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RESIDUAL-TYPE A POSTERIORI ERROR ANALYSIS OF HDG METHODS

FOR NEUMANN BOUNDARY CONTROL PROBLEMS ∗

Haitao Leng1 and Yanping Chen2

Abstract. We study a posteriori error analysis of linear-quadratic boundary control problems under
bilateral box constraints on the control which acts through a Neumann type boundary condition.
We adopt the hybridizable discontinuous Galerkin method as discretization technique, and the flux
variables, the scalar variables and the boundary trace variables are all approximated by polynomials of
degree k. As for the control variable, it is discretized by the variational discretization concept. Then an
efficient and reliable a posteriori error estimator is introduced, and we prove that the error estimator
provides an upper bound and a lower bound for the error. Finally, numerical results are presented to
illustrate the performance of the obtained a posteriori error estimator.
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1. Introduction

Many optimization processes in science and engineering lead to optimal control problems where the sought
state is a solution of a partial differential equation. The complexity of such problem needs special care in order
to obtain efficient numerical approximations for the optimization problem. One particular method is adaptive
finite element method, which can reduces the computational cost and boosts the accuracy of the numerical
solutions by locally refining the meshes around the singularity.

Although the adaptive finite element method has become a popular approach for numerical solutions of partial
differential equations since the work of Babuška and Rheinboldt [1], it has only quiet recently become popular
for constrained optimal control problems. The pioneer work concerning a posteriori error analysis for distributed
optimal control problems is published by Liu and Yan [25] for residual-type error estimators and Becker, Kapp,
and Rannacher [2] for goal-oriented error estimators. Here, we further refer readers to [20,27,31–33] for residual-
type estimators and [3,21] for goal-oriented approach. Recently, in order to guarantee the performance of the a
posteriori error estimator theoretically, many scholars have tried to prove the convergence of an adaptive finite
element algorithm for distributed optimal control problems in [14,15,23,28].

Compared to distributed optimal control problems, there exists limited work on a posteriori error analysis for
boundary optimal control problems. In [26], the convex Neumann boundary control problem was considered on
polygonal or Lipschitz piecewise C2 domain. Then a residual-type a posteriori error estimator was introduced,
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and the authors proved that the estimator provided an upper bound for the errors in the state and the control. In
[19], by introducing a Lagrange multiplier, the authors derived an efficient and reliable residual-type a posteriori
error estimator for Neumann boundary control problems on polygonal domain. In [22], Kohls, Rösch and Siebert
derived a unifying framework for the a posteriori error analysis of control constrained linear-quadratic optimal
control problems for the full and variational discretizations. In [4], Benner and Yücel investigated symmetric
interior penalty Galerkin methods for Neumann boundary control problems with an extra coefficient in cost
functional. By invoking a Lagrange multiplier associated with the control constraints, an efficient and reliable
residual-type a posteriori error estimator was obtained for the errors in the state, adjoint, control and co-control.
As for Dirichlet boundary control problems, we just mention [8,16] and references therein for more details on a
posteriori error analysis.

Recently, the hybridizable discontinuous Galerkin (HDG) methods [9], which keep the advantages of dis-
continuous Galerkin (DG) methods and result in a system with significantly reduced degrees of freedom, have
been proposed for convection diffusion problem [13], interface problem [6], flow problem [29], optimal control
problem [5, 17], and so on. In [10–12], Cockburn and Zhang studied HDG methods for second order elliptic
problems, and an a posteriori error estimator with postprocessing solutions was obtained. To the best of our
knowledge, there exists no work on residual-type a posteriori error analysis of HDG methods for boundary
control problems.

In this paper, we investigate a posteriori error analysis of Neumann optimal control problems under bilateral
box constraints on the control. The HDG method is used as discretization technique, and the flux variables,
the scalar variables and the boundary trace variables are discretized by polynomials of degree k. As for the
control variable, we adopt the variational discretization concept proposed by Hinze in [18] for approximation.
Then an efficient and reliable residual-type a posteriori error estimator without any postprocessing solutions is
introduced, and we prove that the error estimator provides not only an upper bound but also a lower bound up
to data oscillations for the errors. Finally, numerical experiments are presented to validate the performance of
the obtained estimator.

The remainder of the paper is arranged as follows: In Section 2 we introduce the model problem and the
associated optimality system. In Section 3 the discrete optimality system is given, and we prove that the discrete
scheme has a unique solution. Then we prove the reliability and efficiency of the error estimator in Section 4
and Section 5 respectively. Numerical experiments are presented in Section 6 to validate the performance of
the obtained estimator. Finally, some conclusions are provided in Section 7.

Throughout this paper, let C with or without subscript be a generic positive constant independent of the
mesh size. For ease of exposition, we denote A ≤ CB by A . B.

2. The Neumann boundary control problem

Let Ω ∈ Rd (d = 2, 3) be a polygonal (d = 2) or polyhedral (d = 3) domain with boundary ∂Ω. Before we
introduce the model problem, let us summarize some notation. For bounded and open set D ∈ Rd or D ∈ Rd−1,
we denote the usual Sobolev spaces by W s,p(D) with norm ‖ · ‖s,p,D and seminorm | · |s,p,D. The Hilbertian
Sobolev spaces are abbreviated by Hs(D) = W s,2(D) with norm ‖ · ‖s,D and seminorm | · |s,D. For s = 0,
H0(D) coincides with L2(D), and the inner product is denoted by (·, ·)D for D ∈ Rd and 〈·, ·〉D for D ∈ Rd−1.
Furthermore, we define H(div,Ω) := {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)}.

Based on the domain Ω, we consider the following Neumann boundary control problem

min
y∈H1(Ω),u∈Uad

J (y, u) =
1

2
‖y − yd‖20,Ω +

α

2
‖u‖20,∂Ω, (1)

subject to the elliptic equations

−∆y + y = f in Ω, (2a)

∇y · n = u+ g on ∂Ω, (2b)
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where the regularization parameter α is a positive constant, yd ∈ L2(Ω), f ∈ L2(Ω), g ∈ L2(∂Ω), n is the unit
vector normal to the boundary ∂Ω. The set Uad of constraints is given by

Uad = {v ∈ L2(∂Ω) : ua ≤ v ≤ ub a.e. x ∈ ∂Ω},

where ua and ub are assumed to be constant, and that ua < ub.
From [24], we know that the Neumann boundary control problem (1)-(2) admits a unique solution (y, u) ∈

H1(Ω)× L2(∂Ω), and there exists an adjoint-state z ∈ H1(Ω) such that

−∆y + y = f in Ω, (3a)

∇y · n = u+ g on ∂Ω, (3b)

−∆z + z = y − yd in Ω, (3c)

∇z · n = 0 on ∂Ω, (3d)

〈αu+ z, v − u〉∂Ω ≥ 0 ∀v ∈ Uad. (3e)

Moreover, the variational inequality (3e) is equivalent to the projection formula

u = ΠUad

(
− 1

α
z|∂Ω

)
, (4)

where ΠUad
is the L2-projection onto Uad. Then let p = −∇y and q = −∇z, the optimality system (3) can be

rewritten in a mixed form as follows:

p +∇y = 0 in Ω, (5a)

∇ · p + y = f in Ω, (5b)

−p · n = u+ g on ∂Ω, (5c)

q +∇z = 0 in Ω, (5d)

∇ · q + z = y − yd in Ω, (5e)

−q · n = 0 on ∂Ω, (5f)

〈αu+ z, v − u〉∂Ω ≥ 0 ∀v ∈ Uad. (5g)

3. The HDG discretization

Let Th be a conforming and shape regular partition of the domain Ω. For each K ∈ Th, we denote ∂K the
set of its faces. Then we define ∂Th = {∂K : K ∈ Th}. Denote Eoh the set of all interior faces of Th and E∂h the
set of all boundary faces of Th. Then we define Eh = Eoh ∪ E∂h . For any K ∈ Th and F ∈ Eh, hK and hE denote
the diameters of the element K and the face F respectively. Furthermore, we define the mesh-dependent inner
product by

(w, v)Th =
∑

K∈Th

(w, v)K , 〈w, v〉∂Th =
∑

K∈Th

〈w, v〉∂K .

For vector-valued functions, the notations are similarly defined by the dot product.
Based on the partition Th, we define the discontinuous finite element spaces for the flux variables, the scalar

variables and the boundary trace variables as following

Vk
h = {v ∈ (L2(Ω))d : v|K ∈ (Pk(K))d, ∀K ∈ Th},

W k
h = {w ∈ L2(Ω) : w|K ∈ Pk(K), ∀K ∈ Th},

Mk
h = {µ ∈ L2(Eh) : µ|F ∈ Pk(F ), ∀F ∈ Eh},
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where Pk(S) is the set of polynomials of degree no larger than k on the domain S. In this paper, we adopt
the variational concept proposed by Hinze [18] for the control variable, which suggests to approximate the
state equation but not the control variable. Therefore the control variable will be implicitly discretized by
formula (4). Then the HDG scheme of the system (5) reads as follows: Find (ph, yh, ŷh) ∈ Vk

h ×W k
h ×Mk

h ,

(qh, zh, ẑh) ∈ Vk
h ×W k

h ×Mk
h and uh ∈ Uad such that

(ph, r1)Th − (yh,∇ · r1)Th + 〈ŷh, r1 · n〉∂Th = 0, (6a)

−(ph,∇w1)Th + (yh, w1)Th + 〈p̂h · n, w1〉∂Th = (f, w1)Th , (6b)

〈p̂h · n, µ1〉∂Th\∂Ω = 0, (6c)

−〈p̂h · n, µ1〉∂Ω = 〈uh + g, µ1〉∂Ω, (6d)

(qh, r2)Th − (zh,∇ · r2)Th + 〈ẑh, r2 · n〉∂Th = 0, (6e)

−(qh,∇w2)Th + (zh, w2)Th + 〈q̂h · n, w2〉∂Th = (yh − yd, w2)Th , (6f)

〈q̂h · n, µ2〉∂Th\∂Ω = 0, (6g)

−〈q̂h · n, µ2〉∂Ω = 0, (6h)

〈αuh + ẑh, v − uh〉∂Ω ≥ 0, (6i)

for any (r1, w1, µ1) ∈ Vk
h ×W k

h ×Mk
h , (r2, w2, µ2) ∈ Vk

h ×W k
h ×Mk

h and v ∈ Uad. Similarly, we know that the
inequality (6i) is equivalent to the following projection formula

uh = ΠUad

(
− 1

α
ẑh|∂Ω

)
.

Here the normal component of numerical fluxes p̂h · n and q̂h · n is defined as

p̂h · n = p · n + τ1(yh − ŷh) on ∂Th,

q̂h · n = q · n + τ2(zh − ẑh) on ∂Th,

for stabilization parameters τ1 and τ2.
For ease of exposition, we define operators B by

B(r1, w1, µ1; r2, w2, µ2; τ)

=(r1, r2)Th − (w1,∇ · r2)Th + 〈µ1, r2 · n〉∂Th
+ (∇ · r1, w2)Th + (w1, w2)Th

+ 〈τ(w1 − µ1), w2〉∂Th − 〈r1 · n + τ(w1 − µ1), µ2〉∂Th ,

Then the HDG scheme (6) can be rewritten according to the operator B: Find (ph, yh, ŷh) ∈ Vk
h ×W k

h ×Mk
h ,

(qh, zh, ẑh) ∈ Vk
h ×W k

h ×Mk
h and uh ∈ Uad such that

B(ph, yh, ŷh; r1, w1, µ1; τ1) = (f, w1)Th + 〈uh + g, µ1〉∂Ω, (7a)

B(qh, zh, ẑh; r2, w2, µ2; τ2) = (yh − yd, w2)Th , (7b)

〈αuh + ẑh, v − uh〉∂Ω ≥ 0, (7c)

for any (r1, w1, µ1) ∈ Vk
h ×W k

h ×Mk
h , (r2, w2, µ2) ∈ Vk

h ×W k
h ×Mk

h and v ∈ Uad.

Theorem 3.1. We assume that τ1 = τ2 > 0 on ∂Th and 0 ∈ Uad. Then the system (7) has a unique solution.
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Proof. Since the system (7) is finite dimensional, we only need to prove that the system (7) just has the zero
solution for the case of f = yd = g = 0. Let (r1, w1, µ1) = (qh,−zh,−ẑh) in (7a) and (r2, w2, µ2) = (−ph, yh, ŷh)
in (7b), we have

0 =B(ph, yh, ŷh; qh,−zh,−ẑh; τ1) + B(qh, zh, ẑh;−ph, yh, ŷh; τ2)

=(yh, yh)Th − 〈uh, ẑh〉∂Ω ≥ (yh, yh)Th + α〈uh, uh〉∂Ω,

from (7c) and the assumption 0 ∈ Uad. Hence yh = 0 and uh = 0. Furthermore, let (r1, w1, µ1) = (ph, yh, ŷh)
in (7a) and (r2, w2, µ2) = (qh, zh, ẑh) in (7b), we have

0 =(ph,ph)Th + (yh, yh)Th + 〈τ1(yh − ŷh), yh − ŷh〉∂Th ,
0 =(qh,qh)Th + (zh, zh)Th + 〈τ2(zh − ẑh), zh − ẑh〉∂Th

Therefore ph = 0, ŷh = 0, qh = 0, zh = 0 and ẑh = 0. Then we conclude the proof. �

4. The residual-type a posteriori error estimator

4.1. Auxiliary results

Before we start to prove a posteriori error estimator for the model problem, we first provide some auxiliary
results that will play an important role in the proof.

For each element K ∈ Th and face F ∈ Eh, we denote Πo
j and Π∂

j the L2-projections onto Pj(K) and Pj(F )
for the nonnegative integer j. Then, from [6] we have the following error estimates

Lemma 4.1. For any K ∈ Th and F ∈ Eh, we have

‖Πo
jv‖0,K ≤‖v‖0,K ∀v ∈ L2(K),

‖Π∂
j v‖0,F ≤‖v‖0,F ∀v ∈ L2(F ),

‖v −Πo
0v‖0,K .hK‖∇v‖0,K ∀v ∈ H1(K),

‖v −Πo
0v‖0,∂K .h

1/2
K ‖∇v‖0,K ∀v ∈ H1(K).

We conclude this subsection by introducing a lemma that has been proved in [7].

Lemma 4.2. Let F be a face of the element K ∈ Th, nF the unit vector normal to F , and s > 0. Assume that
v is a given function in H1+s(K) and ∆v ∈ L2(K). For any wh ∈ Pk(F ), we have

〈∇v · nF , wh〉F . h−1/2
F ‖wh‖0,F (‖∇v‖0,K + hK‖∆v‖0,K).

4.2. Reliability of the error estimator

We begin this section by defining error estimators for each K ∈ Th in the following

ηs,K,1 =‖ph +∇yh‖0,K , ηas,K,1 = ‖qh +∇zh‖0,K ,
ηs,K,2 =hK‖f −∇ · ph − yh‖0,K , ηas,K,2 = hK‖yh − yd −∇ · qh − zh‖0,K ,

ηs,∂K =h
−1/2
K ‖yh − ŷh‖0,∂K , ηas,∂K = h

−1/2
K ‖zh − ẑh‖0,∂K .
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Furthermore, we define

η2
s =

∑
K∈Th

{η2
s,K,1 + η2

s,K,2 + η2
s,∂K},

η2
as =

∑
K∈Th

{η2
as,K,1 + η2

as,K,2 + η2
as,∂K}.

Next, we consider the following auxiliary problem: Find p(uh),q(uh) ∈ H(div,Ω) and y(uh), z(uh) ∈ H1(Ω)
such that

p(uh) +∇y(uh) = 0 in Ω, (8a)

∇ · p(uh) + y(uh) = f in Ω, (8b)

−p(uh) · n = uh + g on ∂Ω, (8c)

q(uh) +∇z(uh) = 0 in Ω, (8d)

∇ · q(uh) + z(uh) = y(uh)− yd in Ω, (8e)

−q(uh) · n = 0 on Ω. (8f)

Now the error ‖u − uh‖0,∂Ω + ‖p − p(uh)‖0,Ω + ‖y − y(uh)‖0,Ω + ‖q − q(uh)‖0,Ω + ‖z − z(uh)‖0,Ω can be

bounded by ‖zh − z(uh)‖1,Ω and
{∑

K∈Th η
2
as,∂K

}1/2

.

Lemma 4.3. Let (u,p, y, q, z) and (uh,ph, yh, ŷh, qh, zh, ẑh) be the solutions of problems (5) and (7) respectively.
Moreover let (p(uh), y(uh), q(uh), z(uh)) as defined above. Then the following error estimate holds

‖u− uh‖0,∂Ω + ‖p− p(uh)‖0,Ω + ‖y − y(uh)‖0,Ω + ‖q− q(uh)‖0,Ω

+ ‖z − z(uh)‖0,Ω .
{ ∑

K∈Th

η2
as,∂K

}1/2

+ ‖zh − z(uh)‖1,Ω

Proof. From (5), (8) and integration by parts to yield

〈z − z(uh), u− uh〉∂Ω = ‖y − y(uh)‖20,Ω. (9)

Obviously, (p−p(uh), y−y(uh)) is the solution of system (5a)- (5c) with g = −uh and f = 0, and (q−q(uh), z−
z(uh)) is the solution of system (5d)-(5f) with yd = y(uh). Therefore we have

‖p− p(uh)‖0,Ω + ‖y − y(uh)‖0,Ω . ‖u− uh‖0,∂Ω, (10)

‖q− q(uh)‖0,Ω + ‖z − z(uh)‖0,Ω . ‖y − y(uh)‖0,Ω, (11)

by the trace theorem. From (5g), (7c) and (9), we obtain

α‖u− uh‖20,∂Ω ≤〈ẑh − z(uh), u− uh〉∂Ω

≤‖zh − z(uh)‖1,Ω‖u− uh‖0,∂Ω

+ 〈zh − ẑh, (p− p(uh)) · n〉∂Ω

.‖zh − z(uh)‖1,Ω‖u− uh‖0,∂Ω (12)

+
{ ∑

K∈Th

η2
as,∂K

}1/2(
‖p− p(uh)‖0,Ω

+ ‖y − y(uh)‖0,Ω
)
,
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by the trace theorem and Lemma 4.2. Then we can conclude the proof by combining (10)-(12). �

Lemma 4.4. Let (p(uh), y(uh), q(uh), z(uh)) and (uh,ph, yh, ŷh, qh, zh, ẑh) be the solutions of problems (8) and
(7), then the following error estimates hold

‖∇(yh − y(uh))‖0,K ≤ ηs,K,1 + ‖ph − p(uh)‖0,K , (13)

‖∇(zh − z(uh))‖0,K ≤ ηas,K,1 + ‖qh − q(uh)‖0,K , (14)

for each K ∈ Th.

Proof. Since p(uh) = −∇y(uh) and q(uh) = −∇z(uh) in each K ∈ Th, we can obtain the error estimates (13)
and (14) directly by the triangle inequality. �

Now we are ready to prove a posteriori error estimators for ‖ph − p(uh)‖0,Ω + ‖yh − y(uh)‖0,Ω and ‖qh −
q(uh)‖0,Ω + ‖zh − z(uh)‖0,Ω.

Lemma 4.5. Let (p(uh), y(uh), q(uh), z(uh)) and (uh,ph, yh, ŷh, qh, zh, ẑh) be the solutions of problems (8) and
(7), then we have

‖ph − p(uh)‖0,Ω + ‖yh − y(uh)‖0,Ω + ‖τ1/2
1 (yh − ŷh)‖0,∂Th . ηs, (15)

‖qh − q(uh)‖0,Ω + ‖zh − z(uh)‖0,Ω + ‖τ1/2
2 (zh − ẑh)‖0,∂Th . ηs + ηas, (16)

for τ1 = τ2 = h−1
K on each ∂K for all K ∈ Th, where

‖ · ‖20,∂Th =
∑

K∈Th

‖ · ‖20,∂K .

Proof. According to the definition of the operator B to infer that

B(p(uh)− ph, y(uh)− yh, y(uh)− ŷh; r, w, µ; τ1) = 0,

for any (r, w, µ) ∈ Vk
h×W k

h ×Mk
h . Then from the above equality and the definition of the operator B, we have

‖ph − p(uh)‖20,Ω + ‖yh − y(uh)‖20,Ω + ‖τ1/2
1 (yh − ŷh)‖20,∂Th

=B(p(uh)− ph, y(uh)− yh, y(uh)− ŷh; p(uh)− ph, y(uh)− yh, y(uh)− ŷh; τ1)

=B(p(uh)− ph, y(uh)− yh, y(uh)− ŷh; δp, δy, δŷ; τ1),

where δp = p(uh)− ph − r, δy = y(uh)− yh − w, and δŷ = y(uh)− ŷh − µ for any (r, w, µ) ∈ Vk
h ×W k

h ×Mk
h .

By integration by parts we yield

B(p(uh)− ph, y(uh)− yh, y(uh)− ŷh; δp, δy, δŷ; τ1)

=− (ph +∇yh, δp)Th + (f −∇ · ph − yh, δy)Th

+ 〈yh − ŷh, δp · n〉∂Th + 〈τ1(ŷh − yh), δy〉∂Th
− 〈(p(uh)− ph) · n + τ1(ŷh − yh), δŷ〉∂Th .

From (6c), (6d) and (8c), we arrive at

−〈(p(uh)− ph) · n + τ1(ŷh − yh), δŷ〉∂Th = 0.
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Now we set r = Πo
0(p(uh) − ph) in the definition of δp and w = Πo

0(y(uh) − yh) in the definition of δy. Then
from Lemma 4.1 we have

− (ph +∇yh, δp)Th + (f −∇ · ph − yh, δy)Th

.
{ ∑

K∈Th

η2
s,K,1

}1/2

‖p(uh)− ph‖0,Ω

+
{ ∑

K∈Th

η2
s,K,2

}1/2

‖∇(y(uh)− yh)‖0,Ω,

and

〈τ1(ŷh − yh), δy〉∂Th

.
{ ∑

K∈Th

η2
s,∂K

}1/2

‖∇(y(uh)− yh)‖0,Ω.

By using Lemma 4.2 to yield

〈yh − ŷh, δp · n〉∂Th
=
∑

K∈Th

∑
F∈∂K

〈yh − ŷh, δp · n〉F

.
{ ∑

K∈Th

η2
s,∂K

}1/2

‖p(uh)− ph‖0,Ω

+
{ ∑

K∈Th

η2
s,∂K

}1/2({ ∑
K∈Th

η2
s,K,2

}1/2

+ ‖yh − y(uh)‖0,Ω
)
.

Now we can obtain the approximation result (15) by combining Lemma 4.4, Young’s inequality and the above
equalities and inequalities. Moreover, the error estimate (16) can be proved similarly. �

Remark 4.1. Compared to the error estimators introduced in [10–12], the Lemma 4.5 provides an a posteriori
error estimator without any postprocessing solutions, hence it is easer to calculate.

Combining Lemma 4.3, Lemma 4.4 and Lemma 4.5 results in the following reliability estimate

Theorem 4.1. Let (u,p, y, q, z) and (uh,ph, yh, ŷh, qh, zh, ẑh) be the solutions of problems (5) and (7). Then
we have the following error estimate

‖u− uh‖0,∂Ω + ‖p− ph‖0,Ω + ‖y − yh‖1,Ω
+ ‖q− qh‖0,Ω + ‖z − zh‖1,Ω . ηs + ηas,

for τ1 = τ2 = h−1
K on each ∂K for all K ∈ Th.

5. Efficiency of the error estimator

In this section, we will prove that, up to data oscillations, the estimator ηs + ηas also provides a lower bound
for the error. Especially, we will show that the local contributions of the estimator can be bounded from above
by the local constituents of the error and the associated data oscillations.
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First of all, we define the data oscillations by

osc2(f, Th) =
∑

K∈Th

osc2(f,K),

osc2(yd, Th) =
∑

K∈Th

osc2(yd,K),

where

osc(f,K) = hK‖f −Πo
kf‖0,K ,

osc(yd,K) = hK‖yd −Πo
kyd‖0,K .

Obviously, osc(f,K) and osc(yd,K) are of same order with ηs,K,2 and ηas,K,2 for non smooth f and yd and of
higher order for smooth f and yd.

Next we denote by λKi , 1 ≤ i ≤ 3, the barycentric coordinates of K ∈ Th and refer to EK = 27Π3
i=1λ

K
i as

the associated element bubble function. From [19], we have

‖pK‖20,K . (pK , pKEK)K K ∈ Th, (17a)

‖pKEK‖0,K . ‖pK‖0,K K ∈ Th, (17b)

‖pKEK‖1,K . h−1
K ‖pK‖0,K K ∈ Th, (17c)

for pK ∈ Pk(K). Then the following error estimates hold.

Theorem 5.1. Let (u,p, y, q, z), (p(uh), y(uh), q(uh), z(uh)) and (uh,ph, yh, ŷh,
qh, zh, ẑh) be the solutions of problems (5), (8) and (7) respectively. Then we have

ηs,K,1 ≤‖p− ph‖0,K + ‖∇(y − yh)‖0,K K ∈ Th, (18)

ηs,K,2 .osc(f,K) + ‖p− ph‖0,K + ‖y − yh‖0,K K ∈ Th, (19)∑
K∈Th

η2
s,∂K .‖u− uh‖20,∂Ω + ‖p− ph‖20,Ω + ‖y − yh‖21,Ω + osc2(f, Th), (20)

and

ηas,K,1 ≤‖q− qh‖0,K + ‖∇(z − zh)‖0,K K ∈ Th, (21)

ηas,K,2 .osc(yd,K) + ‖q− qh‖0,K + ‖z − zh‖0,K
+ ‖y − yh‖0,K K ∈ Th, (22)∑

K∈Th

η2
as,∂K .‖u− uh‖20,∂Ω + ‖q− qh‖20,Ω + ‖z − zh‖21,Ω

+ ‖y − yh‖20,Ω + osc2(yd, Th). (23)

Proof. Obviously, the inequalities (18) and (21) can be obtained directly by the triangle inequality. According
to the definition of ηs,K,2 and the triangle inequality we know that

ηs,K,2 ≤ osc(f,K) + hK‖Πo
kf −∇ · ph − yh‖0,K .

Setting pK = Πo
kf −∇ · ph − yh we obtain

h2
K‖pK‖20,K .h2

K(Πo
kf − f + f −∇ · ph − yh, EKpK)K

=h2
K(Πo

kf − f,EKpK)K + h2
K(∇ · (p− ph) + y − yh, EKpK)K ,
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from (17a). Then we can obtain the error estimate (19) by using (17), Young’s inequality and the above two
inequalities. And the approximation result (22) can be proved similarly. Now we turn to prove the error estimate
(20). From the proof of Lemma 4.5, we have∑

K∈Th

η2
s,∂K .‖p(uh)− ph‖20,Ω + ‖y(uh)− yh‖21,Ω

+
∑

K∈Th

{η2
s,K,1 + η2

s,K,2}.

Then by using (10), (18), (19), the triangle inequality and the above inequality to infer that∑
K∈Th

η2
s,∂K . ‖u− uh‖0,∂Ω + ‖p− ph‖20,Ω + ‖y − yh‖21,Ω + osc2(f, Th).

Therefore the approximation result (20) is derived. And the inequality (23) can be proved similarly. �

6. Numerical experiments

Now we provide two examples in order to examine the quality of the derived estimator. As we know, an
adaptive algorithm consists of the loops ”SOLVE→ESTIMATE→MARK→REFINE”. In this section, a
fix-point iteration algorithm presented in [34] is used for solving the model problem. In step REFINE, the
newest vertex bisection algorithm [30] is employed, and the following marking strategy is used in step MARK∑

K∈Mh

η2
K ≥ θη2,

where

η2 = η2
s + η2

as,

η2
K = η2

s,K,1 + η2
s,K,2 + η2

s,∂K + η2
as,K,1 + η2

as,K,2 + η2
as,∂K .

Furthermore, we define

E =‖u− uh‖0,∂Ω + ‖p− ph‖0,Ω + ‖y − yh‖1,Ω
+ ‖q− qh‖0,Ω + ‖z − zh‖1,Ω.

Here, we note that the figures of convergence history are plotted in log-log coordinates.

Example 6.1. Based on the domain Ω = (0, 1)2, we consider an example with ua = −0.1, ub = 0.1 and
α = 1. Let the functions f , yd and g be such that the Neumann boundary control problem has the following
exact solutions

y = sin(2πx1) sin(2πx2), z = cos(2πx1), u = ΠUad

{
− 1

α
z|∂Ω

}
.

We test the example for k = 1 and k = 2. From the convergence history in Figure 1 for θ = 0.2 and θ = 0.6,
we find that the error E is equivalent to the estimator η and the error E and the estimator η can achieve the
optimal convergence order by adaptive refinement. Furthermore, the effectiveness index is presented in Figure
2, which indicates the obtained a posteriori error estimator is very efficient. Finally, the profiles of the numerical
control and adjoint state are shown in Figure 3.
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Figure 1. Left: Convergence history for k = 1. Right: Convergence history for k = 2.

Figure 2. Left: The effectiveness index for k = 1. Right: The effectiveness index for k = 2.

Figure 3. Left: The profile of the numerical control for k = 1. Right: The profile of the numerical adjoint

state for k = 1.
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Example 6.2. We consider an example with a boundary term
∫
∂Ω
yg1dx in the objective functional. Then the

adjoint problem possesses the Nuemann boundary condition ∇z · n = g1. Here the designed domain is given by
Ω = (−1, 1)2\([0, 1]
× (−1, 0]). The control constraints and the regularization parameter are set as ua = −0.2, ub = 0.2 and α = 1.
Furthermore let the functions f , yd and g be such that the Neumann boundary control problem has the following
exact solutions

y(r, θ1) = 0.

z(r, θ1) = r2/3 cos
(2

3
θ1

)
,

u(r, θ1) = ΠUad

(
− r2/3 cos

(2

3
θ1

))
,

where r =
√
x2

1 + x2
2, θ1 = arccos(r−1x · e1) and e1 = [1, 0]T .

Figure 4. The profiles of the initial mesh (Top-Left), the adaptive mesh (Top-Right), the numerical control

(Bottom-Left) and the numerical adjoint state (Bottom-Right) for k = 2 and θ = 0.4.

The adjoint exhibits a typical singularity at the reentrant corner of the domain Ω. In Figure 4, we show
the profiles of the initial mesh, the adaptive mesh, the numerical control and the numerical adjoint state for
k = 2 and θ = 0.4. We can find that the mesh nodes are concentrated around the reentrant corner where the
singularity is induced. Hence the obtained a posteriori error estimator can grab efficiently the singularity of
the problem. In Figure 5, the convergence history for k = 1 and k = 2 is presented, which indicates that the
estimator η is equivalent to the error E and the estimator η and the error E can achieve the optimal convergence
order while θ is less than a certain value. In Figure 6, the effectiveness index for k = 1 and k = 2 are provided.
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Figure 5. The convergence history for k = 1 (Left) and k = 2 (Right).

Figure 6. The effectiveness index for k = 1 (Left) and k = 2 (Right).

We can find that the effectiveness index for k = 1 is between 0.96 and 1 and the effectiveness index for k = 2 is
between 0.6 and 1.2, which means the obtained a posteriori error estimator is very efficient.

7. Conclusions

In this paper, a Neumann boundary optimal control problem is considered. We use the hybridizable dis-
continuous Galerkin method as the discretization technique, and the flux variables, the scalar variables and
the boundary trace variables are approximated by polynomials of degree k. Then an efficient and reliable a
posteriori error estimator without any postprocessing solutions is obtained for the errors. Finally, two numerical
experiments are provided to verify the performance of the obtained a posteriori error estimator.

This work is just the first step for a posteriori error analysis of HDG methods for boundary control problems.
Next we extend the method and the result to the more complicated situations for instance the Dirichlet boundary
control problem and the Stokes optimal control problem.
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