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Abstract

We provide a construction of multiscale systems on a bounded domain Ω ⊂ R2 coined
boundary shearlet systems, which satisfy several properties advantageous for applications
to imaging science and the numerical analysis of partial differential equations. More pre-
cisely, we construct boundary shearlet systems that form frames for the Sobolev spaces
Hs(Ω), s ∈ N ∪ {0}, with controllable frame bounds and admit optimally sparse approx-
imations for functions, which are smooth apart from a curve-like discontinuity. We show
that the constructed systems allow to incorporate boundary conditions. Furthermore, for
s ≥ 0 and f ∈ Hs(Ω) we prove that weighted ℓ2 norms of the L2−analysis coefficients of
f are equivalent to its Hs(Ω) norm. This yields in particular, that the reweighted systems
are frames also for H−s(Ω). Moreover, we demonstrate numerically, that the associated
L2−synthesis operator is also stable as a map to Hs(Ω) which, in combination with the
previous result, strongly indicates that these systems constitute so-called Gelfand frames for
(Hs(Ω), L2(Ω), H−s(Ω)).

1 Introduction

In the past two decades, there has been extensive work related to the design of novel repre-
sentation systems for functions with the intent to build systems which are optimally suited for
sparse approximation of various signal classes. The first breakthrough was the introduction of
the multiscale system of wavelets [20] providing optimally sparse approximations of functions
governed by point singularities while allowing a unified concept of the continuum and digital
realm to enable faithful implementations. Indeed, wavelets have nowadays become a standard
tool in, e.g., imaging science and the numerical analysis of partial differential equations.

However, many multivariate functions such as images or the solutions of various types of
partial differential equations are governed by singularities along hypersurfaces. Additionally,
it turned out that wavelets do not yield optimal approximation rates for these classes of func-
tions [25]. Recently, significant progress has been achieved by the introduction of anisotropic
multiscale systems such as ridgelets [2], curvelets [4], and shearlets [42], which are capable of
optimally approximating certain classes of multivariate functions with singularities along hyper-
surfaces. One main drawback so far is the fact that all these systems are designed for L2(R2),
whereas applications, in particular, adaptive schemes for partial differential equations, typically
require systems defined on a bounded domain Ω ⊂ R2, where these systems need to constitute
frames for Sobolev spaces Hs(Ω), s ∈ N ∪ {0}.

In this paper, we will introduce the first class of anisotropic multiscale systems defined on
very general domains Ω ⊂ R2 which still exhibit optimally sparse approximation properties for
functions with hypersurface singularities. Moreover, further properties specifically necessary for
their application in numerical approximation of PDEs such as the frame property for Hs(Ω),
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s ∈ N will be demonstrated. These systems are constructed as hybrid systems combining
wavelets and shearlets.

1.1 Anisotropic multiscale systems

Curvelets were the first generalization of wavelets that achieve optimal approximation rates
for functions with curvilinear singularities. Specifically, they optimally approximate so-called
cartoon-like functions [25], which are compactly supported piecewise C2-functions defined on
R2 with a C2 discontinuity curve.

In fact, curvelets are capable of approximating such functions with a decay rate of the L2-
error of the best N -term approximation by N−1 up to logarithmic terms, whereas wavelets can
only achieve a rate of N−1/2. This result from 2002 [4] can be considered a milestone in the
area of applied harmonic analysis.

However, curvelets have the drawback of being based on rotations to provide directional sen-
sitivity, which prevents a unified treatment of the continuum and digital world. Hence, faithful
implementations are not available. Shearlets were introduced in 2006 to resolve this problem,
leading to a class of systems which also provide optimally sparse approximations of cartoon-like
functions [38]—even for higher order derivatives [44]—while allowing faithful implementations
[40]. Moreover, this concept allows a shearlet frame for L2(R2) with controllable frame bounds,
consisting of compactly supported elements [37]. Let us stress that the notion of a frame allows
for stable decomposition and reconstruction formulas, see [6].

1.2 The problem of bounded domains

Anisotropic multiscale systems are today extensively used in imaging science for tasks such
as feature extraction or inpainting, see, e.g., [30, 26, 32]. Despite these successes, the use
of these novel representation systems for the numerical approximation of PDEs is still in its
infancy—even though the solutions of a large class of PDEs do admit hypersurface singularities.
As examples, we mention elliptic PDEs with discontinuous (or distributional) source terms or
coefficients, boundary value problems on polygonal domains, or transport equations.

The main bottleneck in developing PDE solvers based on anisotropic multiscale systems is
the fact that initially these systems are constructed as representation systems, or frames, for
functions defined on Rd, while most PDEs are defined on a bounded domain Ω ⊂ Rd. Thus
the development of efficient PDE solvers crucially depends on the construction of anisotropic
systems on bounded domains, satisfying various boundary conditions. The attentive reader will
have realized that also images are defined on bounded domains. The fact that this issue did not
cause a significant problem so far indicates that the handling of the boundary for imaging tasks
is not that sensitive. However, also in this range of applications, the fact that the data lives on
a bounded domain must be taken into consideration, especially in the theoretical (continuum)
analysis. We expect that the usage of boundary-adapted systems may help to reduce boundary
artifacts.

Even for wavelet systems, the adaptation to general bounded domains is a challenging prob-
lem which is by now, after decades of research, quite well understood (see, for instance, [36],[8]).
Nonetheless, several open questions remain. The construction of anisotropic multiscale systems
on bounded domains is even much more challenging. While the MRA structure of wavelet
systems [20] yields a powerful tool for the construction of boundary wavelet frames, no such
structure seems to be available for more general multiscale systems. In fact, for anisotropically
scaled and directed systems one can imagine that the anisotropically shaped support can in-
tersect the boundary to various degrees and at various angles requiring a careful adjustment of
each single element.
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1.3 Adaptive schemes and frames

Several important steps have already been made in the direction of utilizing representation
systems from applied harmonic analysis for adaptive solvers for different types of partial differ-
ential equations. A breakthrough was achieved by Cohen, Dahmen, and DeVore in the seminal
paper [9] by introducing a provably optimal adaptive wavelet-based solver for elliptic PDEs
with solutions exhibiting only point singularities. Several further steps could be achieved in the
realm of elliptic PDEs, for example, extending this concept to more flexible frames instead of
orthonormal bases, see, e.g., [49, 11, 12].

The exploitation of anisotropic frame systems for the numerical solution of PDEs is a rather
new topic of research, presumably due to the previously described difficulty of adapting those
systems to bounded domains. We recall the key properties an anisotropic frame system needs
to satisfy to be suitable for applications in the discretization of PDEs.

(P1) Boundary conditions. The system should allow to impose boundary conditions.

(P2) Quadrature. The elements of the system should be spatially localized and ideally piecewise
polynomial with low polynomial order to allow for efficient quadrature.

(P3) Frame properties. The constructed system should form a frame for Hs(Ω), where Ω is the
bounded domain and s ∈ N ∪ {0}.

(P4) Characterization of Sobolev spaces. The analysis and synthesis operator of the system
should yield stable maps between weighted ℓ2 spaces and Sobolev spaces. In particular,
such a property is achieved when the system forms a frame forHs(Ω) or it forms a so-called
Gelfand frame for Sobolev spaces. The discretization of an elliptic PDE using a Gelfand
frame for a Sobolev space yields, after a simple diagonal preconditioning, a uniformly
well-conditioned linear system which can then be solved numerically by iterative methods
such as damped Richardson iteration or conjugate gradients [11].

(P5) Optimal sparse approximation. It is crucial that the system provides optimally sparse
approximation properties of the solutions to ensure that those can be approximated at an
optimal asymptotic ratio between computational work and accuracy. Ideally, this should
include even functions with discontinuities ending at the boundary.

(P6) Compressibility. For this approximation rate to be realized by a numerical solver, it is
furthermore needed that the resulting discretization matrix is compressible in the sense
of [9].

Notable first steps towards anisotropic frame systems for the numerical solution of PDEs have
already been taken in [31, 34], where optimal adaptive ridgelet-based solvers are constructed
for linear advection equations and [15, 16, 18], where a shearlet-based construction is used to
solve general advection equations. Also related is the work [22, 3], where frames of wave atoms,
respectively curvelets, are used for the efficient representation and computation of wave prop-
agators. Despite these successes, none of the aforementioned works successfully addressed the
essential issue of problem formulations on finite domains with non-periodic boundary conditions.

1.4 Our contribution

In this paper, we present a construction of an anisotropic multiscale system on bounded domains
Ω ⊂ R2, which satisfies most of the aforementioned desired properties ((P1)–(P6)). We regard
this as a significant step towards utilizing anisotropic frame systems to derive provably optimal
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solvers for the numerical solution of appropriate types of PDEs. The novel system coined
boundary shearlet system is a hybrid system, consisting of shearlet elements to provide the
optimal approximation rate for anisotropic structures and wavelet elements for handling the
boundary. More precisely, we start with a compactly supported shearlet frame for L2(R2) as
constructed, for instance, in [37]. From this frame, we only choose the elements with support
fully contained in Ω. Since this is by far not a complete system for L2(R2) and certainly cannot
handle boundary conditions, we augment it by a carefully chosen selection of boundary-adapted
wavelets as constructed, for instance, in [10]. We succeed in establishing the following properties
from ((P1)–(P6)):

(P1) Boundary conditions. The usage of boundary wavelets will ensure that any boundary
condition can be imposed.

(P2) Quadrature. The elements of such a boundary shearlet system are by construction spatially
localized and can be chosen to be piece-wise polynomial.

(P3) Frame properties. The constructed boundary shearlet system forms a frame for L2(Ω),
where Ω is the bounded domain, due to the careful selection of elements from a shearlet
system and a boundary wavelet system. Additionally, we will demonstrate that for s ∈ N

one obtains a frame for Hs(Ω) after proper reweighting of the frame’s elements. This will
be established in Theorem 3.4.

(P4) Characterization of Sobolev spaces. Theorem 4.2 shows that our boundary shearlet system
is capable of characterizing the norm of Sobolev spaces, i.e., if (ϕn)n∈N denotes the shearlet
frame on Ω then for all f ∈ Hs(Ω) we have that ‖f‖Hs(Ω) ∼ ‖(wn〈f, ϕn〉)n∈N‖2, for some
sequence of weights (wn)n∈N depending only on s ≥ 0. This implies one condition necessary
for deriving a Gelfand frame for the Gelfand triple (Hs(Ω), L2(Ω),H−s(Ω)). The other
condition will be shown numerically since it requires the dual frame, which is presently not
available in analytic form. This gives strong evidence that the boundary shearlet system
indeed constitutes a Gelfand frame which is sufficient for applications in the numerical
solution of elliptic PDEs [11]. The characterization of Sobolev spaces also implies that
our system constitutes a frame for the Hilbert space H−s(Ω) which might be relevant for
the potential numerical solution of boundary integral equations [47].

(P5) Optimal sparse approximation. Theorem 5.2 proves that a boundary shearlet system pro-
vides optimally sparse approximation of an even extended class of cartoon-like functions,
which also include singularity curves traversing the boundary.

Since the problem of compressibility is associated with a specific PDE problem and is known
to be very involved, we believe it goes far beyond the scope of this paper. Property (P6) will be
a subject of future work. In summary, except for compressibility of the discretization matrix,
our contribution provides a fully satisfactory answer to the desired properties ((P1)–(P5)).

1.5 Expected impact

We anticipate our results to have the following impacts:

• Numerical solution of partial differential equations. Our work represents a step in a larger
research program, which is to construct and apply specifically designed frames for the
numerical solution of partial differential equations. The construction of this paper is
expected to lead to the first adaptive algorithm for elliptic PDEs with solutions pos-
sessing singularities along hypersurfaces which can be executed in optimal complexity.
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Nonetheless, we wish to emphasize that, while the results concerning the construction of
directional frames presented in this paper represent a significant advance there still exist
open problems already in this realm that need to be addressed in the future.

First, the compressibility in the sense of [9] of the matrix representation of elliptic PDEs in
our constructed system needs to be studied. Second, our results show that Sobolev norms
can be characterized by weighted ℓ2 norms on the transform coefficients. The construction
of optimal adaptive PDE solvers in the spirit of [9, 11] requires slightly more, namely that
the representation system constitutes a Gelfand frame [11]. In Section 6 we are so far
only able to verify these properties numerically. Third, also on the practical side several
issues remain such as the development of efficient quadrature rules for the representation
of elliptic operators, say, in our representation system.

• Imaging sciences. Images are naturally supported on a rectangular domain. A common
approach so far was to theoretically analyze algorithmic procedures from applied harmonic
analysis for, for instance, denoising, inpainting, or feature extraction, see [30, 26, 32], in
L2(R2) while disregarding any boundary issues. Consequently, also their digitization was
not particularly designed to handle a bounded domain. With the construction of multiscale
systems on bounded domains, we now open the door to a unified concept of the continuum
and digital realm for data on bounded domains.

• Hybrid systems and sparse approximation. While there already exists work on hybrid
constructions using systems from applied harmonic analysis [26, 29], approximation prop-
erties of hybrid systems have not been studied before. Thus, one can see our construction
as one first step in a line of research introducing more flexible systems by introducing
hybridization of well-studied systems in a way such that special properties—in our case
sparse approximation properties combined with boundary adaption—are maintained.

1.6 Outline

The paper is organized as follows. Section 2 is devoted to discussing the main definitions and
results for boundary-adapted wavelet systems and shearlet systems. In the same section, we
also state typical assumptions imposed on boundary wavelet and shearlet systems, which will
play a crucial role later. The precise definition of multiscale anisotropic directional systems on
bounded domains, coined boundary shearlet systems, and the analysis of their frame properties
for L2(Ω) and Hs(Ω), s ∈ N, can be found in Section 3. In Section 4, we show how to construct
shearlet systems that characterize Hs(R2) by their analysis coefficients and how this gives rise
to shearlet systems on bounded domains that characterize Hs(Ω). We further show partial
results of the Gelfand frame property in the same section. In Section 5, it is demonstrated that
the newly constructed systems provide optimal L2−approximation rates for a more general
class of cartoon-like functions than in previous literature considered. Finally, in Section 6 we
complement the theoretical analysis of the Gelfand frame property of Section 4 by a numerical
analysis of the Gelfand frame property and verify the stability and compressibility properties
of our system numerically.

2 Review of wavelet and shearlet systems

Since wavelets on bounded domains and shearlets will be the key ingredient in the following
construction of boundary shearlets systems, this section should serve as a review of their main
definitions and properties. Before that, we briefly recall frames and Riesz bases for Hilbert
spaces, which are generalizations of orthonormal bases.
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2.1 Frames and Riesz bases

Many representation systems for L2(R2) which occur within the framework of harmonic analysis
do not yield orthonormal bases, since they are redundant. Nonetheless, they still exhibit stability
properties in the sense of constituting a frame for L2(R2) with controllable frame bounds. Recall
that a family of elements (ϕn)n∈N in a Hilbert space H forms a frame for H, if there exist
0 < A ≤ B <∞ such that

A‖f‖2H ≤
∑

n∈N
|〈ϕn, f〉H|

2 ≤ B‖f‖2H, for all f ∈ H.

If only the second inequality holds, then the system (ϕn)n∈N is called a Bessel sequence. Asso-
ciated to every Bessel sequence (ϕn)n∈N is the analysis operator T given by

T : H → ℓ2(N), f 7→ (〈f, ϕn〉H)n∈N.

The inner products (〈f, ϕn〉H)n∈N are termed analysis coefficients, in contrast to the coefficients
of an expansion of f in the system (ϕn)n∈N which are referred to as synthesis coefficients. If
(ϕn)n∈N constitutes a frame for H, it can be shown that the frame operator S := T ∗T is a
boundedly invertible operator [6]. Aiming to reconstruct any f from Tf , one defines another
frame (ϕdn)n∈N, the so-called canonical dual frame of (ϕn)n∈N, by

ϕdn := S−1ϕn.

This leads to the formulae

f =
∑

n∈N
〈f, ϕn〉Hϕ

d
n =

∑

n∈N
〈f, ϕdn〉Hϕn, for all f ∈ H,

of which the first part is the desired reconstruction formula, and the second can be regarded
as an expansion of f in terms of the frame (ϕn)n∈N. If (ϕn)n∈N fulfills the additional property
that for all finitely supported, scalar-valued sequences (cn)n∈N there holds

‖(cn)n∈N‖
2
ℓ2 ∼ ‖

∑

n∈N
cnϕn‖

2
H,

it is called Riesz basis for H and its canonical dual frame (ϕdn)n∈N is also a Riesz basis. Fur-
thermore, for all n, n′ ∈ N there holds

〈ϕn, ϕ
d
n′〉H = δn,n′ ,

i.e., (ϕn)n∈N, (ϕdn)n∈N is a pair of biorthogonal Riesz bases for H.

2.2 Boundary-adapted wavelet systems

In the sequel we will work with wavelet systems on a bounded domain Ω ⊂ R2. Later on we
will assume a number of properties that the wavelet systems should have. For now we only
stipulate that they should be indexed in a specific way.

Definition 2.1. A set W ⊂ L2(Ω) is called a boundary wavelet system, if for some J0 ∈ Z it
can be written as

W = {ωJ0,m,0 : m ∈ KJ0} ∪ {ωj,m,υ : j ≥ J0,m ∈ Kj, υ = 1, 2, 3},

where Kj ⊂ Ω, #Kj ∼ 22j . We denote the index set by

Θ := {(J0,m, 0) : m ∈ Kj} ∪ {(j,m, υ) : j ≥ 0,m ∈ Kj , υ = 1, 2, 3}.

Furthermore, we call W,Wd a pair of biorthogonal wavelet Riesz bases for L2(Ω), if W,Wd

are boundary wavelet systems and W,Wd is a pair of biorthogonal Riesz bases for L2(Ω).
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Explicit constructions of boundary wavelet systems that yield pairs of biorthogonal wavelet
Riesz bases for L2(Ω) can be found e.g. in [10, 19, 17, 5, 1, 46]. If one wants to work with
orthonormal wavelet bases, one could use orthonormal spline wavelets as in [27, 28, 24]. Fur-
thermore, conditions under which reweighted boundary wavelet systems form frames for Hs(Ω)
have been examined for instance in [14]. Additionally, conditions were established in [14] such
that wavelet systems characterize Sobolev spaces in the sense that

Cw‖f‖
2
Hs(Ω) ≤

∑

(j,m,υ)∈Θ
22js| 〈f, ωj,m,υ〉L2(Ω) |

2 ≤ Dw‖f‖
2
Hs(Ω),

for some Cw,Dw > 0 and for all f ∈ Hs(Ω). This property will turn out to be crucial for the
proof of the characterization of Sobolev spaces by boundary shearlet systems.

2.2.1 Assumptions on boundary wavelets

Now we introduce some admissibility conditions imposed on boundary wavelet systems which
will be central to our later construction of boundary shearlets. More precisely, we are interested
in the following list of desiderata, a boundary wavelet system W as defined in Definition 2.1
can satisfy on Ω:

Assumptions 2.1. Let s ≥ 0 and W be a boundary wavelet system.

(W1) There exists a boundary wavelet system system Wd such that W,Wd is a pair of biorthog-
onal Riesz bases for L2(Ω).

(W2) The wavelet system W characterizes Hs(Ω), i.e., there exists 0 < Cw ≤ Dw < ∞ such
that, for all f ∈ Hs(Ω),

Cw‖f‖
2
Hs(Ω) ≤

∑

(j,m,υ)∈Θ
22js| 〈f, ωj,m,υ〉L2(Ω) |

2 ≤ Dw‖f‖
2
Hs(Ω).

(W3) (2−jsωj,m,υ)(j,m,υ)∈Θ is a frame for Hs(Ω) and there exists a dual frame

Wd
Hs = (2−jsωj,m,υ)d(j,m,υ)∈Θ and for all (j,m, υ) ∈ Θ with ∂Ω ∩ supp (2−jsωj,m,υ)d = ∅ it

holds that

| ̂(2−jsωj,m,υ)
d(ξ)| . 2−js · 2−j

min{1, |2−jξi|αw}

max{1, |2−jξ1|βw}max{1, |2−jξ2|βw}
,

for at least one i ∈ {1, 2} some αw, βw > 0 and all ξ ∈ R2. Here the Fourier transform
is to be understood on L2(R2) after extension by 0 on R2. Furthermore, assume that the
elements of Wd

Hs have compact support and let

q(0)w := inf{q > 0 : supp (2−jsωj,m,υ)
d ⊂ B2−jq(m), for all (j,m, υ) ∈ Θ} > 0.

(W4) The elements of W have compact support and

q(1)w := inf{q > 0 : supp ωj,m,υ ⊂ B2−jq(m), for all (j,m, υ) ∈ Θ} > 0.

Moreover, we have that

|m−m′| ≥ 2−jq(2)w , for all j ≥ J0 and m,m′ ∈ Kj ,m 6= m′,

for some q
(2)
w > 0.

Note that the decay condition of (W3) is always satisfied as soon as the generating wavelet
is sufficiently smooth and possesses sufficiently many vanishing moments.
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2.3 Shearlets

Shearlet systems are designed to provide optimally sparse approximations of a model class of
functions which are governed by curvilinear singularities while allowing a faithful implementa-
tion with their construction being based on the framework of affine systems. They were first
introduced by Guo, Labate, Lim, Weiss, and one of the authors in [35, 42]. Since we aim
to use shearlets as interior elements for the construction of our anisotropic multiscale systems
on bounded domains we briefly recall the definition and properties of (cone-adapted) shearlet
systems below.

2.3.1 Construction of (cone-adapted) shearlet systems

The construction of shearlet systems is based on anisotropic scaling and shearing. To state the
precise definition, for j ∈ N, k ∈ Z, we denote the anisotropic scaling matrices Aj and the shear
matrices Sk by

Aj := diag(2j , 2
j
2 ) =

(
2j 0

0 2
j
2

)
, Sk :=

(
1 k
0 1

)
.

Then a (cone-adapted) shearlet system is defined as follows:

Definition 2.2 ([37]). Let φ,ψ, ψ̃ ∈ L2(R2), c = (c1, c2) ∈ R2 with c1, c2 > 0. Then the
(cone-adapted) shearlet system is defined by

SH(φ,ψ, ψ̃, c) = Φ(φ, c1) ∪Ψ(ψ, c) ∪ Ψ̃(ψ̃, c),

where

Φ(φ, c1) :=
{
φ(· − c1m) : m ∈ Z

2
}
,

Ψ(ψ, c) :=
{
ψj,k,m = 2

3j
4 ψ(SkAj · −Mcm) : j ∈ N, |k| ≤

⌈
2

j
2

⌉
,m ∈ Z

2
}
,

Ψ̃(ψ̃, c) :=
{
ψ̃j,k,m = 2

3j
4 ψ̃(STk Ãj · −Mc̃m) : j ∈ N, |k| ≤

⌈
2

j
2

⌉
,m ∈ Z

2
}
,

with Mc := diag(c1, c2), Mc̃ := diag(c2, c1), and Ã2j := diag(2
j
2 , 2j).

We shorten the notation by defining

ψj,k,m,ι :=





ψj,k,m if ι = 1,
φ(· − c1m) if ι = 0,

ψ̃j,k,m if ι = −1,

and denote the index set for the full shearlet system by

Λ :=
{
(j, k,m, ι) : ι ∈ {−1, 0, 1} : |ι|j = j ≥ 0, |k| ≤ |ι|

⌈
2

j
2

⌉
, m ∈ Z

2
}
.

2.3.2 Frames of shearlet systems

By imposing some weak conditions on the generators φ, ψ, and ψ̃, the system SH(φ,ψ, ψ̃, c)
forms a frame for L2(R2). In fact, the following result is proved in [37].
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Theorem 2.3 ([37]). Let φ,ψ ∈ L2(R2) such that

|φ̂(ξ1, ξ2)| ≤ C1min{1, |ξ1|
−β}min{1, |ξ2|

−β}

and

|ψ̂(ξ1, ξ2)| ≤ C2min{1, |ξ1|
α}min{1, |ξ1|

−β}min{1, |ξ2|
−β},

for some constants C1, C2 > 0, and α > β > 3 and almost every (ξ1, ξ2) ∈ R2. Then, there
exists B > 0 such that for any c = (c1, c2) ∈ R+ × R+ the cone-adapted shearlet system
SH(φ,ψ, ψ̃, c) forms a Bessel sequence for L2(R2) with Bessel bound B/|det(Mc)|. Further, let
ψ̃(x1, x2) = ψ(x2, x1) and assume there exists a positive constant A > 0 such that

|φ̂(ξ)|2 +
∑

j∈N

∑

|k|≤⌈2j/2⌉
|ψ̂(STk (Aj)

−1ξ)|2 +
∑

j∈N

∑

|k|≤⌈2j/2⌉
|
̂̃
ψ(Sk(Ãj)

−1ξ)|2 > A

holds almost everywhere. Then there exists c = (c1, c2) ∈ R+ × R+ such that the cone-adapted
shearlet system SH(φ,ψ, ψ̃, c) forms a frame for L2(R2).

Given the results for boundary wavelets in the preceding Subsection 2.2 one can pose the
question, whether shearlets can also characterize Sobolev spaces as well as form frames for
Hs(R2) after reweighting. While there are some embedding results of Besov spaces into shearlet
spaces and vice versa, see [41], [13], we are not aware of both a precise characterization of
Sobolev spaces Hs(R2) or the construction of shearlet frames for Hs(R2) by cone-adapted
compactly supported shearlets. In Subsection 3.1 and 4.1 we outline how such constructions
can be achieved.

2.3.3 Assumptions on shearlet systems

As for wavelets, we can introduce certain assumptions that shearlets need to fulfill throughout
this paper.

Assumptions 2.2. Let SH(φ,ψ, ψ̃, c) be a shearlet system as in Definition 2.2 and s ≥ 0.

(S1) SH(φ,ψ, ψ̃, c) constitutes a frame for L2(R2).

(S2) For some C1, C2 > 0 the decay conditions

|ψ̂(ξ1, ξ2)| ≤ C1
min{1, |ξ1|

αsh}

max{1, |ξ1|βsh}max{1, |ξ2|βsh}

and

|
̂̃
ψ(ξ1, ξ2)| ≤ C2

min{1, |ξ2|
αsh}

max{1, |ξ1|βsh}max{1, |ξ2|βsh}

are obeyed for all (ξ1, ξ2) ∈ R2 and some αsh, βsh > 0.

(S3) The shearlet system SH(φ,ψ, ψ̃, c) characterizes Sobolev spaces of order s, i.e., there exist
0 < Ash ≤ Bsh <∞ such that for all f ∈ Hs(R2)

Ash‖f‖
2
Hs(R2) ≤

∑

(j,k,m,ι)∈Λ
22js| 〈f, ψj,k,m,ι〉L2(R2) |

2 ≤ Bsh‖f‖
2
Hs(R2).

(S4) (2−jsψj,k,m,ι)(j,k,m,ι)∈Λ is a frame for Hs(R2) with dual frame (2−jsψj,k,m,ι)d(j,k,m,ι)∈Λ.
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(S5) For all (j, k, 0, ι) ∈ Λ and some qsh > 0 we have that

supp ψj,k,0,ι ⊂ B2−j/2qsh/2
(0).

In applications, we are interested in shearlet systems which fulfill all of the requirements
(S1)-(S5). However, not all of them will be needed in the proofs of the results to follow which is
why we will always only assume those conditions that are necessary for the formulation of the
underlying statements.

2.3.4 Approximation properties

The target property shearlet systems were designed to satisfy is optimal approximation of
cartoon-like functions. This class of functions was first introduced by Donoho in [25] as a
suitable model for natural images, and consists—roughly speaking—of compactly supported
functions which are C2 apart from a C2-discontinuity curve.

One key ingredient in the definition of cartoon-like functions is the class of sets STAR2(ν),
which are star-shaped sets with C2 boundary and curvature bounded by ν > 0. Then the
definition of cartoon-like functions reads as follows.

Definition 2.4. For ν > 0, let E2(ν) denote the set of functions f ∈ L2(R2), for which there
exist some D ∈ STAR2(ν) and fi ∈ C

2(R2) with compact support in [0, 1]2 as well as ‖fi‖C2 ≤ 1
for i = 1, 2, such that

f = f1 + χDf2.

The elements f ∈ E2(ν) are called cartoon-like functions.

In the same paper [25], Donoho presented the first optimality result concerning the approx-
imation rate for this class of functions by more or less arbitrary representation systems. In
fact, in [25] it was shown that for any representation system (ϕn)n∈N ⊂ L2(R2), the minimally
achievable uniform asymptotic approximation error for E2(ν) is

sup
f∈E2(ν)

‖f − fN‖
2
L2(R2) = O(N−2) as N → ∞,

where fN denotes the non-linear best N -term approximation of f obtained by choosing the
N largest coefficients through polynomial depth search. The term polynomial depth search
means that the i-th term in the expansion can only be chosen in accordance with a selection
rule σ(i, f), which obeys σ(i, f) ≤ π(i) for a fixed polynomial π(i), see [25]; thereby avoiding
artificial representation systems which are dense in L2(R2).

In [38], one of the authors together with Lim proved that there exist shearlet systems such
that any dual frame can achieve this optimal rate up to a log factor. More precisely, the following
theorem was shown.

Theorem 2.5 ([38]). Let c > 0, and let φ,ψ, ψ̃ ∈ L2(R2) be compactly supported. Suppose that,
in addition, for all ξ = (ξ1, ξ2) ∈ R2 the shearlet ψ satisfies
(i) |ψ̂(ξ)|2 ≤ C1 ·min(1, |ξ1|

α) ·min(1, |ξ1|
−β) ·min(1, |ξ2|

−β) and

(ii) | ∂
∂x2

ψ̂(ξ)| ≤ |h(ξ1)| ·
(
1 + |ξ2|

|ξ1|

)−β
,

where α > 5, β ≥ 4, h ∈ L1(R), and C1 > 0, and suppose that ψ̃ satisfies (i) and (ii) with
ξ1 and ξ2 interchanged. Further suppose that SH(φ,ψ, ψ̃, c) forms a frame for L2(R2). Then
for all ν > 0, any dual frame of the shearlet frame SH(φ,ψ, ψ̃, c) provides (almost) optimally
sparse approximations of functions f ∈ E2(ν), i.e.

∑

n≥N
θn(f) . N

−2 log(N)3, as N → ∞,
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where θn(f) denotes the n-th entry of the non-increasing rearrangement of the coefficient se-
quence (|〈f, ψj,k,m,ι〉L2(R2)|

2)(j,k,m,ι)∈Λ.

We wish to emphasize that all presented results of shearlet systems in this section only
hold for R2. The main objective of this paper is to introduce a suitable multiscale anisotropic
directional system which allows transferring these results to preferably any bounded domain
Ω ⊆ R2.

3 Domain adapted multiscale anisotropic directional systems

The key idea for the construction of domain-adapted multiscale anisotropic directional systems
on a domain Ω which we will coin boundary shearlet systems consists in combining two differ-
ent frames, i.e., employing hybrid systems. To be more precise, we will use boundary wavelet
elements to handle the boundary ∂Ω, since these systems are already adapted to such a bound-
ary. In addition, compactly supported shearlet elements will be used for the interior of Ω to
achieve the desired optimal approximation rates of cartoon-like functions. To this end we fix a
boundary wavelet system W for Ω and a shearlet system SH(φ,ψ, ψ̃, c) which fulfill the support
properties of (W3), (W4), and (S5) of Assumption 2.1 and 2.2, respectively.

Certainly, those elements of each system used for the hybrid construction have to be care-
fully selected. This will be done by defining a tubular region Γγ(j) around the boundary with
γ(j) depending on the scales j and selecting those wavelet elements non-trivially intersecting
these regions for each scale. As for the selection of the elements of a compactly supported
shearlet system, we choose all those the support of which is completely contained inside Ω. It
is conceivable that the tubular region Γγ(j) needs to be defined depending on properties of the
shearlets since the frame property of the hybrid systems requires a small cross-localization of
elements from both systems. Due to these considerations, for r ∈ R, we now define the tubular
region Γr by

Γr := {x ∈ Ω : d(x, ∂Ω) < qsh2
−r},

i.e., as the part of Ω that has distance less than qsh2
−r from ∂Ω. This gives rise to the following

definition.

Definition 3.1. Let s ∈ N0, SH(φ,ψ, ψ̃, c) = (ψj,k,m,ι)(j,k,m,ι)∈Λ be a shearlet system fulfilling
(S5) of Assumption 2.2, let τ > 0 and t > 0. Further, let W be a boundary wavelet system
fulfilling (W3) and (W4) of Assumption 2.1 and set

Wt,τ : = {ωj,m,υ ∈ W : (j,m, υ) ∈ Θt,τ},

where

Θt,τ : = {(j,m, υ) ∈ Θ : B
2−j(q

(0)
w +q

(1)
w )

(m) ∩ Γτ(j−t) 6= ∅}.

In addition, let
Λ0 := {(j, k,m, ι) ∈ Λ : supp ψj,k,m,ι ⊂ Ω}.

Then, the boundary shearlet system with offsets t and τ is defined as

BSHs
t,τ (W;φ,ψ, ψ̃, c) := {ψj,k,m,ι : (j, k,m, ι) ∈ Λ0} ∪Wt,τ .

This definition of a boundary shearlet system mimics precisely the program we just intu-
itively described before. The reader should notice that as j → ∞, the size of the tubular region
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shrinks accordingly. Concerning the two offsets, the parameter t acts as a shift for the depen-
dence on the scale, whereas the parameter τ is merely an overall factor controlling the speed of
decay.

Indeed, this choice of wavelets versus shearlets provides us with a cross localization property,
which will be crucial for the proofs of Theorems 3.4 and 4.2. Since the proof is quite lengthy
and technical, we postpone it to Appendix B. We denote Λc0 := Λ \ Λ0 and Θc

τ,t := Θ \Θt,τ .

Proposition 3.2. Let s ∈ N, and let SH(φ,ψ, ψ̃, c) and W satisfy (S2),(S5) and (W3),(W4),
respectively. Further let αw > 1, αsh > 0, βw ≥ s, βsh > 2 + 2s + 2αw, τ > 0 and ǫ > 0 such
that ((1− ǫ)/τ − 2)αw >

5
2 . Then we have for all t > 0

∑

(jsh,k,msh,ι)∈Λc
0

∑

(jw,mw,υ)∈Θc
τ,t

|〈(2−jwsωjw,mw,υ)
d, 2−jshsψjsh,k,msh,ι〉Hs(Ω)|

2 . 2−2(1−ǫ)αwt.

Finally, we note, that it is certainly conceivable to combine other dictionaries in a similar
way as described in Definition 3.1. For example, anisotropic wavelets are superior to isotropic
wavelets in resolving anisotropies along the boundary [43, 21]. Hence, a hybrid system comprised
of anisotropic wavelets and shearlets could yield an even better adapted system if such functions
need to be represented. However, we cannot discuss such constructions in this work, since our
results crucially depend on the cross-localization of Proposition 3.2 and the proof depends
crucially on the isotropy of the wavelet elements.

3.1 Frame property of boundary shearlet systems

We now turn to analyzing the frame properties of boundary shearlet systems for Hs(Ω) on
certain domains Ω ⊂ R2. Towards this goal, the existence of a shearlet system which, after
reweighting, forms a frame for Hs(R2) (i.e. (S4)), is required. The following result gives an
easily satisfiable sufficient condition imposed on the generator functions of the shearlet system,
which yields the desired property. We postponed the technical proof to Appendix A.

Theorem 3.3. For s ∈ N and αsh − s > βsh > 4 let φ1, ψ1 ∈ L2(R) be such that for all
r1, r2 ≤ 2s,

D̂r1φ1(ξ) . min{1, |ξ|−βsh}, for all ξ ∈ R,

D̂r2ψ1(ξ) . min{1, |ξ|αsh}min{1, |ξ|−βsh}, for all ξ ∈ R.

We further denote φ = φ1 ⊗ φ1, ψ = ψ1 ⊗ φ1 and ψ̃(x1, x2) := ψ(x2, x1) for all x ∈ R2.
Furthermore, we denote for all ξ ∈ R2

θ̂(ξ) := ξs1ψ̂(ξ),
̂̃
θ(ξ) := ξs2

̂̃
ψ(ξ), µ̂(ξ) := φ̂(ξ). (1)

Assume that there exists c̄ > 0 such that for all c1, c2 ≤ c̄ we have that SH(µ, θ, θ̃, (c1, c2)) forms
a frame for L2(R2) with a lower frame bound independent of c1, c2. Then there exists c̃ > 0
such that for all c1 = c2 ≤ c̃ the system = SH(φ,ψ, ψ̃, c), where c = (c1, c2) obeys

‖f‖2Hs(R2) ∼
∑

(j,k,m,ι)∈Λ
|〈f, 2−jsψj,k,m,ι〉Hs(R2)|

2,

for all f ∈ Hs(R2).
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Having established the existence of shearlet frames forHs(R2), we can now turn our attention
to the analysis of the frame property of boundary shearlet systems for Hs(Ω). We require Ω to
be chosen in such a way that there exists some linear extension operator E : Hs(Ω) → Hs(R2)
such that E(f)|Ω = f for all f ∈ Hs(Ω) and ‖E‖Hs(Ω)→Hs(R2) ≤ Mext for some Mext > 0. For
example, domains which are minimally smooth (see [48]) fulfill this property. The following
result now gives us weak sufficient conditions, under which a boundary shearlet system indeed
forms a frame.

Theorem 3.4. Let SH(φ,ψ, ψ̃, c) and W satisfy (S2), (S4), (S5) and (W2), (W3), (W4),
respectively with s ∈ N∪{0}, αw, αsh, βw, βsh, τ, ǫ as in Proposition 3.2. Then there exists some
T > 0 such that, for any t ≥ T , the boundary shearlet system (ϕn)n∈N = BSHs

t,τ (W;φ,ψ, ψ̃, c)
satisfies

‖f‖2Hs(Ω) ∼
∑

n∈N
|
〈
f, 2−jnsϕn

〉
Hs(Ω)

|2, for all f ∈ Hs(Ω). (2)

Proof. By the definition of BSHs
t,τ (W;φ,ψ, ψ̃, c) we have that supp (2−jsωj,m,ν)d ∩ ∂Ω = ∅ for

all (j,m, υ) ∈ Θc
t,τ . As a consequence, we have that

‖f (int)‖Hs(Ω) = ‖f̃ (int)‖Hs(R2), for all f ∈ Hs(Ω), where (3)

f (int) =
∑

(j,m,υ)∈Θc
t,τ

〈f, 2−jsωj,m,υ〉Hs(Ω)(2
−jsωj,m,υ)

d

and f̃ (int) denotes the trivial extension by 0 of f (int) to R2. We will invoke this projection
operator further below in the proof. We proceed by observing that there exist constants 0 <
Ash ≤ Bsh <∞ such that

Ash‖f‖
2
Hs(R2) ≤

∑

(j,k,m,ι)∈Λ
|
〈
f, 2−jsψj,k,m,ι

〉
Hs(R2)

|2 ≤ Bsh‖f‖
2
Hs(R2), for all f ∈ Hs(R2).

Moreover, the wavelet system W obeys

Cw‖f‖
2
Hs(Ω) ≤

∑

(j,m,υ)∈Θ
|
〈
f, 2−jsωj,m,υ

〉
Hs(Ω)

|2 ≤ Dw‖f‖
2
Hs(Ω), for all f ∈ Hs(Ω),

for some 0 < Cw ≤ Dw <∞.
We start by proving the upper bound in (2). After setting (ϕn)n∈N := BSHs

t,τ (W;φ,ψ, ψ̃, c)
we obtain that

∑

n∈N
|
〈
f, 2−jnsϕn

〉
Hs(Ω)

|2

=
∑

(j,k,m,ι)∈Λ0

|
〈
f, 2−jsψj,k,m,ι

〉
Hs(Ω)

|2 +
∑

(j,m,υ)∈Θt,τ

|
〈
f, 2−jsωj,m,υ

〉
Hs(Ω)

|2

=
∑

(j,k,m,ι)∈Λ0

|
〈
f, 2−jsψj,k,m,ι

〉
Hs(R2)

|2 +
∑

(j,m,υ)∈Θt,τ

|
〈
f, 2−jsωj,m,υ

〉
Hs(Ω)

|2

≤ (Bsh +Dw)‖f‖
2
Hs(Ω),

where we used that 〈
f, 2−jsψj,k,m,ι

〉
Hs(Ω)

=
〈
f, 2−jsψj,k,m,ι

〉
Hs(R2)

holds, since supp ψj,k,m,ι ⊂ Ω for all (j, k,m, ι) ∈ Λ0. We have just obtained the existence of an
upper bound.
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For the existence of the lower bound, let f (bd) := f − f (int). Due to the boundedness of the
synthesis operator of the frame (2−jsωj,m,υ)d(j,m,υ)∈Θ we have that ‖f‖Hs(Ω) ∼ ‖f (int)‖Hs(Ω) +

‖f (bd)‖Hs(Ω) for all f ∈ Hs(Ω). By assumption on Ω there exists a bounded linear extension op-
erator E : Hs(Ω) → Hs(R2) such that E(f)|Ω = f for all f ∈ Hs(Ω) and ‖E‖Hs(Ω)→Hs(R2) ≤Mext

for some Mext > 0.
Based on this, we define the following modified extension operator

Ẽ : Hs(Ω) → Hs(R2), f 7→

{
E(f (bd)) + f (int) on Ω,

E(f (bd)) on R2 \ Ω.

We first notice that Ẽ(f)|Ω = f . To obtain the well-definedness of Ẽ we continue by proving

the boundedness of Ẽ.
By invoking (3) we obtain the boundedness of the operator Ẽ from the following estimate:

‖Ẽ(f)‖2Hs(R2) . ‖E(f (bd))‖2Hs(R2) + ‖f (int)‖2Hs(Ω)

. ‖f (bd)‖2Hs(Ω) + ‖f (int)‖2Hs(Ω) . ‖f‖2Hs(Ω),

where we have used the boundedness of E in the second inequality.
Using the operator Ẽ(f), we obtain that

Ash‖f‖
2
Hs(Ω) ≤ Ash‖Ẽ(f)‖2Hs(R2)

≤
∑

(j,k,m,ι)∈Λ
|〈Ẽ(f), 2−jsψj,k,m,ι〉Hs(R2)|

2

=
∑

(j,k,m,ι)∈Λ0

|
〈
f, 2−jsψj,k,m,ι

〉
Hs(Ω)

|2

+
∑

(j,k,m,ι)∈Λc
0

|〈Ẽ(f), 2−jsψj,k,m,ι〉Hs(R2)|
2

≤
∑

(j,k,m,ι)∈Λ0

|
〈
f, 2−jsψj,k,m,ι

〉
Hs(Ω)

|2+

+ 2

(
∑

(j,k,m,ι)∈Λc
0

|〈Ẽ(f)− Ẽ(f (bd)), 2−jsψj,k,m,ι〉Hs(R2)|
2

+
∑

(j,k,m,ι)∈Λc
0

|〈Ẽ(f (bd)), 2−jsψj,k,m,ι〉Hs(R2)|
2

)

=
∑

(j,k,m,ι)∈Λ0

|
〈
f, 2−jsψj,k,m,ι

〉
Hs(Ω)

|2 + 2 (I + II) . (4)

We next estimate I and II, starting with II. By using the frame property for Hs(Ω) of
(2−jsωj,m,υ)(j,m,υ)∈Θ, we immediately obtain the required estimate

II ≤ Bsh‖Ẽ(f (bd))‖2Hs(R2) ≤M2
extBsh‖f

(bd)‖2Hs(Ω) ≤
M2

extBsh

Cw

∑

(j,m,υ)∈Θτ,t

|
〈
f, 2−jsωj,m,υ

〉
Hs(Ω)

|2,

where we used that the synthesis operator of the dual frame of (2−jsωj,m,υ)d(j,m,υ)∈Θ is bounded

in operator norm by 1√
Cw

. The existence of a positive lower bound follows by subtracting 2I on

both sides of the inequality (4), provided that we can show

I < Ash/2‖f‖
2
Hs(Ω). (5)
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A lower frame bound is then given by

(Ash − 2I)Cw/(2M
2
extBsh).

Since by construction, Ẽ(f)− Ẽ(f (bd)) = Ẽ(f − f (bd)) = Ẽ(f (int)), we can compute

I =
∑

(j,k,m,ι)∈Λc
0

∣∣∣∣
〈
Ẽ(f)− Ẽ(f (bd)), 2−jsψj,k,m,ι

〉
Hs(R2)

∣∣∣∣
2

=
∑

(j,k,m,ι)∈Λc
0

2−2js

∣∣∣∣
〈
Ẽ(f (int)), ψj,k,m,ι

〉
Hs(R2)

∣∣∣∣
2

=
∑

(j,k,m,ι)∈Λc
0

2−2js

∣∣∣∣
〈
f (int), ψj,k,m,ι

〉
Hs(R2)

∣∣∣∣
2

=
∑

(j,k,m,ι)∈Λc
0

∣∣∣∣∣∣
2−js

∑

(j′,m′,υ)∈Θc
t,τ

〈
f, 2−j

′sωj′,m′,υ

〉
Hs(Ω)

〈
(2−j

′sωj′,m′,υ)
d, ψj,k,m,ι

〉
Hs(R2)

∣∣∣∣∣∣

2

=
∑

(j,k,m,ι)∈Λc
0

∣∣∣∣∣∣

∑

(j′,m′,υ)∈Θc
t,τ

〈
f, 2−j

′sωj′,m′,υ

〉
Hs(Ω)

〈
(2−j

′sωj′,m′,υ)
d, 2−jsψj,k,m,ι

〉
Hs(R2)

∣∣∣∣∣∣

2

.

Applying the Cauchy-Schwarz inequality then yields

I ≤
∑

(j,k,m,ι)∈Λc
0


 ∑

(j′,m′,υ)∈Θc
t,τ

∣∣∣
〈
f, 2−jsωj′,m′,υ

〉
Hs(Ω)

∣∣∣
2


 ·

·


 ∑

(j′,m′,υ)∈Θc
t,τ

∣∣∣∣
〈
(2−j

′sωj′,m′,υ)
d, 2−jsψj,k,m,ι

〉
Hs(Ω)

∣∣∣∣
2



≤Dw‖f‖
2
Hs(Ω)

∑

(j,k,m,ι)∈Λc
0

∑

(j′,m′,υ)∈Θc
t,τ

∣∣∣∣
〈
(2−j

′sωj′,m′,υ)
d, 2−jsψj,k,m,ι

〉
Hs(Ω)

∣∣∣∣
2

. (6)

Furthermore, by Proposition 3.2 we have that for any given ǫ > 0 there exists a sufficiently
large offset t such that

∑

(j,k,m,ι)∈Λc
0

∑

(j′,m′,υ)∈Θc
t,τ

∣∣∣∣
〈
(2−j

′sωj′,m′,υ)
d, 2−jsψj,k,m,ι

〉
Hs(Ω)

∣∣∣∣
2

< ǫ. (7)

Applying (7) to (6) proves (5), thereby completing the proof.

4 Stability of boundary shearlet systems

In this section we will show that the analysis and synthesis operators of boundary shearlets
provide stable maps between weighted coefficient sequences and Hs(Ω). First of all, we are
interested in providing a characterization of Sobolev spaces Hs(Ω), s ≥ 0. In other words, we
aim to show that there exist 0 < A ≤ B <∞ such that

A‖f‖2Hs(Ω) ≤
∑

n∈N
22jns|〈f, ϕn〉L2(Ω)|

2 ≤ B‖f‖2Hs(Ω) for all f ∈ Hs(Ω), (8)
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where BSHs
t,τ (W ;φ,ψ, ψ̃, c) =: (ϕn)n∈N and jn corresponds to the scale of the underlying el-

ement, i.e., of ϕn = ψjn,kn,mn,ιn or ϕn = ωjn,mn,υn . The characterization (8) states that the
analysis operator of a bounded shearlet system is bounded from above and below as a map
from Hs(Ω) to the weighted sequence space ℓ2,s where

‖c‖2,s := ‖(2jnscn)n∈N‖ℓ2 , and ℓ2,s := {c ∈ ℓ2 : ‖c‖2,s <∞}.

We will demonstrate Property (8) in Subsection 4.1. Another mapping property, that is of
considerable interest for the discretization of PDEs is the Gelfand frame property. This property
requires a bounded synthesis operator as a map from ℓ2,s to Hs(Ω) and a bounded analysis
operator with respect to the L2 dual frame as a map from Hs(Ω) to ℓ2,s. We will discuss this
property in detail in Subsection 4.2.

4.1 Characterization of Hs(Ω)

In order to obtain the characterization result of (8) we will require a similar property for
shearlets on R2, i.e., property (S3) for s ≥ 0. In fact, easily realizable conditions can be given
that guarantee (S3) for a shearlet system. We remark that the next result, is only stated for
s ∈ N, in [45], but also holds for any s ≥ 0 with the same proof.

Theorem 4.1. [45] Let s ≥ 0, and φ,ψ ∈ L2(R2) such that for all ξ ∈ R2

|φ̂(ξ)| . min{1, |ξ1|
−β}min{1, |ξ2|

−β},

|ψ̂(ξ)| . min{1, |ξ1|
α}min{1, |ξ1|

−β}min{1, |ξ2|
−β},

with β > 4 and α > β + s and let ψ̃(x1, x2) := ψ(x2, x1) for all x ∈ R2. Further define

ρ : R2 → R, ρ(ξ) := (1 + |ξ1|
2)

1
2 (1 + |ξ2|

2)
1
2

and

θ̂(ξ) := ρ(ξ)−sψ̂(ξ), ˆ̃
θ(ξ) := ρ(ξ)−s

̂̃
ψ(ξ), µ̂(ξ) := ρ(ξ)−sϕ̂(ξ),

for all ξ ∈ R2. Assume that there exists c̃ > 0 such that SH(µ, θ, θ̃, (c1, c2)) forms a frame for
L2(R2) for all c1, c2 ≤ c̃ with lower frame bound independent of c1, c2. Then there exists c̄ such
that for all c ≤ c̄ we have that the system (ψj,k,m,ι)(j,k,m,ι)∈Λ = SH(φ,ψ, ψ̃, (c, c)) satisfies (S3).

We now use the results on R2 to obtain a characterization of Hs(Ω) by the analysis coeffi-
cients with respect to a shearlet system on Ω. At the end of this section, we briefly remark on
a characterization of Hs(Ω) by dual frame coefficients, with a bit more elaborate discussion in
Subsection 4.2.

The following theorem states the main result of this subsection.

Theorem 4.2. Let s ≥ 0, αw > 1, βw > αw + 1, βsh > 1 + αw, τ > 0 and ǫ > 0 such that
((1− ǫ)/τ − 2)α > 5/2. Let further

• SH(φ,ψ, ψ̃, c) be a shearlet system satisfying (S1), (S3), (S3), and (S5) and

• W be a boundary wavelet system satisfying (W1), (W2), the condition (W3) for s = 0
and (W4)

with αsh, βsh, αw, βw as stipulated above. Then there exists some T > 0 such that, for any t ≥ T ,
there exist 0 < A ≤ B < ∞ and the boundary shearlet system (ϕn)n∈N = BSH0

t,τ (W;φ,ψ, ψ̃, c)
satisfies (8).

Proof. The proof is very similar to that of Theorem 3.3 and is thus omitted here. It can be
found in [45, Theorem 4.2.6].
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4.2 Gelfand frame property

In this subsection we will analyze a property that allows us to use boundary shearlet systems
to adaptively solve elliptic partial differential equations. In [11] it was observed that a highly
beneficial property for the discretization of elliptic PDEs is the property of constituting a
Gelfand frame. Let s ∈ N and let us consider the Gelfand triple (Hs(Ω), L2(Ω),H−s(Ω)).
Then, a Gelfand frame is a frame (ϕn)n∈N for L2(Ω) satisfying the following two properties:

∥∥∥∥∥
∑

n∈N
cnϕn

∥∥∥∥∥

2

Hs(Ω)

.
∥∥(2jnscn)n∈N

∥∥2
ℓ2
, for all c ∈ ℓ2 (GFA1)

and

∥∥∥(2jns〈f, ϕdn〉L2(Ω))n∈N
∥∥∥
2

ℓ2
. ‖f‖2Hs(Ω), for all f ∈ Hs(Ω), (GFA2)

where the implicit constants are independent of c and f , respectively. We wish to mention,
that the Gelfand frame property is a stronger requirement than the characterization of Hs(Ω)
guaranteed by Theorem 4.2.

We will demonstrate that the property (GFA1) can be easily obtained from (W3) and (S3) if
the wavelet and shearlet frames are sufficiently localized. We define the Gramian of the wavelet
system W and a shearlet system SH(φ,ψ, ψ̃, c) by

Gw : ℓ2(Θ) → ℓ2(Θ), Gsh : ℓ2(Λ) → ℓ2(Λ) :

(Gw((cλ)λ∈Θ))µ :=
∑

λ∈Θ
cλ〈ωλ, ωµ〉 for µ ∈ Θ,

(Gsh((cλ)λ∈Λ))µ :=
∑

λ∈Λ
cλ〈ψλ, ψµ〉 for µ ∈ Λ.

If the the underlying frames admit a suffiently high localization, i.e., if 〈ψλ, ψµ〉, 〈ωλ, ωµ〉 decay
quickly for dist(λ, µ) growing, then it holds that

‖Gsh‖ℓ2,s(Λ)→ℓ2,s(Λ) <∞ and ‖Gw‖ℓ2,s(Θ)→ℓ2,s(Θ) <∞. (9)

For example, sufficient localization such that (9) holds is clearly given for Gw if the wavelet
system forms an orthonormal basis. For shearlets, the localization and the mapping property
(9) was analyzed in [33, Sec. 3.2].

Assuming wavelet and shearlet systems are such that (9) is satisfied, we can establish (GFA1)
directly. First of all, given c ∈ ℓ2,s we can split the wavelet and shearlet parts by:

‖
∑

n∈N
cnϕn‖

2
Hs(Ω) . ‖

∑

(j,m,υ)∈Θt,τ

cwj,m,υωj,m,ν‖
2
Hs(Ω) + ‖

∑

(j,k,m,ι)∈Λ0

cshj,k,m,ιψj,k,m,ι‖
2
Hs(Ω).

Invoking (S3) yields that

∥∥∥∥∥∥

∑

(j,k,m,ι)∈Λ
cshj,k,m,ιψj,k,m,ι

∥∥∥∥∥∥
Hs(Ω)

.

∥∥∥∥∥∥
(〈

∑

(j,k,m,ι)∈Λ
cshj,k,m,ιψj,k,m,ι, ψj′,k′,m′,ι′〉L2(R2))(j′,k′,m′,ι′)∈Λ

∥∥∥∥∥∥
ℓ2,s(Λ)
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=‖Gsh(c
sh)‖ℓ2,s(Λ) ≤ ‖Gsh‖ℓ2,s(Λ)→ℓ2,s(Λ)‖c

sh‖ℓ2,s(Λ).

A similar estimate for the wavelet part in addition to the fact that

‖csh‖2ℓ2,s(Λ) + ‖cw‖2ℓ2,s(Λ) = ‖c‖2ℓ2,s

yields (GFA1).
Unfortunately, the second property, (GFA2), is less accessible than (GFA1). This is the

case, since (GFA2) concerns an estimate on dual frame coefficients. An explicit construction of
any dual frame is, however, not available in our setting. A concrete construction of a dual is
not even known for the standard shearlet systems from Subsection 2.3. The only known first
construction can be found in [39]. However, the resulting system has a different structure than
a standard shearlet system and is, in particular, highly redundant. Hence it is not clear how
to even obtain characterizations of Sobolev spaces with the primal frame of the system of [39].
Therefore presenting such a characterization with dual frame coefficients is beyond the scope of
this paper.

To still provide an understanding of (GFA2) and to prove, that it most likely can be satisfied
for shearlet systems, we include a numerical analysis of this property in Subsection 6.3, where
we will see that the shearlet systems of Shearlab possess the property (GFA2).

5 Approximation properties

Finally, we discuss approximation properties of the boundary shearlet systems. In Subsection
2.3.4 it was discussed that shearlet systems on R2 yield optimally sparse approximations of
cartoon-like functions. To obtain a similar result for the newly introduced boundary shearlet
systems, we first need to specify what we mean by cartoon-like functions on bounded domains
Ω ⊂ R2.

The attentive reader will have noticed that the definition of cartoon-like functions, i.e., func-
tions in E2(ν), already focuses on functions with compact support in [0, 1]2. For our purposes
and according to anticipated applications in imaging science and numerical analysis of partial
differential equations, this definition is too restrictive. In fact, it does not include discontinu-
ity curves, which not only touch the boundary of the domain but intersect it, in particular,
producing a point singularity on the boundary. This situation shall now be included.

The following definition makes these thoughts precise and generalizes the previous notion of
cartoon-like functions from Definition 2.4, see also Figure 1 for an illustration.

Definition 5.1. Let ν > 0, Ω ⊂ R2, D ⊂ R2, and f = f1 + χDf2 with fi ∈ C2(R2) and
supp fi ⊂ [−csupp, csupp]

2 for some csupp > 0 and i = 1, 2 such that f(2csupp · −(1/2, 1/2)) ∈
E2(2csupp ·ν). Further, let #(∂D∩∂Ω) ≤M for some M ∈ N and let ∂D and ∂Ω only intersect
transversely. Then we call PΩf a cartoon-like function on Ω, and denote the set of cartoon-like
functions on Ω by E2(ν,Ω).

To estimate the error of the best N -term approximation, we use the following well-known
approach. Let BSH0

t,τ (W;φ,ψ, ψ̃, c) =: (ϕn)n be a boundary shearlet system which forms a
frame for L2(Ω), let f ∈ E2(ν,Ω), and let (θn(f))n∈N be the non-increasing rearrangement of
(| 〈ϕn, f〉L2(Ω) |

2)n∈N. Then, by the frame inequality, we have

‖f − fN‖
2
2 .

∑

n≥N
θn(f) for all N ∈ N.
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Figure 1: Cartoon-like functions in E2(ν, [0, 1]2) for some ν > 0.

Hence to obtain the optimal best N -term approximation rate of Theorem 2.5, we require the
estimate ∑

n≥N
θn(f) . N

−2 log(N)3 as N → ∞.

The reader will certainly have noticed that it is not initially clear that this is also the optimally
possible rate for the extended class of cartoon-like functions on Ω from Definition 5.1. But it
is easy to see that a best N−term approximation rate faster than N−2 violates the optimality
result of [25] for functions in E2(ν), since each system on [0, 1]2 can be extended by 0 to yield a
system on R2. Recall that functions in E2(ν) vanish outside [0, 1]2, hence the extended system
would imply a faster than optimal approximation rate for functions in E2(ν), a contradiction.
Thus, the best N -term approximation rate is bounded from below by N−2, but it is not clear
whether this rate can actually be achieved. Theorem 5.2 shows that this is indeed the case up
to a negligible log factor.

To proceed we need to first assemble some results about the approximation rates of wavelets
and shearlets. The optimal approximation rate of shearlets is guaranteed by Theorem 2.5.
Moreover, let (ωj,m,υ)(j,m,υ)∈Θ be a wavelet system admitting (W3) with s = 2, i.e.,

‖f‖2H2(Ω) ∼
∑

j,m

24j | 〈f, ωj,m,υ〉L2(Ω) |
2 for all f ∈ H2(Ω).

Then, the result [7, Thm. 39.2] implies that, for any f ∈ H2(Ω) and
∑

n≥N
θωn(f) . N

−2, (10)

where (θωn(f)n)n∈N denotes a non-increasing rearrangement of (|〈f, ωj,m,υ〉L2(Ω)|
2)(j,m,υ)∈Θ.

Based on these approximation results, we obtain the following theorem for the approximation
rate of cartoon-like functions on Ω by the hybrid system of boundary shearlets.

Theorem 5.2. Let Ω ⊂ R2 with ∂Ω having finite length. Further, let φ,ψ, ψ̃ fulfill the assump-
tions of Theorem 2.5, and let W be a wavelet basis satisfying (W4) and (10). Further let t > 0,
τ > 1/3, and let BSH0

t,τ (W;φ,ψ, ψ̃, c) =: (ϕn)n∈N be a boundary shearlet system, which forms a

frame for L2(Ω). Then BSH0
t,τ (W;φ,ψ, ψ̃, c) yields almost optimally sparse approximation for

cartoon-like functions on Ω, i.e., for all f ∈ E2(ν,Ω),

‖f − fN‖
2
L2(Ω) . N

−2 log(N)3 for N → ∞,

where fN =
∑

n∈In 〈f, ϕn〉L2(Ω) ϕ
d
n with In containing the N largest coefficients 〈f, ϕn〉L2(Ω) in

modulus and (ϕdn)n∈N is any dual frame of (ϕn)n∈N.
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Proof. Let f = PΩ(f1 + χDf2) ∈ E2(ν,Ω) and consider

‖f − f∗N‖
2
L2(Ω) ≤

∑

n≥N
θn(f) ≤

∑

n≥ 2N
3

θωn(f) +
∑

n≥N
3

θψn (f) =: T1 + T2, (11)

where (θωn(f))n∈N is the non-increasing rearrangement of (| 〈f, ϕn〉L2(Ω) |
2)ϕn∈Wt,τ and (θψn (f))n∈N

the non-increasing rearrangement of (| 〈f, ϕn〉L2(Ω) |
2)ϕn∈S0 , where S0 = {ψj,k,m,ι : (j, k,m, ι) ∈

Λ0}.
We now estimate T1 and T2. By Theorem 2.5,

T2 . N
−2 log(N)3. (12)

The sum T1 corresponding to the wavelet part can be split into two parts again. First, we denote
by (θωn(f)

(s))n∈N those elements of (θωn(f))n∈N where | 〈ϕn, f〉L2(Ω) |
2 = θωn and supp ϕn∩∂D 6= ∅.

These are the wavelet elements corresponding to the smooth part of the function f . Second, we
label the remaining elements by θωn(f)

(ns) for n ∈ N. Using similar arguments about the set of
largest coefficients as before, we obtain that

T1 ≤
∑

n≥N
3

θωn(f)
(s) +

∑

n≥N
3

θωn(f)
(ns).

By (10), ∑

n≥N
3

θωn(f)
(s) . N−2 as N → ∞.

The wavelet coefficients corresponding to the non-smooth part of f can be estimated by using
that the boundary curve of D intersects ∂Ω only finitely often. Therefore, due to the construc-
tion of the wavelet system Wt,τ , we obtain that only ∼ 2(1−τ)j < 2(2/3−ǫ)j wavelets intersect
the boundary of D where 0 < ε < τ − 1/3. Furthermore, by the boundedness of f , we have
| 〈ωj,m,υ, f 〉L2(Ω)|

2 . 2−2j . Hence, we obtain

∑

n

(θωn(f)
(ns))

1
3 .

∑

j∈N
2(2/3−ǫ)j(2−2j)

1
3 <∞.

Consequently, (θωn(f)
(ns))n∈N ∈ ℓ

1
3 which, by the Stechkin Lemma (see for instance [23]), yields

∑

n≥N
(θωn(f)

(ns)) . N−2 for N → ∞. (13)

Applying (12)–(13) to (11) proves the claim.

6 Numerical experiments

We now numerically analyze some of the properties of boundary shearlet systems. Since es-
timates for frame bounds as derived in Theorem 3.4 are typically far from being tight, in
Subsection 6.1 we numerically compute the frame bounds. In Subsections 6.2 and 6.3 we then
analyze the localization properties of the Gramian and the Gelfand frame property, which are
features of boundary shearlet systems the theoretical analysis of which was far beyond the scope
of this paper.

For all numerical experiments, we choose a digitized version Ω of the domain Ω = [0, 1]2

as an n × n pixel image. We will specify the number n at the relevant points later. Our im-
plementation of boundary shearlet systems then uses the MATLAB toolboxes WaveLab from
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http://statweb.stanford.edu/~wavelab/ and ShearLab from http://www.shearlab.org

for the implementation of the analysis and synthesis operator of boundary shearlet systems.
In WaveLab and ShearLab, the wavelet and shearlet elements are not normalized. Since this is
crucial for the setting of bounded domains, we normalize all these functions. For later use, let
TΦw

and TΦs
denote the implementation of the analysis operators of the wavelet and shearlet

systems after normalization.
The definition of boundary shearlet systems requires a hybrid system consisting of a subset

of the wavelet system and a subset of the shearlet system. Concerning the wavelet elements,
we only choose those which are close to the boundary. Depending on the offset of the boundary
shearlet system, we construct a mask, Mw, for the wavelet system that restricts the analysis
operator to a subset of the full wavelet system. In the sequel, we will always choose τ = 1/3
and only vary the offset t. Similarly, we need to subsample the shearlet system provided by
ShearLab. In fact, ShearLab provides a non-subsampled shearlet transform, i.e., it computes
the shearlet coefficients using the full system

{
ψj,k,(SkAjm),ι : j ≤ J, ι ∈ {−1, 0, 1}, |k| ≤ |ι|2⌊j/2⌋, m ∈ cZ2,

}
.

On the other hand the theory requires us to restrict to the shearlet system
{
ψj,k,m,ι : j ≤ J, ι ∈ {−1, 0, 1}, |k| ≤ |ι|2⌊j/2⌋, m ∈ cZ2,

}
.

Furthermore, we exclude shearlets from our system that intersect the boundary of Ω. We
incorporate all of these requirements in a mask Ms.

The analysis operator of the combined system is now given by

TΦ :=

(
MwTΦw

MsTΦs

)
. (14)

Using these operators, we derive an implementation of the synthesis operator of boundary
shearlet systems by using

T∗
Φ = MwT

∗
Φw

+MsT
∗
Φs

.

The implementation of the frame operator is given by

S := T∗
Φw

MwTΦw
+T∗

Φs

MsTΦs
.

To apply the inverse frame operator S−1, we use MATLAB’s build-in conjugate gradients
method, pcg.

6.1 Frame properties

We now compute the frame bounds of a boundary shearlet system for various offsets of the
wavelet part. We pick an 512 × 512 pixel domain as a digitization of Ω. The wavelet and
shearlet systems are computed using 5 scales. Since the optimal frame bounds A and B are the
extremal points of the spectrum of the frame operator of the system, we numerically compute
them for this boundary shearlet system by computing the smallest and largest eigenvalues of
S. For this task we used MATLAB’s built-in method eigs. In Figure 2, we depict the quotient
B/A for varying offset.

We observe that for larger offset the ratio of the frame bounds is somehow not too far from
1, which provides us with reasonably good condition numbers for the computation of S−1. In
fact, the values of these quotients are comparable with those of the full shearlet system used
in ShearLab [40]. As expected, the frame property breaks down, when the offset becomes too
small. This is in accordance with Theorem 3.4.
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Figure 2: Quotient of the frame bounds for varying offset. One observes that for high offset the
quotient becomes stable and explodes for decreasing offset.

6.2 Localization of the Gramian

Using the analysis operator as defined in (14), the Gramian of the boundary shearlet system is
given by

G := TΦT
∗
Φ.

The linear operators TΦ and T∗
Φ

are implemented using the Spot Toolbox, which is avail-
able at http://www.cs.ubc.ca/labs/scl/spot/index.html. The matrix representation of
the Gramian is shown in Figure 3. It is clearly visible, that the Gramian of the boundary
shearlet system has diagonal structure.

The figures were produced for a 256×256 digitization of Ω, 4 scales in the boundary shearlet
system with the number of directions being [1 1 2 2].

6.3 Numerical analysis of the Gelfand frame property

We have already discussed the Gelfand frame property in Subsection 4.2. Indeed we have shown
that the lower inequality, i.e., (GFA1) can be achieved. However, as we have also explained
in the same subsection, our theoretical analysis is restricted to (GFA1) only since (GFA2)
involves the dual frame which is not available. Nevertheless, property (GFA2) will be confirmed
numerically in this subsection.

We will now proceed as follows, first, we require a numerically computable discretization of
property (GFA2). For this, notice that employing the characterization of Hs(Ω) by a boundary
wavelet frame and an appropriate weight in the sense that

‖TΦwc‖
2
Hs(Ω) ∼ ‖c‖2ℓ2,s ,

one can obtain the following property that is equivalent to (GFA2):

‖〈TΦwc, ϕ
d
n〉L2(Ω)‖

2
ℓ2,s . ‖c‖2ℓ2,s , for all c ∈ ℓ2,s. (15)

To derive a discrete analogue of (15), we first let

W : ℓ2,s → ℓ2, (xk)k 7→ (wk · xk)k
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Figure 3: Gramian of the boundary shearlet system. The part zoomed region is shown with
changed contrast for better visualization of the different sparsity patterns of shear-shear, shear-
wave and wave-wave.

be the canonicial isometry. Furthermore, since ϕdn = S−1ϕn, it follows that

〈TΦwc, ϕ
d
n〉L2(Ω) = 〈S−1TΦwc, ϕn〉L2(Ω).

Using the canonical discretization of W as a diagonal matrix, we obtain two matrices W and
Ww adapted to the indexing of the boundary shearlet system and the full wavelet system,
respectively. The discrete analogue of (15) now takes the form

‖WTΦ(S
−1TΦwc)‖

2 . ‖Wwc‖
2, for all c ∈ R

n2
.

In order to examine this bound and check its validity for our boundary shearlet system in the
discrete setting, we estimate

max
‖c‖=1

‖WTΦS
−1TΦwWw

−1c‖2

by computing the square-root of the largest eigenvalue of

Ww
−1TΦwS

−1T∗
ΦW

2TΦS
−1TΦwWw

−1. (16)

In Table 1, we depict the square-root of the largest eigenvalue of the operator (16) with
different weights W,Ww and different offset for n = 1024. 1. In this numerical experiment, the
weights are chosen as 2js, where j describes the scale of the frame element, both of wavelet and
shearlet, and s is a parameter that takes values between 0 and 1.5. The shearlet and wavelet
systems were constructed with 6 scales.

In Table 1, one can observe that, although the largest eigenvalues of (16) increase with
growing Sobolev parameter, they do so remarkably slow if the offset is sufficiently high. Thus
we conclude that our experiments demonstrate the proper mapping properties of the dual frame.
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Offset s = 0 s = 0.5 s= 1 s= 1.5

7.31 3.77 3.77 3.77 3.77
6.59 3.78 3.78 3.78 3.78
5.72 3.78 3.78 3.78 3.78
4.63 3.79 3.78 3.78 3.78
3.18 3.79 3.79 4.09 6.11
0.97 3.79 3.79 4.15 6.81
0.35 3.79 3.79 4.35 13.10

Table 1: Square root of largest singular values of WTΦS
−1TΦwWw

−1 for varying offset and
Sobolev parameter s.
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A H
s(R2) Frame property of a reweighted shearlet system

This section shall be concerned with the proof of Theorem 3.3. The proof is split into Lemma A.2 for
the upper frame bound and Lemma A.3 for the lower frame bound.

We use the following lemma to estimate weighted L2(R2) - frame coefficients by the Hs(R2) norm of
a function f .

Lemma A.1 ([45], Lemma 2.4.9.). Let s ∈ N, C̃ > 0, βsh > 3 and αsh > βsh + s. Further, let

φ, ψ, ψ̃ ∈ L2(R2) such that for almost all ξ ∈ R2 there holds

|φ̂(ξ)| ≤ C̃min{1, |ξ1|
−βsh}min{1, |ξ2|

−βsh}

|ψ̂(ξ)| ≤ C̃min{1, |ξ1|
αsh}min{1, |ξ1|

−βsh}min{1, |ξ2|
−βsh}

| ˆ̃ψ(ξ)| ≤ C̃min{1, |ξ2|
αsh}min{1, |ξ1|

−βsh}min{1, |ξ2|
−βsh}.

Then there exists a constant C > 0 depending only on s, αsh and βsh such that SH(φ, ψ, ψ̃, c) satisfies

∥∥∥
(
2js〈f, ψj,k,m,ι〉L2(R2)

)
(j,k,m,ι)∈Λ

∥∥∥
ℓ2(Λ)

≤
CC̃√

| det(Mc)|
‖f‖Hs(R2), for all f ∈ Hs(R2).

We continue to give the upper frame bound for the weighted shearlet system in Hs(R2).

Lemma A.2. For s ∈ N let φ1, ψ1 ∈ L2(R) be such that for some C̃ ≥ 0, αsh − s > βsh > 3, and all
0 ≤ r1, r2 ≤ 2s,

D̂r1φ1(ξ) ≤
√
C̃min{1, |ξ|−βsh}, for all ξ ∈ R,

D̂r2ψ1(ξ) ≤
√
C̃min{1, |ξ|αsh}min{1, |ξ|−βsh}, for all ξ ∈ R. (17)

We further denote φ = φ1 ⊗ φ1 and ψ = ψ1 ⊗ φ1 and ψ̃(x1, x2) := ψ(x2, x1) for all x ∈ R2. Then, there
exists some B > 0 depending only on αsh, βsh and s such for (ψj,k,m,ι)(j,k,m,ι)∈Λ = SH(φ, ψ, ψ̃, (c1, c2))
we have the estimate

∑

(j,k,m,ι)∈Λ

|〈f, 2−jsψj,k,m,ι〉Hs(R2)|
2 ≤ B

C̃

| det(Mc)|
‖f‖2Hs(R2) (18)

for all f ∈ Hs(R2).

Proof. We define for r = (r1, r2): φ
(r) = Dr1φ1 ⊗ Dr2φ1, ψ(r) = Dr1ψ1 ⊗ Dr2φ1, and ψ̃(r)(x1, x2) =

ψ(r)(x2, x1). By Lemma A.1 there exists a constant C, dependent only on αsh, βsh, such that for all

0 ≤ r1, r2 ≤ 2s and for (ψ
(r)
j,k,m,ι)(j,k,m,ι)∈Λ = SH(φ(r), ψ(r), ψ̃(r), c) we have that

∑

(j,k,m,ι)∈Λ

22js|〈f, ψ
(r)
j,k,m,ι〉L2(R2)|

2 ≤ C
C̃

| det(Mc)|
‖f‖2Hs(R2), for all f ∈ Hs(R2). (19)

From the assumptions (17) we have that φ, ψ, ψ̃ ∈ H2s(R2) and thus we can estimate the left hand side
of (18).

∑

(j,k,m,ι)∈Λ

|2−js 〈f, ψj,k,m,ι〉Hs(R2) |
2

=
∑

(j,k,m,ι)∈Λ

|
∑

|a|≤s

2−js 〈Daf,Daψj,k,m,ι〉L2(R2) |
2

.
∑

(j,k,m,ι)∈Λ

∑

|a|≤s

|2−js
〈
f,D2aψj,k,m,ι

〉
L2(R2)

|2 = I. (20)
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By using the product rule we calculate

D2aψj,k,m,ι =
∑

0≤r1,r2≤2s

c(a)
r
ψ
(r)
j,k,m,ι, (21)

with coefficients ca
r
bounded in absolute value by 22js. After applying (21) to (20) we estimate

I .
∑

(j,k,m,ι)∈Λ

∑

|a|≤s

∑

0≤r1,r2≤2s

22js|〈f, ψ
(r)
j,k,m,ι〉L2(R2)|

2

. sup
0≤r1,r2≤2s

∑

(j,k,m,ι)∈Λ

22js|〈f, ψ
(r)
j,k,m,ι〉L2(R2)|

2 = II.

Invoking (19), there exists some B > 0 such that

II ≤ B
C̃

| det(Mc)|
‖f‖2Hs(R2), for all f ∈ Hs(R2).

This yields the result.

As a next step we provide the lower frame bound.

Lemma A.3. For s ∈ N, αsh − s > βsh > 4 and some C̃ > 0 let φ1, ψ1 ∈ L2(R) be such that for all
0 ≤ r1, r2 ≤ 2s,

D̂r1φ1(ξ) ≤
√
C̃min{1, |ξ|−βsh}, for all ξ ∈ R,

D̂r2ψ1(ξ) ≤
√
C̃min{1, |ξ|αsh}min{1, |ξ|−βsh}, for all ξ ∈ R.

Further, let φ, ψ, ψ̃, θ, θ̃, µ be as in (1). Assume that there exists c̄ > 0 such that for all c1, c2 ≤ c̄ we
have that SH(µ, θ, θ̃, (c1, c2)) forms a frame for L2(R2) with lower frame bound, which can be bounded
from below independently of c1, c2. Then there exists c̃ > 0 such that for all c1 = c2 ≤ c̃ and c = (c1, c2)
the system (ψj,k,m,ι)(j,k,m,ι)∈Λ = SH(µ, θ, θ̃, c), obeys

‖f‖2Hs(R2) .
∑

(j,k,m,ι)∈Λ

|〈f, 2−jsψj,k,m,ι〉Hs(R2)|
2,

for all f ∈ Hs(R2).

Proof. Let c̄ ≥ c > 0. We define

µ̂c := X[− 1

2c1
, 1

2c1
]2 µ̂, θ̂c := X[− 1

2c1
, 1

2c1
]2 θ̂ ,

ˆ̃
θ
c

:= X[− 1

2c1
, 1

2c1
]2
ˆ̃
θ.

By using the fact, that SH(µ, θ, θ̃, c) is a frame for L2(R2), we deduce

‖f‖2Hs(R2) ∼ ‖(1 + | · |2)
s
2 f̂‖2L2(R2)

.
∑

(j,k,m,ι)∈Λ

|〈(1 + | · |2)
s
2 f̂ , θ̂j,k,m,ι〉L2(R2)|

2

≤
∑

(j,k,m,ι)∈Λ

|〈(1 + | · |2)
s
2 f̂ , θ̂cj,k,m〉L2(R2)|

2

+
∑

(j,k,m,ι)∈Λ

|〈(1 + | · |2)
s
2 f̂ , θ̂j,k,m − θ̂cj,k,m〉L2(R2)|

2 = I1 + I2. (22)

Since βsh > 4, there exists ǫ > 0 such that βsh − 1− ǫ > 3 and for all ξ ∈ R2

min{1, |ξ|αsh}min{1, |ξ|−βsh} ≤ min{1, |ξ1|
αsh}min{1, |ξ1|

−βsh+1+ǫ}(max{1, |ξ1|})
−1−ǫ.
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Thus, we have that (θj,k,m,ι−θcj,k,m,ι)(j,k,m,ι)∈Λ satisfies the assumptions of Lemma A.2 with
√
C̃ = 2c1+ǫ

1 .

Hence, I2 can be estimated by c2+2ǫ
1 /| det (Mc)|‖f‖2Hs(R2) and since det (Mc) = c21 this term is negligible

for c1 small enough. Therefore we obtain

‖f‖2Hs(R2) .
∑

(j,k,m,ι)∈Λ

|〈(1 + | · |2)
s
2 f̂ , θ̂cj,k,m〉L2(R2)|

2

=
∑

(j,k,m)∈Λ′

|〈(1 + | · |2)
s
2 f̂ , θ̂cj,k,m〉L2(R2)|

2

+
∑

(j,k,m)∈Λ′

|〈(1 + | · |2)
s
2 f̂ ,
̂̃
θ
c

j,k,m〉L2(R2)|
2

+
∑

m∈Z2

|〈(1 + | · |2)
s
2 f̂ ,F(µc(· − c1m))〉L2(R2)|

2

=
∑

(j,k,m)∈Λ′

2
3j
2

∣∣∣∣
∫

R2

f̂(ξ)(1 + |ξ|2)
s
2F(θc(SkAj · −Mcm))(ξ)dξ

∣∣∣∣
2

+
∑

(j,k,m)∈Λ′

2
3j
2

∣∣∣∣
∫

R2

f̂(ξ)(1 + |ξ|2)
s
2F(θ̃c(ST

k Ãj · −Mc̃m))(ξ)dξ

∣∣∣∣
2

+
∑

m∈Z2

∣∣∣∣
∫

R2

f̂(ξ)(1 + |ξ|2)
s
2F(µc(· − c1m))(ξ)dξ

∣∣∣∣
2

=
∑

(j,k,m)∈Λ′

2−
3j
2

∣∣∣∣
∫

R2

f̂(ξ)(1 + |ξ|2)
s
2 θ̂c(S−T

k A−1
j ξ)e2πi〈McS

−T
k A−1

j ξ,m〉dξ

∣∣∣∣
2

+
∑

(j,k,m)∈Λ′

2−
3j
2

∣∣∣∣
∫

R2

f̂(ξ)(1 + |ξ|2)
s
2
ˆ̃
θ
c

(S−1
k Ã−1

j ξ)e2πi〈Mc̃S
−1

k Ã−1

j ξ,m〉dξ

∣∣∣∣
2

+
∑

m∈Z2

∣∣∣∣
∫

R2

f̂(ξ)(1 + |ξ|2)
s
2 µ̂c(ξ)e2πi〈c1ξ,m〉dξ

∣∣∣∣
2

= II.

Now we substitute

ξ  AjS
T
k M

−1
c ξ, ξ  ÃjSkM

−1
c̃ ξ, ξ  

ξ

c1
. (23)

Furthermore, we use that µc, θc, and θ̃c are all supported in [− 1
2c1
, 1
2c1

]2.

II =
∑

(j,k,m)∈Λ′

2
3j
2

|det(Mc)|2
·

∣∣∣∣
∫

[− 1

2
, 1
2
]2
f̂(AjS

T
k M

−1
c ξ)(1 + |AjS

T
k M

−1
c ξ|2)

s
2 θ̂c(M−1

c ξ)e2πi〈ξ,m〉dξ

∣∣∣∣
2

+
∑

(j,k,m)∈Λ′

2
3j
2

|det(Mc)|2
·

∣∣∣∣
∫

[− 1

2
, 1
2
]2
f̂(ÃjSkM

−1
c̃ ξ)(1 + |ÃjSkM

−1
c̃ ξ|2)

s
2
ˆ̃
θ
c

(M−1
c̃ ξ)e2πi〈ξ,m〉dξ

∣∣∣∣
2

+
∑

m∈Z2

1

c21

∣∣∣∣
∫

[− 1

2
, 1
2
]2
f̂

(
ξ

c1

)(
1 +

∣∣∣∣
ξ

c1

∣∣∣∣
2
) s

2

µ̂c

(
ξ

c1

)
e2πi〈ξ,m〉dξ

∣∣∣∣
2

.

By using the Parseval identity we obtain

II =
∑

(j,k)∈Λ′′

2
3j
2

|det(Mc)|2
·
∥∥∥f̂(AjS

T
k M

−1
c ·)(1 + |AjS

T
k M

−1
c · |2)

s
2 θ̂c(M−1

c ·)
∥∥∥
2

L2(R2)

+
∑

(j,k)∈Λ′′

2
3j
2

|det(Mc)|2
·

∥∥∥∥f̂(ÃjSkM
−1
c̃ ·)(1 + |ÃjSkM

−1
c̃ · |2)

s
2
ˆ̃
θ
c

(M−1
c̃ ·)

∥∥∥∥
2

L2(R2)
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+
1

c21

∥∥∥∥∥∥
f̂

(
·

c1

)(
1 +

∣∣∣∣
·

c1

∣∣∣∣
2
) s

2

µ̂c

(
·

c1

)∥∥∥∥∥∥

2

L2(R2)

.

Now we substitute

ξ  Mcξ, ξ  Mc̃ξ, ξ  c1ξ (24)

to arrive at

II =
∑

(j,k)∈Λ′′

2
3j
2

∥∥∥(1 + |AjS
T
k · |2)

s
2 f̂(AjS

T
k ·)θ̂

c(·)
∥∥∥
2

L2(R2)

+
∑

(j,k)∈Λ′′

2
3j
2

∥∥∥∥(1 + |ÃjSk · |
2)

s
2 f̂(ÃjSk·)

ˆ̃
θ
c

(·)

∥∥∥∥
2

L2(R2)

+
∥∥∥(1 + | · |2)

s
2 · f̂ · φ̂

∥∥∥
2

L2(R2)
.

Now set

φ̂c := X[− 1

2c1
, 1

2c1
]2 φ̂, ψ̂c := X[− 1

2c1
, 1

2c1
]2ψ̂ ,

ˆ̃
ψ
c

:= X[− 1

2c1
, 1

2c1
]2
ˆ̃
ψ.

Using the definition of θc, θ̃c, µc then yields

II =
∑

(j,k)∈Λ′′

2
3j
2

∥∥∥(1 + |AjS
T
k · |2)

s
2 f̂(AjS

T
k ·)|(·)1|

sψ̂c(·)
∥∥∥
2

L2(R2)

+
∑

(j,k)∈Λ′′

2
3j
2

∥∥∥∥(1 + |ÃjSk · |
2)

s
2 f̂(ÃjSk·)|(·)2|

s ˆ̃ψ
c

(·)

∥∥∥∥
2

L2(R2)

+
∥∥∥(1 + | · |2)

s
2 · f̂ · φ̂

∥∥∥
2

L2(R2)

=
∑

(j,k)∈Λ′′

2
3j
2

∥∥∥(1 + |AjS
T
k · |2)

s
2 f̂(AjS

T
k ·)2

−js|(AjS
T
k ·)1|

sψ̂c(·)
∥∥∥
2

L2(R2)

+
∑

(j,k)∈Λ′′

2
3j
2

∥∥∥(1 + |ÃjSk · |
2)

s
2 f̂(ÃjSk·)2

−js|(ÃjSk·)2|
sψ̂c(·)

∥∥∥
2

L2(R2)

+
∥∥∥(1 + | · |2)

s
2 · f̂ · φ̂c

∥∥∥
2

L2(R2)

≤
∑

(j,k)∈Λ′′

2
3j
2

∥∥∥(1 + |AjS
T
k · |2)sf̂(AjS

T
k ·)2

−jsψ̂c(·)
∥∥∥
2

L2(R2)

+
∑

(j,k)∈Λ′′

2
3j
2

∥∥∥∥(1 + |ÃjSk · |
2)sf̂(ÃjSk·)2

−js ˆ̃ψ
c

(·)

∥∥∥∥
2

L2(R2)

+
∥∥∥(1 + | · |2)s · f̂ · φ̂c

∥∥∥
2

L2(R2)
= III.

We observe that
(1 + |ξ|2)s .

∑

|a|≤s

(2π)2|a|ξ2a for all ξ ∈ R
2.

Thus we can estimate

III .
∑

(j,k)∈Λ′′

2
3j
2 ·

∥∥∥∥∥∥

∑

|a|≤s

(2π)2|a|(AjS
T
k ·)

2af̂(AjS
T
k ·)2

−jsψ̂c(·)

∥∥∥∥∥∥

2

L2(R2)
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+
∑

(j,k)∈Λ′′

2
3j
2 ·

∥∥∥∥∥∥

∑

|a|≤s

(2π)2|a|(ÃjSk·)
2af̂(ÃjSk·)2

−js ˆ̃ψ
c

(·)

∥∥∥∥∥∥

2

L2(R2)

+

∥∥∥∥∥∥

∑

|a|≤s

(2π)2|a|(·)2af̂ φ̂c

∥∥∥∥∥∥

2

L2(R2)

= IV.

Invoking Parseval’s identity again and reversing the transformations (24) as well as (23) from earlier
shows that

IV =
∑

(j,k,m,ι)∈Λ

|〈f̂ ,
∑

|a|≤s

(2π)2|a|(·)2a2−jsψ̂c
j,k,m,ι〉L2(R2)|

2

=
∑

(j,k,m,ι)∈Λ

|
∑

|a|≤s

〈f̂ , (−1)|a|(2πi)2|a|(·)2a2−jsψ̂c
j,k,m,ι〉L2(R2)|

2.

By standard results on derivatives and the Fourier transform we have that

(2πi·)2a2−jsψ̂c
j,k,m,ι = F(2−jsD2aψc

j,k,m,ι).

Thus we can invoke the Plancherel identity and partial integration to obtain

IV =
∑

(j,k,m,ι)∈Λ

|
∑

|a|≤s

〈f, (−1)|a|2−jsD2aψc
j,k,m,ι〉L2(R2)|

2

=
∑

(j,k,m,ι)∈Λ

|
∑

|a|≤s

〈Daf, 2−jsDaψc
j,k,m,ι〉L2(R2)|

2

=
∑

(j,k,m,ι)∈Λ

|〈f, 2−jsψc
j,k,m,ι〉Hs(R2)|

2.

We still need to transition back from ψc
j,k,m,ι to ψj,k,m,ι. We proceed by invoking a triangle inequality

IV .
∑

(j,k,m,ι)∈Λ

|〈f, 2−jsψj,k,m,ι〉Hs(R2)|
2

+
∑

(j,k,m,ι)∈Λ

|〈f, 2−js(ψj,k,m,ι − ψc
j,k,m,ι)〉Hs(R2)|

2

= IV1 + IV2,

Using a similar estimate as for I2 in (22) we can estimate by invoking Lemma A.2 that IV2 is negligible
for c small enough. This yields the result.

To conclude this subsection we would like to examine how the auxiliary functions θ, θ̃ and µ can be
chosen such that they fulfill the frame property required in the proof of Theorem 3.3. Therefore assume
ψ, ψ̃, and φ fulfill the assumptions of Theorem 3.3 with γ + 4 > αsh > γ > 4 + s. Then it follows that

θ(x) =
1

(−2πi)s
Ds(ψ1)(x1)φ

1(x2),

θ̃(x) = φ1(x1)
1

(−2πi)s
Ds(ψ1)(x2),

µ = φ1(x1)φ
1(x2).

Furthermore Ds(ψ1) and φ1 satisfy the assumptions of Theorem 3.3 and therefore there exists a sampling

parameter c̄ > 0 such that for c1 = c2 ≤ c̄ and c = (c1, c2) the system SH(φ, ψ, ψ̃, c) constitutes a frame
for L2(R2).
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B Localization of shearlet and wavelet frames

We now turn to the proof of Proposition 3.2. For this, we will require the following technical lemma.

Lemma B.1. [45] Let ψ ∈ L2(R2) be such that there exists C > 0 with

|ψ̂(ξ1, ξ2)| ≤ C
min{1, |ξ1|α}

max{1, |ξ1|β}max{1, |ξ2|β}
, for a.e. (ξ1, ξ2) ∈ R

2,

where β/2 > α > 1. Then, for ι = −1, 1,

∑

|k|≤2j/2

|(ψj,k,m,ι)
∧(ξ1, ξ2)| ≤ 2−3/4jC′ 1

max{1, |2−jξ1|β/2}

1

max{1, |2−jξ2|β/2}
,

for a.e. (ξ1, ξ2) ∈ R2 and a constant C′.

Proof. See [45, Lemma 3.2.1] for a proof.

Now we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. First of all, by the definition of Θc
τ,t one has that for all (jsh, k,msh, ι) ∈ Λc

0 and

(jw,mw, υ) ∈ Θc
τ,t such that jw < 1/(2τ)jsh+t we have that supp (2

−jwsωjw,mw,υ)
d∩supp ψjsh,k,msh,ι = ∅.

Hence, we can assume in the sequel that jw > 1/(2τ)jsh + t.
Furthermore, the total number of wavelet translates for a fixed level jw is of order 22jw . W.l.o.g.,

the following computations can be done for υ = 1. Using this observation and Plancherel’s identity, we
obtain

∑

(jw,mw,1)∈Θc
τ,t

∑

(jsh,k,msh,ι)∈Λc
0

|〈(2−jwsωjw,mw,1)
d, 2−jshsψjsh,k,msh,ι〉Hs(Ω)|

2

.

∞∑

jw=0

(2τ)(jw−t)∑

jsh=0

∑

|k|≤2jsh/2

22jw max
msh,mw

(
∑

|a|≤s

|〈(·)a ̂(2−jwsωjw,mw,1)d, (·)
a2−jshs ̂ψjsh,k,msh,ι〉L2(R2)|

2)

.
∑

|a|≤s

∞∑

jw=0

(2τ)(jw−t)∑

jsh=0

∑

|k|≤2jsh/2

22jw max
msh,mw

(|〈(·)a ̂(2−jwsωjw,mw,1)d, (·)
a2−jshs ̂ψjsh,k,msh,ι〉L2(R2)|

2). (25)

Leveraging on the frequency decay of the corresponding shearlet atoms, applying Lemma B.1, and using
(W3) of the Assumption 2.1 yields for any |a| ≤ s

(2τ)(jw−t)∑

jsh=0

∑

|k|≤2jsh/2

22jw max
mw,msh

|〈(·)a ̂(2−jwsωjw,mw,1)d, (·)
a2−jshs ̂ψjsh,k,msh,ι〉L2(R2)|

2

.

(2τ)(jw−t)∑

jsh=0

2−3/2jsh

(∫

R2

2−jwsξa min{1, |2−jwξ1|αw}

max{1, |2−jwξ1|βw}max{1, |2−jwξ2|βw}

·
2−jshsξa

max{1, |2−jshξ1|βsh/2}max{1, |2−jshξ2|βsh/2}
dξ

)2

=: I.

By a simple computation we obtain that if βw ≥ s

2−jwsξa

max{1, |2−jwξ1|βw max{1, |2−jwξ2|βw−s}
.

1

max{1, |2−jwξ1|βw−s}max{1, |2−jwξ2|βw−s}
.

We plug this estimate into the estimate above and obtain with β′
w = βw − s and β′

sh = βsh/2− s:

I .

(2τ)(jw−t)∑

jsh=0

2−3/2jsh

(∫

R2

min{1, |2−jwξ1|
αw}

max{1, |2−jwξ1|β
′

w}max{1, |2−jwξ2|β
′

w}
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·
1

max{1, |2−jshξ1|β
′

sh}max{1, |2−jshξ2|β
′

sh}
dξ

)2

= II.

We continue by applying the substitution ξ 7→ 2jshξ

II .

(2τ)(jw−t)∑

jsh=0

25/2jsh
(∫

R2

min{1, |2jsh−jwξ1|αw}

max{1, |2jsh−jwξ1|β
′

w}max{1, |2jsh−jwξ2|β
′

w}

·
1

max{1, |ξ1|β
′

sh}max{1, |ξ2|β
′

sh}
dξ

)2

.

.

∞∑

jsh=0

25/2jsh
(∫

R2

min{1, |2jsh−jwξ1|αw}

max{1, |ξ1|β
′

sh}max{1, |ξ2|β
′

sh}
dξ

)2

.

∞∑

jsh=0

25/2jsh+2αw(jsh−jw)

(∫

R2

|ξ1|αw

max{1, |ξ1|β
′

sh}max{1, |ξ2|β
′

sh}
dξ

)2

.

Since β′
sh − αw > 1 we obtain that the integral above is finite and hence we conclude

I .

(2τ)(jw−t)∑

jsh=0

25/2jsh+2αw(jsh−jw). (26)

We rewrite the last sum above as

(2τ)(jw−t)∑

jsh=0

25/2jsh+2αw(jsh−jw) = 2−2αwǫjw

(2τ)(jw−t)∑

jsh=0

25/2jsh+2αw(jsh−(1−ǫ)jw). (27)

Since jw > 1/(2τ)jsh + t, we can now estimate

∞∑

jsh=0

25/2jsh+2αw(jsh−(1−ǫ)jw) . 2−2αw(1−ǫ)t
∞∑

jsh=0

25/2jsh+2αw(jsh−(1−ǫ)(1/(2τ)jsh).

Since αw((1 − ε)/τ − 2) > 5/2 by assumption, the latter sum is finite. This leads to the estimate

∞∑

jsh=0

25/2jsh+2αw(jsh−(1−ǫ)jw) . 2−2αw(1−ǫ)t. (28)

Now (28) in combination with (27) and (26) implies together with (25) that

∑

(jsh,k,m,ι)∈Λc
0

∑

(jw ,m′,1)∈Θc
τ,t

|〈(2−jwsωjw,m′,υ)
d, 2−jshsψjsh,k,m,ι〉Hs(Ω)|

2

.

∞∑

jw=0

2−2αwǫjw2−2αw(1−ǫ)t . 2−2αw(1−ǫ)t.
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