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Abstract

In this work, we study the numerical approximation of local fluctuations of certain
classes of parabolic stochastic partial differential equations (SPDEs). Our focus is on
effects for small spatially-correlated noise on a time scale before large deviation effects
have occurred. In particular, we are interested in the local directions of the noise de-
scribed by a covariance operator. We introduce a new strategy and prove a Combined
ERror EStimate (CERES) for the five main errors: the spatial discretization error,
the local linearization error, the noise truncation error, the local relaxation error to
steady state, and the approximation error via an iterative low-rank matrix algorithm.
In summary, we obtain one CERES describing, apart from modelling of the original
equations and standard round-off, all sources of error for a local fluctuation analysis of
an SPDE in one estimate. To prove our results, we rely on a combination of methods
from optimal Galerkin approximation of SPDEs, covariance moment estimates, ana-
lytical techniques for Lyapunov equations, iterative numerical schemes for low-rank
solution of Lyapunov equations, and working with related spectral norms for different
classes of operators.

Keywords: stochastic partial differential equation, stochastic dynamics, combined error
estimates, optimal regularity, Lyapunov equation, low-rank approximation, local fluctua-
tions.

1 Introduction

This work has two main goals. The first - more abstract - goal is to establish a general
strategy to find and prove Combined ERror EStimates (CERES) for dynamical systems
involving several sources of error. The second - more specific - goal is to demonstrate CERES
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for a concrete challenge of an infinite-dimensional stochastic problem. The technically precise
formulation of our work starts in Section 2. In this introduction we provide a basic overview
of our strategy and our main results. We focus on the evolution equation

du = [Au+ f(u)] dt+ g(u) dW, (1)

where W = W (x, t) is a stochastic Wiener process, A is a suitable linear operator, f, g are
given maps and u = u(x, t) ∈ R is the unknown function [49]. As a paradigmatic example,
one may think of the Laplacian A = ∆, W as a Q-Wiener process with trace-class operator
Q and f, g as sufficiently smooth Lipschitz functions. Suppose the deterministic problem,
i.e. g(u) ≡ 0, has a steady state solution u = u∗, which solves 0 = Au∗+ f(u∗). Suppose the
steady state is linearly stable, which just means that the spectrum of the linear operator

Ã := A+ Duf(u∗) (2)

is properly contained in the left-half of the complex plane [32, 51]. Note that since f is
scalar-valued, we may also write Duf(u∗) = f ′(u∗)Id so that if A is symmetric then so is Ã.
Assume that the initial condition u(x, 0) is very close to u∗ and the noise in (1) is sufficiently
small, 0 < ‖g(u)‖ =: ψ ≤ 1, in comparison to the spectral gap of Ã to the imaginary axis.
Then the probability is extremely large that one observes only local fluctuations of sample
paths of the SPDE (1) near u∗ on very long time scales. Only when the time scale reaches
roughly order O(ec/ψ

2
) for some constant c > 0 as ψ → 0, large deviation effects [59, 49]

occur. Here we focus on the initial scale of fluctuations, which we refer to as sub-exponential
scale, on which large deviation effects do not play a role. However, the noise does still play
an important role near the steady state. Its interplay with the operator Ã determines the
directions, in which we are going to find the process with higher probability locally near u∗.
This raises the question, how to numerically compute these directions. A recent practical
strategy suggested in the context of a numerical continuation [33] framework for stochastic
ordinary differential equations (SODEs) [36] and then extended for SPDEs [37] is to:

(S1) spatially discretize u with approximation level h and consider the resulting SODEs for
uh ∈ RN . Note that we are going to view uh as a vector but also use the notation for the
associated function expressed via the basis of a finite-dimensional spatial approximation
space;

(S2) locally linearize the SODEs around u∗h ≈ u∗ and consider SODEs for the linear approx-
imation Ũh ∈ RN , which form an Ornstein-Uhlenbeck (OU) process [19];

(S3) truncate the noise term based upon the decay of the Q-Wiener process and consider a
reduced linear OU process Uh ∈ RN ;

(S4) take the covariance matrix Vh = Vh(t) of the OU process Uh, note that Vh satisfies a
time-dependent Lyapunov equation [1, 54], and show that Vh converges quickly in time
to a stationary Lyapunov equation for a matrix V∗ ∈ RN×N ;

(S5) compute a low-rank approximation V∗ ≈ ZZ> using a specialized iterative method to
generate Z ∈ RN×r with r� N ; j computation steps of an iterative algorithm yield a
matrix Vj ≈ V∗.
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Every step (S1)-(S5) produces an error, i.e., the final matrix Vj only provides an approx-
imation to the infinite-dimensional covariance operator Cov(u) [21], which is precisely the
operator describing the different fluctuation directions. In summary, one should aim for a
result of the form

sup
t∈[0,T ]

‖Cov(u)− Vj‖ ≤ error in
Step (S1) + error in

Step (S2) + error in
Step (S3) + error in

Step (S4) + error in
Step (S5) (3)

to really judge the quality from the viewpoint of numerical analysis. In (3) and similar
comparison problems we are always going to view finite-dimensional operators such as Vj
as infinite-dimensional operators by using an embedding via a basis of the function space
on which Cov(u) is defined. Equation (3) is just a prototypical example, i.e., a chain of
different error terms does occur in most challenging high-dimensional problems, particularly
those involving stochastic aspects.

Remark: We do not consider in (3) the modelling error of SPDEs of the form (1). On the

one hand, it is partially included in a stochastic formulation anyway, and on the other hand, it is

always possible to argue in an application, whether other terms or effects matter. The second error

we do not include in the CERES is the standard numerical round-off error, which is universal for

a given precision.

From a technical viewpoint, each step demands different techniques and then a combi-
nation of the different estimates. For this CERES, we decided to consider the spectral or
2-norm ‖ · ‖2 on the infinite- as well as finite-dimensional levels as well as the associated
derived operator norm. This simplifies computing a CERES considerably as one may use
the standard triangle inequality and suitable embeddings for the expression

‖Cov(u)− Cov(uh)︸ ︷︷ ︸
Step (S1)

+ Cov(uh)− Cov(Ũh)︸ ︷︷ ︸
Step (S2)

+ Cov(Ũh)− Vh︸ ︷︷ ︸
Step (S3)

+Vh − V∗︸ ︷︷ ︸
Step (S4)

+V∗ − Vj︸ ︷︷ ︸
Step (S5)

‖. (4)

For (S1), we rely on an extension to covariance operators of optimal error estimates for
Galerkin finite elements methods for SPDEs [34, 35]. (S2) is treated via small noise approx-
imation in combination with moment equations [55, 38]. (S3) is covered by standard growth
estimates for Q-Wiener processes over a finite time scale [49]. (S4) is tackled by results on
spectra for Lyapunov equations [8] and decay of the time-dependent problem [27]. (S5) re-
quires a careful tracing of error estimates for low-rank versions of iterative algorithms, such
as alternating direction implicit (ADI) [44] and rational Krylov methods [14].

Our final result for (3) is summarized in Theorem 9.1. It illustrates that many factors
can influence the error. For example, the spatial resolution h, the final time T , the Lipschitz
constants of f, g, the structure of the operator Q, the spectrum of Ã, the noise truncation
level R, and the low-rank r all appear in some form in the final error. Therefore, balancing
a CERES is the key practical message of our work. Just making a spatial resolution h small
or a dynamical error small by taking higher-order terms into account may not be enough in
practice, i.e., one has to be aware, which error term dominates a CERES.

We highlight that extensive numerical continuation calculations, practical convergence
tests, as well as large-scale examples already exist for the method to approximate local
fluctuations numerically as proposed here. We refer the interested reader to [36] for an
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introduction and the SODE case, to [37] for the SPDE case including precise numerical
comparisons to theoretical scaling laws, and to [3] for a successful large-scale application in
geoscience. In this work, we focus on the theoretical aspects, thereby finishing/completing
the previous work on scientific computing side of the method.

The paper is structured as follows: In Section 2 we provide the foundational technical
setup for the SPDE (1) using mild solutions and in Section 3 we cover the spatial discretiza-
tion. Section 4 develops the error estimates for covariance matrices while Section 5 contains
the relevant moment estimates. Then we discuss the noise truncation in Section 6. In
Section 7, we transition to the Lyapunov equation and its reduction to steady state. The
last technical step is carried out in Section 8 tracing the error results for low-rank iterative
schemes for Lyapunov equations. In Section 9, we present the full CERES, which draws
upon all the previous results. An outlook to open problems and further applications of our
methodology is given in Section 10.

2 SPDE - Mild Solutions

Consider a fixed compact time interval I = [0, T ], t ∈ I and a filtered probability space
(Ω,F , (Ft)t∈I ,P). Furthermore, we fix two Hilbert spacesH and U with inner products 〈·, ·〉H
and 〈·, ·〉U respectively. As concrete cases/examples, we always want to think of the Hilbert
spaces being spatial function spaces over a bounded domain D ⊂ Rd with smooth boundary
∂D and with spatial variable by x ∈ D but we phrase our results in a more abstract evolution
equation setting. Let Q ∈ L(U ,U) be a symmetric non-negative linear operator and let
(W (t))t∈I denote the associated Q-Wiener process; see [49] for the construction of (W (t))t∈I .
Let U0 := Q1/2U be a Hilbert pace [49, 50] with the inner product 〈·, ·〉U0 := 〈Q−1/2·, Q−1/2·〉U ,
where Q−1/2 is the Moore-Penrose pseudoinverse of Q. An operator M : U0 → H is a Hilbert-
Schmidt operator if the norm

‖M‖L02 :=

(
∞∑
k=1

‖Mζk‖2
H

)1/2

is finite, where the choice of orthonormal basis {ζk}∞k=1 for U0 turns out to be arbitrary. The
space of these Hilbert-Schmidt operators will be denoted accordingly by L0

2. If we consider
Hilbert-Schmidt operators on H, then they will be denoted by L2 = L2(H,H).

The unknown function is u(t) ∈ H. As mentioned above, it is helpful to always think
of a more concrete setting when H is a spatial function space. Then u(x, t;ω) for ω ∈ Ω
denotes the unknown family of random variables u : D×I×Ω→ R. In the notation we shall
always suppress ω from now on and assume that all maps we define are measurable with
respect to ω, which will also imply measurability for u below. Setting u(t) = u(·, t) ∈ H and
W (t) = W (·, t) includes this case in the abstract setup, where we want to study the SPDE

du(t) = [Au(t) + f(u(t))] dt+ g(u(t)) dW (t), u(0) = u0∈ H, (5)

as an evolution equation on the Hilbert space H, i.e., u(t) is an H-valued random variable.
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(A0) We assume that Q is of trace class. Furthermore, we assume the operator A : dom(A) ⊂
H → H is linear, self-adjoint negative definite operator with compact inverse and
generates an analytic semigroup t 7→ etA [26].

(A0) implies that there exists an orthonormal basis of eigenvectors of A for H. The maps
f, g are going to be specified more precisely below and the initial condition u0 ∈ H is a
random variable. A mild solution u(t) to (5) satisfies

u(t) = etAu0 +

∫ t

0

e(t−s)Af(u(s)) ds+

∫ t

0

e(t−s)Ag(u(s)) dW (s), (6)

i.e., the integral equation (6) holds P-almost surely (P-a.s.) for t ∈ I and

P
(∫ t

0

|u(s)|2 ds < +∞
)

= 1, P-a.s.;

see also [49, Chapter 4] or [13] for the construction of the stochastic integral. It is well-known
that under certain Lipschitz assumptions [49, Section 7.1] or dissipativity assumptions [49,
Section 7.4.2] on f, g, there exists a unique mild solution. However, since we are interested in
numerical error estimates, it is important to have optimal regularity results for mild solutions
so we follow [34, 35, 30]. Denote by {ak}∞k=1, 0 > a1 ≥ a2 ≥ · · · the eigenvalues of A and by
ek the associated eigenfunctions with Aek = akek. For r ∈ R, define the fractional operator
Ar/2 : dom(Ar/2)→ H by

Ar/2v := −(−A)r/2v = −
∞∑
k=1

(−ak)r/2 〈v, ek〉H ek.

Set Ḣr := dom(Ar/2) and consider the norm ‖v‖Ḣr := ‖Ar/2v‖H, which turns Ḣr into a
Hilbert space. Let L0

2,r ⊂ L0
2 denote the subspace of Hilbert-Schmidt operators, which have

finite norm ‖ · ‖L02,r := ‖Ar/2 · ‖L02 . The following assumptions are assumed to hold from now

on (although we are still going to emphasize this several times in statements of theorems
below):

(A1) Fix two constants r ∈ [0, 1) and p ∈ [2,∞) for all assumptions. Fix an initial condition
u0 : Ω→ Ḣr+1 and assume it is F0-measurable with[

E
(
‖u0‖pḢr+1

)]1/p

≤ Cini,r < +∞.

(A2) f : H → Ḣr−1 and there exists a constant Cf > 0 such that

‖f(u)− f(v)‖Ḣr−1 ≤ Cf‖u− v‖H, for all u, v ∈ H. (7)

(A3) g : H → L0
2 and there exists a constant Cg,1 > 0 such that

‖g(u)− g(v)‖L02 ≤ Cg,1‖u− v‖H, for all u, v ∈ H, (8)

and furthermore g(Ḣr) ⊂ L0
2,r holds with the estimate

‖g(u)‖L02,r ≤ Cg,2(1 + ‖u‖Ḣr), for all u ∈ H, (9)

and some constant Cg,2 > 0.
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Essentially (A2)-(A3) are modifications/extensions of the classical Lipschitz assumptions
in [49]. Therefore, one immediately gets:

Theorem 2.1 ([49, Theorem 7.4],[29, Theorem 1]). Suppose (A0)-(A3) hold, then there
exists a unique mild solution for the SPDE (5).

In addition, one may provide (optimal) regularity estimates for the mild solution:

Theorem 2.2 ([35, Theorem 3.1 & Theorem 4.1]). Suppose (A0)-(A3) hold then the unique
mild solution is almost surely in Ḣr+1. There exists a constant Cspa > 0 such that

sup
t∈I

(
E
[
‖u(t)‖pḢr+1

])1/p

≤ Cini,r + Cspa

(
1 + sup

t∈I

(
E
[
‖u(t)‖pḢr

])1/p
)

(10)

holds as a spatial regularity estimate and for temporal regularity we have

sup
t1,t2∈I,t1 6=t2

(
E
[
‖u(t1)− u(t2)‖pḢs

])1/p

≤ Ctime|t1 − t2|min( 1
2
, 1+r−s

2
) (11)

for some constant Ctime > 0 and for every s ∈ [0, r + 1).

As for the deterministic counterpart (g ≡ 0) of the SPDE (5), one may use regu-
larity estimates to obtain convergence rates and error estimates for associated numerical
schemes [56, 18]. In this paper, as already discussed in Section 1, we are interested in the
spatial approximation error only. We stated the temporal regularity results only for com-
pleteness. It is noted that the constant Cspa > 0 in Theorem 2.2 does depend upon p, r, A, f, g
and T .

As a typical example for the abstract framework, one should always keep in mind classical
one-component reaction-diffusion systems, where

H = L2(D) and A = ∆ :=
d∑

k=1

∂2

∂x2
k

,

with Dirichlet boundary conditions. We point out that for rectangular domains and A being
the Laplacian, one can easily calculate the eigenfunctions of A explicitly. If one works with
the standard stochastic heat equation, i.e., sets f = 0 and takes additive noise, then all of our
estimates below easily become explicit in a spectral Galerkin setting. However, we shall not
restrict to this special case in this paper and continue to work with the more general setup.
In fact, it is generally quite difficult to give any explicit expressions regarding numerical
error estimates for nonlinear SPDEs, even on rectangular domains.

3 SPDE - Spatial Discretization

Let Sh for h ∈ (0, 1] denote a continuous family of finite-dimensional subspaces of the Hilbert
space Ḣ1 with

dim(Sh) =: N ∈ N, (12)
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which are spanned by N basis elements of a basis of Ḣ1. We always assume that in the
limit h → 0 we indeed obtain a full basis of Ḣ1. The spaces Sh should be thought of as
the spatial discretization spaces; see [56, 18] for a detailed overview. Particularly important
examples are the span of a finite set of basis functions of A leading to a spectral Galerkin
method, or the span of piecewise polynomial functions on D, where h is the diameter of
the largest element of a suitable mesh on D, leading to a Galerkin finite element method.
Let Rh : Ḣ1 → Sh be the orthogonal projection onto Sh with respect to the inner product
a(·, ·) := 〈A1/2·, A1/2·〉H so that we have

a(Rhu, vh) = a(u, vh), for all u ∈ Ḣ1, vh ∈ Sh.

The discretized version Ah of A is defined by the requirement that for a given uh ∈ Sh, the
image Ahuh is the unique element satisfying

a(uh, vh) = 〈Ahuh, vh〉H, for all vh ∈ Sh.

Furthermore, let Ph : Ḣ−1 → Sh be the generalized orthogonal projection onto Sh defined
analogously to Rh, i.e., by requiring

〈Phu, vh〉H = a(A−1u, vh), for all u ∈ Ḣ−1, vh ∈ Sh.

Then the spatial discretization of the SPDE can be written as

duh(t) = [Ahuh(t) + Phf(uh(t))] dt+ Phg(uh(t)) dW (t), uh(0) = Phu0. (13)

It is relatively straightforward to check that (13) must also have a unique mild solution; see
also the proof of Lemma 3.2. To fix the role of the discretization parameter h, we are going
to assume:

(A4) There exists a constant Ch > 0 such that

‖Rhv − v‖H ≤ Ch h
s ‖v‖Ḣs , for all v ∈ Ḣs, s ∈ {1, 2}, h ∈ (0, 1]. (14)

Recently, the regularity result of Theorem 2.2 has been transferred to yield results on
strong/pathwise approximation properties of the approximating stochastic evolution equa-
tion (13) for the SPDE (5). Consider the norm

‖ · ‖Lp(Ω;H) := (E[‖ · ‖pH])1/p (15)

for p ∈ [2,+∞) as above. Then one can prove the following error estimate:

Theorem 3.1 ([34, Theorem 1.1]). Suppose (A0)-(A4) hold, then there exists a constant
CGal > 0 such that

‖u(t)− uh(t)‖Lp(Ω;H) ≤ CGal h
1+r, ∀t ∈ I. (16)

In the later development of the error estimates for the covariance operator, we shall need
another auxiliary result, which we prove here:
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Lemma 3.2. Suppose (A0)-(A4) hold, then here exists a constant C+ > 0 (independent of
h) such that

sup
t∈I
‖u(t) + uh(t)‖L2(Ω;H) ≤ C+.

Proof. Indeed, we just have

sup
t∈I
‖u(t) + uh(t)‖L2(Ω;H) ≤ sup

t∈I
‖u(t)‖L2(Ω;H) + sup

t∈I
‖uh(t)‖L2(Ω;H)

so the first term is bounded by a direct application of Theorem 2.2 (or in fact, the classical
result [49, Theorem 7.4(ii)]). For the discretization, note that we may apply the same results
since (A0)-(A3) also hold for the discretized SPDE (13). For example, consider (A1) then
we have

‖Phf(u)− Phf(v)‖Ḣr−1 = ‖Ph[f(u)− f(v)]‖Ḣr−1 ≤ ‖f(u)− f(v)‖Ḣr−1 (17)

since Ph is the generalized orthogonal projector. The other assumptions are checked similarly.

Of course, it should be noted that the constant C+ > 0 will depend on the data of the
problem, i.e., on f, g, T, A. However, we will only be interested in the convergence rate in
h and we will show later on that we can select T as an order one constant anyhow, while
f, g, A are given and satisfy the Lipschitz and semigroup assumptions stated above. For
more background on discretization of SPDEs, we also refer to [28, 45].

4 SPDEs - Covariance

The next step is to establish numerical error estimates for the covariance. Let v ∈ L2(Ω;H),
then one defines the covariance operator [49, 41] of v as

Cov(v) := E[(v − E[v])⊗ (v − E[v])]. (18)

By definition, Cov(v) : H → H is a symmetric linear operator. In addition one may check
that Cov(v) is nuclear using the equivalent characterization of nuclear operatorsM on Hilbert
spaces via the condition

Tr(M) :=
∞∑
k=1

〈Mξk, ξk〉H < +∞

for an orthonormal basis {ξk}∞k=1 of H. The space of nuclear operators L1(H,H) =: L1

becomes a Banach space under the norm ‖ · ‖L1(H,H) := Tr(·) [49, Appendix C]. Note that
we have two well-defined covariance operators

Cov(u(t)) and Cov(uh(t)) (19)

as the SPDE (5) and the spatially discretized version (13) both have mild solutions in
L2(Ω× I;H).
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Theorem 4.1. There exists a constant Cd > 0 such that

sup
t∈I
‖Cov(u(t))− Cov(uh(t))‖L2(H,H) ≤ Cdh

1+r. (20)

Proof. The proof is a calculation aiming to use the spatial approximation property of The-
orem 3.1. Suppose as a first case that E[u] = 0 = E[uh]. Consider an orthonormal basis
{ξk}∞k=1 of H. We want to estimate the error in the Hilbert-Schmidt norm ‖ · ‖L2 . For the
following steps we suppress the argument u = u(t) and uh = uh(t) and use the definition of
the covariance operator

sup
t∈I
‖Cov(u)− Cov(uh)‖2

L2 = sup
t∈I
‖E[u⊗ u]− E[uh ⊗ uh]‖2

L2 ,

≤ sup
t∈I
‖E[u⊗ u]− E[uh ⊗ uh]‖2

L1 ,

where we used that the trace-class norm bounds the Hilbert-Schmidt norm. Hence, we have
using that off-diagonal terms cancel in the trace-class norm that

sup
t∈I
‖Cov(u)− Cov(uh)‖2

L2 ≤ sup
t∈I

∞∑
k=1

〈E[(u− uh)⊗ (u+ uh)]ξk, ξk〉2H,

= sup
t∈I

∞∑
k=1

〈E[((u− uh)⊗ (u+ uh))ξk], ξk〉2H,

= sup
t∈I

∞∑
k=1

E[〈u− uh, ξk〉H〈u+ uh, ξk〉H]2,

where we use in the last step the definition of the tensor product (v1 ⊗ v2)v3 := 〈v2, v3〉Hv1

for vk ∈ H for k ∈ {1, 2, 3}. Then a direct application of Cauchy-Schwarz yields

sup
t∈I
‖Cov(u)− Cov(uh)‖2

L2 ≤ sup
t∈I

∞∑
k=1

E[〈u− uh, ξk〉2H]E[〈u+ uh, ξk〉2H],

≤ sup
t∈I
‖u− uh‖2

L2(Ω;H) ‖u+ uh‖2
L2(Ω;H). (21)

In the expression (21), we may estimate the two terms separately by estimating the supremum
by the product of suprema. Furthermore, a direct application of Theorem 3.1 to the first
term and Lemma 3.2 to the second term give

sup
t∈I
‖Cov(u)− Cov(uh)‖2

L2 ≤ CGal C+ h2(r+1),

which yields the result in the basic case of zero means. If E[u] 6= 0 and E[uh] 6= 0, we observe
that

sup
t∈I
‖u− uh − E[u− uh]‖2

L2(Ω;H) ≤ sup
t∈I
‖u− uh‖2

L2(Ω;H) + sup
t∈I
‖E[u− uh]‖2

L2(Ω;H),

≤ CGal h
2(r+1) + sup

t∈I
E[‖u− uh‖L2(Ω;H)]

2,

≤ 2CGal h
2(r+1),
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using again Theorem 3.1 twice. Furthermore, it is easy to see that

E[‖u+ uh − E[u+ uh]‖L2(Ω;H)]

remains bounded for nonzero means. The result now follows repeating the same steps shown
for the zero means case also for the nonzero means case.

Obviously the constant Cd also depends upon the data of the problem as do C+ and CGal

but all constants are independent of h, which is the key discretization parameter in the step
(S1).

5 SODEs - Linearization

Having estimated the error of the spatial discretization, we are now dealing with

duh(t) = [Ahuh(t) + Phf(uh(t))] dt+ Phg(uh(t)) dW (t), uh(0) = Phu0, (22)

where uh ∈ RN is a finite-dimensional approximation of u. We assume that the original
SPDE (5) and its projection have a locally asymptotically stable homogeneous steady state
for zero noise and that we only study the small noise regime with sufficiently fast decay for
the eigenvalues of Q and a noise with U = H.

(A5) Assume u∗ satisfies Au∗+ f(u∗) = 0. Furthermore, suppose f is Fréchet differentiable,
Duf(u∗) = f ′(u∗)Id and

spec(A+ f ′(u∗)Id) ⊂ {ρ ∈ R : ρ < 0}. (23)

Furthermore, assume u∗h := Phu
∗ satisfies Ahu

∗
h + Phf(u∗h) = 0 for all h ∈ (0, 1].

(A6) Suppose there exists a constant ψ > 0 such that

‖Phg(uh(t))‖2 ≤ ψ (24)

for all h ∈ (0, 1], where we recall that we use ‖ · ‖2 to also denote the usual Euclidean
norm.

Below we are also going to assume that ψ is chosen sufficiently small to get a good ap-
proximation of the linearized system. The goal is to provide a finite-time estimate for the dif-
ference between the covariance matrix Cov(uh(t)) of (22) and covariance matrix Cov(Uh(t))
of the linearized OU process

dŨh(t) = [Ah + Ph[Duf ](u∗)] Ũh(t) dt+ Phg(u∗) dW (t), Ũh(0) = Phu0, (25)

where Duf denotes the usual Fréchet derivative as introduced already above. Note that the
linear operator Phg(u∗) only acts nontrivially on the first N basis elements of Sh. In the case
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of spectral Galerkin, these basis elements are {ei}Ni=1 and so Phg(u∗) is zero on {ei}∞i=N+1.
In this case, we can replace W (t) by

WN(t) =
N∑
i=1

√
λQ,iβi(t)ei (26)

where we assume that {ei}∞i=1 are also eigenfunctions of Q, {λQ,i}∞i=1 are eigenvalues of Q,
and {βi(t)}∞i=1 are independent Brownian motions. For a more general space Sh, let {κk}Nk=1

be its basis and note that

Phg(u∗)W (t) = Phg(u∗)
∞∑
i=1

√
λQ,iβi(t)ei

= Phg(u∗)
∞∑
i=1

√
λQ,iβi(t)

N∑
k=1

〈ei, κk〉κk

= Phg(u∗)

[
N0∑
i=1

√
λQ,iβi(t)

N∑
k=1

〈ei, κk〉κk +
∞∑

i=N0

√
λQ,iβi(t)

N∑
k=1

〈ei, κk〉κk

]
.

Hence, up to a change of basis, the first summand in the last expression is of the same form
as (26) up to a change of basis, while the second term can be made arbitrarily small with
a suitable choice on N0 due to the trace class assumption; see Section 6, where we estimate
the noise truncation error explicitly. To not overload the notation, we shall work from now
on with the spectral formulation (26).

Recall that without additional assumptions on the nonlinearity of f , it is usually not
possible to estimate the error between a linearized and a nonlinear system, even on a finite
time scale. To simplify the notation we let

uh =: z, Ahuh(t) + Phf(uh(t)) =: F (z), Phg(uh(t)) =: G(z),

as well as
Ũh =: Z̃, [Ah + Ph[Duf ](u∗)] =: A, Phg(u∗) =: B̃,

where G(z) and B̃ are operators projected/restricted onto the first N basis functions. Hence,
we have to compare the SODE

dz = F (z) dt+G(z) dWN , z(0) = z0, (27)

near a steady state z∗ := u∗h to the SODE

dZ̃ = AZ̃ dt+ B̃ dWN , Z̃(0) = Z̃0. (28)

Without loss of generality we may assume that z∗ ≡ (0, . . . , 0)> since we can always translate
the steady state if necessary. Let p = (p1, p2, . . . , pN) ∈ (N0)N be a multi-index, define the
mean values of z by µ := E[z] ∈ RN and the centered moments as

E[(z − µ)p] := E[(z1 − µ1)p1(z2 − µ2)p2 · · · (zN − µN)pN ]. (29)
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To make the notation more compact, we also introduce ’altered’ multi-indices as follows:

p(k : ζ) = (p1, p2, . . . , pk−1, pk + ζ, pk+1, . . . , pN)

for ζ ∈ Z and multiple arguments pertain to changes in the respective components. Further-
more, we consider the diffusion operators

G(z) := G(z)G(z)>, B̃ := B̃B̃>. (30)

Lemma 5.1. The evolution equations for the centered moments E[(z−µ)p] of (27) are given
by

d

dt
E[(z − µ)p] =

N∑
k=1

pkE[Fk(z)(z − µ)p(k:−1)] +
1

2

N∑
k=1

pk(pk − 1)E[Gkk(z)(z − µ)p(k:−2)]

+
N∑
l=2

l−1∑
k=1

plpkE[Gkl(z)(z − µ)p(k:−1,l:−1)]

Proof. The calculation of the SODEs for the moments follows from first applying Itô’s for-
mula to monomials of the form zp as shown in [55, Section 4.1]. However, we then need
to average via E[·], and terms of the form

∫
(·) dWN average to zero as they satisfy the

martingale property [31] by the Lipschitz assumption on G.

Consider the linear approximation of (27) given by (28). We use the notation ν :=
E[Z̃] and we may assume without loss of generality that A is already diagonal; indeed, by
assumptions (A0) and (A5) we already have that A is symmetric with real spectrum so we
can apply a coordinate change to make A diagonal, which will just change constants in the
estimates so we do not display this explicitly here. Now we have two processes and we would
like to compare Cov(z) with Cov(Z̃). From Lemma 5.1 it follows that

d

dt
µ = E[F (z)],

d

dt
ν = Aν. (31)

It is relatively easy to write down the formal evolution equations for the covariances. For
the diagonal entries we have

d

dt
Cov(z)ii = 2E[Fi(z)(zi − µi)] + E[Gii(z)] (32)

d

dt
Cov(Z)ii = 2E[(AZ̃)i(Z̃i − νi)] + Bii (33)

Consider the difference Cov(z)− Cov(Z̃) =: Cov∆ and also define the remainders

RF (z) := F (z)−Az, RG(z) := G(z)− B̃.

Observe that the remainder RF is Lipschitz

‖RF (z1)−RF (z2)‖ ≤ (CF + ‖A‖)‖z1 − z2‖, (34)
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by assumptions (A2) and (A5) for some constant CF > 0, where ‖ · ‖ always denotes the
2-norm. Regarding the remainder RG, recall that we assumed a uniform noise bound in (A6)
so that

‖RG(z1)−RG(z2)‖ ≤ CGψ
2 (35)

for some constant CG > 0. Then one finds, using that A is diagonal and via assumption (A5),
that

d

dt
Cov∆

ii = 2E[Fi(z)(zi − µi)− (AZ̃)i(Z̃i − νi)] + E[Gii(z)− Bii],

= 2AiiE[(zi + µi − µi −RF
i (z)/Aii)(zi − µi)− (Z̃i + νi − νi)(Z̃i − νi)] + E[RG

ii (z)],

= 2Aii
(

Cov∆
ii + E[(µi −RF

i (z)/Aii)(zi − µi)− νi(Z̃i − νi)]
)

+ E[RG
ii (z)],

= 2Aii
(
Cov∆

ii + E[RF
i (z)/Aii(µi − zi)]

)
+ E[RG

ii (z)].

Using the Lipschitz conditions (34) and the bound (35) one has

|E[RF
i (z)/Aii(µi − zi) +RG

ii (z)]| ≤ (‖A‖+ CF )|µi|
|Aii|

E[‖z‖]

+
(‖A‖+ CF )

|Aii|
E[‖z‖2] + CGψ

2. (36)

We denote the right-hand side of the last inequality by ηii(t), which implies the final estimate

d

dt
Cov∆

ii (t) ≤ η∗ii + 2AiiCov∆
ii (t), η∗ii := max

t∈I
ηii(t). (37)

Considering the coordinate shift Cov∆
ii (t) = C∆

ii (t)− η∗ii/2Aii yields

d

dt
C∆
ii (t) ≤ 2AiiC∆

ii (t). (38)

Applying Gronwall’s inequality to (38), transforming back into original coordinate frame,
and using η∗ii/(2Aii) < 0 yields the following result:

Lemma 5.2. Suppose the assumptions (A0)-(A6) hold for all t ∈ I, then

Cov∆
ii (t) ≤ −

η∗ii
2Aii

+

[
Cov∆

ii (0) +
η∗ii

2Aii

]
e2Aiit. (39)

holds for all t ∈ I.

Note that an estimate of the form (39) is fully expected to hold since it states that the
growth of the difference between the covariances in the case of Lipschitz F and sufficiently
bounded noise is controlled by the first- and second-moments of the nonlinear process. In
particular, if we are close to a linear SODE or the spectral gap is very large, then we have an
excellent finite-time approximation on I, while large noise and a strong nonlinearity make
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the approximation worse. The next step is to look at the off-diagonal terms and consider
the case i > j (the case i < j is similar). The evolution equations are

d

dt
Cov(z)ij = E[Fi(z)(zj − µj)] + E[Fj(z)(zi − µi)] + E[Gij(z)]

d

dt
Cov(Z̃)ij = E[(AZ̃)i(Z̃j − νj)] + E[(AZ̃)j(Z̃i − νi)] + Bij

A similar calculation as above leads one to define

ηij(t) =

(
(‖A‖+ CF )|µi|

|Aii|
+

(‖A‖+ CF )|µj|
|Ajj|

CGψ
2

)
E[‖z‖]

+

[
(‖A‖+ CF )

|Aii|
+

(‖A‖+ CF )

|Ajj|

]
E[‖z‖2].

As before, we use the notation η∗ij := maxt∈I ηij(t) and use Gronwall’s inequality to obtain
the result:

Lemma 5.3. Suppose the assumptions (A0)-(A6) hold for all t ∈ I, then

Cov∆
ij(t) ≤ −

η∗ij
Aii +Ajj

+

[
Cov∆

ij(0) +
η∗ij

Aii +Ajj

]
e(Aii+Ajj)t. (40)

holds for all t ∈ I.

Of course, the estimates (39)-(40) may blow-up as t→ +∞ if the stationary distribution
cannot be approximated well by an OU process. Indeed, if the noise is small, this is exactly
the effect of large deviations [59, 49], which are going to occur on an asymptotic time scale
O(ec/ψ

2
) as ψ → 0. However, the estimate is rather explicit, i.e., if we know the Lipschitz

constant, the spectral gap, the noise level and/or have some a-priori knowledge of the norms
‖z‖ and/or ‖z‖2, then Aij < 0 is going to give decay for the exponential terms so that
the only remaining term is −η∗ij/(Aii +Ajj). The linear approximation (28) will be a good
approximation for a certain initial time-scale. The worst-case bound is the following:

Theorem 5.4. Suppose the assumptions (A0)-(A6) hold for all t ∈ I, then there exists a
constant Cl > 0 and a constant η∗A := maxij −η∗ij/(Aii +Ajj) such that

‖Cov(z(t))− Cov(Z̃(t))‖2 ≤ η∗A + Cl[‖Cov(z0)− Cov(Z̃0)‖2]e−tmini |Aii|. (41)

Remark: Note that taking the maximum η∗A implies that the constants in (41) can be
chosen independently of N as the matrix A has spectrum in the left half of the complex
plane due to (A5).

Proof. Using Lemma 5.2 and Lemma 5.3 the result easily follows.

In summary, Theorem 5.4 just states that one has to be extremely careful to trust a local
linear approximation in a numerical context for problems with large noise and/or a very
strong nonlinearity, which both lead to a very quick pathwise sampling of a non-Gaussian
stationary distribution. However, for small noise, sub-exponential time scales and/or a weak
nonlinearity, the local approximation via linearization and covariance operators of an OU
process is going to correctly expose the relevant directions of fluctuations.
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6 SODEs - Noise Truncation

In many practical applications, one tends to make one further approximation which we also
discuss here. The main observation is that for sufficiently fast decay of the eigenvalues λQ,i,
it is highly beneficial in practical computations to consider a further approximation

WN(t) ≈
R∑
i=1

√
λQ,iβi(t)ei =: WR(t)

for some R ≤ N , i.e., one truncates the noise. This means we now have to compare two OU
processes given by our previous linear SODE

dZ̃ = AZ̃ dt+ B̃ dWN , Z̃(0) = Z̃0. (42)

as well as the noise-truncated SODE

dU = AU dt+B dWR, U(0) = Z̃0. (43)

Here B denotes the reduction of the matrix B̃ ∈ RN×N to the first N×R block. In particular,
we have to compare Cov(Z̃) and Cov(U).

Theorem 6.1. Considering the SODEs (42) and (43) we have

sup
t∈I
‖Cov(Z̃)− Cov(U)‖2 ≤ Ctr

N∑
i=R+1

λQ,i

where Ctr > 0 is a constant.

Proof. As in Section 4, we find that

sup
t∈I
‖Cov(Z̃)− Cov(U)‖2 ≤ C sup

t∈I
‖Cov(Z̃ − U)‖2

where C > 0 is some constant. Then we observe that the process Z̃ − U satisfies the SODE

d(Z̃ − U) = B̃ dWN −B dWR = BN−RdWN−R

for a matrix BN−R ∈ R(N−R)×N since the drift term and the first R noise components
are identical. Therefore, the result follow from the fact that for a Q-Wiener process the
covariance matrix is given by tQ.

The main conclusion from Theorem 6.1 is that we can decrease the noise truncation error
by making R larger but that this yields a matrix B of higher rank if R is closer to N ; we
shall see that the rank of B is actually crucial in low-rank approximation calculations later
on. Furthermore, recall that we always assume that the eigenvalues λQ,k decay sufficiently
fast as k → +∞, which is the case in many commonly encountered practical problems,
so Theorem 6.1 also states that we do not expect the noise truncation to be often not a
significant practical problem.
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7 Lyapunov Equation - Algebraic Reduction

Recall that we have now considered a spatial discretization of the initial SPDE and we have
localized the problem near a locally deterministically stable steady state via linearization.
We calculated upper bounds on the discretization error and on the linearization error for a
finite time scale, including the noise truncation error. However, although we now can work
with the linear SODE problem

dU = AU dt+B dWR, U(0) = U0, (44)

we are still surprisingly far from a practical computable problem for many applications! It is
well-known [11, 36] that V (t) := Cov(U(t)) satisfies the matrix ordinary differential equation
(ODE) given by

d

dt
V = AV + VA> +BB> =: LAV + B. (45)

The stationary problem is given by

0 = AV + VA> + B. (46)

It is well-known [1], that under the assumption (A5), there exists a unique stationary solution
V∗ to (46), which is stable for the time-dependent problem (45). However, we work on a
finite-time interval I so we need a convergence rate.

Theorem 7.1. Suppose (A5) holds so that A also has a spectral gap then there exists a
constant Cτ > 0 such that

‖V (t)− V∗‖2 ≤ Cτ (‖V (0)− V∗‖2)e−2tmini(|Re(λi)|) (47)

or, alternatively
‖V (t)− V∗‖2 ≤ Cτ (H) (‖V (0)− V∗‖2)e−2t/‖H‖2 , (48)

where H solves AH +HA> + 2Id = 0 and {λi}Ni=1 are the eigenvalues of A.

Proof. For (47), one first uses that the eigenvalues of the linear operator LA are given by
λi +λj where {λk}Nk=1 are the eigenvalues of A [8]. For (48), we use that V∗ is a steady state
of (45) to obtain

V (t) = V∗ + exp(tA)(V (0)− V∗)exp(tA>)

⇒ ‖V (t)− V∗‖2 ≤ ‖exp(At)‖2
2‖V (0)− V∗‖2

Then by [27, Theorem 3.1]

‖exp(tA)‖2
2 ≤ Cτ (H) exp

(
−2t

‖H‖2

)
,

which leads to (48).
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Basically, Theorem 7.1 gives an estimate, which allows us to reduce the computation
to the Lyapunov equation (46) to the stationary case as long we do not start far away
from the locally linearized approximate solution. Unfortunately, direct solution methods,
such as the Bartels-Stewart algorithm [5] are unlikely to work as the space dimension N
grows drastically in practice as we decrease h. Furthermore, N increases due to the curse of
dimensionality as d increases. Direct solution methods come with a complexity O(N3) and
with storage requirements of O(N2), which limits their applicability to problems of moderate
sizes. Therefore, we have to use special methods for large-scale Lyapunov equations that
work with complexities and storage requirements linear in N .

8 Lyapunov Equation - Low-Rank and Computation

In this section, we want to consider and numerically compute a low-rank approximation
of V∗. This involves two steps, which can be be accomplished by carefully tracing the
literature: (1) understanding error estimates for the low-rank approximation and (2) finding
an error estimate for the computation in a low-rank iterative algorithm for solving Lyapunov
equations.

8.1 Low-rank Approximations and Singular Value Decay

Consider the singular value decomposition (SVD) of V∗:

V∗ = Y ΣX>, Y >Y = Id = X>X,

Y = [y1(V∗), . . . , yN(V∗)], X = [x1(V∗), . . . , xN(V∗)],

Σ = diag(σ1(V∗), . . . , σN(V∗)), σ1(V∗) ≥ . . . ≥ σN(V∗) ≥ 0,

where σi(V∗), xi(V∗), yi(V∗) are the singular values, left and, respectively, right singular
vectors. The best approximation of V∗ of rank r is, by the Eckhart-Young theorem [22,
Theorem 2.4.8.], obtained by

V∗ ≈ V lr,r
∗ :=

r∑
i=1

σi(V∗)ui(V∗)xi(V∗)
> = YrΣrXr, (49)

where Yr, Xr contain the first r columns of Y,X, and Σr the r largest singular values. Note
that since V∗ = V >∗ , Xr = Yr can be chosen. The approximation error is given by

‖V∗ − V lr,r
∗ ‖2 ≤ σr+1(V∗). (50)

If the singular values of V∗ decay rapidly towards zero, a small error can be achieved with
small values of r. In fact, it is possible to show [48, 23, 2, 53, 7] that solutions of large-scale
Lyapunov equations with low-rank inhomogeneities often show a fast singular value decay.
By assumption (A0) we restrict to the symmetric case A = A>. The following basic estimate
on the singular value decay can be found in [48]

σRr+1(V∗) ≤ σ1(V∗)

(
r−1∏
i=0

κ(A)(2i+1)/(2r) − 1

κ(A)(2i+1)/(2r) + 1

)2

, 1 ≤ Rr ≤ N, (51)
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where κ(A) = ‖A‖2‖A−1‖2. A more precise bound is developed in [53] using spec(A) ⊂
[a, b] and quantities related to elliptic functions and integrals, which we briefly recall in the
following definition (see also, e.g., [24, 42]).

Definition 8.1. The elliptic integral of the first kind defined on [0, 1] with respect to the
modulus 0 < k < 1 is

sk(x) :=

∫ x

0

1√
(1− t2)(1− k2t2)

dt.

Define also the elliptic functions sn, dn by

sn(sk) = x(sk), dn(sk) =
√

1− k2sn(sk),

where sn(sk) resembles the inverse function of sk(x). The associated complete elliptic integral
(w.r.t. the modulus k) is the value K := sk(1). The complementary modulus is k′ =

√
1− k2

and the associated complementary complete elliptic integral by K ′ = sk′(1). The nome q is
defined by q := exp (−πK ′/K).

Lemma 8.2. ([24, p. 430]) The nome q and complementary modulus k′ also satisfy the
identity

√
k′ =

∞∏
i=1

[
1− q2i−1

1 + q2i−1

]2

=
1− 2q + 2q4 − 2q9 + . . .

1 + 2q + 2q4 + 2q9 + . . .
. (52)

Using these quantities, the singular values of V∗ can be bounded by the following result:

Theorem 8.3. ([53, Theorem 2.1.1.],[17]) Let A = A> and spec(A) ∈ [a, b] with a :=
minλi < b := maxλi < 0. Set the complementary modulus to k′ = b/a = 1/κ(A) and
set k, the complete elliptic integrals K ′ and K, as well as the nome q via the relations in
Definition 8.1. Then it holds for the singular values of the solution of (46)

σRr+1(V∗) ≤ σ1(V∗)

(
1−

√
k′r

1 +
√
k′r

)2

, 1 ≤ Rr ≤ N, (53)

where k′r relates to qr in the same way k′ is build from q via (52):

√
k′r =

1− 2qr + 2q4r − 2q9r + . . .

1 + 2qr + 2q4r + 2q9r + . . .
.

We stress that, while better than (51), the bound (53) might not be very sharp in practice,
where one often observes an even faster singular value decay. One reason is that Theorem 8.3
only uses κ(A), i.e., the extremal eigenvalue a, b of A. More realistic, but also more difficult
to compute, bounds can be obtained by using more than these two eigenvalues of A [53].

Remark: In case of non-symmetric A, the above bounds are not applicable. In this case the

singular value decay of V∗ is more complicated and we refer to e.g., the discussions in [4, 7, 53].
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Judging by (53), the decay of the singular values depends mainly on κ(A) and the value
R = coldim(B). For instance for fixed a, the closer b to the origin, i.e. the smaller the spectral
gap, the larger κ(A) and, consequently, the closer k, k′ will be to one and, respectively, zero.
Hence, K ′ and K will tend towards π

2
and ∞, respectively, leading to q close to one. In this

extreme situation, qr will also be close to one, leading, in the end, to

1−
√
k′r

1 +
√
k′r
≈ 1

such that no singular value decay might be observed. In particular, the main insight is that
the spectral gap also plays a numerical analysis role at the error in step (S5). Furthermore,
the column dimension R of B plays a significant role in the bound (53). Recall the B is the
result from evaluating g at u∗ and approximating the stochastic process W (t). Recall that
in (S3) we truncated the Q-Wiener process [49] to obtain a numerical approximation [45]

W (t) ≈
R∑
i=1

√
λQ,i βi(t) ei

for a basis {ei}∞i=1 of H, eigenvalues λQ,i of Q, and independent Brownian motions βi(t). The
scalars λQ,i form a non-increasing sequence. Hence, the slower the λQ,i decrease, the higher
the value of R should be chosen and, consequently, the slower the decay of the singular values
of V∗. This implies that space-time white noise is more difficult to treat numerically than a
Q-trace-class Wiener process in our setting.

8.2 Error Bounds for Numerically Computed Low-Rank Solutions

Using the low-rank approximation (49) is not practical as it requires to first obtain V∗
and then compute its singular valued decomposition. Numerical methods for large-scale
Lyapunov equations [54, 10] typically directly compute low-rank factors Z ∈ RN×r, r �
N that form a low-rank approximate solution V lr,r

∗ = ZZ> which will, however, not be
optimal in the sense of the SVD based approximation (49) but close if the method is properly
executed. The advantage of these methods is that they are able to provide accurate low-
rank solutions in a very efficient manner by utilizing tools from large-scale numerical linear
algebra. By exploiting, e.g., the sparsity ofA and the low-rank R of the inhomogeneity, state-
of-the-art methods [54, 10] are able to compute low-rank solution factors at complexities and
memory requirements of O(N).

One iterative method for solving (46) is based on the fact that for any α ∈ C−, (46) is
equivalent to the matrix equation

X = C(α)XC(α) + B(α)B(α)H

with C(α) := (A+ αId)−1(A− αId), B(α) :=
√
−2Re(α)(A+ αId)−1B,

where (·)H is the Hermitian conjugate. This motivates the self-evident iteration scheme

Xj = C(αj)Xj−1C(αj) + B(αj)B(αj)
H
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for varying αj ∈ C−, which is the alternating directions implicit (ADI) iteration for Lyapunov
equations [58]. In order to be applicable to large-scale equations, one uses X0 = 0 and, after
a series of basic algebraic manipulation [44], one arrives at the low-rank ADI (LR-ADI)
iteration [44, 9, 39, 40]

Hj = (A+ αjId)−1Wj−1, Wj =Wj−1 − 2Re(αj)Hj,

Zj = [Zj−1,
√
−2Re(αj)Hj] ∈ CN×Rj

for W0 := B, j ≥ 1. It produces low-rank approximations of the solution of (46) of the
form V∗ ≈ Vj := ZjZHj . The numbers αj ∈ C− are referred to as shift parameters and
are crucial for a fast convergence of the LR-ADI iteration. Obviously, the main numerical
effort of the LR-ADI iteration comes from the solution of the linear systems of equations
(A+αjId)Hj = Wj−1 for Hj which can for sparse A be done efficiently by sparse-direct [15]
or iterative solvers [52]. However, the number of right hand sides in each linear system is
given by the key quantity R. We see here that the higher R, the larger the numerical effort
of the LR-ADI iteration becomes. The error of the constructed low-rank approximation Vj
is given by

Vj − V∗ = JjV∗J H
j , Jj :=

j∏
i=1

Ci, Ci := C(αi) (54)

such that

‖Vj − V∗‖2 ≤ κ(S)2‖V∗‖2R
2
j , Θj :=

j∏
i=1

ρi,

ρi = ρ(Ci) = max
z∈spec(A)

∣∣∣∣z − αiz + αi

∣∣∣∣ ,
and S is the matrix containing the eigenvectors of A. Since spec(A) ∈ C− and αi ∈ C−, it
holds ρi < 1, ∀i ≥ 1 and, thus, Θj = ρjΘj−1 < Θj−1, indicating that the sequence of the
spectral radii Θj is monotonically decreasing and, in the limit, will approach the value zero.
The shifts αi should therefore be chosen such that Θj is as small as possible leading to the
ADI parameter problem

{α∗1, . . . , α∗j} = arg min Θj = arg min
αi∈C−

max
z∈spec(A)

∣∣∣∣∣
j∏
i=1

z − αi
z + αi

∣∣∣∣∣ . (55)

This problem is in general a formidable task which has been addressed in numerous works,
e.g., in [17, 58, 53, 9, 39]. Again, the situation simplifies for the important case A = A>,
where real shifts are usually sufficient (and Zj will also be real). Note that in this case
κ(S) = 1. In summary, we have the following relevant result for our purposes:

Theorem 8.4. ([57, 53, 58]) With the same assumptions and settings for k, k′, K, K ′, q
as in Theorem 8.3, construct real shift parameters α1, . . . , αj ∈ R− by

αi = adn((2i− 1)K/2j), 1 ≤ i ≤ j (56)
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with the elliptic function dn from Definition 8.1. Using these shifts, the smallest value of the

spectral radius Θj = Θj(α1, . . . , αj) in (55) is
1−
√
k′j

1+
√
k′j

, where the modulus k′j is associated to

the nome qj via (52). Hence, carrying out j steps of the LR-ADI iteration using (56) yields

‖Vj − V∗‖2 ≤ ‖V∗‖2

(
1−

√
k′j

1 +
√
k′j

)2

.

We can, thus, expect to approximate the solution V∗ by the LR-ADI low-rank approxi-
mation Vj at a speed similar to the predicted singular value decay by Theorem 8.3. Other
low-rank algorithms for solving (46), e.g., rational Krylov subspace methods allow similar
error bounds [14, 6].

9 Summary and Main Result

Although we stated and proved all our main error estimates, it is helpful to summarize
the results to provide a CERES. Recall from the introduction that our setup considered four
steps. To combine the four steps, we have to link operators on Ḣ1 with the finite-dimensional
approximation spaces Sh. If Lh : Sh → Sh is a finite-dimensional linear operator, then we
can always view it as an infinite-dimensional linear operator L on Ḣ1 by declaring basis
vectors not in PhḢ1 to lie in nullspace(L).

Theorem 9.1. Suppose (A0)-(A6) hold. Let Cov(u) denote the covariance operator of the
SPDE (5). Then a low-rank solution Vj of the locally linearized discretized problem on Sh
near the steady state u∗ computed after j ADI steps satisfies the CERES

sup
t∈[0,T ]

‖Cov(u)− Vj‖L2 . sup
t∈I

[
err(S1) + err(S2) + err(S3) + err(S4) + err(S5)

]
(57)

and the individual error terms are given by

err(S1) = Cdh
1+r, (58)

err(S2) = η∗A + Cl[‖Cov(uh(0))− Cov(Ũh(0))‖2]e−tmini |Aii|, (59)

err(S3) = Ctr

N∑
i=R+1

λQ,i (60)

err(S4) = Cτ (‖Cov(Uh(0))− V∗‖2)etmax(spec(A)) (61)

err(S5) = ‖V∗‖2

(
1−

√
k′j

)2

/
(

1 +
√
k′j

)2

, (62)

where Cd, Cl, Cτ , k
′
j, Ctr, η

∗
A > 0 are constants depending upon the data (i.e. on A, f, g,Q), the

terms uh(0), Ũh(0) are initial conditions for the discretized full and linearized problems, λQ,i
are eigenvalues of Q, R ∈ N is the noise truncation level, V∗ = limt→+∞ Uh(t) is the finite
asymptotic limit for the stationary problem, and A is the leading-order discretized linear
operator part near u∗.
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Proof. Just applying a triangle inequality to the left-hand side of (57), the proof follows
from a direct application of Theorems 4.1, 5.4, 6.1, 7.1, and 8.4.

Theorem 9.1 illustrates very well that it would be short-sighted to just look at one source
of error. For example, even if the spatial discretization h is extremely small, the actual error
could be very large if the spectral gap is small, i.e., the deterministic steady state is only
weakly locally stable. We may also summarize the behaviour of the different constants and
terms in the CERES into more practical observations, which effects lead to smaller error :

• A large gap in the spectrum of the local linearization of the deterministic part exists.

• A small spatial discretization level h is chosen.

• One starts with initial data close to the local approximating OU stationary distribution.

• The nonlinear part of f does not have a strong effect on sub-exponential time scales.

• The noise is small enough to stay for a long time in the sub-exponential regime.

• The Q-trace-class operator has fast decaying eigenvalues.

• The iteration number j in the low-rank Lyapunov solver is chosen large.

For a detailed discussion of these effects, we refer to the individual proofs of the different
parts of the CERES in previous sections. However, it is very interesting to note that certain
effects, which decrease the error occur in multiple steps. Obviously this is true for the spectral
gap of A = Ah + PhDuf(u∗) in (S2) and (S4) but also for the type of noise, which crucially
influences the, usually growing, function η∗(t) in (S2) as well as the convergence rate of a
low-rank approximation in (S5). In addition, note that we have observed that several errors
are linked and cannot be treated independently! For example, a small column dimension R
guarantees a good low rank approximation in (S5) but selecting R small gives a larger error
for the noise truncation in (S3).

10 Outlook

We stress again that our results presented here should be viewed as a first key step to
introduce a general framework of CERES for high-dimensional stochastic problems, where
many different sources of error naturally occur. In this regard, a multitude of problems can,
and should, now be tackled from a similar viewpoint. For example, uncertainty quantification
of random partial differential equations (RPDE) [20, 60, 46, 47] contains an entire chain of
error sources such as truncation error for polynomial chaos, dynamical error if the RPDE is
just an approximation, error from the large-scale numerical linear algebra, and/or error due
to reduced bases, just to name a few. Hence, to compute a CERES in a single norm, such as
the spectral norm we used here, for all the steps would be very worthwhile. Similar issues
also appear for problems involving large deviations and transition paths in high-dimensional
energy landscapes [12, 16, 43, 25], where developing a CERES would definitely be very
helpful.
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On the very concrete level of the SPDE (5) studied here, several interesting directions
could be pursued. Firstly, we do not claim that all our estimates are sharp and/or the
assumptions are the theoretically weakest possible. Already the CERES presented in this
work is interesting and difficult to chain together properly from its different components.
Nevertheless, improvements might be possible, e.g., if f is a strongly dissipative non-Lipschitz
nonlinearity, we expect that the results still hold from a dynamical perspective but essentially
the steps (S1)-(S2) would then require a major extension or even a completely new approach.

Furthermore, it could be desirable to specify the constant Cd precisely as the techniques
in [34, 35] are more explicit than the final statements on optimal regularity. Unfortunately
this would entail re-writing the entire optimal regularity proof for the spatial discretization
so we refrain from attempting to carry this program in this work. Similar remarks also
apply to other constants, which are expected to be of moderate/non-asymptotic relevance
only in many practical applications anyhow. Regarding applications, it would also be useful
to test the method on a broader range of SPDEs beyond the current available numerical
experiments and examples [36, 37, 3].
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