CE (8)), whereas the DDC-
ROM does not. For various r and ¢ values, we list the ROM error computed
by using the ROM differential filter (Table and the ROM projection filter
(Table . We observe that the ICE-DDC-ROM and CE-DDC-ROM errors
are lower than the DDC-ROM error. Thus, we conclude that the CE plays a
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T 6 =1.00e-04 6 =1.00e-03 6 =1.00e-2 6 =1.00e-01 6 =1.50e-01
3 4.84e-11 2.53e-11 1.01le-12 1.51e-14 8.81e-15
4 4.83e-11 2.53e-11 1.01e-12 2.12e-14 8.46e-15
7 5.27e-11 1.91e-11 6.74e-13 3.02¢e-13 1.88e-13
9 3.67e-11 6.04e-12 6.98e-13 1.04e-12 6.83e-13
11 3.72e-11 6.15e-12 6.94e-13 1.05e-12 6.05e-13
13 3.68e-11 5.97e-12 6.95e-13 1.01e-12 6.10e-13
15 3.71le-11 6.90e-12 6.68e-13 1.12e-12 7.23e-13

Table 13 NSE, Re = 1, ROM differential filter, d = 16:
values.

Average CE for different § and r

T 2 3 4 5 6 7
I€alualll2(p2) | 6:30e-13 | T.41le-11 | 7.4be-11 | 7.31e-11 | 4.00e-11 | 2.84e-11

Table 14 NSE, Re = 1, ROM projection filter, and d = 7: Average CE for different r
values.

r | G-ROM | DDC-ROM | ICE-DDC-ROM | CE-DDC-ROM
3 | 5.51e-05 5.51e-05 5.51e-05 5.12e-05
4 | 5.50e-03 5.50e-03 5.50e-03 1.14e-04
5 | 1.00e-02 1.00e-02 1.00e-02 6.90e-03

Table 15 NSE, Re = 1, d = 7, ROM projection filter: Average error on G-ROM, DDC-
ROM, ICE-DDC-ROM, and CE-DDC-ROM for different r values.

T é DDC-ROM | ICE-DDC-ROM | CE-DDC-ROM
3 | 1.00e-04 5.51e-05 5.51e-05 5.12e-05
3 | 1.00e-03 5.51e-05 5.51e-05 5.23e-05
3 | 1.00e-02 5.51e-05 5.51e-05 5.51e-05
4 | 1.00e-04 5.50e-03 5.50e-03 1.14e-04
4 | 1.00e-03 5.50e-03 5.50e-03 1.79e-04
4 | 1.00e-02 5.50e-03 5.50e-03 3.30e-03
5 | 1.00e-04 1.00e-02 1.00e-02 5.90e-03
5 | 1.00e-03 1.00e-02 1.00e-02 7.00e-03
5 | 1.00e-02 1.00e-02 1.00e-02 9.90e-03

Table 16 NSE, Re = 1, d = 7, ROM differential filter: Average error in G-ROM, DDC-
ROM, ICE-DDC-ROM, and CE-DDC-ROM for different § and r values.

significant role in ROM development. We note, however, that the ICE-DDC-
ROM and CE-DDC-ROM errors are only a factor of 2 lower than the DDC-
ROM error. This is different from the Burgers equation in Section where
the ICE-DDC-ROM and CE-DDC-ROM errors were orders of magnitude lower
than the DDC-ROM error. We also note that the DDC-ROM and ICE-DDC-
ROM errors in Tables [[5] and [I6 are the same. This is due to the fact that the
magnitude of the CE is of O(107%), which is much lower than the magnitude
of the other ROM terms (i.e., O(1071)). On the other hand, finding a data-
driven model for the CE yields terms of the same order of magnitude as the
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ROM terms, i.e., O(10~!). This explains why the CE-DDC-ROM error is
significantly smaller than, say, the ICE-DDC-ROM error.

5.2.2 REYNOLDS NUMBER Re = 100

To investigate the effect of the Reynolds number on the results in Section 5.2.1
in this section we consider Re = 100, which corresponds to v = 1073, To
generate the ROM basis, we collect 166 snapshots, which are the FE solutions
at each time step from t =7 to t = 7.332.

As in Section we start by addressing (Q1), i.e., whether the CE
exists. For various r and § values, we list the CE computed by using the ROM
differential filter (Table and the ROM projection filter (Table [I§). As in
Section [5.2.1] we observe that the CE exists for both filters. We also note that
the magnitude of the CE for Re = 100 is much higher than the magnitude of
the CE for Re = 1.

0 =1.00e-04 | 6 =1.00e-03 | 6 =1.00e-2 | 6 =1.00e-01 | & =1.50e-01

P
3 9.84e-01 9.83e-01 9.22e-01 1.68e-01 8.81e-02
4 1.86e+-00 1.85e4-00 1.54e4-00 1.13e-01 5.32e-02
7 3.06e+-00 3.05e+00 2.35e+-00 1.01e-01 4.59e-02
9 3.94e+4-00 3.92e+00 2.65e+4-00 9.68¢-02 4.38e-02
11 2.15e+4-00 2.13e4-00 1.19e4-00 2.93e-02 1.32e-02
13 1.90e4-00 1.88¢e+00 9.75e-01 2.31e-02 1.04e-02
15 7.80e-01 7.68e-01 3.27e-01 6.20e-03 2.80e-03

Table 17 NSE, Re = 100, ROM differential filter, d = 16: Average CE for different § and

r values.

r 2 3 4 5 6 7

lEalualll 2 p2, 2.05e400 | 9.70e-01 | 1.75e4-00 | 2.26e+00 | 1.65e+00 | 4.46e-14

Table 18 NSE, Re = 100, ROM projection filter, and d = 7: Average CE of different r
values.

Next, we address (Q2), i.e., whether the CE has a significant effect on
ROMSs. To this end, we test the DDC-ROM , the ICE-DDC-ROM ,
and the CE-DDC-ROM . We note that the ICE-DDC-ROM and CE-DDC-
ROM include a representation of the Laplacian CE (), whereas the DDC-
ROM does not. For various r and § values, we list the ROM error computed
by using the ROM differential filter (Table and the ROM projection filter
(Table [19). We observe that the ICE-DDC-ROM and CE-DDC-ROM errors
are lower than the DDC-ROM error, just as in the previous cases. This time,
however, the improvements in the ICE-DDC-ROM and CE-DDC-ROM over
the DDC-ROM are small. Thus, for the Re = 100 case, we conclude that the
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CE plays only a minor role in ROM development. This happens because, in
this case, the magnitude of the CE is much lower than the magnitude of the
Correction term. The explanation for this difference is that, in , the CE is
multiplied by v, the viscosity coefficient. Thus, for higher Re, the CE (which
arises from the diffusion term) is dominated by the Correction term (which
arises from the nonlinear term). This explains why the CE is important for
low Re flows, but not for higher Re flows.

r | d | G-ROM | DDC-ROM | ICE-DDC-ROM | CE-DDC-ROM
3| 7 | 8.70e-03 3.92e-04 3.68e-04 3.70e-04
419 | 3.57e-02 3.61e-04 3.52e-04 3.55e-04
519 | 2.17e-02 4.06e-04 3.25e-04 3.28e-04

Table 19 NSE, Re = 100, ROM projection filter: Average error in G-ROM, DDC-ROM,
ICE-DDC-ROM, and CE-DDC-ROM for different d and r values.

r | d 6 DDC-ROM | ICE-DDC-ROM | CE-DDC-ROM
3| 7| 1.00e-3 3.92e-04 3.68e-04 3.70e-04
3| 7| 1.00e-2 3.92e-04 3.70e-04 3.71e-04
419 | 1.00e-3 3.61e-04 3.52e-04 3.55e-04
419 | 1.00e-2 3.61e-04 3.51e-04 3.53e-04
5|9 | 1.00e-3 4.06e-04 3.23e-04 3.82e-04
519 | 1.00e-3 4.06e-04 3.32e-04 3.80e-04

Table 20 NSE, Re = 100, ROM differential filter: Average error in G-ROM, DDC-ROM,
ICE-DDC-ROM, and CE-DDC-ROM for different § and r values.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we investigated theoretically and computationally whether the
commutation error (CE) exists, i.e., whether differentiation and ROM spa-
tial filtering commute. To our knowledge, this is the first investigation of the
CE in a ROM context. We studied whether there is a CE for the Laplacian
for two ROM filters: the ROM projection and the ROM differential filter.
Furthermore, when the CE was nonzero, we investigated whether it had any
significant effect on the ROM development. To this end, we considered the
data-driven correction ROM (DDC-ROM) [44], in which the Correction term
(which is generally added to improve the ROM’s accuracy) is modeled by us-
ing the available data. To investigate the effect of the CE on the DDC-ROM,
we considered the commutation error DDC-ROM (CE-DDC-ROM), in which
available data is used to model not only the Correction term, but also the
CE. Finally, we also used the ideal CE-DDC-ROM (ICE-DDC-ROM), which
is the DDC-ROM supplemented with a fine resolution representation of the
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CE. When the CE-DDC-ROM and ICE-DDC-ROM yielded more accurate
results than the standard DDC-ROM, we concluded that the CE has a signifi-
cant effect on the ROM development. As numerical tests, we used the Burgers
equation with viscosities v = 107! and v = 1073 and a 2D flow past a circular
cylinder at Reynolds numbers Re = 1 and Re = 100. For the Burgers equation
test case, we considered smooth and non-smooth initial conditions.

The most important conclusions of our theoretical and numerical investi-
gation are the following: (i) The CE exists for all cases considered. (ii) The
CE has a significant effect on the ROM development for low Reynolds num-
bers, but not so much for higher Reynolds numbers. This happens because,
for higher Reynolds numbers, the CE (which arises from the diffusion term) is
dominated by the Correction term (which arises from the nonlinear term). We
note that, for the Burgers equation, the CE had a significant effect on ROMs
even for low viscosity values; however, for non-smooth initial conditions (re-
sults not included), the CE effect was lower than the CE effect for higher
viscosity. (iii) The non-smooth initial conditions (in the Burgers equation)
decreased the effect of the CE on the ROM development.

These first steps in the theoretical and numerical investigation of the CE
showed that, in some cases, it can be significant and has to be modeled. There
are, however, several other research directions that need to be pursued for
a better understanding of the ROM CE. For example, we plan to investigate
whether there is an upper bound for the Reynolds number for which the CE has
a significant effect on the ROM. Furthermore, we plan to study the ROM CE
for differential operators that are different from the Laplacian, e.g., first-order
spatial derivatives, such as those in the quasi-geostrophic equations. The effect
of the CE on 3D complex flows also needs to be studied. Finally, we plan to
investigate whether the CE has a significant effect on spatially-filtered ROMs
that are different from the DDC-ROM considered in this paper, e.g., the phys-
ically constrained data-driven ROM [25] or the approximate deconvolution
ROM [45].
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