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OPTIMAL SUPERCONVERGENCE ANALYSIS FOR THE CROUZEIX-RAVIART AND THE

MORLEY ELEMENTS

JUN HU, LIMIN MA, AND RUI MA

Abstract. In this paper, an improved superconvergence analysis is presented for both the Crouzeix-
Raviart element and the Morley element. The main idea of the analysis is to employ a discrete
Helmholtz decomposition of the difference between the canonical interpolation and the finite element
solution for the first order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson
element, respectively. This in particular allows for proving a full one order superconvergence result
for these two mixed finite elements. Finally, a full one order superconvergence result of both the
Crouzeix-Raviart element and the Morley element follows from their special relations with the first
order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element respectively.
Those superconvergence results are also extended to mildly-structured meshes.

Keywords. superconvergence, Crouzeix-Raviart element, Morley element, Raviart–Thomas element,
Hellan–Herrmann–Johnson element
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1. Introduction

The superconvergence of both lower order conforming finite elements and mixed finite ele-
ments is well analyzed for second order elliptic problems, see for instance, [5, 6, 11, 12, 15] and
the references therein. However, for nonconforming elements, the reduced continuity of both trial
and test functions makes the corresponding superconvergence analysis very difficult. So far, most
of superconvergence analysis results for nonconforming elements are focused on rectangular or
nearly parallelogram triangulations, see [19, 24, 28]. There are a few superconvergence results
for nonconforming elements on triangular meshes [18, 23, 26]. In [18], a half order superconver-
gence was analyzed for the Crouzeix-Raviart (CR for short hereinafter) element and the Morley
element. The main idea therein is to employ a special relation between the CR element and the
Raviart–Thomas (RT for short hereinafter) element, and the equivalence between the Morley el-
ement and the Hellan–Herrmann–Johnson (HHJ for short hereinafter) element to explore some
conformity of discrete stresses by these two nonconforming elements. However, a full one order
superconvergence was observed in the numerical tests [18]. Such a gap is caused by a half order
superconvergence result for both the RT element [5] and the HHJ element [18], which is a half
order lower than the optimal superconvergence indicated by numerical tests. It is stressed that the
superconvergence analysis of the first order RT element in [5] was heavily dependent on a result
of Sobolev spaces and directly used it to estimate one key sum of boundary terms. Since a counter
example [25] shows that this result of Sobolev spaces can not be improved, it is indeed difficult
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to refine the former superconvergence result within the analysis of [5]. In [23], the superconver-
gence analysis of [3] for the conforming linear element was extended to the mixed finite element,
which proved a full one order superconvergence result for the first order RT element method of
the Poisson problem under the condition that the solution of the problem is in H4+ǫ(Ω,R) for any
ǫ > 0.

In this paper, a new analysis for the aforementioned boundary terms is presented, which leads
to a full one order superconvergence result for both the RT element and the HHJ element on
uniform meshes and improves the corresponding half order superconvergence result in [5] and
[18], respectively. The main ingredient of such a superconvergence analysis is to employ a discrete
Helmholtz decomposition of the difference between the canonical interpolation and the finite
element solution of the corresponding mixed element. In particular, it allows for some vital
cancellation between the boundary terms sharing a common vertex in one key sum. Then, the final
improved superconvergence result follows from the analysis in [18] for both the CR element of
the Poisson problem and the Morley element of the plate bending model problem. Without using
variational error expansions in [3, 23], the superconvergence results can be easily generalized to
mildly structured piecewise (α, σ)-meshes in [3, 20, 23]. Moreover, the mesh-size condition is
employed in this paper such that

∣∣ ln hK

∣∣ ≈
∣∣ ln h| for all K ∈ Th

with hK = diamK and h = maxK∈Th
hK. This assumption is weaker than the quasi-uniformity

assumption in [23].
The remaining paper is organized as follows. Some notations are presented in Section 2. In

Section 3, a full one order superconvergence result for both the RT element and the CR element is
proved. In Section 4, a full one order superconvergence result for both the HHJ element and the
Morley element is proved. This section also investigates the superconvergence result on mildly
structured (α, σ)-meshes. Some numerical tests are presented to verify the theoretical results in
Section 5.

2. Notation

Given a nonnegative integer k and a bounded domain Ω ⊂ R2 with Lipschitz boundary ∂Ω,

let Wk,∞(Ω,R), Hk(Ω,R), | · |k,∞,Ω, ‖ · ‖k,Ω and | · |k,Ω denote the usual Sobolev spaces, norm, and
semi-norm, respectively. Let n denote the outnormal of ∂Ω, H1

0(Ω,R) := {u ∈ H1(Ω,R) : u|∂Ω = 0}
and H2

0(Ω,R) := {u ∈ H2(Ω,R) : u|∂Ω = ∂nu = 0}. Denote the standard L2(Ω,R) inner product by
(·, ·).

Suppose that Ω ⊂ R2 is a bounded polygonal domain covered exactly by a shape-regular
partition Th into triangles. Let |K| denote the area of element K and |e| the length of edge e. Let hK

denote the diameter of element K ∈ Th and h := maxK∈Th
hK. Denote the set of all interior edges

and boundary edges of Th by Ei
h and Eb

h, respectively, and Eh = Ei
h ∪ Eb

h. For any interior edge

e = K1
e ∩K2

e , denote the element with larger global label by K1
e , the one with smaller global label by

K2
e . Denote the corresponding unit normal vector which points from K1

e to K2
e by ne. Let [·] be the

jump of piecewise functions over edge e, namely

[v]|e := v|K1
e
− v|K2

e

for any piecewise function v. For K ⊂ R2, r ∈ Z+, let Pr(K,R) be the space of all polynomials
of degree not greater than r on K. Denote the piecewise gradient operator and the piecewise
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hessian operator by ∇h and ∇2
h, respectively. For any piecewise function vh, denote ‖vh‖0,∞,h =

maxK∈Th
‖vh‖0,∞,K.

Throughout this paper, except in Subsect. 4.3 for mildly structured (α, σ)-meshes, the supercon-
vergence results require triangulations to be uniform, which means that any two adjacent triangles
of Th form a parallelogram.

Recall some notation in [5]. For any triangle K ∈ Th, from the three outer unit normal vectors,
denote the two which are closest to orthogonal by f1 and f2. This procedure is in general not
unique, however, only the directions of vectors are focused, thus there will be no restriction.

For each i = 1, 2, denote a parallelogram, which consists of two triangles sharing an edge with
normal fi, by Nfi

. We partition the domain Ω into those parallelograms Nfi
and some resulted

boundary triangles Kfi
. In an element K, denote the edge with unit normal vector fi by efi

, the
length of efi

by hfi
, and the unit tangent vector of efi

with counterclockwise by tfi
. We denote the

two endpoints of the edge efi
by p1

fi
and p2

fi
, and p1

fi
p2

fi
= hfi

tfi
. Define

Pb :=
{

p ∈ ∂Ω : p is a vertex of Kfi

}
.

Decompose the setPb into two partsPb = P1
b∪P2

b , whereP1
b is the set of corners of the domain, and

P2
b refers to the remaining vertices. For any vertex p ∈ P1

b, denote the unique boundary triangle

Kfi
by Kp, and for any vertex p ∈ P2

b , denote the two boundary triangles Kfi
sharing p by Kl

p and
Kr

p, and

Kr
p = {x + hfi

tfi
: x ∈ Kl

p}.
For any p ∈ P2

b, let ωp denote the trapezoid which consists of three elements and p is a midpoint

of its edge, see Figure 1. Let |P1
b| = κ denote the number of the vertices in P1

b. It is known that κ
is a fixed number independent of h. Figure 1 shows an example of the definitions and notations
concerning a triangulation.

ωp

hf1
tf1

hf2
tf2

p1
f1

p2
f1

Kf1
Kf1

Kf1
Kf1

Kf1
Kf1

Kf1

Nf1
Nf2

f1

f2

p ∈ P2
b p ∈ P1

b

KpKl
p Kr

p

Figure 1. An uniform triangulation ofΩ.

Throughout the paper, a positive constant independent of the mesh size is denoted by C, which
refers to different values at different places. For ease of presentation, we shall use the symbol A . B
to denote that A ≤ CB.
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3. Superconvergence for the RT element and the CR element

In this section, we first improve the superconvergence result for the RT element from a half
order by Brandts [5] to a full one order. Then, based on this result, we derive a full one order
superconvergence result for the CR element, which improves the half order result in [18].

3.1. Second order elliptic problem. Given f ∈ L2(Ω,R), consider a model problem: Seek u ∈
H1

0(Ω,R) such that

(∇u,∇v) = ( f , v) for any v ∈ H1
0(Ω,R).(3.1)

By introducing an auxiliary variable σ := ∇u, the problem can be formulated as the following
equivalent mixed problem which finds (σ, u) ∈ H(div,Ω,R2) × L2(Ω,R) such that:

(3.2)
(σ, τ) + (u,divτ) = 0 for any τ ∈ H(div,Ω,R2),

(v,divσ) = (− f , v) for any v ∈ L2(Ω,R),

with

H(div,Ω,R2) := {τ ∈ L2(Ω,R2), divτ ∈ L2(Ω,R)}.
The corresponding finite element approximation to (3.1) seeks uCR ∈ CR0(Th), such that

(∇huCR,∇hvh) = ( f , vh) for any vh ∈ CR0(Th),(3.3)

with the CR element spaces [13] over Th

CR(Th) :=
{

v ∈ L2(Ω,R) : v|K ∈ P1(K) for any K ∈ Th,

∫

e
[v] ds = 0 for any e ∈ Ei

h

}
,

CR0(Th) :=
{

v ∈ CR(Th) :

∫

e
v ds = 0 for any e ∈ Eb

h

}
.

To analyze the superconvergence of the CR element, we introduce the first order RT element
[30]. Its shape function space is

RTK := (P0(K))2
+ xP0(K) for any K ∈ Th.

The corresponding global finite element space reads

RT(Th) :=
{
τ ∈ H(div,Ω,R2) : τ|K ∈ RTK for any K ∈ Th

}
.

We use the piecewise constant space to approximate the displacement, namely,

URT(Th) :=
{

v ∈ L2(Ω,R) : v|K ∈ P0(K) for any K ∈ Th

}
.

The corresponding RT element method of (3.2) seeks (σRT, uRT) ∈ RT(Th) ×URT(Th) such that

(3.4)
(σRT, τh) − (uRT,divτh) = 0 for any τh ∈ RT(Th),

(vh,divσRT) = ( f , vh) for any vh ∈ URT(Th).

According to [8], the discrete system (3.4) has an unique solution (σRT, uRT) ∈ RT(Th) ×URT(Th).
Meanwhile, the following optimal error estimates hold with detailed proofs referring to [14]

‖ σ − σRT ‖0,Ω . h|σ|1,Ω,
‖ div(σ − σRT) ‖0,Ω . h|σ|2,Ω,

provided that σ ∈ H2(Ω,R2).
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3.2. Superconvergence of the RT element. In this subsection, we first introduce the analysis in
[5] for the RT element and then modify the suboptimal error estimate therein for a boundary term
to a full one order optimal result. Introduce the Fortin interpolation operatorΠRT, which is widely
used in error analysis, such as [14, 16]. Define ΠRT : H1(Ω,R2)→ RT(Th) as

∫

e
(ΠRTτ − τ)Tne ds = 0 for any e ∈ Eh, τ ∈ H1(Ω,R2).

It is proved in [30] that for any τ ∈ H1(Ω,R2),

(3.5) (div(τ −ΠRTτ), vh) = 0 for any vh ∈ URT(Th),

‖ τ −ΠRTτ ‖0,Ω. h|τ|1,Ω.
It follows from (3.4) and (3.5) that

divσRT = divΠRTσ.

Therefore, σRT −ΠRTσ ∈ RT(Th) is divergence free, and is a piecewise constant vector field. Hence,
a substitution of τh = σRT −ΠRTσ into (3.2) and (3.4) yields

(σ, σRT −ΠRTσ) = (σRT, σRT −ΠRTσ).(3.6)

We need the following result from [5] on Sobolev spaces. Denote the subset of the points in Ω
having distance less than h from the boundary by ∂hΩ:

∂hΩ := {x ∈ Ω : ∃y ∈ ∂Ω such that dist(x, y) ≤ h}.

Lemma 3.1. For v ∈ Hs(Ω,R), where 0 ≤ s ≤ 1
2 ,

‖ v ‖0,∂hΩ
. hs ‖ v ‖s,Ω .

Assume that the triangulation Th is uniform. Suppose that the solution of (3.2) satisfies σ ∈
H

5
2 (Ω,R2). Define a matrix F, whose transportation has the two unit normal vectors f1 and f2 as

columns. Denote the canonical basis vectors of R2 in respectively the x1- and x2-direction by e1

and e2. In [5], the analysis and (3.6) decompose the error as follows,

‖ σRT −ΠRTσ ‖20,Ω =
(
F(σRT −ΠRTσ), F

−T(σ −ΠRTσ)
)

=

∑

K∈Th

∫

K

(
F(σRT −ΠRTσ)

)T
F−T

(
σ −ΠRTσ

)
dx

=

2∑

i, j=1

Ii j,

where

Ii j =

∑

K∈Th

∫

K
eT

i F(σRT −ΠRTσ)(e
T
i F−Te j)(σ −ΠRTσ)

Te j dx.

For simplicity, only the sum I11 is considered. LetΩ be partitioned into parallelograms Nf1
and the

remaining boundary triangles Kf1
. Since σRT −ΠRTσ is piecewise constant, the sum I11 is written as

a sum over parallelograms Nf1
and boundary triangles Kf1

in [5, Thm. 3.2]:

|I11| ≤ |I1
11| + |I2

11|,(3.7)

where

I1
11 = (eT

1 F−Te1)
∑

Nf1

∫

Nf1

eT
1 F(σRT −ΠRTσ)(σ −ΠRTσ)

Te1 dx,
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(3.8) I2
11 = (eT

1 F−Te1)
∑

Kf1

eT
1 F(σRT −ΠRTσ)

∫

Kf1

(σ −ΠRTσ)
Te1 dx.

Note that eT
1 F(σRT −ΠRTσ) = (σRT −ΠRTσ)Tf1 is the normal component of σRT −ΠRTσ to the shared

edge of the two triangles forming a parallelogram Nf1
. Thus, eT

1 F(σRT − ΠRTσ) is constant on Nf1
,

and therefore, leads to the following superconvergence property [5]:

|I1
11| . h2 ‖ σRT −ΠRTσ ‖0,Ω |σ|2,Ω.(3.9)

For the sum I2
11 of boundary terms, the analysis in [5] showed

|I2
11| . h3/2 ‖ σ −ΠRTσ ‖0,Ω |σ| 3

2 ,Ω
.(3.10)

The estimate (3.10) is resulted from a direct application of Lemma 3.1. Since the estimate in Lemma
3.1 can not be improved as shown by a counter example in [25], it is very difficult to improve the
factor in (3.10) from h3/2 to h2 following that analysis.

A new analysis for a full one order superconvergence result of the RT element is provided in the
following. The main idea here is to employ a discrete Helmholtz decomposition [2, 9] of σRT−ΠRTσ
in the following lemma. As a result, it allows for some vital cancellation between the boundary
terms in I2

11 sharing a common vertex. This idea was also employed in [23] to prove a full one
order optimal superconvergence result of the RT element.

Lemma 3.2. For any function τh ∈ RT(Th) which satisfies div τh = 0,

τh ∈ curlSh,

with Sh := {v ∈ H1(Ω,R) : v|K ∈ P1(K,R) for any K ∈ Th}.

We need the following result for the interpolation operator ΠRT.

Lemma 3.3. For any p ∈ P2
b, Kl

p, Kr
p ∈ Kfi

, i = 1, 2, if τ is linear on the patch ωp, then
∫

Kl
p

(τ −ΠRTτ) dx =

∫

Kr
p

(τ −ΠRTτ) dx.

Proof. Denote the centroid, the vertices and the edges of element Kl
p by MKl

p
, {pl

i}3i=1 and {el
i}3i=1, and

those of element Kr
p by MKr

p
, {pr

i }3i=1 and {er
i }3i=1. For edge el

i, denote the midpoint, the unit outward

normal vector and the perpendicular height by ml
i, nl

i and dl
i, respectively. And denote those of

edge er
i by mr

i , nr
i and dr

i , respectively. The basis functions of the RT element on elements Kl
p and

Kr
p are denoted by φl

i =
1
dl

i

(x − pl
i) and φr

i =
1
dr

i
(x − pr

i ), 1 ≤ i ≤ 3, respectively.

Since τ is linear on the patch ωp, τ(x) = τ(p) + ∇τ · (x − p). Thus,

τ(x) −ΠRTτ(x) = (I −ΠRT)
(
∇τ · (x − p)

)
.

The fact that ∫

Kl
p

(I −ΠRT)
(
∇τ · (MKl

p
− p)

)
dx = 0 and

∫

Kl
p

∇τ · (x −MKl
p
) dx = 0

leads to ∫

Kl
p

(
τ(x) −ΠRTτ(x)

)
dx = −

∫

Kl
p

ΠRT

(
∇τ · (x −MKl

p
)
)

dx.(3.11)
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Note that ∇τ|Kl
p
= ∇τ|Kr

p
, nl

i = nr
i and ml

i −MKl
p
= mr

i −MKr
p
. Thus

(∇τ · (ml
i −MKl

p
))Tnl

i = (∇τ · (mr
i −MKr

p
))Tnr

i .

Since
∫

Kl
p
φl

i dx =
∫

Kr
p
φr

i dx, this and (3.11) lead to
∫

Kl
p

(τ −ΠRTτ) dx =

∫

Kr
p

(τ −ΠRTτ) dx,

which completes the proof. �

Employing the discrete Helmholtz decomposition, we can improve the estimate of the term I11

of [5] in the following lemma.

Lemma 3.4. Suppose that (σ, u) denotes the solution to (3.2) with σ ∈ H
5
2 (Ω,R2), (σRT, uRT) denotes the

solution to (3.4) on a uniform triangulation Th. It holds that

|I11| . h2(|σ| 5
2 ,Ω
+ κ| ln h|1/2|σ|1,∞,Ω) ‖ σRT −ΠRTσ ‖0,Ω .

Proof. By Lemma 3.2, there exists wh ∈ P1 such that

σRT −ΠRTσ = curlwh ∈
(
URT(Th)

)2
.

Then, the term I2
11 in (3.8) reads

I2
11 = (eT

1 F−Te1)
∑

Kf1

eT
1 Fcurlwh

∫

Kf1

(σ −ΠRTσ)
Te1 dx.(3.12)

Since

(3.13) eT
1 Fcurlwh =

1

hf1

∫

ef1

∇wh · tf1
ds =

wh(p2
f1

) − wh(p1
f1

)

hf1

,

a substitution of (3.13) into (3.12) leads to

|I2
11| .

∣∣ ∑

p∈P2
b

wh(p)

hf1

( ∫

Kl
p

(σ −ΠRTσ)
Te1 dx −

∫

Kr
p

(σ −ΠRTσ)
Te1 dx

)∣∣

+

∑

p∈P1
b

∣∣wh(p)

hf1

∫

Kp

(σ −ΠRTσ)
Te1 dx

∣∣.
(3.14)

Lemma 3.3 and the Bramble-Hilbert lemma show
∣∣
∫

Kl
p

(σ −ΠRTσ)
Te1 dx −

∫

Kr
p

(σ −ΠRTσ)
Te1 dx

∣∣ . h3|σ|2,ωp
.(3.15)

A substitution of (3.15) and the Cauchy-Schwarz inequality into (3.14) yields

|I2
11| .h

( ∑

p∈P2
b

‖ wh ‖20,ωp

)1/2( ∑

p∈P2
b

|σ|22,ωp

)1/2
+ h2

( ∑

p∈P1
b

‖ wh ‖20,∞,Kp

)1/2( ∑

p∈P1
b

|σ|21,∞,Kp

)1/2

.h ‖ wh ‖0,∂hΩ
|σ|2,∂hΩ

+ κh2|σ|1,∞,Ω ‖ wh ‖0,∞,h .
Lemma 3.1 implies that

(3.16) h ‖ wh ‖0,∂hΩ
|σ|2,∂hΩ

. h2 ‖ wh ‖ 1
2 ,Ω
|σ| 5

2
,Ω . h2 ‖ wh ‖1,Ω |σ| 5

2
,Ω.
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A discrete Sobolev inequality holds from [4, 7] that

‖ wh ‖0,∞,h. | ln h|1/2 ‖ wh ‖1,Ω .(3.17)

Then

|I2
11| . (h2|σ| 5

2 ,Ω
+ κh2| ln h|1/2|σ|1,∞,Ω) ‖ wh ‖1,Ω .(3.18)

A substitution of (3.9) and (3.18) into (3.7) concludes

|I11| . (h2|σ| 5
2 ,Ω
+ κh2| ln h|1/2|σ|1,∞,Ω) ‖ σRT −ΠRTσ ‖0,Ω,

which completes the proof. �

Similar arguments for the sums I12, I21 and I22 prove a full one order superconvergence property
for the RT element as follows.

Theorem 3.1. Suppose that (σ, u) is the solution to (3.2) with σ ∈ H
5
2 (Ω,R2), and (σRT, uRT) is the solution

to (3.4) on a uniform triangulation Th. It holds that

‖ σRT −ΠRTσ ‖0,Ω. h2
(
|σ| 5

2 ,Ω
+ κ| ln h|1/2|σ|1,∞,Ω

)
.

Remark 3.1. Lemma 3.4 employs Lemma 3.1 to control (3.16) instead of using the infinity norm in [23,
Lemma 3.7]. This avoids to control the number of vertices on the edges and allows a weaker assumption
(4.20) on (α, σ)-meshes in Subsect. 4.3.

3.3. Superconvergence of the CR element. A full one order superconvergence result for the CR
element follows from a special relation between the RT element and the CR element.

A post-processing mechanism [5] is employed in [18] for the superconvergence analysis of the
CR element. Given q ∈ RT(Th), define function Khq ∈ CR(Th) × CR(Th) as follows.

Definition 1. 1.For each interior edge e ∈ Ei
h, the elements K1

e and K2
e are the pair of elements sharing e.

Then the value of Khq at the midpoint me of e is

Khq(me) =
1

2

(
q|K1

e
(me) + q|K2

e
(me)

)
.

2.For each boundary edge e ∈ Eb
h, let K be the element having e as an edge, and K′ be an element sharing

an edge e′ ∈ Ei
h with K. Let e′′ denote the edge of K′ that does not intersect with e, and m, m′ and m′′ denote

the midpoints of the edges e, e′ and e′′, respectively. Then the value of Khq at the point m is

Khq(m) = 2Khq(m′) − Khq(m′′).

m’

m”

m

K

K’

e

e’

e”

∂Ω

Due to the superconvergence result of the RT element in Theorem 3.1 and the special relation
between the RT element and the CR element [27], the superconvergence result of the CR element
for (3.1) can be improved from a half order to a full one order following the analysis in [18].
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Theorem 3.2. Suppose that u ∈ H
7
2 (Ω,R) ∩H1

0(Ω,R) is the solution to (3.1), uCR is the solution to (3.3)
by the CR element on a uniform triangulation Th, and f ∈W1,∞(Ω,R). It holds that

‖ ∇u − Kh∇huCR ‖0,Ω. h2(|u| 7
2 ,Ω
+ κ| ln h|1/2|u|2,∞,Ω + | f |1,∞,Ω).

Remark 3.2. As analyzed in [5], the vector KhΠRTσ is a higher order approximation of σ thanΠRTσ itself.
Thanks to the one order superconvergence result of the RT element in Theorem 3.2 and the equivalence between
the RT element and the ECR element [17], a similar argument may prove a full one order superconvergence
result for the ECR element method of the Poisson problem (3.1).

4. Superconvergence for the HHJ element and theMorley element

Given f ∈ L2(Ω,R), the plate bending model problem finds uP ∈ H2
0(Ω,R) such that

(4.1) (∇2uP,∇2v) = ( f , v) for any v ∈ H2
0(Ω,R).

Suppose S := symmetric R2×2. Given K ∈ Th and τ ∈ H1(K, S), let

τnn = n
Tτn

with the unit outnormal n of ∂K. Define the following two spaces

S :={τ ∈ L2(Ω, S) : τ|K ∈ H1(K, S) for any K ∈ Th,

and τnn is continuous across interior edges},
D :={v ∈ H1

0(Ω,R) : v|K ∈ H2(K,R) for any K ∈ Th}.
For any τ ∈ S and v ∈ D, define the bilinear form

〈divdivhτ, v〉 := −
∑

K∈Th

(
(τ,∇2v)L2(K) −

∫

∂K
τnn

∂v

∂n
ds
)
.

By introducing an auxiliary variable σP := ∇2uP, the mixed formulation of (4.1) seeks (σP, uP) ∈
S ×D, see [21],

(σP, τ) + 〈divdivhτ, uP〉 = 0 for any τ ∈ S,

〈divdivhσP, v〉 = (− f , v) for any v ∈ D.
(4.2)

The Morley element method of (4.1) finds uM ∈M(Th) such that

(4.3) (∇2
huM,∇2

hv) = ( f , v) for any v ∈M(Th),

where the Morley element space is defined in [29] by

M(Th) :={v ∈ L2(Ω,R) : v|K ∈ P2(K) for each K ∈ Th, v is continuous at each

interior vertex and vanishes at each boundary vertex,

∫

e
[
∂v

∂n
] ds = 0

for all e ∈ Ei
h, and

∫

e

∂v

∂n
ds = 0 for all e ∈ Eb

h}.

Introduce the first order HHJ element [21]:

HHJ(Th) :={τ ∈ S : τ|K ∈ P0(K, S) for any K ∈ Th},
UHHJ(Th) :={v ∈ H1

0(Ω,R) : v|K ∈ P1(K,R) for any K ∈ Th}.
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The corresponding approximation to (4.2) finds (σHHJ, uHHJ) ∈ HHJ(Th) ×UHHJ(Th) such that

(σHHJ, τ) + 〈divdivhτ, uHHJ〉 = 0 for any τ ∈ HHJ(Th),

〈divdivhσHHJ, v〉 = (− f , v) for any v ∈ UHHJ(Th).
(4.4)

4.1. Superconvergencec of the HHJ element. Introduce the interpolation operator ΠHHJ : S →
HHJ(Th) [10]:

(4.5)

∫

e
(ΠHHJτ)nnds =

∫

e
τnnds for all e ∈ Eh.

Moreover if τ ∈ H1(Ω, S), then

(4.6) ‖τ −ΠHHJτ‖0,Ω . h|τ|1,Ω.
Since v|K ∈ P1(K,R) for any v ∈ UHHJ(Th) and K ∈ Th, it holds that

〈divdivh(τ −ΠHHJτ), v〉 = 0 for any v ∈ UHHJ(Th).(4.7)

Define the rigid motion space

RM =






c1 − c3x2

c2 + c3x1




∣∣∣∣c1, c2, c3 ∈ R



 .

The subsequent parts analyze the superconvergence of the HHJ element. The argument is
similar as in Section 3.2. As proved in [18, Lemma 5.1], it holds

(σHHJ − σP, σHHJ −ΠHHJσP) = 0.

This leads to

(σHHJ −ΠHHJσP, σHHJ −ΠHHJσP) = (σHHJ −ΠHHJσP, σP −ΠHHJσP).

LetΨi ∈ P0(K, S), 1 ≤ i ≤ 3 denote the basis functions, i.e., (Ψi)fjf j
= δi j, where {fi}3i=1 are the normal

vectors as shown in Figure 1. Then, the following decomposition holds:

(4.8) (σHHJ −ΠHHJσP, σHHJ −ΠHHJσP) =

3∑

i=1

Ji,

where

Ji :=
∑

K∈Th

∫

K
(σHHJ −ΠHHJσP)fifi

Ψi : (σP −ΠHHJσP)dx.

For simplicity, only the sum J1 is considered in [18]. Since (σHHJ − ΠHHJσP)f1f1
is continuous and

constant on Nf1
, andΨ1 is constant on Nf1

, the sum J1 is rewritten as a sum over parallelogram Nf1

and boundary triangles Kf1
in [18, Thm. 5.3]:

|J1| ≤ |J1
1| + |J2

1|,
where

J1
1 =

∑

N f1

(σHHJ −ΠHHJσP)f1f1

∫

N f1

Ψ1 : (σP −ΠHHJσP)dx,

(4.9) J2
1 =

∑

K f1

∫

K f1

(σHHJ −ΠHHJσP)f1f1
Ψ1 : (σP −ΠHHJσP)dx.
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Theorem 5.3 of [18] has an optimal superconvergence result for J1
1

|J1
1| . h2‖σHHJ −ΠHHJσP‖0,Ω‖σP‖2,Ω,(4.10)

and a suboptimal result for J2
1

|J2
1| . h

3
2 ‖σHHJ −ΠHHJσP‖0,Ω‖σP‖ 3

2 ,Ω
.

We will modify the estimate for J2
1 in [18] to an optimal superconvergence result by use of the

following two lemmas.

Lemma 4.1. [22, Theorem 5.2] Let Ω be simply connected. Given τh ∈ HHJ(Th), if 〈divdivhτh, vh〉 = 0
for any vh ∈ UHHJ(Th), then there exists a unique function φh ∈ (Sh)2/RM such that

τh = HTǫ(φh)H

with H =



0 −1

1 0



 and ǫ(φh) =
(
∇φh + (∇φh)T

)
/2.

It follows from (4.2), (4.4) and (4.7) that

〈divdivh(σHHJ −ΠHHJσP), vh〉 = 0 for any vh ∈ UHHJ(Th).

Lemma 4.1 shows that there exists φh ∈ (Sh)2/RM such that

(4.11) σHHJ −ΠHHJσP = HTǫ(φh)H.

Lemma 4.2. For any p = (p1, p2) ∈ P2
b,K

l
p,K

r
p ∈ Kf1

, if τP ∈ S is linear on the patch ωp, then
∫

Kl
p

(τP −ΠHHJτP) dx =

∫

Kr
p

(τP −ΠHHJτP) dx,

where P2
b, Kl

p , Kr
p and Kf1

are defined in Section 3.2 as shown in Figure 1.

Proof. Recall some notations used in Lemma 3.3, namely, the centroid MKl
p
= (M1

Kl
p
,M2

Kl
p
), the

vertices {pl
i}3i=1, and the edges {el

i}3i=1 of element Kl
p, and those of element Kr

p by MKr
p
= (M1

Kr
p
,M2

Kr
p
),

{pr
i }3i=1 and {er

i }3i=1. For edge el
i, denote the midpoint, the unit outward normal vector and the tangent

vector by ml
i, nl

i and tl
i, respectively. And denote those of edge er

i by mr
i , nr

i and tr
i , respectively. The

basis functions of the HHJ element on elements Kl
p and Kr

p are denoted by

Ψ
l
i =

1

2
(
(nl

i)
Ttl

i−1

)(
(nl

i)
Ttl

i+1

)
(
tl
i+1(tl

i−1)T
+ tl

i−1(tl
i+1)T

)

and

Ψ
r
i =

1

2
(
(nr

i )
Ttr

i−1

)(
(nr

i )
Ttr

i+1

)
(
tr
i+1(tr

i−1)T
+ tr

i−1(tr
i+1)T

)
,

respectively. Note that (Ψl
i)nl

jn
l
j
= δi j and (Ψr

i )nr
j
nr

j
= δi j.

Since τP = (τ
i j
P)2

i, j=1 is linear on the patch ωp,

τP(x) = τP(p) + (x1 − p1)H1 + (x2 − p2)H2.

where H
i j
k =

∂
∂xk

τ
i j
P, i, j, k = 1, 2, and Hk = (H

i j
k )2

i, j=1 are constant matrices. Thus,

τP(x) −ΠHHJτP(x) = (I −ΠHHJ)
(
(x1 −M1

Kl
p
)H1 + (x2 −M2

Kl
p
)H2

)
.
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The fact that ∫

Kl
p

(x −MKl
p
) dx = 0

leads to

(4.12)

∫

Kl
p

(
τP(x) −ΠHHJτP(x)

)
dx = −

∫

Kl
p

ΠHHJ

(
(x1 −M1

Kl
p
)H1 + (x2 −M2

Kl
p
)H2

)
dx.

Note that Hk|Kl
p
= Hk|Kr

p
, k = 1, 2 and nl

i = nr
i , thus,

(nl
i)

THknl
i = (nr

i )
THknr

i .

Since
∫

Kl
p
Ψ

l
i dx =

∫
Kr

p
Ψ

r
i dx and ml

i −MKl
p
= mr

i −MKr
p
, these and (4.12) lead to

∫

Kl
p

(τP −ΠHHJτP) dx =

∫

Kr
p

(τP −ΠHHJτP) dx,

which completes the proof. �

Lemma 4.3. Assume σP ∈ H
5
2 (Ω). Then,

|J2
1| . h2(|σP| 5

2 ,Ω
+ κ| ln h|1/2|σP|1,∞,Ω)‖σHHJ −ΠHHJσP‖0,Ω.

Proof. Notations f1, tf1
, hf1

, p1
tf1

, p2
tf1

, Kf1
, P1

b, P2
b, Kl

p , Kr
p and Kf1

below are defined in Section 3.2 as

shown in Figure 1. A substitution of (4.11) into (4.9) shows that

J2
1 =

∑

Kf1

(HTǫ(φh)H)f1f1

∫

Kf1

Ψ1 : (σP −ΠHHJσP) dx.(4.13)

Since

(HTǫ(φh)H)fifi
=

1

hf1

∫

ef1

∇(tf1
· φh) · tf1

dx =
tf1
· φh(p2

tf1
) − tf1

· φh(p1
tf1

)

hf1

,(4.14)

this leads to

|J2
1| .

∣∣∣∣
∑

p∈P2
b

tf1
· φh(p)

hf1

(∫

Kl
p

Ψ1 : (σP −ΠHHJσP) dx −
∫

Kr
p

Ψ1 : (σP −ΠHHJσP) dx
)∣∣∣∣

+

∑

p∈P1
b

∣∣∣
tf1
· φh(p)

hf1

∫

Kp

Ψ1 : (σP −ΠHHJσP) dx
∣∣∣.

(4.15)

Lemma 4.2 and the Bramble-Hilbert lemma imply

∣∣
∫

Kl
p

Ψ1 : (σP −ΠHHJσP) dx −
∫

Kr
p

Ψ1 : (σP −ΠHHJσP) dx
∣∣ . h3|σP|2,ωp

.(4.16)

A substitution of (4.16) and the Cauchy-Schwarz inequality into (4.15) yields

|J2
1| . h

( ∑

p∈P2
b

‖φh‖20,ωp

)1/2( ∑

p∈P2
b

|σP|2,ωp

)1/2
+ h2

( ∑

p∈P1
b

‖φh‖20,∞,Kp

)1/2( ∑

p∈P1
b

|σP|1,Kp

)1/2

. h‖φh‖0,∂hΩ
|σP|2,∂hΩ

+ κh2‖φh‖0,∞,h|σP|1,∞,Ω.
Similar arguments as in Lemma 3.4 conclude the proof. �
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Similar arguments for the sums J2 and J3 prove a full one order superconvergence property for
the HHJ elements as follows.

Theorem 4.1. Suppose that (σP, uP) solves the plate bending problem (4.1) with σP ∈ H
5
2 (Ω, S), and

(σHHJ, uHHJ) solves (4.4) by the HHJ element on a uniform triangulation. It holds that

‖σHHJ −ΠHHJσP‖0,Ω . h2
(
|σP| 5

2 ,Ω
+ κ|lnh|1/2|σP|1,∞,Ω

)
.

4.2. Superconvergence analysis of the Morley element. A full one order superconvergence result
for the Morley element follows from a special relation between the HHJ element and the Morley
element.

Given v ∈ H2
0(Ω,R)+M(Th), define the interpolation operatorΠD : H2

0(Ω,R)+M(Th)→ UHHJ(Th)
by

ΠDv(z) = v(z) for each vertex z of Th.

Hence, introduce an auxiliary method: the modified Morley element finds ũM ∈M(Th) such that

(4.17) (∇2
hũM,∇2

hv) = ( f ,ΠDv) for any v ∈M(Th).

Arnold et al. [1] proved the following equivalence between the HHJ element and the modified
Morley element:

(4.18) σHHJ = ∇2
hũM and uHHJ = ΠDũM,

and moreover,

(4.19) ‖∇2
h(uM − ũM)‖0,Ω . h2‖ f ‖0,Ω.

We consider the post-processing mechanism for the superconvergence of the Morley element as
in Section 3.3. For any given q ∈ HHJ(Th), Khq ∈ (CR(Th))2×2.

Based on the the special relation (4.18), the improved superconvergence result of the HHJ
element in Theorem 4.1 gives rise to a full one order superconvergence result of the Morley
element following the procedure in [18]. This superconvergence result improves the half order
result for the Morley element in [18].

Theorem 4.2. Suppose that uP ∈ H
7
2 (Ω,R) ∩H2

0(Ω,R) is the solution to (4.1), uM is the solution to (4.3)
by the Morley element on a uniform triangulation Th, and f ∈W1,∞(Ω,R). It holds that

‖ ∇2uP − Kh∇2
huM ‖0,Ω. h2(|uP| 7

2 ,Ω
+ κ| ln h|1/2|uP|2,∞,Ω + | f |1,∞,Ω).

4.3. Remark for (α, σ)-mesh. This subsection presents the superconvergence result on mildly struc-
tured meshes. Suppose Th is a shape-regular triangulation. For any e ∈ Eh, let he denote the length
of e. For any boundary vertex p ∈ Pb, let hp := maxK⊂ωp

hK with the patch of ωp. Recall the

definitions of O(h1+α) approximate parallelograms and mildly structured meshes in [3, 23]. Given
an interior edge e ∈ Ei

h, let K1
e and K2

e be the two elements sharing e. Say K1
e and K2

e form an O(h1+α
e )

approximate parallelogram if the lengths of any two opposite edges differ only by O(h1+α
e ). Given

a boundary vertex p ∈ ∂Ω associated with two boundary triangles Kl
p and Kr

p (similarly as p ∈ P2
b

shown in Figure 1), let el
1 (resp. er

1) denote the boundary edge of Kl
p (resp. Kr

p) and nl
1 (resp. nr

1)

denote its unit outnormal. By going along the boundaries of Kl
p and Kr

p, define the other pairs of

corresponding edges. Say Kl
p and Kr

p form an O(h1+α
p ) approximate parallelogram if the lengths of

any two corresponding edges differ only by O(h1+α
p ) and |nl

1 − nr
1| = O(hαp).

The triangulation Th satisfies the (α, σ)-condition if the following hold:
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(1) Let Ei
h = E1 + E2. For each e ∈ E1, K1

e and K2
e form an O(h1+α

e ) approximate parallelogram,

while
∑

e∈E2
|K1

e | + |K2
e | = O(hσ).

(2) Let Pb = P1
b + P2

b denote the set of boundary vertices. The elements associated with

each p ∈ P2
b form an O(h1+α

p ) approximate parallelogram, and |P1
b | = κ, where κ is fixed

independent of h.

The result in [23, Thm. 4.5] requires quasi-uniform meshes to control the number of vertices on
the boundary. The analysis of this subsection only assumes that Th is a regular triangulation with
the following mesh-size condition

∣∣ ln hK

∣∣ ≈
∣∣ ln h| for all K ∈ Th.(4.20)

Under the assumption (4.20), the discrete Sobolev inequality (3.17) holds as well [4, 7].
For mildly structured meshes, the normal vectors fi in (4.8) vary from different triangles. Let

Ψe denote basis function of HHJ(Th) associated to e with (Ψe)nene
= 1. Rewrite the terms in (4.8) as

follows

(σHHJ −ΠHHJσP, σHHJ −ΠHHJσP) =

3∑

i=1

∑

K∈Th

∫

K
(σHHJ −ΠHHJσP)fifi

Ψi : (σP −ΠHHJσP)dx

= J1
+ J2

(4.21)

with

J1 :=
∑

e∈Ei
h

(σHHJ −ΠHHJσP)nene

( ∫

K1
e

Ψe : (σP −ΠHHJσP)dx +

∫

K2
e

Ψe : (σP −ΠHHJσP)dx
)
,

J2 :=
∑

e∈Eb
h

(σHHJ −ΠHHJσP)nene

∫

Ke

Ψe : (σP −ΠHHJσP)dx.

Below we only analyze the term J2 for the (α, σ)-mesh. The estimate of J1 follows a similar argu-
ment. The following lemma proves a result analogous to Lemma 4.2 for an O(h1+α) approximate
parallelogram.

Lemma 4.4. For any p = (p1, p2) ∈ P2
b associated with two boundary triangles Kl

p,K
r
p, if τP ∈ S is linear

on the patch ωp, then

∣∣
∫

Kl
p

(τP −ΠHHJτP) dx −
∫

Kr
p

(τP −ΠHHJτP) dx
∣∣ . h2+α

p |τP|1,ωp
.

Proof. Recall some notation in Lemma 4.2. It follows from (4.12) that

(4.22)

∫

Kl
p

(
τP(x) −ΠHHJτP(x)

)
dx = −

∫

Kl
p

ΠHHJ

(
(x1 −M1

Kl
p
)H1 + (x2 −M2

Kl
p
)H2

)
dx.

with Hk|Kl
p
= Hk|Kr

p
, k = 1, 2. Given 1 ≤ i ≤ 3, the basis functions of the HHJ element on elements Kl

p

and Kr
p are denoted by

Ψ
l
i =

1

2
(
(nl

i)
Ttl

i−1

)(
(nl

i)
Ttl

i+1

)
(
tl
i+1(tl

i−1)T
+ tl

i−1(tl
i+1)T

)

and

Ψ
r
i =

1

2
(
(nr

i )
Ttr

i−1

)(
(nr

i )
Ttr

i+1

)
(
tr
i+1(tr

i−1)T
+ tr

i−1(tr
i+1)T

)
,
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respectively. Let ml
i = (ml

i,1,m
l
i,2). Since (Ψl

i)nl
jn

l
j
= δi j, (4.22) shows

∫

Kl
p

(
τP(x) −ΠHHJτP(x)

)
dx = −|Kl

p|
3∑

i=1

(
(ml

i,1 −M1
Kl

p
)H1 + (ml

i,2 −M2
Kl

p
)H2)nl

in
l
i
Ψ

l
i.(4.23)

Since Kl
p and Kr

p form an O(h1+α
p ) approximate parallelogram, this leads to

|Kl
p − Kr

p| . hαp|Kl
p|, |(ml

i −MKl
p
) − (mr

i −MKr
p
)| . hαp|ml

i −MKl
p
|,

|Ψl
i −Ψr

i | . hαp|Ψl
i|, |(nl

i)
THknl

i − (nr
i )

THknr
i | . hαp|Hk|.

The combination of the above estimates with (4.23) leads to

∣∣
∫

Kl
p

(τP −ΠHHJτP) dx −
∫

Kr
p

(τP −ΠHHJτP) dx
∣∣ . hαp|Kl

p||ml
i −MKl

p
||Ψl

i|(|H1| + |H2|) . h2+α
p |τP|1,ωp

.

This concludes the proof. �

Lemma 4.5. Let ρ = min(1, α) and assume σP ∈ H
5
2 (Ω). Then,

|J2| . h1+ρ(|σP| 5
2 ,Ω
+ κ| ln h|1/2|σP|1,∞,Ω)‖σHHJ −ΠHHJσP‖0,Ω.

Proof. The proof is analogous to that of Lemma 4.3. Let p1
e and p2

e denote the two vertices of e such
that te points from p1

e to p2
e . The same arguments as in (4.13)-(4.14) lead to

J2
=

∑

e∈Eb
h

(HTǫ(φh)H)nene

∫

Ke

Ψe : (σP −ΠHHJσP) dx

and

(HTǫ(φh)H)nene
=

1

|e|

∫

e
∇(te · φh) · te dx =

te · φh(p2
e ) − te · φh(p1

e )

|e| .

with φh ∈ (Sh)2/RM in (4.11). Given any p ∈ Pb, recall its two associated boundary triangles Kl
p

and Kr
p. It holds that

|J2| ≤
∑

p∈Pb

∣∣ tel
1
· φh(p)

|el
1|

∫

Kl
p

Ψel
1

: (σP −ΠHHJσP) dx −
ter

1
· φh(p)

|er
1|

∫

Kr
p

Ψer
1

: (σP−ΠHHJσP) dx
∣∣(4.24)

Since the elements associated with each p ∈ P2
b form an O(h1+α

p ) approximate parallelogram, this

shows |tel
1
− ter

1
| . hαp,

∣∣|el
1| − |er

1|
∣∣ . hαp|el

1| and |Ψel
1
−Ψer

1
| . hαp. The combination with (4.24) and the

estimate of the interpolation ΠHHJ analogy to (4.6) on each element

|J2| .
∑

p∈P2
b

|φh(p)|
(

h1+α
p |σP|1,Kr

p
+ |el

1|−1
∣∣∣
∫

Kl
p

Ψel
1

: (σP−ΠHHJσP) dx−
∫

Kr
p

Ψel
1

: (σP−ΠHHJσP) dx
∣∣∣
)

+

∑

p∈P1
b

|el
1|−1|φh(p)|

(∣∣
∫

Kl
p

Ψel
1

: (σP −ΠHHJσP) dx
∣∣ +

∣∣
∫

Kr
p

Ψer
1
(σP −ΠHHJσP) dx

∣∣
)
.
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Recall ρ = min(1, α) and let Π1 denote the L2 projection onto linear polynomials on ωp. A triangle
inequality, the approximation of Π1 and Lemma 4.4 modify the result in (4.16) as follows

∣∣
∫

Kl
p

Ψel
1

: (σP −ΠHHJσP) dx −
∫

Kr
p

Ψel
1

: (σP −ΠHHJσP) dx
∣∣

.h3
p|σP|2,ωp

+
∣∣
∫

Kl
p

Ψel
1

: (Π1σP −ΠHHJ(Π1σP)) dx−
∫

Kr
p

Ψel
1

: (Π1σP −ΠHHJ(Π1σP)) dx
∣∣

.h
2+ρ
p ‖σP‖2,ωp

.

The remaining arguments in Lemma 4.3 conclude the proof. �

Theorem 4.1. If Th satisfies the (α, σ)-condition and the meshsize condition (4.20), then

‖σHHJ −ΠHHJσP‖0,Ω . h1+ρ
(
‖σP‖ 5

2 ,Ω
+ κ|lnh|1/2|σP|1,∞,Ω

)
(4.25)

with ρ = min
(
1, α, σ2

)
.

Proof. The estimate of the term for e ∈ E1 in J1 on the right-hand side of (4.21) combines Theorem 5.3
of [18] for uniform meshes and a similar argument as in Lemma 4.4 for O(h1+α) approximate
parallelograms. The details are omitted. It holds

∑

e∈E1

(σHHJ −ΠHHJσP)nene

( ∫

K1
e

Ψe : (σP −ΠHHJσP)dx +

∫

K2
e

Ψe : (σP −ΠHHJσP)dx
)

.h1+min(1,α)‖σHHJ −ΠHHJσP‖0,Ω‖σP‖2,Ω.

For e ∈ E2, the estimate of the interpolation ΠHHJ shows

∑

e∈E2

(σHHJ −ΠHHJσP)nene

( ∫

K1
e

Ψe : (σP −ΠHHJσP)dx +

∫

K2
e

Ψe : (σP −ΠHHJσP)dx
)

.

∑

e∈E2

he(|K1
e |1/2 + |K2

e |1/2)‖σHHJ −ΠHHJσP‖K1
e
|(|σP|1,∞,K1

e
+ |σP|1,∞,K2

e
)

.h1+ σ2 ‖σHHJ −ΠHHJσP‖0,Ω|σP|1,∞,Ω.

Hence,

|J1| . h1+min(1,α, σ2 )‖σHHJ −ΠHHJσP‖0,Ω(‖σP‖2,Ω + |σP|1,∞,Ω).

The combination with (4.21) and Lemma 4.5 concludes the proof. �

Remark 4.1. LetΩ be decomposed into N subdomains, where N is independent of h. Th satisfies the piecewise
(α, σ)-condition if the restriciton of Th to each subdomain satisfies the (α, σ)-condition. As remarked in [23,
Remark 3.8], (4.25) still holds on piecewise (α, σ)-grids.

Remark 4.2. Suppose Th satisfies the (α, σ)-condition and (4.20). Following similar arguments, a super-
convergence result analogous to Theorem 3.1 shall hold for the Raviart-Thomas element, i.e.,

‖ σRT −ΠRTσ ‖0,Ω. h1+ρ
(
|σ| 5

2 ,Ω
+ κ| ln h|1/2|σ|1,∞,Ω

)
.

The details are omitted.
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5. Numerical examples

In this section, we present numerical tests for the Morley element to confirm the theoretical
superconvergence analysis in Section 4. The results for RT and CR elements can be found in
[18, 23]. Consider the following plate bending problem

∆
2uP = f in Ω

with uP ∈ H2
0(Ω). The exact solution is

uP(x1, x2) = (x2 −
√

3x1)2(x2 −
√

3x1 + 2
√

3)2x2
2(
√

3 − x2)2.

We compare the error ‖∇2uP − ∇2
huM‖0,Ω, the interpolation error ‖∇2

huM − ΠHHJ∇2uP‖0,Ω and the
post-processing error ‖∇2uP − Kh∇2

huM‖0,Ω by the Morley element.
Figure 2 shows three kinds of initial meshes. The meshes are generated by uniform refinements.

The corresponding results are listed in Table 1-3. The initial mesh in Figure 2(a) is a uniform
mesh. The results in Table 1 coincides with the theoretical results. The initial mesh in Figure 2(b)
is a (∞, 1)-mesh. However, it is a piecewise uniform mesh and in this case Ω is decomposed into
two subdomains. Table 2 shows that the interpolation error is optimal while the postprocessing
error is suboptimal. This happens because the values of the postprocessing Kh on the edges of the
boundary of subdomains are not chosen appropriately. The initial mesh in Figure 2(c) is a delaunay
mesh. Since the meshes are generated by uniform refinements, the initial mesh partitions Ω into
several subdomains and its refinement are piecewise uniform meshes. The result in Table 3 is
similar to that in Table 2.

(a) uniform mesh (b) piecewise uniform mesh (c) delaunay mesh

Figure 2. Initial meshes
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