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Abstract

A methodology for using random sketching in the context of model order reduction for
high-dimensional parameter-dependent systems of equations was introduced in [Balabanov
and Nouy 2019, Part I]. Following this framework, we here construct a reduced model from a
small, efficiently computable random object called a sketch of a reduced model, using minimal
residual methods. We introduce a sketched version of the minimal residual based projection as
well as a novel nonlinear approximation method, where for each parameter value, the solution
is approximated by minimal residual projection onto a subspace spanned by several vectors
picked (online) from a dictionary of candidate basis vectors. It is shown that random sketching
technique can improve not only efficiency but also numerical stability. A rigorous analysis of
the conditions on the random sketch required to obtain a given accuracy is presented. These
conditions may be ensured a priori with high probability by considering for the sketching
matrix an oblivious embedding of sufficiently large size. Furthermore, a simple and reliable
procedure for a posteriori verification of the quality of the sketch is provided. This approach
can be used for certification of the approximation as well as for adaptive selection of the size
of the random sketching matrix.

Keywords— model order reduction, reduced basis, random sketching, subspace embed-
ding, minimal residual methods, sparse approximation, dictionary

1 Introduction

We consider large parameter-dependent systems of equations

A(µ)u(µ) = b(µ), µ ∈ P , (1)

where u(µ) is a solution vector, A(µ) is a parameter-dependent matrix, b(µ) is a parameter-
dependent right hand side and P is a parameter set. Parameter-dependent problems are considered

∗Centrale Nantes, LMJL, UMR CNRS 6629, France.
†Polytechnic University of Catalonia, LaCàn, Spain.
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for many purposes such as design, control, optimization, uncertainty quantification or inverse
problems.

Solving (1) for many parameter values can be computationally unfeasible. Moreover, for real-
time applications, a quantity of interest (u(µ) or a function of u(µ)) has to be estimated on the
fly in highly limited computational time for a certain value of µ. Model order reduction (MOR)
methods are developed for efficient approximation of the quantity of interest for each parameter
value. They typically consist of two stages. In the first so-called offline stage a reduced model
is constructed from the full order model. This stage usually involves expensive computations
such as evaluations of u(µ) for several parameter values, computing multiple high-dimensional
matrix-vector and inner products, etc., but this stage is performed only once. Then, for each given
parameter value, the precomputed reduced model is used for efficient approximation of the solution
or an output quantity with a computational cost independent of the dimension of the initial system
of equations (1). For a detailed presentation of the classical MOR methods such as Reduced Basis
(RB) method and Proper Orthogonal Decomposition (POD) the reader can refer to [5]. In the
present work the approximation of the solution shall be obtained with a minimal residual (minres)
projection on a reduced (possibly parameter-dependent) subspace. The minres projection can
be interpreted as a Petrov-Galerkin projection where the test space is chosen to minimize some
norm of the residual [1, 10]. Major benefits over the classical Galerkin projection include an
improved stability (quasi-optimality) for non-coercive problems and more effective residual-based
error bounds of an approximation (see e.g. [10]). In addition, minres methods are better suited to
random sketching as will be seen in the present article.

In recent years randomized linear algebra (RLA) became a popular approach in the fields such as
data analysis, machine learning, compressed sensing, etc. [35, 42, 43]. This probabilistic approach
for numerical linear algebra can yield a drastic computational cost reduction in terms of classical
metrics of efficiency such as complexity (number of flops) and memory consumption. Moreover, it
can be highly beneficial in extreme computational environments that are typical in contemporary
scientific computing. For instance, RLA can be essential when data has to be analyzed only in one
pass (e.g., when it is streamed from a server) or when it is distributed on multiple workstations
with expensive communication costs.

Despite their indisputable success in fields closely related to MOR, the aforementioned tech-
niques only recently started to be extensively used in MOR community. One of the earliest works
considering RLA in the context of MOR is [44], where the authors proposed to use RLA for in-
terpolation of (implicit) inverse of a parameter-dependent matrix. In [9] the RLA was used for
approximating the range of a transfer operator and for computing a probabilistic bound for the
approximation error. In [11, 26, 39] the authors developed probabilistic error estimators based on
random projections and the adjoint method. These approaches can also be formulated in RLA
framework. A randomized singular value decomposition (see [24, 43]) was used for computing the
POD vectors in [25]. Efficient algorithms for Dynamic Mode Decomposition based on RLA and
compressed sensing were proposed in [7, 8, 21, 22, 31], though with a lack of theoretical analysis.

As already shown in [3], random sketching can lead to drastic reduction of the computational
costs of classical MOR methods. A random sketch of a reduced model is defined as a set of small
random projections of the reduced basis vectors and the associated residuals. Its representation (i.e,
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affine decomposition1) can be efficiently precomputed in basically any computational architecture.
The random projections should be chosen according to the metric of efficiency, e.g., number of
flops, memory consumption, communication cost between distributed machines, scalability, etc. A
rigorous analysis of the cost of obtaining a random sketch in different computational environments
can be found in [3, Section 4.4]. When a sketch has been computed, the reduced model can
be approximated without operating on large vectors but only on their small sketches typically
requiring negligible computational costs. The approximation can be guaranteed to almost preserve
the quality of the original reduced model with user-specified probability. The computational cost
depends only logarithmically on the probability of failure, which can therefore be chosen very
small, say 10−10. In [3] it was shown how random sketching can be employed for an efficient
approximation of the Galerkin projection, the computation of the norm of the residual for error
estimation, and the computation of a primal-dual correction. Furthermore, new efficient sketched
versions of the weak greedy algorithm and Proper Orthogonal Decomposition were introduced for
generation of reduced bases.

The present work is a continuation of [3]. Here we adapt the random sketching technique to
minimal residual methods, propose a novel dictionary-based approximation method and addition-
ally discuss the questions of a posteriori certification of the sketch and efficient extraction of the
output quantity from a solution of the reduced model.

1.1 Contributions and outline

First is proposed a method to approximate minres projection from a random sketch whose precom-
putation presents a much lower complexity, memory consumption and communication cost (see [3,
Section 4.4] for details) than precomputation of affine decomposition of the reduced normal system
of equations in the classical offline stage. The sketched minres projection is obtained online by
solving a small least-squares problem, that can be more online-efficient and stable than solving the
normal system of equations. Precise conditions on the sketch to yield (approximate) preservation
of quasi-optimality constants of the standard minres projection are provided. The conditions do
not depend on operator’s properties, which implies robustness for ill-conditioned and non-coercive
problems in contrast to the sketched Galerkin methods [3].

In Section 4 we introduce a novel nonlinear method, where the solution to (1) is approximated
by minres projection onto a subspace with basis picked online from a dictionary of candidate basis
vectors. In Section 4.1 is shown why the dictionary-based approach is a more natural choice than
the hp-refinement method [19, 20] or other partitioning methods, for problems where the solution
is a superposition of several components (e.g., for PDEs with multiple transport phenomena). The
dictionary-based approximation can be efficiently obtained online by solving a small sparse least-
squares problem assembled from a random sketch of dictionary vectors, which entails practical
feasibility of the method.

The potential of approximation with dictionaries for problems with a slow decay of the Kol-
mogorov r-widths of the solution manifold was revealed in [18, 30]. Although they improved clas-

1A parameter-dependent quantity v(µ) with values in a vector space V over K is said to admit an affine
representation if v(µ) =

∑
viλi(µ) with λi(µ) ∈ K and vi ∈ V .
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sical approaches, the algorithms proposed in [18, 30] still involve in general heavy computations in
both offline and online stages, and can suffer from round-off errors. More specifically, the offline
complexity and memory consumption associated with post-processing of the snapshots in [18, 30]
are at least O(nK2) and O(nK), respectively, where K is the cardinality of the dictionary and n is
the dimension of the original problem (1). With random sketching these costs may be reduced (by
at least) a factor of O(K/ logK). Furthermore, the online complexity and memory consumption
of the approach in [30] are at least O(Kr3) and O(K2), respectively, where r is the dimension of
the reduced approximation space. In its turn, our approach consumes (at least) O(r/ logK) and
O(K/(r logK)) times less number of flops and amount of storage, respectively.

We also provide a probabilistic approach for a posteriori certification of the quality of (random)
embedding and the associated sketch. The certification can be performed with a computational
cost (much) less than the cost of obtaining the (sketched) reduced model’s solution. The proposed
procedure can be particularly useful for adaptive selection of the size of a random sketching matrix
since the a priori bounds can be pessimistic in practice [3].

Finally, in Appendix A we propose an approach, based on random sketching, for efficient ex-
traction of linear/quadratic quantity of interest or primal-dual correction from the reduced model’s
solution. It consists in first approximating the solution with a projection on a new (very small or
sparse) reduced basis, that yields an efficiently computable approximation of the output quantity.
Then this approximation is improved by a correction computable from sketches of the reduced
bases with a negligible computational cost. This approach can be particularly important when
considering a large approximation space or dictionary, with distributed/streamed basis vectors.

The outline of the article is as follows. In Section 2 we introduce the problem setting and recall
the main ingredients of the framework developed in [3]. The minimal residual method considering
a projection on a single low-dimensional subspace is discussed in Section 3. We present a standard
minres projection in a discrete form followed by its efficient approximation with random sketching.
Section 4 presents a novel dictionary-based minimal residual method using random sketching. A
posteriori verification of the quality of a sketch and few scenarios where such a procedure can
be used are provided in Section 5. The methodology is validated numerically on two nontrivial
benchmark problems in Section 6. A discussion on the efficient and stable extraction of the quantity
of interest from the reduced model’s solution is given in Appendix A.

2 Preliminaries

Let K = R or C and let U := Kn and U ′ := Kn represent the solution space and its dual,
respectively. The solution u(µ) is an element from U , A(µ) is a linear operator from U to U ′, the
right hand side b(µ) and the extractor of the quantity of interest l(µ) are elements of U ′.

Spaces U and U ′ are equipped with inner products 〈·, ·〉U := 〈RU ·, ·〉 and 〈·, ·〉U ′ := 〈·,R−1
U ·〉,

where 〈·, ·〉 is the canonical `2-inner product on Kn and RU : U → U ′ is some symmetric (for
K = R), or Hermitian (for K = C), positive definite operator. We denote by ‖ · ‖ the canonical
`2-norm on Kn. Finally, for a matrix M we denote by MH its (Hermitian) transpose.
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2.1 Random sketching

A framework for using random sketching (see [24, 43]) in the context of MOR was introduced
in [3]. The sketching technique is seen as a modification of the inner product in a given subspace
(or a collection of subspaces). The modified inner product is an estimation of the original one and
is much easier and more efficient to operate with. Next, we briefly recall the basic preliminaries
from [3].

Let V be a subspace of U . The dual of V is identified with a subspace V ′ := {RUx : x ∈ V }
of U ′. For a matrix Θ ∈ Kk×n with k ≤ n we define the following semi-inner products on U :

〈·, ·〉ΘU := 〈Θ·,Θ·〉, and 〈·, ·〉ΘU ′ := 〈ΘR−1
U ·,ΘR−1

U ·〉, (2)

and we let ‖ · ‖ΘU and ‖ · ‖ΘU ′ denote the associated semi-norms.

Definition 2.1. A matrix Θ is called a U → `2 ε-subspace embedding (or simply an ε-embedding)
for V , if it satisfies

∀x,y ∈ V,
∣∣〈x,y〉U − 〈x,y〉ΘU ∣∣ ≤ ε‖x‖U‖y‖U . (3)

Here ε-embeddings shall be constructed as realizations of random matrices that are built in an
oblivious way without any a priori knowledge of V .

Definition 2.2. A random matrix Θ is called a (ε, δ, d) oblivious U → `2 subspace embedding if it
is an ε-embedding for an arbitrary d-dimensional subspace V ⊂ U with probability at least 1− δ.

Oblivious `2 → `2 subspace embeddings (defined by Definition 2.1 with 〈·, ·〉U := 〈·, ·〉) in-
clude the rescaled Gaussian distribution, the rescaled Rademacher distribution, the Subsam-
pled Randomized Hadamard Transform (SRHT), the Subsampled Randomized Fourier Transform
(SRFT), CountSketch matrix, SRFT combined with sequences of random Givens rotations, and
others [3, 24, 36, 43]. In this work we shall rely on the rescaled Gaussian distribution and SRHT.

An oblivious U → `2 subspace embedding for a general inner product 〈·, ·〉U can be constructed
as

Θ = ΩQ, (4)

where Ω is a `2 → `2 subspace embedding and Q ∈ Ks×n is an easily computable (possibly
rectangular) matrix such that QHQ = RU (see [3, Remark 2.7]).

It follows that an U → `2 ε-subspace embedding for V can be obtained with high probability as
a realization of an oblivious subspace embedding of sufficiently large size. The number of rows for
Θ may be selected with the theoretical bounds from [3]. These bounds, however, can be pessimistic
or even impractical (e.g., for adaptive algorithms or POD). In practice, one can consider Θ of much
smaller sizes and still obtain accurate subspace embeddings. When the conditions on the size of the
sketch based on a priori analysis are too pessimistic, one can provide a posteriori guarantee. An
easy and robust procedure for a posteriori verification of the quality of Θ is provided in Section 5.
The methodology can also be used for deriving a criterion for adaptive selection of the size of the
random sketching matrix to satisfy the ε-embedding property with high probability.

5



2.2 A sketch of a reduced model

Here the output of a reduced order model is efficiently estimated from its random sketch. The
Θ-sketch of a reduced model associated with a subspace Ur is defined as{{

Θx,ΘR−1
U r(x;µ)

}
: x ∈ Ur

}
, (5)

where r(x;µ) := b(µ) −A(µ)x. Let Ur ∈ Kn×r be a matrix whose columns form a basis of Ur.
Then each element of (5) can be characterized from the coordinates of x associated with Ur, i.e.,
a vector ar ∈ Kr such that x = Urar, and the following quantities

UΘ
r := ΘUr, VΘ

r (µ) := ΘR−1
U A(µ)Ur and bΘ(µ) := ΘR−1

U b(µ). (6)

Clearly VΘ
r (µ) and bΘ(µ) have affine expansions containing at most as many terms as the ones of

A(µ) and b(µ), respectively. The matrix UΘ
r and the affine expansions of VΘ

r (µ) and bΘ(µ) are
referred to as the Θ-sketch of Ur (a representation of the Θ-sketch of a reduced model associated
with Ur). With a good choice of an oblivious embedding, a Θ-sketch of Ur can be efficiently
precomputed in any computational environment (see [3]). Thereafter, an approximation of a
reduced order model can be obtained with a negligible computational cost.

Note that in [3] the affine expansion of lr(µ)H := UH
r l(µ), where l(µ) ∈ U ′ is an extractor

of the linear quantity of interest l(u(µ);µ) = 〈l(µ),u(µ)〉, is also considered as a part of the Θ-
sketch of Ur and is assumed to be efficiently computable. Let us address a scenario where the
computation of the affine expansion of lr(µ) or its online evaluation is expensive. This may happen
when lr(µ) has many terms in the affine expansion or when one considers a large approximation
space (or dictionary) with possibly distributed basis vectors. In such a case, the output quantity
can be approximated with an approach detailed in Appendix A. This method proceeds with two
steps. First, the solution ur(µ) is approximated by a projection wp(µ) on a new basis Wp,
which is cheap to operate with (e.g, it has less columns than Ur or the columns are sparse).
The affine decomposition of an approximation l(wp(µ);µ) of l(ur(µ);µ) can now be efficiently
precomputed. Then in the second step, the accuracy of l(wp(µ);µ) is improved with a random
sketching correction:

l(ur(µ);µ) ≈ l(wp(µ);µ) + 〈R−1
U l(µ),ur(µ)−wp(µ)〉ΘU ,

computable from the sketches ΘUr, ΘWp and ΘR−1
U l(µ) with a negligible computational cost.

Note that when interpreting random sketching as a Monte Carlo method, the proposed approach
can be linked to a control variate variance reduction method where wp(µ) plays the role of the
control variate for the estimation of 〈l(µ),ur(µ)〉. It is also important to note that the presented
approach can be employed not only to extraction of a linear quantity of interest but also extraction
of a quadratic quantity of interest or computation of the primal-dual correction.

3 Minimal residual projection

In this section we first present the standard minimal residual projection in a form that allows an
easy introduction of random sketching. Then we introduce the sketched version of the minimal
residual projection and provide conditions to guarantee its quality.
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3.1 Standard minimal residual projection

Let Ur ⊂ U be a subspace of U (typically obtained with a greedy algorithm or approximate POD).
The minres approximation ur(µ) ∈ Ur of u(µ) can be defined by

ur(µ) = arg min
w∈Ur

‖r(w;µ)‖U ′ . (7)

For linear problems it is equivalently characterized by the following (Petrov-)Galerkin orthogonality
condition:

〈r(ur(µ);µ),w〉 = 0, ∀w ∈ Vr(µ), (8)

where Vr(µ) := {R−1
U A(µ)x : x ∈ Ur}.

If the operator A(µ) is invertible then (7) is well-posed. In order to characterize the quality of
the projection ur(µ) we define the following parameter-dependent constants

ζr(µ) := min
x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖U ′
‖x‖U

, (9a)

ιr(µ) := max
x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖U ′
‖x‖U

. (9b)

Let PW : U → W denote the orthogonal projection from U on a subspace W ⊂ U , defined for
x ∈ U by

PWx = arg min
w∈W

‖x−w‖U .

Proposition 3.1. If ur(µ) satisfies (7) and ζr(µ) > 0, then

‖u(µ)− ur(µ)‖U ≤
ιr(µ)

ζr(µ)
‖u(µ)−PUru(µ)‖U . (10)

Proof. See Appendix B.

The constants ζr(µ) and ιr(µ) can be bounded by the minimal and maximal singular values of
A(µ):

α(µ) := min
x∈U\{0}

‖A(µ)x‖U ′
‖x‖U

≤ ζr(µ), (11a)

β(µ) := max
x∈U\{0}

‖A(µ)x‖U ′
‖x‖U

≥ ιr(µ). (11b)

Bounds of α(µ) and β(µ) can be obtained theoretically [23] or numerically with the successive
constraint method [27].

For each µ, the vector ar(µ) ∈ Kr such that ur(µ) = Urar(µ) satisfies (8) can be obtained by
solving the following reduced (normal) system of equations:

Ar(µ)ar(µ) = br(µ), (12)
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where Ar(µ) = UH
r A(µ)HR−1

U A(µ)Ur ∈ Kr×r and br(µ) = UH
r A(µ)HR−1

U b(µ) ∈ Kr. The numeri-
cal stability of (12) can be ensured through orthogonalization of Ur similarly as for the classical
Galerkin projection. Such orthogonalization yields the following bound for the condition number
of Ar(µ):

κ(Ar(µ)) := ‖Ar(µ)‖‖Ar(µ)−1‖ ≤
(
ιr(µ)

ζr(µ)

)2

≤
(
β(µ)

α(µ)

)2

. (13)

This bound can be insufficient for problems with matrix A(µ) having a high or even moderate
condition number.

The random sketching technique can be used to improve the efficiency and numerical stability
of the minimal residual projection, as shown below.

3.2 Sketched minimal residual projection

Let Θ ∈ Kk×n be a certain U → `2 subspace embedding. The sketched minres projection can be
defined by (7) with the dual norm ‖ · ‖U ′ replaced by its estimation ‖ · ‖ΘU ′ , which results in an
approximation

ur(µ) = arg min
w∈Ur

‖r(w;µ)‖ΘU ′ . (14)

The quasi-optimality of such a projection can be controlled in exactly the same manner as the
quasi-optimality of the original minres projection. By defining the constants

ζΘ
r (µ) := min

x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖ΘU ′
‖x‖U

, (15a)

ιΘr (µ) := max
x∈(span{u(µ)}+Ur)\{0}

‖A(µ)x‖ΘU ′
‖x‖U

, (15b)

we obtain the following result.

Proposition 3.2. If ur(µ) satisfies (14) and ζΘ
r (µ) > 0, then

‖u(µ)− ur(µ)‖U ≤
ιΘr (µ)

ζΘ
r (µ)

‖u(µ)−PUru(µ)‖U . (16)

Proof. See Appendix B.

It follows that if ζΘ
r (µ) and ιΘr (µ) are almost equal to ζr(µ) and ιr(µ), respectively, then the

quasi-optimality of the original minres projection (7) shall be almost preserved by its sketched
version (14). These properties of ιΘr (µ) and ζΘ

r (µ) can be guaranteed under some conditions on Θ
(see Proposition 3.3).

Proposition 3.3. Define the subspace

Rr(Ur;µ) := span{R−1
U r(x;µ) : x ∈ Ur}. (17)

If Θ is a U → `2 ε-subspace embedding for Rr(Ur;µ), then
√

1− ε ζr(µ) ≤ ζΘ
r (µ) ≤

√
1 + ε ζr(µ), and

√
1− ε ιr(µ) ≤ ιΘr (µ) ≤

√
1 + ε ιr(µ). (18)
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Proof. See Appendix B.

An embedding Θ satisfying an U → `2 ε-subspace embedding property for the subspace
Rr(Ur;µ) defined in (17), for all µ ∈ P simultaneously, with high probability, may be gener-
ated from an oblivious embedding of sufficiently large size. Note that dim(Rr(Ur;µ)) ≤ r+ 1. The
number of rows k of the oblivious embedding may be selected a priori using the bounds provided
in [3], along with a union bound for the probability of success or the fact that

⋃
µ∈P Rr(Ur;µ) is

contained in a low-dimensional space. Alternatively, a better value for k can be chosen with a
posteriori procedure explained in Section 5. Note that if (18) is satisfied then the quasi-optimality
constants of the minres projection are guaranteed to be preserved up to a small factor depending
only on the value of ε. Since Θ is here constructed in an oblivious way, the accuracy of random
sketching for minres projection can be controlled regardless of the properties of A(µ) (e.g., co-
ercivity, condition number, etc.). Recall that in [3] it was revealed that the preservation of the
quasi-optimality constants of the classical Galerkin projection by its sketched version is sensitive
to the operator’s properties. More specifically, random sketching can worsen quasi-optimality
constants dramatically for non-coercive or ill-conditioned problems. Consequently, the sketched
minres projection should be preferred to the sketched Galerkin projection for such problems.

Remark 3.4. Random sketching is not the only way to construct Θ which satisfies the condition
in Proposition 3.3 for all µ ∈ P. In particular, the columns for a sketching matrix could be chosen
as a basis of a low-dimensional space (called empirical test space in [40]) that approximates the
manifold R∗r(Ur) = {x ∈ Rr(Ur, µ) : ‖x‖U = 1, µ ∈ P} as in [12, 40]. Such a basis could be
generated with POD or greedy algorithms.

There are several advantages of random sketching over the aforementioned approach, that may
also hold for nonlinear problems. First, the (offline) construction of a low-dimensional approxima-
tion of R∗r(Ur) can be very expensive and become a bottleneck of an algorithm. Random sketching,
on the other hand, requires much lower computational cost. The second advantage is the oblivious
construction of Θ without the knowledge of Ur, which can be particularly important when Ur is
constructed adaptively (e.g., with a greedy algorithm). Finally, with random sketching it can be
sufficient to use Θ of small size regardless whether R∗r(Ur) admits a low-dimensional approximation
or not. More specifically, for finite P, the condition in Proposition 3.3 can be satisfied (for not too
small ε, say ε = 0.1) with high probability by using an oblivious embedding with k = O(r+log (#P))
rows close to the minimal value k = r [3]. Moreover, a similar online complexity can be attained
also for infinite P by using an additional oblivious embedding as is discussed further in the section.

The vector of coordinates ar(µ) ∈ Kr in the basis Ur of the sketched projection ur(µ) defined
by (14) may be obtained in a classical way, i.e., by considering a parameter-dependent reduced
(normal) system of equations similar to (12). As for the classical approach, this may lead to
numerical instabilities during either the online evaluation of the reduced system from the affine
expansions or its solution. A remedy is to directly consider

ar(µ) = arg min
x∈Kr
‖A(µ)Urx− b(µ)‖ΘU ′ = arg min

x∈Kr
‖VΘ

r (µ)x− bΘ(µ)‖. (19)
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Since the sketched matrix VΘ
r (µ) and vector bΘ(µ) are of rather small sizes, the minimization

problem (19) may be efficiently formed (from the precomputed affine expansions) and then solved
(e.g., using QR factorization or SVD) in the online stage.

Proposition 3.5. If Θ is an ε-embedding for Ur, and Ur is orthogonal with respect 〈·, ·〉ΘU then

the condition number of VΘ
r (µ) is bounded by

√
1+ε
1−ε

ιΘr
ζΘr

.

Proof. See Appendix B.

It follows from Proposition 3.5 (along with Proposition 3.3) that considering (19) can provide
better numerical stability than solving reduced systems of equations with standard methods. Fur-
thermore, since affine expansions of VΘ

r (µ) and bΘ(µ) have less terms than affine expansions of
Ar(µ) and br(µ) in (12), their online assembling should also be much more stable.

The online efficiency can be further improved with a procedure similar to the one depicted
in [3, Section 4.5]. This procedure can be important for problems requiring rather high size of Θ,
which can happen for algorithms where Ur is chosen adaptively and/or for infinite parameter sets.
Consider the following sketching matrix

Φ = ΓΘ,

where Γ ∈ Kk′×k, k′ < k, is a small (ε′, δ′, r+1) oblivious `2 → `2 subspace embedding. The matrix
Γ can be taken as a Gaussian matrix with k′ = O(ε′−2(r + log(1/δ′)) rows (in practice, with a
small constant) [3]. It follows that, if Θ is a ε-embedding for Rr(Ur;µ) from Proposition 3.3, then
for a single µ, Φ is a O(ε)-embedding for Rr(Ur;µ) with probability at least 1− δ′. Consequently,
for a single µ, the minimal residual projection can be accurately estimated by

ur(µ) = arg min
w∈Ur

‖r(w;µ)‖ΦU ′ , (20)

with probability at least 1 − δ′. The probability of success for several µ can then be guaranteed
with a union bound.

It follows that to improve the online efficiency, we can use a fixed Θ which is guaranteed to
be a ε-embedding for Rr(Ur;µ) for all µ ∈ P simultaneously, but consider different realizations
of a smaller matrix Γ for each particular test set Ptest composed of several parameter values. In
this way, in the offline stage a Θ-sketch of Ur can be precomputed and maintained for the online
computations. Thereafter, for the given test set Ptest (with the corresponding new realization
of Γ) the affine expansions of small matrices VΦ(µ) := ΓVΘ(µ) and bΦ(µ) := ΓbΘ(µ) can be
efficiently precomputed from the Θ-sketch in the “intermediate” online stage. And finally, for each
µ ∈ Ptest, the vector of coordinates of ur(µ) can be obtained by evaluating VΦ(µ) and bΦ(µ) from
just precomputed affine expansions, and solving

ar(µ) = arg min
x∈Kr
‖VΦ

r (µ)x− bΦ(µ)‖ (21)

with a standard method such as QR factorization, SVD or (less stable) normal equation.
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4 Dictionary-based minimal residual method

Classical RB method becomes ineffective for parameter-dependent problems for which the solution
manifoldM := {u(µ) : µ ∈ P} cannot be well approximated by a single low-dimensional subspace,
i.e., its (linear) Kolmogorov r-width dr(M) does not decay rapidly. One can extend the classical
RB method by considering a reduced subspace Ur(µ) depending on a parameter µ. One way to
obtain Ur(µ) is to use a hp-refinement method as in [19, 20], which consists in partitioning the
parameter set P into subsets {Pi}Mi=1 and in associating to each subset Pi a subspace U i

r ⊂ U of
dimension at most r, therefore resulting in Ur(µ) = U i

r if µ ∈ Pi, 1 ≤ i ≤ M . More formally,
the hp-refinement method aims to approximate M with a library Lr := {U i

r : 1 ≤ i ≤ M} of
low-dimensional subspaces. For efficiency, the number of subspaces in Lr has to be moderate (no
more than O(rν) for some small ν, say ν = 2 or 3, which should be dictated by the particular
computational architecture). A nonlinear Kolmogorov r-width ofM with a library of M subspaces
can be defined as in [41] by

dr(M;M) = inf
#Lr=M

sup
u∈M

min
Wr∈Lr

‖u−PWru‖U , (22)

where the infimum is taken over all libraries of M subspaces. The width (22) represents the
smallest error of approximation of M attainable with a library of M r-dimensional subspaces. In
particular, the approximation PUr(µ)u(µ) over a parameter-dependent subspace Ur(µ) associated
with a partitioning of P into M subdomains satisfies

dr(M;M) ≤ sup
µ∈P
‖u(µ)−PUr(µ)u(µ)‖U . (23)

Therefore, for the hp-refinement method to be effective, the solution manifold is required to be
well approximable in terms of the measure dr(M;M).

The hp-refinement method may present serious drawbacks: it can be highly sensitive to the
parametrization, it can require a large number of subdomains in P (especially for high-dimensional
parameter domains) and it can require computing too many solution samples. These drawbacks
can be partially reduced by various modifications of the hp-refinement method [2, 34], but not
circumvented.

We here propose a dictionary-based method, which can be seen as an alternative to a parti-
tioning of P for defining Ur(µ), and argue why this method is more natural and can be applied to
a larger class of problems.

4.1 Dictionary-based approximation

For each value µ of the parameter, the basis vectors for Ur(µ) are selected online from a certain
dictionary DK of K candidate vectors in U , K ≥ r. For efficiency of the algorithms in the particular
computational environment, the value for K has to be chosen as O(rν) with a small ν similarly as
the number of subdomains M for the hp-refinement method. Let Lr(DK) denote the library of all
subspaces spanned by r vectors from DK . A dictionary-based r-width is defined as

σr(M;K) = inf
#DK=K

sup
u∈M

min
Wr∈Lr(DK)

‖u−PWru‖U , (24)
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where the infimum is taken over all subsets DK of U with cardinality #DK = K. Clearly, the
approximation space Ur(µ) associated with a dictionary with K vectors satisfies

σr(M;K) ≤ sup
µ∈P
‖u(µ)−PUr(µ)u(µ)‖U .

A dictionary DK can be efficiently constructed offline from snapshots with an adaptive greedy
procedure (see Section 4.4).

In general, the performance of the method can be characterized through the approximability
of the solution manifold M in terms of the r-width, and quasi-optimality of the considered Ur(µ)
compared to the best approximation. The dictionary-based approximation can be beneficial over
the refinement methods in either of these aspects, which is explained below.

It can be easily shown that

σr(M;K) ≤ dr(M;M), for K ≥ rM,

holds for allM. Therefore, if a solution manifold can be well approximated with a partitioning of
the parameter domain into M subdomains each associated with a subspace of dimension r, then
it should also be well approximated with a dictionary of size K = rM , which implies a similar
computational cost. The converse statement, however, is not true. There exist manifolds M
satisfying2

dr(M;
(
K
r

)
) ≤ σr(M;K) < dr(M;

(
K
r

)
− 1).

Consequently, to obtain a decay of dr(M;M) with r similar to the decay of σr(M; rν), it may be
required to use M which depends exponentially on r.

The great potential of the dictionary-based approximation can be justified by important prop-
erties of the dictionary-based r-width given in Proposition 4.1 and Corollary 4.2.

Proposition 4.1. Let M be obtained by the superposition of parameter-dependent vectors:

M = {
l∑

i=1

u(i)(µ) : µ ∈ P}, (25)

where u(i)(µ) ∈ U, i = 1, . . . , l. Then, we have

σr(M;K) ≤
l∑

i=1

σri(M(i);Ki), (26)

with r =
∑l

i=1 ri, K =
∑l

i=1 Ki and

M(i) = {u(i)(µ) : µ ∈ P}. (27)

Proof. See Appendix B.

2For instance, take M = Lr({v1, . . . ,vK}) with linearly independent vectors vi ∈ U , 1 ≤ i ≤ K. Then we
clearly have σr(M;K) = dr(M;

(
K
r

)
) = 0 and dr(M;

(
K
r

)
− 1) > 0.

12



Corollary 4.2 (Approximability of a superposition of solutions). Consider several solution man-
ifolds M(i) defined by (27), 1 ≤ i ≤ l, and the resulting manifold M defined by (25). Let c, C, α,
β and γ be some positive constants. The following properties hold.

(i) If σr(M(i); crν) ≤ Cr−α, then σr(M; cl1−νrν) ≤ Cl1+αr−α,

(ii) If σr(M(i); crν) ≤ Ce−γr
β
, then σr(M; cl1−νrν) ≤ Cle−γl

−βrβ .

From Proposition 4.1 and Corollary 4.2 it follows that the approximability of the solution
manifold in terms of the dictionary-based r-width is preserved under the superposition operation.
In other words, if the dictionary-based r-widths of manifolds M(i) have a certain decay with r
(e.g., exponential or algebraic), by using dictionaries containing K = O(rν) vectors, then the type
of decay is preserved by their superposition (with the same rate for the algebraic decay). This
property can be crucial for problems where the solution is a superposition of several contributions
(possibly unknown), which is a quite typical situation. For instance, we have such a situation for
PDEs with multiple transport phenomena. A similar property as (26) also holds for the classical
linear Kolmogorov r-width dr(M). Namely, we have

dr(M) ≤
l∑

i=1

dri(M(i)), (28)

with r =
∑l

i=1 ri. This relation follows immediately from Proposition 4.1 and the fact that
dr(M) = σr(M; 1). For the nonlinear Kolmogorov r-width (23), however, the relation

dr(M,M) ≤
l∑

i=1

dri(M(i),M (i)), (29)

where r =
∑l

i=1 ri, holds under the condition that M ≥
∏l

i=1M
(i). In general, the preservation

of the type of decay with r of dr(M,M), by using libraries with M = O(rν) terms, may not be
guaranteed. It can require libraries with much larger numbers of r-dimensional subspaces than
O(rν), namely M = O(rlν) subspaces.

Another advantage of the dictionary-based method is its weak sensitivity to the parametrization
of the manifoldM, in contrast to the hp-refinement method, for which a bad choice of parametriza-
tion can result in approximations with too many local reduced subspaces. Indeed, the solution
map µ→ u(µ) is often expected to have certain properties (e.g., symmetries or anisotropies) that
yield the existence of a better parametrization of M than the one proposed by the user. Find-
ing a good parametrization of the solution manifold may require a deep intrusive analysis of the
problem, and is therefore usually an intractable task. On the other hand, our dictionary-based
methodology provides a reduced approximation subspace for each vector fromM regardless of the
chosen parametrization.
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4.2 Sparse minimal residual approximation

Here we assume to be given a dictionary DK of K vectors in U . Ideally, for each µ, u(µ) should
be approximated by orthogonal projection onto a subspace Wr(µ) that minimizes

‖u(µ)−PWr(µ)u(µ)‖U (30)

over the library Lr(DK). The selection of the optimal subspace requires operating with the exact
solution u(µ) which is prohibited. Therefore, the reduced approximation space Ur(µ) ∈ Lr(DK)
and the associated approximate solution ur(µ) ∈ Ur(µ) are obtained by residual norm minimiza-
tion. The minimization of the residual norm, i.e., solving

min
Wr∈Lr(DK)

min
w∈Wr

‖r(w;µ)‖U ′ , (31)

is a combinatorial problem that can be intractable in practice. From a practical perspective we will
assume that only a suboptimal solution can be obtained.3 Therefore we relax (31) to the following
problem: find ur(µ) such that

‖r(ur(µ);µ)‖U ′ ≤ D min
Wr∈Lr(DK)

min
w∈Wr

‖r(w;µ)‖U ′ + τ‖b(µ)‖U ′ , (32)

holds for a small constant D ≥ 1 and tolerance τ ≥ 0. The solution ur(µ) from (32) shall be referred
to as sparse minres approximation (relatively to the dictionary DK). The quasi-optimality of this
approximation in the norm ‖ · ‖U can be characterized with the following parameter-dependent
constants:

ζr,K(µ) := min
Wr∈Lr(DK)

min
x∈(span{u(µ)}+Wr)\{0}

‖A(µ)x‖U ′
‖x‖U

, (33a)

ιr,K(µ) := max
Wr∈Lr(DK)

max
x∈(span{u(µ)}+Wr)\{0}

‖A(µ)x‖U ′
‖x‖U

. (33b)

In general, one can bound ζr,K(µ) and ιr,K(µ) by the minimal and the maximal singular values
α(µ) and β(µ) of A(µ). Observe also that for K = r (i.e., when the library Lr(DK) = {Ur} has a
single subspace) we have ζr,K(µ) = ζr(µ) and ιr,K(µ) = ιr(µ).

Proposition 4.3. Let ur(µ) satisfy (32) and ζr,K(µ) > 0. Then

‖u(µ)− ur(µ)‖U ≤
ιr,K(µ)

ζr,K(µ)
(D min

Wr∈Lr(DK)
‖u(µ)−PWru(µ)‖U + τ‖u(µ)‖U). (34)

Proof. See Appendix B.

3The common approaches for solving sparse least-squares problems include greedy algorithms and LASSO. An
analysis of these methods can be found in [17].
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Let UK ∈ Kn×K be a matrix whose columns are the vectors in the dictionary DK and
ar,K(µ) ∈ KK , with ‖ar,K(µ)‖0 ≤ r, be the r-sparse vector of coordinates of ur(µ) in the dic-
tionary, i.e., ur(µ) = UKar,K(µ). The vector of coordinates associated with ur(µ) satisfying (32)
is an approximate solution to the following parameter-dependent sparse least-squares problem:

min
z∈KK

‖A(µ)UKz− b(µ)‖U ′ , subject to ‖z‖0 ≤ r. (35)

For each µ ∈ P an approximate solution to problem (35) can be obtained with a standard greedy al-
gorithm depicted in Algorithm 1. It selects the nonzero entries of ar,K(µ) one by one to minimize the
residual. The algorithm corresponds to either the orthogonal greedy (also called Orthogonal Match-
ing Pursuit in signal processing community [42]) or stepwise projection algorithm (see [17]) depend-
ing on whether the (optional) Step 8 (which is the orthogonalization of {vj(µ)}Kj=1 with respect to
Vi(µ)) is considered. It should be noted that performing Step 8 can be of great importance due to
possible high mutual coherence of the (mapped) dictionary {vj(µ)}Kj=1. Algorithm 1 is provided in
a conceptual form. A more sophisticated procedure can be derived to improve the online efficiency
(e.g., considering precomputed affine expansions of AK(µ) := UH

KA(µ)HR−1
U A(µ)UK ∈ KK×K and

bK(µ) = UH
KA(µ)HR−1

U b(µ) ∈ KK , updating the residual using a Gram-Schmidt procedure, etc).
Algorithm 1, even when efficiently implemented, can still require heavy computations in both the
offline and online stages, and be numerically unstable. One of the contributions of this paper is
a drastic improvement of its efficiency and stability by random sketching, thus making the use of
dictionary-based model reduction feasible in practice.

Algorithm 1 Orthogonal greedy algorithm

Given: µ, UK = [wj]
K
j=1, A(µ), b(µ), τ , r.

Output: index set Λr(µ), the coordinates ar(µ) of ur(µ) on the basis {wj}j∈Λr(µ).

1. Set i := 0, U0(µ) = {0}, u0(µ) = 0, Λ0(µ) = ∅, ∆̃0(µ) =∞.
2. Set [v1(µ), ...,vK(µ)] := A(µ)UK and normalize the vectors vj(µ), 1 ≤ j ≤ K.

while ∆̃i(µ) ≥ τ and i < r do
3. Set i := i+ 1.
4. Find the index pi ∈ {1, . . . , K} which maximizes |〈vpi(µ), r(ui−1(µ);µ)〉U ′ |.
5. Set Λi(µ) := Λi−1(µ) ∪ {pi}.
6. Solve (12) with a reduced matrix Ui(µ) = [wj]j∈Λi(µ) and obtain coordinates ai(µ).

7. Compute error bound ∆̃i(µ) of ui(µ) = Ui(µ)ai(µ).
8. (Optional) Set vj(µ) := vj(µ)−PVi(µ)vj(µ), where PVi(µ) is the orthogonal projector

on Vi(µ) := span({vp(µ)}p∈Λi(µ)), and normalize vj(µ), j ∈ {1, 2, . . . , K}\Λi(µ).
end while

4.3 Sketched sparse minimal residual approximation

Let Θ ∈ Kk×n be a certain U → `2 subspace embedding. A sparse minres approximation defined
by (32), associated with dictionary DK , can be estimated by solving the following problem: find
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ur(µ) ∈ Ur(µ) ∈ Lr(DK), such that

‖r(ur(µ);µ)‖ΘU ′ ≤ D min
Wr∈Lr(DK)

min
w∈Wr

‖r(w;µ)‖ΘU ′ + τ‖b(µ)‖ΘU ′ . (36)

In order to characterize the quasi-optimality of the sketched sparse minres approximation defined
by (36) we introduce the following parameter-dependent values

ζΘ
r,K(µ) := min

Wr∈Lr(DK)
min

x∈(span{u(µ)}+Wr)\{0}

‖A(µ)x‖ΘU ′
‖x‖U

, (37a)

ιΘr,K(µ) := max
Wr∈Lr(DK)

max
x∈(span{u(µ)}+Wr)\{0}

‖A(µ)x‖ΘU ′
‖x‖U

. (37b)

Observe that choosing K = r yields ζΘ
r,K(µ) = ζΘ

r (µ) and ιΘr,K(µ) = ιΘr (µ).

Proposition 4.4. If ur(µ) satisfies (36) and ζΘ
r,K(µ) > 0, then

‖u(µ)− ur(µ)‖U ≤
ιΘr,K(µ)

ζΘ
r,K(µ)

(D min
Wr∈Lr(DK)

‖u(µ)−PWru(µ)‖U + τ‖u(µ)‖U). (38)

Proof. See Appendix B.

It follows from Proposition 4.4 that the quasi-optimality of the sketched sparse minres approx-
imation can be controlled by bounding the constants ζΘ

r,K(µ) and ιΘr,K(µ).

Proposition 4.5. If Θ is a U → `2 ε-embedding for every subspace Rr(Wr;µ), defined by (17),
with Wr ∈ Lr(DK), then

√
1− εζr,K(µ) ≤ ζΘ

r,K(µ) ≤
√

1 + εζr,K(µ), (39a)

and

√
1− ειr,K(µ) ≤ ιΘr,K(µ) ≤

√
1 + ειr,K(µ). (39b)

Proof. See Appendix B.

By Definition 2.2 and the union bound for the probability of success, if Θ is a (ε,
(
K
r

)−1
δ, r+ 1)

oblivious U → `2 subspace embedding, then Θ satisfies the assumption of Proposition 4.5 with
probability of at least 1 − δ. The sufficient number of rows for Θ may be chosen a priori with
the bounds provided in [3] or adaptively with a procedure from Section 5. For the Gaussian
embeddings the a priori bounds are logarithmic in K and n, and proportional to r. For SRHT
they are also logarithmic in K and n, but proportional to r2 (although in practice SRHT performs
equally well as the Gaussian distribution). Moreover, if P is a finite set, an oblivious embedding
Θ which satisfies the hypothesis of Proposition 4.5 for all µ ∈ P , simultaneously, may be chosen
using the above considerations and a union bound for the probability of success. Alternatively, for
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an infinite set P , Θ can be chosen as an ε-embedding for a collection of low-dimensional subspaces
R∗r(Wr) (which can be obtained from the affine expansions of A(µ) and b(µ)) each containing⋃
µ∈P Rr(µ;Wr) and associated with a subspace Wr of Lr(DK). Such an embedding can be again

generated in an oblivious way by considering Definition 2.2 and a union bound for the probability
of success.

From an algebraic point of view, the optimization problem (36) can be formulated as the
following sparse least-squares problem:

min
z∈KK
‖z‖0≤r

‖A(µ)UKz− b(µ)‖ΘU ′ = min
z∈KK
‖z‖0≤r

‖VΘ
K(µ)z− bΘ(µ)‖, (40)

where VΘ
K(µ) and bΘ(µ) are the components (6) of the Θ-sketch of UK (a matrix whose columns

are the vectors in DK). An approximate solution ar,K(µ) of (40) is the r-sparse vector of the
coordinates of ur(µ). We observe that (40) is simply an approximation of a small vector bΘ(µ)
with a dictionary composed from column vectors of VΘ

K(µ). Therefore, unlike the original sparse
least-squares problem (35), the solution to its sketched version (40) can be efficiently approximated
with standard tools in the online stage. For instance, we can use Algorithm 1 replacing 〈·, ·〉U ′
with 〈·, ·〉ΘU ′ . Clearly, in Algorithm 1 the inner products 〈·, ·〉ΘU ′ should be efficiently evaluated from
VΘ
K(µ) and bΘ(µ). For this a Θ-sketch of UK can be precomputed in the offline stage and then

used for online evaluation of VΘ
K(µ) and bΘ(µ) for each value of the parameter. Another way to

obtain an approximate solution to the sketched sparse least-squares problem (40) is to use LASSO
or similar methods.

Let us now characterize the algebraic stability (i.e., sensitivity to round-off errors) of the (ap-
proximate) solution of (40). The solution of (40) is essentially obtained from the following least-
squares problem

min
x∈Kr
‖VΘ

r (µ)x− bΘ(µ)‖, (41)

where VΘ
r (µ) is a matrix whose column vectors are (adaptively) selected from the columns of

VΘ
K(µ). The algebraic stability of this problem can be measured by the condition number of

VΘ
r (µ). The minimal and the maximal singular values of VΘ

r (µ) can be bounded using the
parameter-dependent coefficients ιΘr,K(µ), ζΘ

r,K(µ) and the so-called restricted isometry property
(RIP) constants associated with the dictionary DK , which are defined by

Σmin
r,K := min

z∈KK
‖z‖0≤r

‖UKz‖U
‖z‖

, Σmax
r,K := max

z∈KK
‖z‖0≤r

‖UKz‖U
‖z‖

. (42)

Proposition 4.6. The minimal singular value of VΘ
r (µ) in (41) is bounded below by ζΘ

r,K(µ)Σmin
r,K ,

while the maximal singular value of VΘ
r (µ) is bounded above by ιΘr,K(µ)Σmax

r,K .

Proof. See Appendix B.

The RIP constants quantify the linear dependency of the dictionary vectors. For instance, it
is easy to see that for a dictionary composed of orthogonal unit vectors we have Σmin

r,K = Σmax
r,K = 1.

From Proposition 4.6, one can deduce the maximal level of degeneracy of DK for which the sparse
optimization problem (40) remains sufficiently stable.
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Remark 4.7. In general, our approach is more stable than the algorithms from [18, 30]. These al-
gorithms basically proceed with the solution of the reduced system of equations Ar(µ)ar(µ) = br(µ),
where Ar(µ) = Ur(µ)HA(µ)Ur(µ), with Ur(µ) being a matrix whose column vectors are selected
from the column vectors of UK. In this case, the bounds for the minimal and the maximal singular
values of Ar(µ) are proportional to the squares of the minimal and the maximal singular values of
Ur(µ), which implies a quadratic dependency on the RIP constants Σmin

r,K and Σmax
r,K . On the other

hand, with (sketched) minres methods the dependency of the singular values of the reduced matrix
VΘ(µ) on Σmin

r,K and Σmax
r,K is only linear (see Proposition 4.6). Consequently, our methodology

provides an improvement of not only efficiency but also numerical stability for problems with high
linear dependency of dictionary vectors.

Similarly to the sketched minres projection, a better online efficiency can be obtained by
introducing

Φ = ΓΘ,

where Γ ∈ Kk′×k, k′ < k, is a small (ε′,
(
K
r

)−1
δ′, r + 1) oblivious `2 → `2 subspace embedding, and

by computing ur(µ) such that

‖r(ur(µ);µ)‖ΦU ′ ≤ D min
Wr∈Lr(DK)

min
w∈Wr

‖r(w;µ)‖ΦU ′ + τ‖b(µ)‖ΦU ′ , (43)

It follows that, for a single µ, the accuracy (and the stability) of a solution ur(µ) of (43) is almost
the same as a solution of (36) with probability at least 1− δ′. In an algebraic setting, (43) can be
expressed as

min
z∈KK
‖z‖0≤r

‖VΦ
K(µ)z− bΦ(µ)‖, (44)

whose (approximate) solution ar(µ) is a r-sparse vector of coordinates of ur(µ). Such a solution
can be computed with Algorithm 1 by replacing 〈·, ·〉U ′ with 〈·, ·〉ΦU ′ . An efficient procedure for
evaluating the coordinates of a sketched dictionary-based approximation on a test set Ptest from
the Θ-sketch of UK is provided in Algorithm 2. Algorithm 2 uses a residual-based sketched error
estimator from [3] defined by

∆̃i(µ) = ∆Φ(ui(µ);µ) =
‖r(ui(µ);µ)‖ΦU ′

η(µ)
, (45)

where η(µ) is a (online) computable lower bound/estimator of the minimal singular value of matrix
A(µ) seen as operator from U to U ′. 4 Let us underline the importance of performing Step 8
(orthogonalization of the dictionary vectors with respect to the previously selected basis vectors),
for problems with “degenerate” dictionaries (with high mutual coherence). It should be noted that
at Steps 7 and 8 we use a Gram-Schmidt procedure for orthogonalization because of its simplicity

4In many applications it can be sufficient to take η(µ) as constant, e.g., equal to the (approximation of the)
smallest of singular values of A(µ) on a training set. Sharper bounds η(µ) can be obtained from theoretical
approaches or the successive constraint method [14, 15, 23, 27, 28, 37].
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and efficiency, whereas a modified Gram-Schmidt algorithm could provide better accuracy. It is
also important to note that Algorithm 2 satisfies a basic consistency property in the sense that it
exactly recovers the vectors from the dictionary with high probability.

If P is a finite set, then the theoretical bounds for Gaussian matrices and the empirical expe-
rience for SRHT state that choosing k = O(r logK + log (1/δ) + log (#P)) and k′ = O(r logK +
log (1/δ) + log (#Ptest)) in Algorithm 2 yield a quasi-optimal solution to (30) for all µ ∈ Ptest

with probability at least 1 − δ. Let us neglect the logarithmic summands. Assuming A(µ) and
b(µ) admit affine representations with mA and mb terms, it follows that the online complexity
and memory consumption of Algorithm 2 is only O((mAK + mb)r logK + r2K logK)#Ptest and
O((mAK + mb)r logK), respectively. The quasi-optimality for infinite P can be ensured with
high probability by increasing k to O(r∗ logK + log δ), where r∗ is the maximal dimension of
subspaces R∗r(Wr) containing

⋃
µ∈P Rr(µ;Wr) with Wr ∈ Lr(DK). This shall increase the memory

consumption by a factor of r∗/r but should have a negligible effect (especially for large Ptest) on
the complexity, which is mainly characterized by the size of Φ. Note that for parameter-separable
problems we have r∗ ≤ mAr +mb.

Algorithm 2 Efficient/stable sketched orthogonal greedy algorithm

Given: Ptest, Θ-sketch of UK = [wj]
K
j=1, τ , r.

Output: index set Λr(µ), the coordinates ar(µ) of ur(µ) on basis {wj}j∈Λr(µ),
and the error indicator ∆Φ(ur(µ);µ) for each µ ∈ Ptest.

1. Generate Γ and evaluate the affine factors of VΦ
K(µ) := ΓVΘ

K(µ) and bΦ(µ) := ΓbΘ(µ).
for µ ∈ Ptest do

2. Evaluate [vΦ
1 (µ), . . . ,vΦ

K(µ)] := VΦ
K(µ) and bΦ(µ) from the affine expansions

and normalize vΦ
j (µ), 1 ≤ j ≤ K.

3. Set i = 0, obtain η(µ) in (45), set Λ0(µ) = ∅, rΦ
0 (µ) := bΦ(µ)

and ∆Φ(µ) := ‖bΦ(µ)‖/η(µ).
while ∆Φ(ui(µ);µ) ≥ τ and i ≤ r do

4. Set i := i+ 1.
5. Find the index pi which maximizes |vΦ

pi
(µ)HrΦ

i−1(µ)|. Set Λi(µ) := Λi−1(µ) ∪ {pi}.
6. Set vΦ

pi
(µ) := vΦ

pi
(µ)−

∑i−1
j=1 vΦ

pj
(µ)[vΦ

pj
(µ)HvΦ

pi
(µ)] and normalize it.

7. Compute rΦ
i (µ) := rΦ

i−1(µ)− vΦ
pi

(µ)[vΦ
pi

(µ)HrΦ
i−1(µ)], ∆Φ(ui(µ);µ) = ‖rΦ

i (µ)‖/η(µ).
8. (Optional) Set vΦ

j (µ) = vΦ
j (µ)− vΦ

pi
(µ)[vΦ

pi
(µ)HvΦ

j (µ)] and normalize it,
j ∈ {1, 2, . . . , K}\Λi(µ).

end while
9. Solve (21) choosing r := i and the columns p1, p2, . . . , pi of VΦ

K(µ) as the columns
for VΦ

r (µ), and obtain solution ar(µ).
end for
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4.4 Dictionary generation

The simplest way is to choose the dictionary as a set of solution samples (snapshots) associated
with a training set Ptrain, i.e.,

DK = {u(µ) : µ ∈ Ptrain}. (46)

Let us recall that we are interested in computing a Θ-sketch of UK (matrix whose columns form
DK) rather than the full matrix. In certain computational environments, a Θ-sketch of UK can
be computed very efficiently. For instance, each snapshot may be computed and sketched on a
separate distributed machine. Thereafter small sketches can be efficiently transfered to the master
workstation for constructing the reduced order model.

A better dictionary may be computed with the greedy procedure presented in Algorithm 3,
recursively enriching the dictionary with a snapshot at the parameter value associated with the
maximal error at the previous iteration. The value for r (the dimension of the parameter-dependent
reduced subspace Ur(µ)) should be chosen according to the particular computational architecture.
Since the provisional online solver (identified with Algorithm 2) guarantees exact recovery of
snapshots belonging to Di, Algorithm 3 is consistent. It has to be noted that the first r iterations
of the proposed greedy algorithm for the dictionary generation coincide with the first r iterations
of the standard greedy algorithm for the reduced basis generation.

Algorithm 3 Greedy algorithm for dictionary generation

Given: Ptrain, A(µ), b(µ), l(µ), Θ, τ , r.
Output: Θ-sketch of UK .
1. Set i = 0, D0 = ∅, obtain η(µ) in (45), set ∆Φ(µ) = ‖b(µ)‖Φ

U ′/η(µ) and pick µ1 ∈ Ptrain.
while maxµ∈Ptrain ∆Φ(ur(µ);µ) > τ do

2. Set i = i+ 1.
3. Evaluate u(µi) and set Di := Di−1 ∪ {u(µi)}
4. Update the Θ-sketch of Ui (matrix composed from the vectors in Di).
5. Use Algorithm 2 (if i < r, choosing r := i) with Ptest replaced by Ptrain to solve (43)

for all µ ∈ Ptrain.
6. Find µi+1 := arg maxµ∈Ptrain ∆Φ(ur(µ);µ).

end while

By Proposition 4.5, a good quality of a Θ-sketch for the sketched sparse minres approximation
associated with dictionaryDK on Ptrain can be guaranteed if Θ is an ε-embedding for every subspace
Rr(Wr;µ), defined by (17), with Wr ∈ Lr(DK) and µ ∈ Ptrain. This condition can be enforced
a priori for all possible outcomes of Algorithm 3 by choosing Θ such that it is an ε-embedding
for every subspace Rr(Wr;µ) with Wr ∈ Lr({u(µ) : µ ∈ Ptrain}) and µ ∈ Ptrain. An embedding
Θ satisfying this property with probability at least 1 − δ can be obtained as a realization of a

(ε, (#Ptrain)−1
(

#Ptrain

r

)−1
δ, r + 1) oblivious U → `2 subspace embedding. The computational cost

of Algorithm 3 is dominated by the calculation of the snapshots u(µi) and their Θ-sketches. As
was argued in [3], the computation of the snapshots can have only a minor impact on the overall
cost of an algorithm. For the classical sequential or limited-memory computational architectures,
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each snapshot should require a log-linear complexity and memory consumption, while for parallel
and distributed computing the routines for computing the snapshots should be well-parallelizable
and require low communication between cores. Moreover, for the computation of the snapshots one
may use a highly-optimized commercial solver or a powerful server. The Θ-sketch of the snapshots
may be computed extremely efficiently in basically any computational architecture [3, Section
4.4]. With SRHT, sketching of K snapshots requires only O(n(KmA + mb) log k) flops, and the
maintenance of the sketch requires O((KmA+mb)k) bytes of memory. By using similar arguments
as in Section 4.3 it can be shown that k = O(r logK) (or k = O(r∗ logK)) is enough to yield
with high probability an accurate approximation of the dictionary-based reduced model. With this
value of k, the required number of flops for the computation and the amount of memory for the
storage of a Θ-sketch becomes O(n(KmA + mb)(log r + log logK)), and O((KmA + mb)r logK),
respectively.

5 A posteriori certification of the sketch and solution

Here we provide a simple, yet efficient procedure for a posteriori verification of the quality of a
sketching matrix and describe a few scenarios where such a procedure can be employed. The
proposed a posteriori certification of the sketched reduced model and its solution is probabilistic.
It does not require operating with high-dimensional vectors but only with their small sketches.
The quality of a certificate shall be characterized by two user specified parameters: 0 < δ∗ < 1 for
the probability of success and 0 < ε∗ < 1 for the tightness of the computed error bounds.

5.1 Verification of an ε-embedding for a given subspace

Let Θ be a U → `2 subspace embedding and V ⊂ U be a subspace of U (chosen depending on the
reduced model, e.g., V := Rr(Ur;µ) in (17)). Recall that the quality of Θ can be measured by the
accuracy of 〈·, ·〉ΘU as an approximation of 〈·, ·〉U for vectors in V .

We propose to verify the accuracy of 〈·, ·〉ΘU simply by comparing it to an inner product 〈·, ·〉Θ∗U
associated with a new random embedding Θ∗ ∈ Kk∗×n, where Θ∗ is chosen such that for any given
vectors x,y ∈ V the concentration inequality

|〈x,y〉U − 〈x,y〉Θ
∗

U | ≤ ε∗‖x‖U‖y‖U (47)

holds with probability at least 1 − δ∗. One way to ensure (47) is to choose Θ∗ as an (ε∗, δ∗, 1)
oblivious U → `2 subspace embedding. A condition on the number of rows for the oblivious
embedding can be either obtained theoretically (see [3]) or chosen from the practical experience,
which should be the case for embeddings constructed with SRHT matrices (recall that they have
worse theoretical guarantees than the Gaussian matrices but perform equally well in practice).
Alternatively, Θ∗ can be built by random sampling of the rows of a larger ε-embedding for V . This
approach can be far more efficient than generating Θ∗ as an oblivious embedding (see Remark 5.1)
or even essential for some computational architectures. Another requirement for Θ∗ is that it is
generated independently from Θ and V . Therefore, in the algorithms we suggest to consider Θ∗

only for the certification of the solution and nothing else.
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Remark 5.1. In some scenarios it can be beneficial to construct Θ and Θ∗ by sampling their rows
from a fixed realization of a larger oblivious embedding Θ̂, which is guaranteed a priori to be an
ε-embedding for V with high probability. More precisely, Θ and Θ∗ can be defined as

Θ := ΓΘ̂, Θ∗ := Γ∗Θ̂, (48)

where Γ and Γ∗ are random independent sampling (or Gaussian, or SRHT) matrices. In this
way, a Θ̂-sketch of a reduced order model can be first precomputed and then used for efficient
evaluation/update of the sketches associated with Θ and Θ∗. This approach can be essential for
the adaptive selection of the optimal size for Θ in a limited-memory environment where only one
pass (or a few passes) over the reduced basis vectors is allowed and therefore there is no chance to
recompute a sketch associated with an oblivious embedding at each iteration. It may also reduce the
complexity of an algorithm (especially when Θ is constructed with SRHT matrices) by not requiring
to recompute high-dimensional matrix-vector products multiple times.

Let V denote a matrix whose columns form a basis of V . Define the sketches VΘ := ΘV and
VΘ∗ := Θ∗V. Note that VΘ and VΘ∗ contain as columns low-dimensional vectors and therefore
are cheap to maintain and to operate with (unlike the matrix V).

We start with the certification of the inner product between two fixed vectors from V (see Propo-
sition 5.2).

Proposition 5.2. For any two vectors x,y ∈ V possibly depending on Θ but independent of Θ∗,
we have that

|〈x,y〉Θ∗U − 〈x,y〉ΘU | −
ε∗

1− ε∗
‖x‖Θ∗U ‖y‖Θ

∗

U ≤ |〈x,y〉U − 〈x,y〉ΘU |

≤ |〈x,y〉Θ∗U − 〈x,y〉ΘU |+
ε∗

1− ε∗
‖x‖Θ∗U ‖y‖Θ

∗

U

(49)

holds with probability at least 1− 4δ∗.

Proof. See Appendix B.

The error bounds in Proposition 5.2 can be computed from the sketches of x and y, which may
be efficiently evaluated from VΘ and VΘ∗ and the coordinates of x and y associated with V, with
no operations on high-dimensional vectors. A certification for several pairs of vectors should be
obtained using a union bound for the probability of success. By replacing x by R−1

U x′ and y by
R−1
U y′ in Proposition 5.2 and using definition (2) one can derive a certification of the dual inner

product 〈·, ·〉ΘU ′ for vectors x′ and y′ in V ′ := {RUx : x ∈ V }.
In general, the quality of an approximation with a Θ-sketch of a reduced model should be

characterized by the accuracy of 〈·, ·〉ΘU for the whole subspace V . Let ω be the minimal value for ε
such that Θ satisfies an ε-embedding property for V . Now, we address the problem of computing
an a posteriori upper bound ω̄ for ω from the sketches VΘ and VΘ∗ and we provide conditions to
ensure quasi-optimality of ω̄.
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Proposition 5.3. For a fixed realization of Θ∗, let us define

ω̄ := max

{
1− (1− ε∗) min

x∈V/{0}

(
‖x‖ΘU
‖x‖Θ∗U

)2

, (1 + ε∗) max
x∈V/{0}

(
‖x‖ΘU
‖x‖Θ∗U

)2

− 1

}
. (50)

If ω̄ < 1, then Θ is guaranteed to be a U → `2 ω̄-subspace embedding for V with probability at least
1− δ∗.

Proof. See Appendix B.

It follows that if ω̄ < 1 then it is an upper bound for ω with high probability. Assume that VΘ

and VΘ∗ have full ranks. Let T∗ be the matrix such that VΘ∗T∗ is orthogonal (with respect to
`2-inner product). Such a matrix can be computed with a QR factorization. Then ω̄ defined in (50)
can be obtained from the following relation

ω̄ = max
{

1− (1− ε∗)σ2
min, (1 + ε∗)σ2

max − 1
}
, (51)

where σmin and σmax are the minimal and the maximal singular values of the small matrix VΘT∗.
We have that ω̄ ≥ ε∗. The value for ε∗ may be selected an order of magnitude less than ω with

no considerable impact on the computational cost, therefore in practice the effect of ε∗ on ω̄ can
be considered to be negligible. Proposition 5.3 implies that ω̄ is an upper bound of ω with high
probability. A guarantee of effectivity of ω̄ (i.e., its closeness to ω), however, has not been yet
provided. To do so we shall need a stronger assumption on Θ∗ than (47).

Proposition 5.4. If the realization of Θ∗ is a U → `2 ω∗-subspace embedding for V , then ω̄
(defined by (50)) satisfies

ω̄ ≤ 1 + ε∗

1− ω∗
(1 + ω)− 1. (52)

Proof. See Appendix B.

If Θ∗ is a (ω∗, γ∗, dim(V )) oblivious U → `2 subspace embedding, then the condition on Θ∗

in Proposition 5.4 is satisfied with probability at least 1 − γ∗ (for some user-specified value γ∗).
Therefore, a matrix Θ∗ of moderate size should yield a very good upper bound ω̄ of ω. Moreover, if
Θ and Θ∗ are drawn from the same distribution, then Θ∗ can be expected to be an ω∗-embedding
for V with ω∗ = O(ω) with high probability. Combining this consideration with Proposition 5.4 we
deduce that a sharp upper bound should be obtained for some k∗ ≤ k. Therefore, in the algorithms
one may readily consider k∗ := k. If pertinent, a better value for k∗ can be selected adaptively, at
each iteration increasing k∗ by a constant factor until the desired tolerance or a stagnation of ω̄ is
reached.

5.2 Certification of a sketch of a reduced model and its solution

The results of Propositions 5.2 and 5.3 can be employed for certification of a sketch of a reduced
model and its solution. They can also be used for adaptive selection of the number of rows of a
random sketching matrix to yield an accurate approximation of the reduced model. Thereafter we
discuss several practical applications of the methodology described above.
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Approximate solution

Let ur(µ) ∈ U be an approximation of u(µ). The accuracy of ur(µ) can be measured with the
residual error ‖r(ur(µ);µ)‖U ′ , which can be efficiently estimated by

‖r(ur(µ);µ)‖U ′ ≈ ‖r(ur(µ);µ)‖ΘU ′ .

The certification of such estimation can be derived from Proposition 5.2 choosing x = y :=
R−1
U r(ur(µ);µ) and using definition (2) of ‖ · ‖ΘU ′ .

For applications, which involve computation of snapshots over the training set (e.g., approxi-
mate POD or greedy algorithm with the exact error indicator), one should be able to efficiently
precompute the sketches of u(µ). Then the error ‖u(µ)− ur(µ)‖U can be efficiently estimated by

‖u(µ)− ur(µ)‖U ≈ ‖u(µ)− ur(µ)‖ΘU .

Such an estimation can be certified with Proposition 5.2 choosing x = y := u(µ)− ur(µ).

Minimal residual projection

By Proposition 3.3, the quality of the Θ-sketch of a subspace Ur for approximating the minres
projection for a given parameter value can be characterized by the lowest value ω for ε such that
Θ satisfies the ε-embedding property for subspace V := Rr(Ur;µ), defined in (17). The upper
bound ω̄ of such ω can be efficiently computed using (50). The verification of a Θ-sketch for all
parameter values in P , simultaneously, can be performed by considering a subspace V in (50),
which contains

⋃
µ∈P Rr(Ur;µ).

Dictionary-based approximation

For each parameter value, the quality of Θ for dictionary-based approximation defined in (43)
can be characterized by the quality of the sketched minres projection associated with a subspace
Ur(µ), which can be verified by computing ω̄ in (50) associated with V := Rr(Ur(µ);µ).

Output quantity

In Appendix A we provide a way for estimating the output quantity sr(µ) = 〈l(µ),ur(µ)〉, with
l(µ) ∈ U ′. More specifically sr(µ) can be efficiently estimated by s?r(µ) = 〈l(µ),wp(µ)〉 +
〈R−1

U l(µ),ur(µ) − wp(µ)〉ΘU , where wp(µ) is a projection of ur(µ) on a new reduced basis. We
have

|sr(µ)− s?r(µ)| = |〈R−1
U l(µ),ur(µ)−wp(µ)〉U − 〈R−1

U l(µ),ur(µ)−wp(µ)〉ΘU |,

therefore the quality of s?r(µ) may be certified by Proposition 5.2 with x = R−1
U l(µ), y = ur(µ)−

wp(µ).
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Adaptive selection of the size for a random sketching matrix

When no a priori bound for the size of Θ sufficient to yield an accurate sketch of a reduced model is
available, or when the bounds are pessimistic, the sketching matrix should be selected adaptively.
At each iteration, if the certificate indicates a poor quality of a Θ-sketch for approximating the
solution (or the error) on Ptrain ⊆ P , one can improve the accuracy of the sketch by adding extra
rows to Θ. In the analysis, the embedding Θ∗ used for certification was assumed to be independent
of Θ, consequently a new realization of Θ∗ should be sampled after each decision to improve Θ
has been made. To save computational costs, the previous realizations of Θ∗ and the associated
Θ∗-sketches can be readily recycled as parts of the updates for Θ and the Θ-sketch.

We finish with a practical application of Propositions 5.3 and 5.4. Consider a situation where
one is given a class of random embeddings (e.g., oblivious subspace embeddings mentioned in Sec-
tion 2.1 or the embeddings constructed with random sampling of rows of an ε-embedding as in Re-
mark 5.1) and one is interested in generating an ε-embedding Θ (or rather computing the associated
sketch), with a user-specified accuracy ε ≤ τ , for V (e.g., a subspace containing ∪µ∈PRr(Ur;µ))
with nearly optimal number of rows. Moreover, we consider the cases when no bound for the size
of matrices to yield an ε-embedding is available or when the bound is pessimistic. It is only known
that matrices with more than k0 rows satisfy (47). This condition could be derived theoretically
(as for Gaussian matrices) or deduced from practical experience (for SRHT). The matrix Θ can
be readily generated adaptively using ω̄ defined by (50) as an error indicator (see Algorithm 4). It
directly follows by a union bound argument that Θ generated in Algorithm 4 is an ε-embedding
for V , with ε ≤ τ , with probability at least 1 − tδ∗, where t is the number of iterations taken by
the algorithm.

Algorithm 4 Adaptive selection of the number of rows for Θ

Given: k0, V, τ > ε∗.
Output: VΘ, VΘ∗

1. Set k = k0 and ω̄ =∞.
while ω̄ > τ do

2. Generate Θ and Θ∗ with k rows and evaluate VΘ := ΘV and VΘ∗ := Θ∗V.
3. Use (51) to compute ω̄.
4. Increase k by a constant factor.

end while

To improve the efficiency, at each iteration of Algorithm 4 we could select the number of rows
for Θ∗ adaptively instead of choosing it equal to k. In addition, the embeddings from previous
iterations can be considered as parts of Θ at further iterations.

6 Numerical experiments

This section is devoted to experimental validation of the methodology as well as realization of its
great practical potential. The numerical tests were carried out on two benchmark problems that are
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difficult to tackle with the standard projection-based MOR methods due to a high computational
cost and issues with numerical stability of the computation (or minimization) of the residual norm,
or bad approximability of the solution manifold with a low-dimensional space.

In all the experiments we used oblivious U → `2 embeddings of the form

Θ := ΩQ,

where Q was taken as the (sparse) transposed Cholesky factor of RU and Ω as a SRHT matrix.
The random embedding Γ used for the online efficiency was also taken as SRHT. Moreover, for
simplicity in all the experiments the coefficient η(µ) for the error estimation was chosen as 1.

The experiments were executed on an Intel R© CoreTM i7-7700HQ 2.8GHz CPU, with 16.0GB
RAM memory using Matlab R© R2017b.

6.1 Acoustic invisibility cloak

The first numerical example is inspired by the development of invisibility cloaking [13, 16]. It
consists of an acoustic wave scattering in 2D with a perfect scatterer covered in an invisibility cloak
composed of layers of homogeneous isotropic materials. The geometry of the problem is depicted
in Figure 1a. The cloak consists of 32 layers of equal thickness 1.5625 cm each constructed with 4
sublayers of equal thickness of alternating materials: mercury (a heavy liquid) followed by a light
liquid. The properties (density and bulk modulus) of the light liquids are chosen to minimize the
visibility of the scatterer for the frequency band [7.5, 8.5] kHz. The associated boundary value
problem with first order absorbing boundary conditions is the following

∇ · (ρ−1∇u) + ρ−1κ2u = 0, in Ω

(jκ− 1
2RΩ

)u+ ∂u
∂n

= (jκ− 1
2RΩ

)uin + ∂uin

∂n
, on Γ

∂u
∂n

= 0, on Γs,

(53)

where j =
√
−1, u = uin + usc is the total pressure, with uin = exp(−jκ(y − 4)) Pa · m being

the pressure of the incident plane wave and usc being the pressure of the scattered wave, ρ is the

material’s density, κ = 2πf
c

is the wave number, c =
√

b
ρ

is the speed of sound and b is the bulk

modulus. The background material is chosen as water having density ρ = ρ0 = 997 kg/m3 and
bulk modulus b = b0 = 2.23 GPa. For the frequency f = 8 kHz the associated wave number of
the background is κ = κ0 = 33.6 m−1. The i-th layer of the cloak (enumerated starting from the
outermost layer) is composed of 4 alternating layers of mercury with density ρ = ρm = 13500 kg/m3

and bulk modulus b = bm = 28 GPa and a light liquid with density ρ = ρi and bulk modulus b = bi
given in Table 1. The light liquids from Table 1 can in practice be obtained, for instance, with the
pentamode mechanical metamaterials [6, 29].

The last 10 layers contain liquids with small densities that can be subject to imperfections
during the manufacturing process. Moreover, the external conditions (such as temperature and
pressure) may also affect the material’s properties. We then consider a characterization of the
impact of small perturbations of the density and the bulk modulus of the light liquids in the last
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Table 1: The properties, density in kg/m3 and bulk modulus in GPa, of the light liquids in the
cloak.

i ρi bi i ρi bi i ρi bi i ρi bi
1 231 0.483 9 179 0.73 17 56.1 0.65 25 9 1.34
2 121 0.328 10 166 0.78 18 59.6 0.687 26 9 2.49
3 162 0.454 11 150 0.745 19 40.8 0.597 27 9 2.5
4 253 0.736 12 140 0.802 20 32.1 0.682 28 9 2.5
5 259 0.767 13 135 0.786 21 22.5 0.521 29 9 0.58
6 189 0.707 14 111 0.798 22 15.3 0.6 30 9.5 1.91
7 246 0.796 15 107 0.8 23 10 0.552 31 9.31 0.709
8 178 0.739 16 78 0.656 24 9 1.076 32 9 2.44

10 layers on the quality of the cloak in the frequency regime [7.8, 8.2] kHz. Assuming that the
density and the bulk modulus may vary by 2.5%, the corresponding parameter set is

P = ×
23≤i≤32

[0.975ρi, 1.025ρi] ×
23≤i≤32

[0.975bi, 1.025bi] × [7.8 kHz, 8.2 kHz].

Note that in this case P ⊂ R21.
The quantity of interest is chosen to be the following

s(µ) = l(u(µ);µ)=‖u(µ)− uin(µ)‖2
L2(Ω1)/b0 = ‖usc(µ)‖2

L2(Ω1)/b0,

which represents the (rescaled, time-averaged) acoustic energy of the scattered wave concealed in
the region Ω1 (see Figure 1a). For the considered parameter set s(µ) is ranging from 0.0225As to
0.095As, where As = ‖uin‖2

L2(Ω1)/b0 = 7.2J · Pa·m/b0 at frequency 8 kHz.
The problem is symmetric with respect to the x = 0 axis, therefore only half of the domain

has to be considered for discretization. For the discretization, we used piecewise quadratic ap-
proximation on a mesh of triangular (finite) elements. The mesh was chosen such that there were
at least 20 degrees of freedom per wavelength, which is a standard choice for Helmholtz problems
with a moderate wave number. It yielded approximately 400000 complex degrees of freedom for
the discretization. Figures 1b to 1d depict the solutions u(µ) for different parameter values with
quantities of interest s(µ) = 0.032As, 0.045As and 0.065As, respectively.

It is revealed that for this problem, considering the classical H1 inner product for the solution
space leads to dramatic instabilities of the projection-based MOR methods. To improve the sta-
bility, the inner product is chosen corresponding to the specific structure of the operator in (53).
The solution space U is here equipped with the following inner product

〈v,w〉U := 〈ρ−1
s κ2

sv, w〉L2 + 〈ρ−1
s ∇v,∇w〉L2 , v,w ∈ U, (54)

where v and w are the functions identified with v and w, respectively, and ρs and κs are the density
and the wave number associated with the unperturbed cloak (i.e., with properties from Table 1)
at frequency 8 kHz.

The operator for this benchmark is directly given in an affine form with mA = 23 terms.
Furthermore, for online efficiency we used empirical interpolation method [4, 33] to obtain an
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Figure 1: (a) Geometry of the invisibility cloak benchmark. (b) The real component of u in
Pa ·m for the parameter value µ ∈ P corresponding to Table 1 and frequency f = 8 kHz. (c)-(d)
The real component of u in Pa ·m for two random samples from P with f = 7.8 kHz.

approximate affine representation of uin(µ) (or rather a vector uin(µ) from U representing an
approximation of uin(µ)) and the right hand side vector with 50 affine terms (with error close
to machine precision). The approximation space Ur of dimension r = 150 was constructed with
a greedy algorithm (based on sketched minres projection) performed on a training set of 50000
uniform random samples in P . The test set Ptest ⊂ P was taken as 1000 uniform random samples
in P .

Minimal residual projection. Let us first address the validation of the sketched minres pro-
jection from Section 3.2. For this we computed sketched (and standard) minres projections
ur(µ) of u(µ) onto Ur for each µ ∈ Ptest with sketching matrix Θ of varying sizes. The er-
ror of approximation is here characterized by ∆P := maxµ∈Ptest ‖r(ur(µ);µ)‖U ′/‖b(µs)‖U ′ and
eP := maxµ∈Ptest ‖u(µ) − ur(µ)‖U/‖uin(µs)‖U , where uin(µs) is the vector representing the inci-
dent wave and b(µs) is the right hand side vector associated with the unperturbed cloak and the
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frequency f = 8 kHz (see Figures 2a and 2c). Furthermore, in Figure 2e we provide the charac-
terization of the maximal error in the quantity of interest esP := maxµ∈Ptest |s(µ)− sr(µ)|/As. For
each size of Θ, 20 realizations of the sketching matrix were considered to analyze the statistical
properties of eP , ∆P and esP .

For comparison, along with the minimal residual projections we also computed the sketched
(and classical) Galerkin projection introduced in [3]. Figures 2b, 2d and 2f depict the errors ∆P ,
eP , es

P of a sketched (and classical) Galerkin projection using Θ of different sizes. Again, for each
k we used 20 realizations of Θ to characterize the statistical properties of the error. We see that
the classical Galerkin projection is more accurate in the exact norm ‖ · ‖U and the quantity of
interest than the standard minres projection. On the other hand, it is revealed that the minres
projection is far better suited to random sketching.

From Figure 2 one can clearly report the (essential) preservation of the quality of the classical
minres projection for k ≥ 500. Note that for the minres projection a small deviation of eP and esP is
observed. These errors are higher or lower than the standard values with (almost) equal probability
(for k ≥ 500). In contrast to the minres projection, the quality of the Galerkin projection is not
preserved even for large k up to 10000. This can be explained by the fact that the approximation of
the Galerkin projection with random sketching is highly sensitive to the properties of the operator,
which here is non-coercive and has a high condition number (for some parameter values), while the
(essential) preservation of the accuracy of the standard minres projection by its sketched version
is guaranteed regardless of the operator’s properties. One can clearly see that the sketched minres
projection using Θ with just k = 500 rows yields better approximation (in terms of the maximal
observed error) of the solution than the sketched Galerkin projection with k = 5000, even though
the standard minres projection is less accurate than the Galerkin one.

As already discussed, random sketching improves not only efficiency but also has an advantage
of making the reduced model less sensitive to round-off errors thanks to possibility of direct online
solution of the (sketched) least-squares problem without appealing to the normal equation. Figure 3
depicts the maximal condition number κP over Ptest of the reduced matrix VΘ

r (µ) := ΘR−1
U A(µ)Ur

associated with the sketched minres projection using reduced basis matrix Ur with (approximately)
unit-orthogonal columns with respect to 〈·, ·〉U , for varying sizes of Θ. We also provide the maximal
condition number of the reduced (normal) system of equations associated with the classical minres
projection. It is observed that indeed random sketching yields an improvement of numerical
stability by a square root.

Certification of the sketch. Next the experimental validation of the procedure for a posteriori
certification of the Θ-sketch or the sketched solution (see Section 5) is addressed. For this, we
generated several Θ of different sizes k and for each of them computed the sketched minres pro-
jections ur(µ) ∈ Ur for all µ ∈ Ptest. Thereafter Propositions 5.2 and 5.3, with V (µ) := Rr(Ur;µ)
defined by (17), were considered for certification of the residual error estimates ‖r(ur(µ);µ)‖ΘU ′ or
the quasi-optimality of ur(µ) in the residual error. Oblivious embeddings of varying sizes were
tested for Θ∗. For simplicity it was assumed that all considered Θ∗ satisfy (47) with ε∗ = 0.05
and (small) probability of failure δ∗.

By Proposition 5.2 the certification of the sketched residual error estimator ‖r(ur(µ);µ)‖ΘU ′ can
be performed by comparing it to ‖r(ur(µ);µ)‖Θ∗U ′ . More specifically, by (49) we have that with
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(f) Galerkin, esP

Figure 2: The errors of the classical minres and Galerkin projections and quantiles of probabilities
p = 1, 0.9, 0.5 and 0.1 over 20 realizations of the errors of the sketched minres and Galerkin projections,
versus the number of rows of Θ. (a) Residual error ∆P of standard and sketched minres projection.
(b) Residual error ∆P of standard and sketched Galerkin projection. (c) Exact error eP (in ‖ · ‖U ) of
standard and sketched minres projection. (d) Exact error eP (in ‖ ·‖U ) of standard and sketched Galerkin
projection. (e) Quantity of interest error esP of standard and sketched minres projection. (f) Quantity of
interest error esP of standard and sketched Galerkin projection.
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Figure 3: The maximal condition number over Ptest of the reduced (normal) system associated
with the classical minres projection and quantiles of probabilities p = 1, 0.9, 0.5 and 0.1 over 20
realizations of the maximal condition number of the sketched reduced matrix VΘ

r (µ), versus the
number of rows k of Θ.

probability at least 1− 4δ∗,

|‖r(ur(µ);µ)‖2
U ′ − (‖r(ur(µ);µ)‖ΘU ′)2|1/2

≤
(
|(‖r(ur(µ);µ)‖Θ∗U ′ )2 − (‖r(ur(µ);µ)‖ΘU ′)2|+ ε∗

1− ε∗
(‖r(ur(µ);µ)‖Θ∗U ′ )2

)1/2

.
(55)

Figure 4 depicts dP := maxµ∈Ptest d(ur(µ);µ)/‖b(µs)‖U ′ , where d(ur(µ);µ) is the exact discrepancy
|‖r(ur(µ);µ)‖2

U ′− (‖r(ur(µ);µ)‖ΘU ′)2|1/2 or its (probabilistic) upper bound in (55). For each Θ and
k∗, 20 realizations of dP were computed for statistical analysis. We see that (sufficiently) tight
upper bounds for |‖r(ur(µ);µ)‖2

U ′ − (‖r(ur(µ);µ)‖ΘU ′)2|1/2 were obtained already when k∗ ≥ 100,
which is in particular several times smaller than the size of Θ required for quasi-optimality of
ur(µ). This implies that the certification of the effectivity of the error estimator ‖r(ur(µ);µ)‖ΘU ′
by ‖r(ur(µ);µ)‖Θ∗U ′ should require negligible computational costs compared to the cost of obtaining
the solution (or estimating the error in adaptive algorithms such as greedy algorithms).

By Proposition 3.3, the quasi-optimality of ur(µ) can be guaranteed if Θ is an ε-embedding
for V (µ). The ε-embedding property of each Θ was verified with Proposition 5.3. In Figure 5 we
provide ωP := maxµ∈Ptest ω̃(µ) where ω̃(µ) = ω(µ), which is the minimal value for ε such that Θ is
an ε-embedding for V (µ), or ω̃(µ) = ω̄(µ), which is the upper bound of ω(µ) computed with (51)
using Θ∗ of varying sizes. For illustration purposes we here allow the value ε in Definition 2.1 to
be larger than 1. The statistical properties of ωP were obtained with 20 realizations for each Θ
and value of k∗. Figure 5a depicts the statistical characterization of ωP for Θ of size k = 5000.
The maximal value of ωP observed for each k∗ and Θ is presented in Figure 5b. It is observed that
with a posteriori estimates from Proposition 5.3 using Θ∗ of size k∗ = 6000, we here can guarantee
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with high probability that Θ with k = 5000 satisfies an ε-embedding property for ε ≈ 0.6. The
theoretical bounds from [3] for Θ to be an ε-embedding for V (µ) with ε = 0.6 yield much larger
sizes, namely, for the probability of failure δ ≤ 10−6, they require more than k = 45700 rows for
Gaussian matrices and k = 102900 rows for SRHT. This proves Proposition 5.3 to be very useful
for the adaptive selection of sizes of random matrices or for the certification of the sketched inner
product 〈·, ·〉ΘU for all vectors in V . Note that the adaptive selection of the size of Θ can also be
performed without requiring Θ to be an ε-embedding for V (µ) with ε < 1, based on the observation
that oblivious embeddings yield preservation of the quality of the minres projection when they are
ε-embeddings for V (µ) with small ε, which is possibly larger than 1 (see Remark 6.1).
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Figure 4: The discrepancy |‖r(ur(µ);µ)‖2
U ′ − (‖r(ur(µ);µ)‖ΘU ′)2|1/2 between the residual error

and the sketched error estimator with Θ, and the upper bound of this value computed with (55).
(a) The exact discrepancy for Θ with k = 500 rows, the upper bound (55) of this discrepancy
taking ‖ · ‖Θ∗U ′ = ‖ · ‖U ′ , and quantiles of probabilities p = 1, 0.5 and 0 (i.e., the observed maximum,
median and minimum) over 20 realizations of the (probabilistic) upper bound (55) versus the size
of Θ∗. (b) The exact discrepancy, the upper bound (55) taking ‖ · ‖Θ∗U ′ = ‖ · ‖U ′ , and the maximum
of 20 realizations of the (probabilistic) upper bound (55) versus the number of rows k∗ of Θ∗ for
varying sizes k of Θ.

Remark 6.1. Throughout the paper the quality of Θ (e.g., for approximation of minres projection
in Section 3.2) was characterized by ε-embedding property. However, for this numerical benchmark
the sufficient size for Θ to be an ε-embedding for V (µ) is in several times larger than the one
yielding an accurate approximation of the minres projection. In particular, Θ with k = 500 rows
provides with high probability an approximation with residual error very close to the minimal one,
but it does not satisfy an ε-embedding property (with ε < 1), which is required for guaranteeing the
quasi-optimality of ur(µ) with Proposition 3.3. A more reliable way for certification of the quality
of Θ for approximation of the minres projection onto Ur can be derived by taking into account
that Θ was generated from a distribution of oblivious embeddings. In such a case it is enough
to only certify that ‖ · ‖ΘU provides an approximate upper bound of ‖ · ‖U for all vectors in V (µ)
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Figure 5: The minimal value for ε such that Θ is an ε-embedding for Vr(µ) for all µ ∈ Ptest, and
a posteriori random estimator of this value obtained with the procedure from Section 5 using Θ∗

with k∗ rows. (a) The minimal value for ε for Θ with k = 5000 rows and quantiles of probabilities
p = 1, 0.9, 0.5 and 0.1 over 20 samples of the estimator, versus the size of Θ∗. (b) The minimal
value for ε and the maximum of 20 samples of the estimator, versus the number of rows of Θ∗ for
varying sizes of Θ.

without the need to guarantee that ‖ · ‖ΘU is an approximate lower bound (that is in practice the
main bottleneck). This approach is outlined below.

We first observe that Θ was generated from a distribution of random matrices such that for all
x ∈ V (µ), we have

P
(∣∣‖x‖2

U − (‖x‖ΘU )2
∣∣ ≤ ε0‖x‖2

U

)
≥ 1− δ0.

The values ε0 and δ0 can be obtained from the theoretical bounds from [3] or practical experience.
Then one can show that for the sketched minres projection ur(µ) associated with Θ, the inequality

‖r(ur(µ);µ)‖U ′ ≤

√
1 + ε0

1− ω(µ)
min
x∈Ur
‖r(x;µ)‖U ′ , (56)

holds with probability at least 1 − δ0, where ω(µ) < 1 is the minimal value for ε such that for all
x ∈ V (µ)

(1− ε)‖x‖2
U ≤ (‖x‖ΘU )2.

The quasi-optimality of ur(µ) in the norm ‖·‖U rather than the residual norm can be readily derived
from relation (56) by using the equivalence between the residual norm and the error in ‖ · ‖U .
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In this way a characterization of the quasi-optimality of the sketched minres projection with
Θ can be obtained from the a posteriori upper bound of ω(µ) in (56). Note that since Θ is an
oblivious subspace embedding, the parameters ε0 and δ0 do not depend on the dimension of V (µ),
which implies that the considered value for ε0 should be an order of magnitude less than ω(µ).
Therefore, it can be a good way to choose ε0 as ω(µ) (or rather its upper bound) multiplied by a
small factor, say 0.1.

The (probabilistic) upper bound ω̄(µ) for ω(µ) can be obtained a posteriori by following a similar
procedure as the one from Proposition 5.3 described for verification of the ε-embedding property.
More precisely, we can use similar arguments as in Proposition 5.3 to show that

ω̄(µ) := 1− (1− ε∗) min
x∈V/{0}

(
‖x‖ΘU
‖x‖Θ∗U

)2

is an upper bound for ω(µ) with probability at least 1− δ∗.
Let us now provide experimental validation of the proposed approach. For this we considered

same sketching matrices Θ as in the previous experiment for validation of the ε-embedding property.
For each Θ we computed ωP := maxµ∈Ptest ω̃(µ), where ω̃(µ) = ω(µ) or its upper bound ω̄(µ) using
Θ∗ of different sizes (see Figure 6). Again 20 realizations of ωP were considered for the statistical
characterization of ωP for each Θ and size of Θ∗. One can clearly see that the present approach
provides better estimation of the quasi-optimality constants than the one with the ε-embedding
property. In particular, the quasi-optimality guarantee for Θ with k = 500 rows is experimentally
verified. Furthermore, we see that in all the experiments the a posteriori estimates are lower than
1 even for Θ∗ of small sizes, yet they are larger than the exact values, which implies efficiency and
robustnesses of the method. From Figure 6, a good accuracy of a posteriori estimates is with high
probability attained for k∗ ≥ k/2.

Computational costs. For this benchmark, random sketching yielded drastic computational
savings in the offline stage and considerably improved online efficiency. To verify the gains for the
offline stage, we executed two greedy algorithms for the generation of the reduced approximation
space of dimension r = 150 based on the minres projection and the sketched minres projection,
respectively. The standard algorithm resulted in a computational burden after reaching 96-th
iteration due to exceeding the limit of RAM (16GB). This took more than 3 hours of runtime.
Note that performing r = 150 iterations in this case would require around 25GB of RAM (mainly
utilized for storage of the affine factors of R−1

U A(µ)Ur) and more than 7 hours of runtime. In
contrast to the standard method, conducting r = 150 iterations of a greedy algorithm with random
sketching using Θ of size k = 2500 (and Γ of size k′ = 500) for the sketched minres projection and
Θ∗ of size k∗ = 250 for the error certification, took only 0.65GB of RAM. Moreover, the sketch
required only a minor part (0.2GB) of the aforementioned amount of memory, while the major
part was consumed by the initialization and maintenance of the full order model. The sketched
greedy algorithm had a total runtime of 1.9 hours, which is less than the (expected) runtime for the
standard greedy algorithm in more than 3.5 times. From these 1.9 hours, 0.8 hours was spent on
computation of 150 snapshots, 0.2 hours on provisional online solutions and 0.9 hours on random
projections.
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Figure 6: The minimal value for ε such that (1− ε)‖x‖2
U ≤ (‖x‖ΘU )2 holds for all x ∈ Vr(µ) and

µ ∈ Ptest, and a posteriori random estimator of this value using Θ∗ with k∗ rows. (a) The minimal
value for ε for Θ with k = 5000 rows and quantiles of probabilities p = 1, 0.9, 0.5 and 0.1 over 20
realizations of the estimator, versus the size of Θ∗. (b) The minimal value for ε and the maximum
of 20 realizations of the estimator versus the number of rows of Θ∗, for varying sizes of Θ.

Next the improvement of online computational cost of minres projection is addressed. For
this, we computed the reduced solutions on the test set with a standard method, which con-
sists in assembling the reduced system of equations (representing the normal equation) from its
affine decomposition (precomputed in the offline stage) and its subsequent solution with built in
Matlab R© R2017b linear solver. The online solutions on the test set were additionally computed
with the sketched method for comparison of runtimes and storage requirements. For this, for
each parameter value, the reduced least-squares problem was assembled from the precomputed
affine decompositions of VΦ

r (µ) and bΦ(µ) and solved with the normal equation using the built
in Matlab R© R2017b linear solver. Note that both methods proceeded with the normal equation.
The difference was in the way how this equation was obtained. For the standard method it was
directly assembled from the affine representation, while for the sketched method it was computed
from the sketched matrices VΦ

r (µ) and bΦ(µ).
Table 2 depicts the runtimes and memory consumption taken by the standard and sketched

minres online stages for varying sizes of the reduced space and Φ (for the sketched method). The
sketch’s sizes were picked such that the associated reduced solutions with high probability had
almost (higher by at most a factor of 1.2) optimal residual error. Our approach nearly divided by
3 the online runtime for all values of r from Table 2. Furthermore, the improvement of memory
requirements was even greater. For instance, for r = 150 the online memory consumption was
divided by 6.8. In Table 2 we also provide the cost of standard/sketched Galerkin online stage,
which is more efficient than the other two due to less cost of forming the reduced system of equations
(but can have worse quasi-optimality constants for non-coercive or ill-conditioned problems).
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Table 2: CPU times in seconds and amount of memory in MB taken by the standard minres,
sketched minres and Galerkin online solvers for the solutions on the test set.

Standard minres Sketched minres Galerkin

r = 50 r = 100 r = 150
r = 50
k′ = 300

r = 100
k′ = 400

r = 150
k′ = 500

r = 50 r = 100 r = 150

CPU 1 3.6 7.8 0.4 1.3 2.2 0.25 0.5 0.95
Storage 22 87 193 5.8 15 28 1 3.8 8.5

6.2 Advection-diffusion problem

The dictionary-based approximation method proposed in Section 4 is validated on a 2D advection
dominated advection-diffusion problem defined on a complex flow. This problem is governed by
the following equations 

−ε∆u+ β · ∇u = f, in Ω
u = 0, on Γout
∂u
∂n

= 0, on Γn,
(57)

where u is the unknown (temperature) field, ε = 0.0001 is the diffusion coefficient and β is the
advection field. The geometry of the problem is as follows. First we have 5 circular pores of
radius 0.01 located at points xj = 0.5 (cos(2πj/5), sin(2πj/5)), 1 ≤ j ≤ 5. The domain of
interest is then defined as the square [−10, 10]2 without the pores, i.e, Ω := [−10, 10]2/Ωn, with
Ωn := ∪1≤j≤5{x : ‖x− xj‖ ≤ 0.01}. The boundaries Γn and Γout are taken as ∂Ωn and ∂Ω/∂Ωn,
respectively. Furthermore, Ω is (notationally) divided into the main region inside [−1, 1]2, and the
outer domain playing a role of a boundary layer. Finally, the force term f is nonzero in the disc
Ωs := {x ∈ Ω : ‖x‖ ≤ 0.025}. The geometric setup of the problem is presented in Figure 7a.

The advection field is taken as a potential (divergence-free and curl-free) field consisting of a
linear combination of 12 components,

β(x) = µ2 cos(µ1)êx + µ2 sin(µ1)êy +
10∑
i=1

µiβi(x), x ∈ Ω,

where

βi(x) =

{
−êr(xi)
‖x−xi‖ for 1 ≤ i ≤ 5

−êθ(xi−5)
‖x−xi−5‖ for 6 ≤ i ≤ 10.

(58)

The vectors êx and êy are the basis vectors of the Cartesian system of coordinates. The vectors
êr(xj) and êθ(xj) are the basis vectors of the polar coordinate system with the origin at point xj,
1 ≤ j ≤ 5. From the physics perspective, we have here a superposition of two uniform flows and
five hurricane flows (each consisting of a sink and a rotational flow) centered at different locations.
The source term is

f(x) =

{
1

π0.0252 for x ∈ Ωs,
0 for x ∈ Ω/Ωs.
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Figure 7: (a) Geometry of the advection-diffusion problem. (b) The solution field u for param-
eter value µs := (0, 0, 0.308, 0.308, 0.308, 0.308, 0.308, 0.616, 0.616, 0.616, 0.616, 0.616). (c)-(d) The
solution field u for two random samples from P .
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We consider a multi-objective scenario, where one aims to approximate the average solution field
sj(u), 1 ≤ j ≤ 10, inside sensor Ωj having a form of a disc of radius 0.025 located as in Figure 7a.
The objective is to obtain sensor outputs for the parameter values µ := (µ1, · · · , µ12) ∈ P :=
{[0, 2π]× [0, 0.028]× [0.308, 0.37]5× [0.616, 0.678]5}. Figures 7a to 7c present solutions u(µ) for
few samples from P .

The discretization of the problem was performed with the classical finite element method. A
nonuniform mesh was considered with finer elements near the pores of the hurricanes, and larger
ones far from the pores such that each element’s Peclet number inside [−1, 1]2 was larger than
1 for any parameter value in P . Moreover, it was revealed that for this benchmark the solution
field outside the region [−1, 1]2 was practically equal to zero for all µ ∈ P . Therefore the outer
region was discretized with coarse elements. For the discretization we used about 380000 and
20000 degrees of freedom in the main region and the outside boundary layer, respectively, which
yielded approximately 400000 degrees of freedom in total.

The solution space is equipped with the inner product

〈v,w〉U := 〈∇v,∇w〉L2 , v,w ∈ U,

that is the H1
0 inner product for functions associated with vectors in U .

For this problem, approximation of the solution with a fixed low-dimensional space is ineffec-
tive. The problem has to be approached with non-linear approximation methods with parameter-
dependent approximation spaces. For this, the classical hp-refinement method is computationally
intractable due to high dimensionality of the parameter domain, which makes the dictionary-based
approximation to be the most pertinent choice.

The training and test sets Ptrain and Ptest were respectively chosen as 20000 and 1000 uniform
random samples from P . Then, Algorithm 3 was employed to generate dictionaries of sizes K =
1500, K = 2000 and K = 2500 for the dictionary-based approximation with r = 100, r = 75 and
r = 50 vectors, respectively. For comparison, we also performed a greedy reduced basis algorithm
(based on sketched minres projection) to generate a fixed reduced approximation space, which in
particular coincides with Algorithm 3 with large enough r (here r = 750). Moreover, for more
efficiency (to reduce the number of online solutions) at i-th iteration of Algorithm 3 and reduced
basis algorithm instead of taking µi+1 as a maximizer of ∆Φ(ur(µ);µ) over Ptrain, we relaxed the
problem to finding any parameter-value such that

∆Φ(ur(µ
i+1);µi+1) ≥ max

µ∈Ptrain

min
1≤j≤i

∆Φ(ujr(µ);µ), (59)

where ujr(µ) denotes the solution obtained at the j-th iteration. Note that (59) improved the
efficiency, yet yielding at least as accurate maximizer of the dictionary-based width (defined
in (24)) as considering µi+1 := arg maxµ∈Ptrain ∆Φ(ur(µ);µ). For the error certification purposes,
each 250 iterations the solution was computed on the whole training set and µi+1 was taken as
arg maxµ∈Ptrain ∆Φ(ur(µ);µ). Figure 8 depicts the observed evolutions of the errors in the greedy
algorithms.

We see that at the first r iterations, the error decay for the dictionary generation practically
coincides with the error decay of the reduced basis algorithm, which can be explained by the fact
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Figure 8: Evolutions of the errors in Algorithm 3 for the dictionary generation for varying
values of r, and the reduced basis greedy algorithm based on (sketched) minres projection. (a)
The residual error ∆̃(µi+1) := ‖r(ur(µ

i+1);µi+1)‖U ′/‖b‖U ′ . (b) The minimal value of the error at
parameter value µi+1 at the first i iterations.

that the first r iterations of the two algorithms coincide. The convergence rates remain the same
for the reduced basis algorithm (even at high iterations), while they slowly subsequently degrade
for dictionary-based approximation. The latter method still highly outperforms the former one,
since its online computational cost scales only linearly with the number of iterations. Furthermore,
for the dictionary-based approximation the convergence of the error is moderately noisy. The noise
is primarily due to approximating the solutions of online sparse least-squares problems with the
orthogonal greedy algorithm, for which the accuracy can be sensitive to the enrichment of the
dictionary with new vectors. The quality of online solutions could be improved by the usage of
more sophisticated methods for sparse least-squares problems.

As it is clear from Figure 8, the obtained dictionaries and the bases taken from them provide
approximations at least as accurate (on the training set) as the minres approximation with a fixed
reduced space of dimension r = 750. Yet, the dictionary-based approximations are much more
online-efficient. Table 3 provides the online complexity and storage requirements for obtaining
the dictionary-based solutions for all µ ∈ Ptest (recall, #Ptest = 1000) with the orthogonal greedy
algorithm (Algorithm 2) from a sketch of size k = 8r, and the sketched minres solutions with
QR factorization with Householder transformations (as in Matlab R© R2017b least-squares solver)
of the sketched reduced matrix in (20) from a sketch of size k = 4r. In particular, we see that
the dictionary-based approximation with r = 75 and K = 2000 yields a gain in complexity by a
factor of 15 and memory consumption by a factor of 1.9. In Table 3 we also provide the associated
runtimes and required RAM. It is revealed that the dictionary-based approximation with K = 2000
and r = 75 had an about 4 times speedup. The difference between the gains in terms of complexity
and runtime can be explained by high efficiency of the Matlab R© R2017b least-squares solver. It is
important to note that even more considerable enhance of efficiency could be obtained by better
exploitation of the structure of the dictionary-based reduced model, in particular, by representing
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the sketched matrix VΘ
K(µ) in a format well suited for the orthogonal greedy algorithm (e.g., a

product of a dense matrix by several sparse matrices similarly as in [32, 38]).

Table 3: Computational cost of obtaining online solutions for all parameter values from the test
set with the reduced basis method (based on sketched minres projection) and the dictionary-based
approximations.

RB, r = 750 K = 1500, r = 100 K = 2000, r = 75 K = 2500, r = 50
Complexity in flops 3.1× 109 0.27× 109 0.2× 109 0.12× 109

Storage in flns 2.9× 108 1.6× 108 1.6× 108 1.3× 108

CPU in s 400 124 113 100
Storage in MB 234 124 124 104

Further we provide statistical analysis of the dictionary-based approximation with K = 2000
and r = 75. For this we computed the associated dictionary-based solutions ur(µ) for all param-
eter values in the test set, considering Θ of varying sizes. The accuracy of an approximation is
characterized by the quantities ∆P := maxµ∈Ptest ‖r(ur(µ);µ)‖U ′/‖b‖U ′ , eP := maxµ∈Ptest ‖u(µ)−
ur(µ)‖U/maxµ∈Ptest ‖u(µ)‖U and eiP = maxµ∈Ptest |si(u(µ)) − si(ur(µ))|, 1 ≤ i ≤ 10. Figure 9
depicts the dependence of ∆P , eP and eiP (for few selected values of i) on the number of rows k
of Θ. For each value of k, the statistical properties of ∆P , eP and eiP were characterized with 20
realizations of ∆P , eP and eiP . It is observed that for k = 600, the errors ∆P and eP are concen-
trated around 0.03 and 0.06, respectively. Moreover, for all tested k ≥ 600 we obtained nearly the
same errors, which suggests preservation of the quality of the dictionary-based approximation by
its sketched version at k = 600. A (moderate) deviation of the errors in the quantities of interest
(even for very large k) can be explained by (moderately) low effectivity of representation of these
errors with the error in ‖ · ‖U , which we considered to control.

7 Conclusion

In this article we have extended the methodology from [3] to minres methods and proposed a novel
nonlinear approximation method to tackle problems with a slow decay of Kolmogorov r-width.
The main ingredient of our approach is the approximation of the reduced model’s solution from
a random sketch, which entails drastic reduction of the computational costs and improvement of
numerical stability. Precise conditions on the sketch to yield the (approximate) preservation of
the quasi-optimality constants of the reduced model’s solution are provided. These conditions
do not depend on the operator’s properties, which implies robustness for ill-conditioned and non-
coercive problems. Moreover, these conditions can be ensured with SRHT or Gaussian matrices
of sufficiently large sizes depending only logarithmically on the probability of failure and on the
cardinality of the dictionary (for dictionary-based approximation).

We here also proposed efficient randomized methods for extraction of the quantity of interest
(see Appendix A) and a posteriori certification of the reduced model’s sketch. These results along
with the sketched minres projection can be used as a remedy of the drawbacks revealed in [3].
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Figure 9: Quantiles of probabilities p = 1, 0.9, 0.5 and 0.1 over 20 samples of the errors ∆P , eP ,
ei
P of the dictionary-based approximation with K = 2000 and r = 75, versus the number of rows of

Θ. (a) Residual error ∆P . (b) Exact error eP . (c) Error eiP in the quantity of interest associated
with sensor i = 9. (d) Error eiP in the quantity of interest associated with sensor i = 1.
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The applicability of the proposed methodology was realized on two benchmark problems dif-
ficult to tackle with standard methods. The experiments on the invisibility cloak benchmark
confirmed that random sketching can indeed provide high computational savings in both offline
and online stages, and more numerical stability compared to the standard minres method while
preserving the quality of the output. It was illustrated experimentally that the random sketching
technique may be better suited to minres methods than to Galerkin methods. Furthermore, the
proposed procedure for the a posteriori certification of the sketch’s quality was also experimentally
tested. It yielded bounds for the dimension of random projections an order of magnitude less than
the theoretical ones from [3]. In the advection-diffusion benchmark a slow-decay of the Kolmogorov
r-width was revealed, which implied the necessity to use the dictionary-based approximation. It
was verified that for this problem the dictionary-based approximation provided an enhancement
of the online stage in more than an order of magnitude in complexity, in about 2 times in terms of
memory, and in about 4 times in terms of runtime (compared to the sketched minres projection).
Moreover, even higher computational savings could be obtained by representing the sketch of the
dictionary in a more favorable format (e.g., as in [32, 38]), which we leave for future research.
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Appendix A. Post-processing the reduced model’s solution

In the paper we presented a methodology for efficient computation of an approximate solution
ur(µ), or to be more precise, its coordinates in a certain basis, which can be the classical reduced
basis for a fixed approximation space, or the dictionary vectors for dictionary-based approximation
presented in Section 4. The approximate solution ur(µ), however, is usually not what one should
consider as the output. In fact, the amount of allowed online computations is highly limited and
should be independent of the dimension of the full order model. Therefore outputting O(n) bytes
of data as ur(µ) should be avoided when u(µ) is not the quantity of interest.

Further, we shall consider an approximation with a single subspace Ur noting that the presented
approach can also be used for post-processing the dictionary-based approximation from Section 4
(by taking Ur as the subspace spanned by the dictionary vectors). Let Ur be a matrix whose
column vectors form a basis for Ur and let ar(µ) be the coordinates of ur(µ) in this basis. A general
quantity of interest s(µ) := l(u(µ);µ) can be approximated by sr(µ) := l(ur(µ);µ). Further, let
us assume a linear case where l(u(µ);µ) := 〈l(µ),u(µ)〉 with l(µ) ∈ U ′ being the extractor of the
quantity of interest. Then

sr(µ) = 〈l(µ),ur(µ)〉 = lr(µ)Har(µ), (60)

where lr(µ) := UH
r l(µ).

Remark 8.1. In general, our approach can be used for estimating an inner product between ar-
bitrary parameter-dependent vectors. The possible applications include efficient estimation of the
primal-dual correction and an extension to quadratic quantities of interest. In particular, the es-
timation of the primal-dual correction can be obtained by replacing l(µ) by r(ur(µ);µ) and ur(µ)
by vr(µ) in (60), where vr(µ) ∈ U is a reduced basis (or dictionary-based) approximate solu-
tion to the adjoint problem. A quadratic output quantity of interest has the form l(ur(µ);µ) :=
〈L(µ)ur(µ) + l(µ),ur(µ)〉, where L(µ) : U → U ′ and l(µ) ∈ U ′. Such l(ur(µ);µ) can be readily
derived from (60) by replacing l(µ) with L(µ)ur(µ) + l(µ).

The affine factors of lr(µ) should be first precomputed in the offline stage and then used for
online evaluation of lr(µ) for each parameter value with a computational cost independent of the
dimension of the original problem. The offline computations required for evaluating the affine
factors of lr(µ), however, can still be too expensive or even unfeasible to perform. Such a scenario
may arise when using a high-dimensional approximation space (or a dictionary), when the extractor
l(µ) has many (possibly expensive to maintain) affine terms, or when working in an extreme
computational environment, e.g., with data streamed or distributed among multiple workstations.
In addition, evaluating lr(µ) from the affine expansion as well as evaluating lr(µ)Har(µ) itself can be
subject to round-off errors (especially when Ur is ill-conditioned and may not be orthogonalized).
Further, we shall provide a (probabilistic) way for estimating sr(µ) with a reduced computational
cost and better numerical stability. As the core we take the idea from [3, Section 4.3] proposed as
a workaround to expensive offline computations for the evaluation of the primal-dual correction.

Remark 8.2. The spaces U and U ′ are equipped with inner products 〈·, ·〉U and 〈·, ·〉U ′ (defined
by matrix RU), which are used for controlling the accuracy of the approximate solution ur(µ). In
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general, RU is chosen according to both the operator A(µ) and the extractor l(µ) of the quantity
of interest. The goal of this section, however, is only the estimation of the quantity of interest
from the given ur(µ). Consequently, for many problems it can be more pertinent to use here a
different RU than the one employed for obtaining and characterizing ur(µ). The choice for RU

should be done according to l(µ) (independently of A(µ)). For instance, for discretized parametric
PDEs, if l(µ) represents an integral of the solution field over the spatial domain then it is natural
to choose 〈·, ·〉U corresponding to the L2 inner product. Moreover, 〈·, ·〉U is required to be an inner
product only on a certain subspace of interest, which means that RU may be a positive semi-definite
matrix. This consideration can be particularly helpful when the quantity of interest depends only on
the restriction of the solution field to a certain subdomain. In such a case, 〈·, ·〉U can be chosen to
correspond with an inner product between restrictions of functions to this subdomain. The extension
of random sketching for estimation of semi-inner products is straightforward (see Remark 8.3).

Remark 8.3. Let us outline the extension of the methodology to the case where 〈·, ·〉U is not
definite. Let us assume that 〈·, ·〉U is an inner product on a subspace W ⊆ U of interest. Then,
it follows that W ′ := {RUx : x ∈ W} can be equipped with 〈·, ·〉U ′ := 〈·,R†U ·〉, where R†U is a
pseudo-inverse of RU . Such products 〈·, ·〉U and 〈·, ·〉U ′ can be approximated by

〈·, ·〉ΘU := 〈Θ·,Θ·〉, and 〈·, ·〉ΘU ′ := 〈ΘR†U ·,ΘR†U ·〉. (61)

This can be useful for the estimation of a (semi-)inner product between parameter-dependent vectors
(see Remark 8.2).

8.1 Approximation of the quantity of interest

An efficiently computable and accurate estimation of sr(µ) can be obtained in two phases. In
the first phase, the manifold Mr := {ur(µ) : µ ∈ P} is (accurately enough) approximated with
a subspace Wp := span(Wp) ⊂ U , which is spanned by an efficient to multiply (i.e., sparse or
low-dimensional) matrix Wp. This matrix can be selected a priori or obtained depending on Mr.
In Section 8.2 we shall provide some strategies for choosing or computing the columns for Wp. The
appropriate strategy should be selected depending on the particular problem and computational
architecture. Further, the solution vector ur(µ) is approximated by its orthogonal projection
wp(µ) := Wpcp(µ) on Wp. The coordinates cp(µ) can be obtained from ar(µ) by

cp(µ) = Hpar(µ), (62)

where Hp := [WH
p RUWp]

−1WH
p RUUr. Note that since Wp is efficient to multiply by, the matrix

Hp can be efficiently precomputed in the offline stage. We arrive at the following estimation of
sr(µ):

sr(µ) ≈ 〈l(µ),wp(µ)〉 = l?r(µ)Har(µ), (63)

where l?r(µ)H := l(µ)HWpHp. Unlike lr(µ), the affine factors of l?r(µ) can now be efficiently pre-
computed thanks to the structure of Wp.
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In the second phase of the algorithm, the precision of (63) is improved with a sketched (random)
correction associated with an U → `2 subspace embedding Θ:

sr(µ) = 〈l(µ),wp(µ)〉+ 〈l(µ),ur(µ)−wp(µ)〉
≈ 〈l(µ),wp(µ)〉+ 〈R−1

U l(µ),ur(µ)−wp(µ)〉ΘU =: s?r(µ).
(64)

In practice, s?r(µ) can be efficiently evaluated using the following relation:

s?r(µ) = [l?r(µ)H + ∆l?r(µ)H]ar(µ), (65)

where the affine terms of ∆l?r(µ)H := lΘ(µ)H(UΘ
r −WΘ

p Hp) can be precomputed from the Θ-sketch
of Ur, a sketched matrix WΘ

p := ΘWp and the matrix Hp with a negligible computational cost.

Proposition 8.4. If Θ is an (ε, δ, 1) oblivious U → `2 subspace embedding,

|sr(µ)− s?r(µ)| ≤ ε‖l(µ)‖U ′‖ur(µ)−wp(µ)‖U (66)

holds for a fixed parameter µ ∈ P with probability at least 1− 2δ.

Proposition 8.5. Let L ⊂ U denote a subspace containing {R−1
U l(µ) : µ ∈ P}. If Θ is an

ε-embedding for L+ Ur +Wp, then (66) holds for all µ ∈ P.

It follows that the accuracy of s?r(µ) can be controlled through the quality of Wp for approxi-
matingMr, the quality of Θ as an U → `2 ε-embedding, or both. Note that choosing Θ as a null
matrix (i.e., an ε-embedding for U with ε = 1) leads to a single first-phase approximation (63),
while letting Wp := {0} corresponds to a single sketched (second-phase) approximation. Such
particular choices for Θ or Wp can be pertinent when the subspace Wp is highly accurate so that
there is practically no benefit to use a sketched correction or, the other way around, when the
computational environment or the problem does not permit a sufficiently accurate approximation
of Mr with Wp, therefore making the use of a non-zero wp(µ) unjustified.

Remark 8.6. When interpreting random sketching as a Monte Carlo method for the estimation
of the inner product 〈l(µ),ur(µ)〉, the proposed approach can be interpreted as a control variate
method where wp(µ) plays the role of the control variate. A multileveled Monte Carlo method with
different control variates should further improve the efficiency of post-processing.

8.2 Construction of reduced subspaces

Further we address the problem of computing the basis vectors for Wp. In general, the strategy
for obtaining Wp has to be chosen according to the problem’s structure and the constraints due to
the computational environment.

A simple way, used in [3], is to choose Wp as the span of samples of u(µ) either chosen ran-
domly or during the first few iterations of the reduced basis (or dictionary) generation with a
greedy algorithm. Such Wp, however, may be too costly to operate with. Then we propose more
sophisticated constructions of Wp.
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Approximate Proper Orthogonal Decomposition. A subspace Wp can be obtained by an (ap-
proximate) POD of the reduced vectors evaluated on a training set Ptrain ⊆ P . Here, randomized
linear algebra can be again employed for improving efficiency. The computational cost of the
proposed POD procedure shall mainly consist of the solution of m = #Ptrain reduced problems
and the multiplication of Ur by p = dim(Wp) � r small vectors. Unlike the classical POD,
our methodology does not require computation or maintenance of the full solution’s samples and
therefore allows large training sets.

Let Lm = {ar(µi)}mi=1 be a training sample of the coordinates of ur(µ) in a basis Ur. We look
for a POD subspace Wr associated with the snapshot matrix

Wm := [ur(µ
1),ur(µ

2), . . . ,ur(µ
m)] = UrLm,

where Lm is a matrix whose columns are the elements from Lm.
An accurate estimation of POD can be efficiently computed via the sketched method of snap-

shots introduced in [3, Section 5.2]. More specifically, a quasi-optimal (with high probability) POD
basis can be calculated as

Wp := UrT
∗
p, (67)

where
T∗p := Lm[t1, . . . , tp],

with t1, . . . , tp being the p dominant singular vectors of UΘ
r Lm. Note that the matrix T∗p can be

efficiently obtained with a computational cost independent of the dimension of the full order model.
The dominant cost is the multiplication of Ur by T∗p, which is also expected to be inexpensive
since T∗p has a small number of columns. Guarantees for the quasi-optimality of Wp can be readily
derived from [3, Theorem 5.5].

Sketched greedy algorithm. A greedy search over the training set {ur(µ) : µ ∈ Ptrain} of
approximate solutions is another way to construct Wp. At the i-th iteration, Wi is enriched with
a vector ur(µ

i+1) with the largest distance to Wi over the training set. Note that in this case
the resulting matrix Wp has the form (67), where T∗p = [ar(µ

1), . . . , ar(µ
p)]. The efficiency of the

greedy selection can be improved by employing random sketching technique. At each iteration, the
distance to Wi can be measured with the sketched norm ‖·‖ΘU , which can be computed from sketches
Θur(µ) = UΘ

r ar(µ) of the approximate solutions with no need to operate with large matrix Ur

but only its sketch. This allows efficient computation of the quasi-optimal interpolation points
µ1, . . . , µp and the associated matrix T∗p. Note that for numerical stability an orthogonalization of
Wi with respect to 〈·, ·〉ΘU can be performed, that can be done by modifying T∗i so that UΘ

r T∗i is an
orthogonal matrix. Such T∗i can be obtained with standard QR factorization. When T∗p has been
computed, the matrix Wp can be calculated by multiplying Ur with T∗p. The quasi-optimality
of µ1, . . . , µp and approximate orthogonality of Wp is guaranteed if Θ is an ε-embedding for all
subspaces from the set {Wp + span(ur(µ

i))}mi=1. This property of Θ can be guaranteed a priori by

considering (ε,
(
m
p

)−1
δ, p+ 1) oblivious U → `2 subspace embeddings, or certified a posteriori with

the procedure explained in Section 5.
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Coarse approximation. Let us notice that the online cost of evaluating s?r(µ) does not depend
on the dimension p of Wp. Consequently, if Wp is spanned by structured (e.g., sparse) basis vectors
then a rather high dimension is allowed (possibly larger than r).

For classical numerical methods for PDEs, the resolution of the mesh (or grid) is usually chosen
to guarantee both an approximability of the solution manifold by the approximation space and
the stability. For many problems the latter factor is dominant and one choses the mesh primary to
it. This is a typical situation for wave problems, advection-diffusion-reaction problems and many
others. For these problems, the resolution of the mesh can be much higher than needed for the
estimation of the quantity of interest from the given solution field. In these cases, the quantity
of interest can be efficiently yet accurately approximated using a coarse-grid interpolation of the
solution.

Suppose that each vector u ∈ U represents a function u : Ω → K in a finite-dimensional
approximation space spanned by basis functions {ψi(x)}ni=1 associated with a fine mesh of Ω. The
function u(x) can be approximated by a projection on a coarse-grid approximation space spanned
by basis functions {φi(x)}pi=1. For simplicity assume that each φi(x) ∈ span{ψj(x)}nj=1. Then the
i-th basis vector for Wp can be obtained simply by evaluating the coordinates of φi(x) in the basis
{ψj(x)}nj=1. Note that for the classical finite element approximation, each basis function has a
local support and the resulting matrix Wp is sparse.

8.3 Numerical validation

The proposed methodology was validated experimentally on an invisibility cloak benchmark from Sec-
tion 6.1.

As in Section 6.1 in this experiment we used an approximation space Ur of dimension r = 150
constructed with a greedy algorithm (based on sketched minres projection). We used a training
set of 50000 uniform random samples in P , while the test set Ptest ⊂ P was taken as 1000 uniform
random samples in P . The experiment was performed for a fixed approximation ur(µ) obtained
with sketched minres projection on Ur using Θ with 1000 rows. For such ur(µ), an approximate
extraction of the quantity sr(µ) = l(ur(µ);µ) from ur(µ) (represented by coordinates in reduced
basis) was considered.

The post-processing procedure was performed by choosing l(µ) and ur(µ) in (60) as ur(µ) −
uin(µ). Furthermore, for better accuracy the solution space was here equipped with (semi-)inner
product 〈·, ·〉U := 〈·, ·〉L2(Ω1) that is different from the inner product (54) considered for ensuring
quasi-optimality of the minres projection and error estimation (see Remark 8.2). For such choices
of l(µ), ur(µ) and 〈·, ·〉U , we employed a greedy search with error indicator minw∈Wi

‖ur(µ)−w‖ΘU
over training set of 50000 uniform samples in P to find Wp. Then sr(µ) was efficiently approximated
by s?r(µ) given in (65). In this experiment, the error is characterized by es

P = maxµ∈Ptest |s(µ) −
s̃r(µ)|/As, where s̃r(µ) = sr(µ) or s?r(µ). The statistical properties of es

P for each value of k and
dim(Wp) were obtained with 20 realizations of Θ. Figure 10a exhibits the dependence of es

P on
the size of Θ with Wp of dimension dim (Wp) = 15. Furthermore, in Figure 10b we provide the
maximum value es

P from the computed samples for different sizes of Θ and Wp. The accuracy of
s?r(µ) can be controlled by the quality of Wp for the approximation of ur(µ) and the quality of
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〈·, ·〉ΘU for the approximation of 〈·, ·〉U . When Wp approximates well ur(µ), one can use a random
correction with Θ of rather small size, while in the alternative scenario the usage of a large random
sketch is required. In this experiment we see that the quality of the output is nearly preserved
with high probability when using Wp of dimension dim (Wp) = 20 and a sketch of size k = 1000,
or Wp of dimension dim (Wp) = 15 and a sketch of size k = 10000. For less accurate Wp, with
dim (Wp) ≤ 10, the preservation of the quality of the output requires larger sketches of sizes
k ≥ 30000. For optimizing efficiency the dimension for Wp and the size for Θ should be picked
depending on the dimensions r and n of Ur and U , respectively, and the particular computational
architecture. The increase of the considered dimension of Wp entails storage and operation with
more high-dimensional vectors, while the increase of the sketch entails higher computational cost
associated with storage and operation with the sketched matrix UΘ

r = ΘUr. Let us finally note
that for this benchmark the approximate extraction of the quantity of interest with our approach
using dim (Wp) = 15 and a sketch of size k = 10000, required in about 10 times less amount of
storage and complexity than the classical exact extraction.
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Figure 10: The error es
P of sr(µ) or its efficient approximation s?r(µ) using Wp and Θ of varying

sizes. (a) The error of sr(µ) and quantiles of probabilities p = 1, 0.9, 0.5 and 0.1 over 20 realizations
of es

P associated with s?r(µ) using Wp with dim (Wp) = 10, versus sketch’s size k. (b) The error of
sr(µ) and maximum over 20 realizations of es

P associated with s?r(µ), versus sketch’s size k for Wp

of varying dimension.
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Appendix B. Proofs of propositions.

Proof of Proposition 3.1. The statement of the proposition follows directly from the definitions of
the constants ζr(µ) and ιr(µ), that imply

ζr(µ)‖u(µ)− ur(µ)‖U ≤ ‖r(ur(µ);µ)‖U ′ ≤ ‖r(PUru(µ);µ)‖U ′ ≤ ιr(µ)‖u(µ)−PUru(µ)‖U .

Proof of Proposition 3.2. The proof follows the one of Proposition 3.1.

Proof of Proposition 3.3. By the assumption on Θ, we have that

√
1− ε‖A(µ)x‖U ′ ≤ ‖A(µ)x‖ΘU ′ ≤

√
1 + ε‖A(µ)x‖U ′

holds for all x ∈ span{u(µ)}+ Ur. Then (18) follows immediately.

Proof of Proposition 3.5. Let a ∈ Kr and x := Ura. Then

‖VΘ
r (µ)a‖
‖a‖

=
‖ΘR−1

U A(µ)Ura‖
‖a‖

=
‖A(µ)x‖ΘU ′
‖x‖ΘU

.

Since Θ is an ε-embedding for Ur, we have

√
1− ε‖x‖U ≤ ‖x‖ΘU ≤

√
1 + ε‖x‖U .

The statement of the proposition follows immediately.

Proof of Proposition 4.1. Take arbitrary τ > 0, and let D(i)
K be dictionaries with #D(i)

K = Ki, such
that

sup
u∈M(i)

min
Wri∈Lri (D

(i)
K )

‖u−PWri
u‖U ≤ σri(M(i);Ki) + τ, 1 ≤ i ≤ l.

The existence of D(i)
K follows directly from the definition (24) of the dictionary-based width. Define

D∗K =
⋃l
i=1D

(i)
K . Then the following relations hold:

l∑
i=1

σri(M(i);Ki) ≥
l∑

i=1

(
sup

u∈M(i)

min
Wri∈Lri (D

(i)
K )

‖u−PWri
u‖U − τ

)

≥

(
sup
µ∈P

l∑
i=1

min
Wri∈Lri (D

(i)
K )

‖u(i)(µ)−PWri
u(i)(µ)‖U

)
− lτ

≥

(
sup
µ∈P

min
Wr∈Lr(D∗K)

l∑
i=1

‖u(i)(µ)−PWru
(i)(µ)‖U

)
− lτ

≥ sup
µ∈P

min
Wr∈Lr(D∗K)

‖
l∑

i=1

u(i)(µ)−PWr

l∑
i=1

u(i)(µ)‖U − lτ ≥ σr(M;K)− lτ.
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Since the above relations hold for arbitrary positive τ , we conclude that

l∑
i=1

σri(M(i);Ki) ≥ σr(M;K).

Proof of Proposition 4.3. Let U∗r (µ) := arg minWr∈Lr(DK) ‖u(µ) − PWru(µ)‖U . By definition of
ur(µ) and constants ζr,K(µ) and ιr,K(µ),

ζr,K(µ)‖u(µ)− ur(µ)‖U≤ ‖r(ur(µ);µ)‖U ′ ≤ D‖r(PU∗r (µ)u(µ);µ)‖U ′ + τ‖b(µ)‖U ′
≤ ιr,K(µ)

(
D‖u(µ)−PU∗r (µ)u(µ)‖U + τ‖u(µ)‖U

)
,

which ends the proof.

Proof of Proposition 4.4. The proof exactly follows the one of Proposition 4.3 by replacing ‖ · ‖U ′
with ‖ · ‖ΘU ′ .

Proof of Proposition 4.5. We have that

√
1− ε‖A(µ)x‖U ′ ≤ ‖A(µ)x‖ΘU ′ ≤

√
1 + ε‖A(µ)x‖U ′

holds for all x ∈ span{u(µ)} + Wr with Wr ∈ Lr(DK). The statement of the proposition then
follows directly from the definitions of ζr,K(µ), ιr,K(µ), ζΘ

r,K(µ) and ιΘr,K(µ).

Proof of Proposition 4.6. Let matrix UK have columns {wi : i ∈ {1 · · ·K}} and matrix Ur(µ)
have columns {wi : i ∈ I(µ)}, with I(µ) ⊆ {1, · · · , K} being a subset of r indices. Let x ∈ Kr be
an arbitrary vector. Define a sparse vector z(µ) = (zi(µ))i∈{1···K} with (zi(µ))i∈I(µ) = x and zeros
elsewhere. Let w(µ) := Ur(µ)x = UKz(µ). Then

‖VΘ
r (µ)x‖
‖x‖

=
‖ΘR−1

U A(µ)Ur(µ)x‖
‖x‖

=
‖A(µ)w(µ)‖ΘU ′

‖x‖
=
‖A(µ)w(µ)‖ΘU ′
‖w(µ)‖U

‖w(µ)‖U
‖x‖

≥ ζΘ
r,K(µ)

‖Ur(µ)x‖U
‖x‖

= ζΘ
r,K(µ)

‖UKz(µ)‖U
‖z(µ)‖

≥ ζΘ
r,K(µ)Σmin

r,K .

Similarly,

‖VΘ
r (µ)x‖
‖x‖

≤ ιΘr,K(µ)
‖Ur(µ)x‖U
‖x‖

≤ ιΘr,K(µ)Σmax
r,K .

The statement of the proposition follows immediately.

Proof of Proposition 5.2. Using Proposition 8.4 with l(µ) := RUx, ur(µ) := y, wp(µ) := 0, Θ :=
Θ∗, ε := ε∗ and δ := δ∗, we have

P(|〈x,y〉U − 〈x,y〉Θ
∗

U | ≤ ε∗‖x‖U‖y‖U) ≥ 1− 2δ∗, (68)
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from which we deduce that

|〈x,y〉Θ∗U − 〈x,y〉ΘU | − ε∗‖x‖U‖y‖U ≤ |〈x,y〉U − 〈x,y〉ΘU |
≤ |〈x,y〉Θ∗U − 〈x,y〉ΘU |+ ε∗‖x‖U‖y‖U

(69)

holds with probability at least 1− 2δ∗. In addition,

P(|‖x‖2
U − (‖x‖Θ∗U )2| ≤ ε∗‖x‖2

U) ≥ 1− δ∗ (70)

and
P(|‖y‖2

U − (‖y‖Θ∗U )2| ≤ ε∗‖y‖2
U) ≥ 1− δ∗. (71)

The statement of the proposition can be now derived by combining (69) to (71) and using a union
bound argument.

Proof of Proposition 5.3. Observe that

ω = max

{
1− min

x∈V/{0}

(
‖x‖ΘU
‖x‖U

)2

, max
x∈V/{0}

(
‖x‖ΘU
‖x‖U

)2

− 1

}
.

Let us make the following assumption:

1− min
x∈V/{0}

(
‖x‖ΘU
‖x‖U

)2

≥ max
x∈V/{0}

(
‖x‖ΘU
‖x‖U

)2

− 1.

For the alternative case the proof is similar.
Next, we show that ω̄ is an upper bound for ω with probability at least 1 − δ∗. Define x∗ :=

arg minx∈V/{0},‖x‖U=1 ‖x‖ΘU . By definition of Θ∗,

1− ε∗ ≤
(
‖x∗‖Θ∗U

)2
(72)

holds with probability at least 1− δ∗. If (72) is satisfied, we have

ω̄ ≥ 1− (1− ε∗) min
x∈V/{0}

(
‖x‖ΘU
‖x‖Θ∗U

)2

≥ 1− (1− ε∗)
(
‖x∗‖ΘU
‖x∗‖Θ∗U

)2

≥ 1− (‖x∗‖ΘU )2 = ω.

Proof of Proposition 5.4. By definition of ω and the assumption on Θ∗, for all x ∈ V , it holds

|‖x‖2
U − (‖x‖Θ∗U )2| ≤ ω∗‖x‖2

U , and |‖x‖2
U − (‖x‖ΘU )2| ≤ ω‖x‖2

U .

The above relations and the definition (50) of ω̄ yield

ω̄ ≤ max

{
1− (1− ε∗) 1− ω

1 + ω∗
, (1 + ε∗)

1 + ω

1− ω∗
− 1

}
= (1 + ε∗)

1 + ω

1− ω∗
− 1,

which ends the proof.
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Proof of Proposition 8.4. Denote x := R−1
U l(µ)/‖l(µ)‖U ′ and y := (ur(µ) − wp(µ))/‖ur(µ) −

wp(µ)‖U . Let us consider K = C, which also accounts for the real case, K = R. Let

ω :=
〈x,y〉U − 〈x,y〉ΘU
|〈x,y〉U − 〈x,y〉ΘU |

.

Observe that |ω| = 1 and 〈x, ωy〉U − 〈x, ωy〉ΘU is a real number.
By a union bound for the probability of success, Θ is an ε-embedding for span(x + ωy) and

span(x− ωy) with probability at least 1− 2δ. Then, using the parallelogram identity we obtain

4|〈x,y〉U − 〈x,y〉ΘU | = |4〈x, ωy〉U − 4〈x, ωy〉ΘU |
= |‖x + ωy‖2

U − ‖x− ωy‖2
U + 4Im(〈x, ωy〉U)

−
(
(‖x + ωy‖ΘU )2 − (‖x− ωy‖ΘU )2 + 4Im(〈x, ωy〉ΘU )

)
|

= |‖x + ωy‖2
U − (‖x + ωy‖ΘU )2 −

(
‖x− ωy‖2

U − (‖x− ωy‖ΘU )2
)

− 4Im(〈x, ωy〉U − 〈x, ωy〉ΘU )|
≤ ε‖x + ωy‖2

U + ε‖x− ωy‖2
U = 4ε.

We conclude that relation (66) holds with probability at least 1− 2δ.

Proof of Proposition 8.5. We can use a similar proof as in Proposition 8.4 with the fact that if Θ
is an ε-embedding for L + Ur + Wp, then it satisfies the ε-embedding property for span(x + ωy)
and span(x− ωy).
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