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Abstract
We present a coupling of the Finite Element and the Boundary Element Method in
an isogeometric framework to approximate either two-dimensional Laplace inter-
face problems or boundary value problems consisting of two disjoint domains. We
consider the Finite Element Method in the bounded domains to simulate possibly
non-linear materials. The Boundary Element Method is applied in unbounded or thin
domains where the material behavior is linear. The isogeometric framework allows
to combine different design and analysis tools: first, we consider the same type of
NURBS parameterizations for an exact geometry representation and second, we use
the numerical analysis for the Galerkin approximation. Moreover, it facilitates to per-
form h- and p-refinements. For the sake of analysis, we consider the framework of
strongly monotone and Lipschitz continuous operators to ensure well-posedness of
the coupled system. Furthermore, we provide a priori error estimates. We additionally
show an improved convergence behavior for the errors in functionals of the solution
that may double the rate under certain assumptions. Numerical examples conclude
the work which illustrate the theoretical results.

Keywords Finite element method · Boundary element method · Non-symmetric
coupling · Isogeometric analysis · Non-linear operators · Laplacian interface
problem · Boundary value problems · Multiple domains · Well-posedness ·
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1 Introduction and preliminaries

In the last decades, simulation gained more and more importance as a fourth pillar
of sciences besides theory, experiments, and observations. A successful simulation
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means a good imitation of some phenomena. This allows the analysis, optimization,
and predictions to be made ad hoc with a certain reliability, which depends on the
application. For example, this can be achieved for problems that are formulated as
boundary and initial value problems by choosing the right mathematical model, a
good representation of the computational domain, and a suitable numerical method.

We encounter in this work two types of model problems. First, we consider a
Laplacian interface problem in Section 2. Its specificity lies in the combination of
a possibly non-linear and non-homogeneous problem in a bounded domain with a
linear and homogeneous problem in an unbounded domain. Formally, we aim to find
the solution u in the interior domain Ω , such that

− div (U∇u) = f,

where U is a given non-linear diffusion tensor and f the given right-hand side. In the
exterior domain R2\Ω we are looking for a solution ue which satisfies

−Δue = 0.

Both solutions are connected through suitable jump conditions on the boundary ∂Ω ,
namely,

u|∂Ω − ue|∂Ω = u0,

U∇u|∂Ω · ν − ∇ue|∂Ω · ν = φ0,

where ν is an outer normal vector with respect to Ω , u0 and φ0 are given data.
Furthermore, the following decay condition for |x| → ∞ is needed

ue = O
(
|x|−1

)
.

Note that an additional compatibility condition will be required to ensure the last
equation. This will be addressed in the next section. This type of model describes
a wide class of engineering and physical applications. For instance, one example
for linear elasticity can be found in [43]. We address the second type of model in
Section 4. It is a Boundary Value Problem (BVP) with two disjoint domains Ω1 and
Ω2, which are separated by a (thin) gap, which we call Ωb. In the domains we allow
non-linear equations. However, the gap is assumed to be filled with a linear material,
where the simplest form is air. For a visualization we refer to Fig. 1. The resulting
BVP is similar to the one introduced above, however, we prescribe here in addition
homogeneous Dirichlet boundary conditions on the interior boundary of Ω1 and on
the exterior one of Ω2, which we denote by ∂Ω0,1 and ∂Ω0,2, respectively. Moreover,
we remove the decay condition, since the domain Ωb is also bounded. Altogether, we
consider the following BVP: Find u1, u2 and ub such that

− div (Ui∇ui) = fi in Ωi,

−Δub = 0 in Ωb,

ub|∂Ωi
− ui |∂Ωi

= u0,i on ∂Ωi\∂Ω0,i ,

Ui∇ui |∂Ωi
· νi + ∇ub|∂Ωi

· νb = φ0,i on ∂Ωi\∂Ω0,i ,

ui |∂Ω0,i = 0 on ∂Ω0,i ,
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where i = 1, 2. Here, Ui are two non-linear diffusion tensors, fi , u0,i , and φ0,i are
given data, νi and νb corresponding normal vectors. This model is particularly used
for the simulation of electro-mechanical energy converters. An example is an elec-
tric machine discussed in [6]. In general, the air gap is very thin. The other two
domains are modeled separately for a facilitation of a possible rotation of the inte-
rior part, called rotor in case of an electric machine. This movement is induced by
the interaction of electromagnetic fields in the air gap. The computation of forces
and torques are therefore one central goal in this type of simulations. Formally, this
can be achieved by using the so called Maxwell Stress Tensor (MST) method (see,
e.g., [27]). For this, the solution in the air gap as well as its derivatives are needed.
These aspects have to be kept in mind for a suitable choice of a numerical method.

The coupling of the Finite Element Method (FEM) and the Boundary Element
Methods (BEM) appears to be an intuitive and straightforward choice for the above
described problems. Indeed, the FEM is well established and widely used for possi-
bly non-linear problems in bounded domains. On the other side the BEM relies on the
transfer of the model problem to an integral representation. Further steps then lead to
a Galerkin discretization problem on its boundary with certain integral operators. In a
post-processing step, a solution can be found in every point of the underlying domain.
Hence, BEM is suitable to handle problems with an unbounded domain where we do
not have to truncate the domain since the discretization itself is done on the boundary.
We remark that a truncation would be mandatory if we would apply FEM. Since the
BEM discretization takes place on a boundary of the domain, it is also very attrac-
tive to get a solution in the thin gap described above. For a mesh-based method in
the whole domain, e.g., like FEM, it is very difficult to find a mesh for such a thin
gap, where the numerical method remains stable. The discretization on the bound-
ary with BEM and the post-processing afterwards avoids this problem. However, to
apply the BEMwe need to know the fundamental solution of the underlying problem.
Note that this restricts the application of BEM especially for non-linear problems.
Therefore, we apply BEM in this work for two different applications: first in the
exterior unbounded domain and second in the thin air gap. In both cases we con-
sider the Laplace operator for the BEM part, where the fundamental solution can be
given explicitly.

In the literature, we distinguish several types of FEM-BEM coupling techniques.
These coupling procedures differ solely in the considered representation of the
Boundary Integral Equations (BIE), which are the basis for BEM. In order to intro-
duce briefly the considered BIEs, we envisage first the following Laplace equation

− Δu = 0 in Ωκ, κ = 0, 1, (3)

where Ω0 ⊆ R
2 is a bounded domain with Lipschitz boundary Γ , and Ω1 = R

2\Ω0

is the corresponding unbounded domain. Hence, Γ = Ω0 ∩ Ω1. Note that (3) is an
interior problem for κ = 0 and an exterior problem for κ = 1. In the latter case, we
additionally assume the decay condition u(x) = C∞ log |x|+O(1/|x|) for |x| → ∞
with the unknown constant C∞ (see also Remark 1). For some x ∈ Ωκ , the solution
u(x) is given by the representation formula

u(x) = (−1)κ
(∫

Γ

G(x, y)φ(y) dσy −
∫

Γ

∂ν(y)G(x, y)u|Γ (y) dσy

)
, (4)
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where G(x, y) = − 1
2π log |x − y| denotes the fundamental solution of the Laplace

operator, ν(y) is an outer normal vector on Γ pointing outward with respect to Ω0 at
y ∈ Γ , and

(
u|Γ , φ := ∂νu|Γ

)
are the unknown or partially unknown Cauchy data.

Hereby, the notation u|Γ means the trace of u with respect to Γ . Note that we omit
to write the trace operators in this work due to readability. Taking the trace of the
representation formula yields the BIE

u|Γ = (−1)κ
((

(−1)κ

2
− K

)
u|Γ + Vφ

)
. (5)

We refer to [41, Chapter 7] for more details. The invoked Boundary Integral Opera-
tors (BIO), the single layer operator V and the double layer operator K, are given for
smooth enough inputs by

(Vφ)(x)=
∫

Γ

G(x, y)φ(y) dσy and (Ku|Γ )(x)=
∫

Γ

∂ν(y)G(x, y)u|Γ (y) dσy .

(6)
They can be extended continuously to linear and bounded operators such that

V : Hs− 1
2 (Γ ) → Hs+ 1

2 (Γ ) and K : Hs+ 1
2 (Γ ) → Hs+ 1

2 (Γ )

for s ∈ [− 1
2 ,

1
2 ], c.f. [9, Theorem 1]. In particular, the boundary integral operator

V is additionally symmetric, and H− 1
2 (Γ )-elliptic, if diam (Ω) < 1 (see, e.g., [41,

Theorem 6.23]). The properties of V induce the norm equivalence

‖ψ‖2V := 〈ψ, Vψ〉� � ‖ψ‖2
H

− 1
2 (Γ )

. (7)

In the previous lines, the mentioned spaces have to be understood as follows: for
k > 0, Hk(·) denotes the standard Sobolev space equipped with the usual norm

‖ · ‖Hk(·). Moreover, the space Hk− 1
2 (Γ ) is the trace space of Hk(Ω). The natural

duality pairings 〈·, ·〉Ω and 〈·, ·〉Γ are obtained by the extended L2-scalar products
(·, ·)Ω of Ω and (·, ·)Γ of Γ , respectively. Spaces with negative exponents H−k(Γ )

are defined as dual spaces of Hk(Γ ) with respect to the duality pairing induced by
L2. Furthermore, for the unbounded domain Ω1 we need functions with local behav-
ior. We denote them by H 1

loc(Ω
1) := {v : Ω1 → R

∣∣ v|K ∈ H 1(K) for all K ⊂
Ω1 compact}. Finally, we write H 1(Ω)

′
for the dual space of H 1(Ω). We recall that

〈
ψ, v|Γ

〉
Γ

≤ ‖ψ‖
H

− 1
2 (Γ )

‖v|Γ ‖
H

1
2 (Γ )

≤ Ctr‖ψ‖
H

− 1
2 (Γ )

‖v‖H 1(Ω) (8)

holds for all v ∈ H 1(Ω) and ψ ∈ H− 1
2 (Γ ), where the trace inequality is encoded

with the trace constant Ctr > 0.
In the following, we describe a variational ansatz to get a weak form of the model

problem. As mentioned above, there are several coupling strategies possible. If we
describe the FEM part by the weak form of the well-known Green’s first formula, a
coupling with the weak form of (5) (κ = 1) leads to the so called Johnson-Nédélec
coupling introduced in [25]. The combined weak form is non-symmetric even though
the model problem itself is symmetric. Also a Galerkin discretization leads to a
non-symmetric system of linear equations. Therefore, this coupling is also known
as non-symmetric coupling, where the unknowns are the u of the FEM part and the
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conormal derivate φ of the BEM part. To symmetrize this system in case of a symmet-
ric model problem, we first observe that taking the conormal derivative of (4) leads
to another integral equation with two other integral operators. A modification of the
Johnson-Nédélec coupling with this additional integral equation renders the coupled
problem symmetric. This procedure appeared first in [10] and is known as Costabel’s
symmetric coupling. The price of the symmetry is the use of four BIOs, which is com-
putationally more expensive. However, there are still only two unknowns involved. A
coupling method with three unknowns, i.e., additionally the trace u|Γ of the BEM part
is an unknown, is called a three field coupling [14]. A coupling procedure with the
so called indirect ansatz is also possible and called Bielak-MacCamy coupling [5].
With this strategy, however, one unknown of the BEM part has no physical meaning.

Because of the advantages of the non-symmetric coupling, we consider in this
work only this type of coupling. We will introduce it formally in Section 2. For a long
time mathematical analysis for this coupling was only available for smooth bound-
aries due to the use of a compactness argument of the double layer operator K [25].
In particular, Lipschitz boundaries were excluded . However, a decade ago Sayas [38]
provided in fact the first analysis also for Lipschitz boundaries. This work influenced
several variations and improvements, e.g., [2, 15, 42] to mention a few but not all.
Hence, the non-symmetric coupling became a more natural choice, especially, if a
part of the model problem is non-symmetric or non-linear. In this work, we use the
results of [2], where an extension to non-linear interface problems has been addressed
and combine this result with the proof shown in [15]. Furthermore, we also use [32],
which extended the proofs for the linear interface problem to certain Boundary Value
Problems, i.e., to the second type of problem considered here. For the linear inter-
face problem with a general second order problem in the interior domain, we also
refer to [15] for a rigorous and, to the authors’ knowledge, sharpest ellipticity esti-
mate. Recently, a complete analysis of a parabolic-elliptic interface problem with a
full discretization in the sense of a non-symmetric FEM-BEM coupling for spatial
discretization was published in [13]. Note that such a system arises, for instance, in
the modeling of eddy currents in the magneto-quasi-static regime [28].

Now, having described the weak form of the model problem with the proposed
FEM and BEM parts, we still need to take two major decisions for a successful sim-
ulation: a suitable discretization technique, i.e., choosing concrete ansatz spaces for
the FEM and BEM, and a good representation of the geometry. These steps are typ-
ically made independently, which complicates meshing and remeshing procedures
without altering the original geometry. In order to circumvent this, design step and
numerical analysis can be combined by considering the same type of basis func-
tions. Hence the geometrical modeling is also used to design ansatz functions in
the Galerkin discretization schemes for the approximation of the solution. Such a
method is proposed in [24]. It is based on using Non-Uniform Rational B-Splines
(NURBS) for the unification of Computer Aided Design (CAD) and Finite Element
Analysis (FEA). This method is called IsoGeometric Analysis (IGA). The first iso-
geometric BEM simulation of collocation type can be found in [35, 40]. Moreover,
fast methods for isogeometric BEM have been successfully implemented in [12, 23,
29], which reduces the known high computational complexity of such an applica-
tion due to the dense matrices produced by the BEM. This makes the method more
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attractive even for more realistic and complex applications (see, e.g., [8] and [6]). A
rigorous mathematical analysis for isogemetric FEM started in [4, 44] and for isoge-
metric Galerkin BEM in [18–22]. For our purpose the results [7, 44] together with [2,
15, 32] play a central role in proving the validity and an a priori error estimate of the
FEM-BEM coupling in the isogeometric context, which is done in this manuscript
for the first time.

The rest of this paper is organized as follows: in Section 2, the non-linear inter-
face problem is addressed. We consider the framework of Lipschitz continuous and
strongly monotone operators such as given in [46] and used in [2]. Strong mono-
tonicity of the non-symmetric weak form is shown analogously to the arguments
in [15] by adapting the setting to non-linear operators. Moreover, well-posedness
of the coupling is stated. Section 3 is devoted to the Galerkin discretization of the
non-symmetric coupling. Thereby, we introduce the isogeometric framework and the
necessary discrete spaces. We derive some error estimates for the conforming iso-
geometric discretization. In Section 4, we extend the model to a Boundary Value
Problem. More precisely, the model domain is split in two disjoint domains, which
are separated by a thin (air) gap. First, a variational formulation of the coupled
problem is derived. Then we show well-posedness and stability of the method. Fur-
thermore, we discuss a super-convergence result for the evaluation of the solution in
the BEM domain. In the last Section 5, we confirm the theoretical results by con-
ducting one numerical example for each model problem. The work is completed by
some conclusions and an outlook.

2 Interface problem

Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary Γ = ∂Ω and Ωe :=

R
2\Ω the corresponding unbounded (exterior) domain. Furthermore, to guarantee

the H− 1
2 (Γ )-ellipticity of the boundary integral operator V , we assume diam (Ω) <

1. This assumption can merely be achieved by scaling. We consider the following
interface problem: Find (u, ue) ∈ H 1(Ω) × H 1

loc(Ω
e) such that

− div (U∇u) = f in Ω, (9a)

−Δue = 0 in Ωe, (9b)

u|Γ − ue|Γ = u0 on Γ, (9c)

U∇u|Γ · ν − ∇ue|Γ · ν = φ0 on Γ, (9d)

ue = O
(
|x|−1

)
for |x| → ∞. (9e)

We remind that ν denotes the outer normal vector with respect to Ω and U : R
2 →

R
2 is a possibly non-linear diffusion tensor. The right-hand side is given by f ∈

H 1(Ω)
′
, u0 ∈ H

1
2 (Γ ) is the jump in the Dirichlet data, and φ0 ∈ H− 1

2 (Γ ) the jump
in the Neumann data.

To ensure the right decay condition (9e) at infinity, we have to assume the
additional condition 〈∇ue|Γ · ν, 1

〉
Γ

= 0.
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This can be transformed into a compatibility condition on the data, i.e.,

〈f, 1〉Ω + 〈φ0, 1〉Γ = 0.

Remark 1 Note that the assumption to ensure the decay condition is only needed in
the two-dimensional case. Alternatively, (9e) can be replaced by a logarithmic decay
of the solution in two dimensions to avoid the additional assumption on ∇ue|Γ , i.e.,

ue = C log |x| + O
(
|x|−1

)
for |x| → ∞

with C := 1
2π

〈∇ue|Γ · ν, 1
〉
Γ
or equivalently C := − 1

2π

(〈f, 1〉Ω + 〈φ0, 1〉Γ
)
, which

can be easily verified in the weak formulation below.

As mentioned above, the diffusion tensor U can be a non-linear operator. To apply
standard theory for non-linear operators (see, e.g., [46]), we assume throughout the
manuscript that U is Lipschitz continuous and strongly monotone:

(A1) Lipschitz continuity:

∃ CU
Lip > 0 such that |Ux − Uy| ≤ CU

Lip |x − y|, ∀x, y ∈ R
2.

(A2) strong monotonicity:

∃CU
ell > 0 such that (U∇u − U∇v,∇u − ∇v)Ω ≥ CU

ell ‖∇u − ∇v‖2
L2(Ω)

, ∀u, v ∈ H 1(Ω).

The derivation of a non-symmetric variational form follows a standard procedure: In
the variational form of (9a), we replace the Neumann data by the jump condition (9d)
to couple the interior problem with the conormal derivative with φ := ∂νu

e|Γ =
∇ue|Γ · ν of the exterior problem. For the second equation we use the exterior integral
(5) with κ = 1, and insert the jump condition (9c) to couple this with the interior
trace.

Hence, the weak formulation of the non-symmetric coupling problem (9) reads:

Find u := (u, φ) ∈ H 1(Ω) × H− 1
2 (Γ ) such that

(U∇u,∇v)Ω − 〈φ, v|Γ
〉
Γ

= 〈f, v〉Ω + 〈φ0, v|Γ
〉
Γ

,〈
ψ,

(
1

2
− K

)
u|Γ
〉

Γ

+ 〈ψ,Vφ〉Γ =
〈
ψ,

(
1

2
− K

)
u0

〉

Γ

hold ∀v := (v, ψ) ∈ H 1(Ω) × H− 1
2 (Γ ).

This variational form can be written in a compact form. For this we introduce a
product space with corresponding norm, i.e.,

H := H 1(Ω) × H− 1
2 (Γ ), ‖v‖H := (‖v‖2

H 1(Ω)
+ ‖ψ‖2

H
− 1
2 (Γ )

) 1
2

for v := (v, ψ) ∈ H. (10)
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Problem 1 Find u ∈ H := H 1(Ω) × H− 1
2 (Γ ) such that a(u, v) = 
(v) holds

∀v ∈ H with the linear form (linear in the second argument) a : H × H → R,

a(u, v) := (U∇u,∇v)Ω − 〈φ, v|Γ
〉
Γ

+
〈
ψ,

(
1

2
− K

)
u|Γ
〉

Γ

+ 〈ψ,Vφ〉Γ , (11)

and the linear functional 
 onH,


(v) := 〈f, v〉Ω + 〈φ0, v|Γ
〉
Γ

+
〈
ψ,

(
1

2
− K

)
u0

〉

Γ

. (12)

It is easy to check that a(v, v) is not elliptic, e.g., insert v = (1, 0). Hence, [2]
suggested an implicit stabilization where the stabilized problem is equivalent to the
original one, i.e., a solution of the original problem is also a solution of the stabilized
one and vice versa. Thus, the analysis is done with the aid of the stabilized form, i.e.,
well-posedness is inherited to the original problem. For implementation purposes, we
still use the original problem. The stabilized problem reads:

Problem 2 Find u ∈ H such that ã(u, v) = 
̃(v) holds ∀v ∈ H, where we define
with

s(v) :=
〈
1,

(
1

2
− K

)
v|Γ
〉

Γ

+ 〈1,Vψ〉Γ , v := (v, ψ)

the stabilized linear form

ã(u, v) := a(u, v) + s(u)s(v),

and the functional


̃(v) := 
(v) +
〈
1,

(
1

2
− K

)
u0

〉

Γ

s(v).

Lemma 1 [2] The original and the stabilized formulation are equivalent, i.e., u ∈ H
solves Problem 1 if and only if it solves Problem 2, and vice versa.

In order to state well-posedness for Problem 2, and thanks to Lemma 1 also for
Problem 1, we follow standard results for monotone operators [46]. First, we note
that the form ã(u, v) induces a non-linear operator Ã : H → H′ by

〈
Ã(u), v

〉 := ã(u, v), ∀u, v ∈ H, (13)

whereH′ denotes the dual space ofH. This allows us to prove the following lemma.

Theorem 1 [2, 15] Let us consider the non-linear operator Ã : H → H′ defined in

(13) with H = H 1(Ω) × H− 1
2 (Γ ). We state the following three assertions.

1. Ã is Lipschitz continuous, i.e., there exists CLip > 0 such that
∥∥Ã(u) − Ã(v)

∥∥
H′ ≤ CLip‖u − v‖H

for all u, v ∈ H.
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2. if CU
ell > 1

4 then

〈
Ã(u) − Ã(v),u − v

〉 ≥ Cstab

(
‖∇u − ∇v‖2

L2(Ω)
+ ‖φ − ψ‖2V + s(u − v)2

)
(14)

for all u := (u, φ) ∈ H, v := (v, ψ) ∈ H with the norm ‖ψ‖2V := 〈ψ, Vψ〉�
and with

Cstab = min

{
1,

1

2

(
1 + CU

ell −
√(

CU
ell − 1

)2 + 1

)}
.

3. if CU
ell > 1

4 then Ã is strongly monotone, i.e., there exists Cell > 0 such that
〈
Ã(u) − Ã(v),u − v

〉 ≥ Cell‖u − v‖2H
for all u, v ∈ H.

Remark 2 The constants CLip and Cell in Theorem 1 depend on various other con-
stants, namely, the continuity constants of the boundary integral operators V and K,
the ellipticity constant of V , CU

Lip, C
U
ell and Ctr, in particular from Ω and Γ .

Proof of Theorem 1 The Lipschitz continuity of Ã follows from the Lipschitz conti-
nuity of U , and the continuity of the integral operators.

The proof of the second assertion follows the lines of [15, Theorem 1] for β = 1.
We replace the coercivity estimate of the bilinear form (U∇u,∇v)Ω considered
in [15] for a linear U by the strong monotonicity property of U , i.e,

(U∇u − U∇v, ∇u − ∇v)Ω ≥ CU
ell ‖∇u − ∇v‖2

L2(Ω)
.

The restriction CU
ell > 1

4 is a direct result of the use of a contractivity result for the
double layer operator K (see [31, Lemma 2.1]) with a constant CK ∈ [ 12 , 1), where
we use the worst case of CK = 1 in the statement.

For the last assertion we note the norm equivalence (7), and by a Rellich
compactness argument it can be shown [2, Lemma 10] that

|||v|||2 := ‖∇v‖2
L2(Ω)

+ ‖ψ‖2V + s(v)2

defines an equivalent norm in H for some v := (v, ψ) ∈ H. Together with (14) this
leads to the last assertion with CU

ell > 1
4 , which is required for (14).

The following theorem follows directly from the theoretical result [46, Theo-
rem 25.B].

Theorem 2 (Well-posedness) Provided that CU
ell > 1

4 , there exists a unique solution

u := (u, φ) ∈ H of the variational Problem 1 for any (f, u0, φ0) ∈ H 1(Ω)
′ ×

H
1
2 (Γ ) × H− 1

2 (Γ ).

Proof From Theorem 1 it follows that the induced operator Ã of ã(·, ·) is strongly
monotone and Lipschitz continuous for CU

ell > 1
4 . Hence, by using [46, Theo-

rem 25.B], there exists a unique solution u := (u, φ) ∈ H of the variational
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Problem 2, for any (f, u0, φ0) ∈ H 1(Ω)
′ × H

1
2 (Γ ) × H− 1

2 (Γ ). Thanks to the
equivalence stated in Lemma 1, this is also the unique solution of Problem 1.

For some engineering applications, where the non-linear operator U has a special
form, we can state the following stabilization result.

Lemma 2 Let CU
ell > 1

4 and let the non-linear operator U be of the form U∇u :=
g(|∇u|)∇u with a non-linear function g : R → R. Then, for the solution u :=
(u, φ) ∈ H of Problem 1, we have the stability result

‖u‖H ≤ C

(
‖f ‖

H 1(Ω)
′ + ‖u0‖

H
1
2 (Γ )

+ ‖φ0‖
H

− 1
2 (Γ )

)
, C > 0.

Proof Let v ∈ H be arbitrary. We know from the strong monotonicity of Ã that

Cell‖u − v‖2H ≤ 〈Ã(u) − Ã(v),u − v
〉
.

Without loss of generality, we choose v = (0, 0) and note that U∇v = 0. Thanks to
Lemma 1 u := (u, φ) is also the unique solution of the Problem 2. Thus, we conclude
that

Cell‖u‖2H ≤ 〈
Ã(u),u

〉 = 
̃(u),

= 〈f, u〉Ω + 〈φ0, u|Γ
〉
Γ

+
〈
φ,

(
1

2
− K

)
u0

〉

Γ

+
〈
1,

(
1

2
− K

)
u0

〉

Γ

s(u)

with s(u) :=
〈
1,
(
1
2 − K

)
u|Γ
〉
Γ

+ 〈1,Vφ〉Γ . Next we use the Cauchy-Schwarz

inequality (8) along with the boundedness of K and V . Then, rearranging the terms
yields

Cell‖u‖2H ≤
(

‖f ‖
H 1(Ω)

′ + Ctr‖φ0‖
H

− 1
2 (Γ )

+ ‖1‖
H

− 1
2 (Γ )

(
1

2
+ CK

)2

Ctr‖u0‖
H

1
2 (Γ )

)
‖u‖H 1(Ω)

+‖1‖
H

− 1
2 (Γ )

((
1

2
+ CK

) (
1 + CV ) ‖u0‖

H
1
2 (Γ )

)
‖φ‖

H
− 1

2 (Γ )
,

where CK, CV > 0 denote the continuity constants of the boundary integral oper-
ators K and V , respectively. From this follows the assertion with a constant C > 0
that depends on CK, CV , Ctr, Cell and Γ .

Remark 3 Because of Lemma 1, the results obtained for the stabilized formulation is
also valid for the original non-symmetric coupling of Problem 1. Hence, in the next
section, we only discretize the original problem using a Galerkin approximation. In
fact, the stabilized version is only used for analysis purposes.

3 Galerkin discretization

Let V
 ⊂ H 1(Ω) and X
 ⊂ H− 1
2 (Γ ) be some finite dimensional subspaces, where

the index 
 expresses a refinement level, e.g., in a sequence of mesh refinements. We
assume that:

61   Page 10 of 36 Adv Comput Math (2021) 47: 61



(A3) The discrete space X
 contains the constants, i.e.,

∃ξ ∈
⋂

∈N0

X
 such that 〈ξ, 1〉Γ �= 0.

We consider a conforming Galerkin discretization of the Problem 1. Replacing the

spaces H 1(Ω) and H− 1
2 (Γ ) with V
 and X
, respectively, leads to the following

discrete problem: Find u
 := (u
, φ
) ∈ H
 := V
 × X
 such that

〈U∇u
, ∇v
〉Ω − 〈φ
, v
〉Γ = 〈f, v
〉Ω + 〈φ0, v
〉Γ ,〈
ψ
,

(
1

2
− K

)
u


〉

Γ

+ 〈ψ
,Vφ
〉Γ =
〈
ψ
,

(
1

2
− K

)
u0

〉

Γ

hold ∀v
 := (v
, ψ
) ∈ H
.
The compact form in the product space H
 reads:

Problem 3 Find u
 := (u
, φ
) ∈ H
 := V
 × X
 such that a(u
, v
) = 
(v
) holds
∀v
 = (v
, ψ
) ∈ H
. The linear form a(·, ·) and the linear functional 
 are defined
in (11) and (12), respectively.

Provided that Assumption (A3) is satisfied, the analysis for Problem 3 is done
analogously to the continuous Problem 1 since the discrete spaces are conforming. In
other words, all the above results including the introduction of a stabilized form and
Lemma 1 also apply for the subspaces. In particular, due to Theorem 2 the discrete
solution u
 := (u
, φ
) ∈ H
 := V
 × X
 of Problem 3 exists and is unique. The
following quasi-optimality result in the sense of the Céa-type Lemma is a standard
but central result, which will be needed in Section 3.2 for the a priori error estimate
of the non-symmetric coupling.

Theorem 3 (Quasi-optimality) Let Assumption (A3) hold, and CU
ell > 1

4 . Moreover,
let u := (u, φ) ∈ H be the unique solution of Problem 1, and u
 := (u
, φ
) ∈ H


the solution of its discrete counterpart Problem 3. Then

‖u − u
‖H 1(Ω) + ‖φ − φ
‖
H

− 1
2 (Γ )

≤ CCéa min
v
∈V
,ψ
∈X


(
‖u − v
‖H 1(Ω) + ‖φ − ψ
‖

H
− 1

2 (Γ )

)

with CCéa = CLip
Cell

.

Proof The assertion follows as a result of the main theorem on strongly monotone
operators [46, Corollary 25.7]. That means with v
 := (v
, ψ
), thanks to Lemma 1,
the strong monotonicity, Galerkin orthogonality, Cauchy-Schwarz inequality, and the
Lipschitz continuity we get

Cell‖u − u
‖2H ≤ 〈
Ã(u) − Ã(u
),u − u


〉 = 〈Ã(u) − Ã(u
),u − v


〉

≤ ∥∥Ã(u) − Ã(u
)
∥∥
H′ ‖u − v
‖H

≤ CLip‖u − u
‖H‖u − v
‖H,

where the assertion follows directly.
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3.1 Isogeometric analysis

The basis functions that are considered for the geometry design in the isogeomet-
ric framework are used as ansatz functions for the Galerkin discretization. These
functions are typically B-Splines or some extensions of B-Splines, e.g., NURBS,
T-Splines etc.

In the following, we introduce briefly the concept of Isogeometric Analysis and
refer to [11] for a more detailed introduction, and to [44] and [7] for a mathematical
analysis of IGA in the FEM and BEM context, respectively.

Definition 1 Let p ∈ N denote the degree, and k ∈ N the number of the B-Spline
basis functions, with k > p. A knot vector Ξ := {ξ0, . . . , ξk+p} is called p-open if

0 = ξ0 = · · · = ξp < ξp+1 ≤ · · · ≤ ξk−1 < ξk = · · · = ξk+p = 1.

Associated to the knot vector Ξ , k B-Spline basis functions can be defined recur-
sively for p ≥ 1 by

b
p
i (x) = x − ξi

ξi+p − ξi

b
p−1
i (x) + ξi+p+1 − x

ξi+p+1 − ξi+1
b

p−1
i+1 (x)

for all i = 0 . . . k − 1, starting with piecewise constant basis functions for p = 0,
namely,

b0i (x) =
{
1 if ξi ≤ x ≤ ξi+1,

0 otherwise.

Moreover, we denote by Sp(Ξ) = span {{bp
i }k−1

i=0 } the space of B-Splines of degree
p and dimension k in the parameter domain over the knot vector Ξ .

Definition 2 Let f : [0, 1] → γ ⊂ R
d be a B-Spline mapping defined as

f (x) =
k−1∑
i=0

cib
p
i (x)

with ci ∈ R
d representing an element of a set of control points. The mapping f

describes a one-dimensional curve embedded in a d-dimensional Euclidian space and
is called a B-Spline curve. Moreover, we call γ a patch if the mapping f is regular.

As long as the B-Spline mapping f is regular, we can define B-Spline spaces in
the physical domain, i.e., over a patch γ by using the following transformation

ι(f )(u) = u ◦ f,

namely,

Sp(γ ) = {v : v = u ◦ f −1, u ∈ Sp(Ξ)}.
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Definition 3 B-Spline spaces on higher dimensional domains are constructed by
using tensor product relationships. For example, in 2D, we write with p1, p2 ∈ N

and k1, k2 ∈ N

Sp1,p2(Ξ1, Ξ2) = span {{bp1
i1

b
p2
i2

}k1−1, k2−1
i1=0, i2=0 },

where p1 and p2 denote the degrees in each parametric direction, and k1k2 is the
number of the B-Splines basis functions. A B-Spline surface is thus represented by
f(x) : [0, 1]2 → ω ⊂ R

d with

f(x) =
k1−1∑
i1=0

k2−1∑
i2=0

ci1,i2 · b
p1
i1

(x) · b
p2
i2

(x),

where ci1,i2 ∈ R
d is representing an element of a set of control points. If f is regular,

we call ω a patch.
Equivalently, the two-dimensional B-Spline space in the physical domain is

defined over a patch ω by

Sp1,p2(ω) = {v : v = u ◦ f−1, u ∈ Sp1,p2(Ξ1, Ξ2)}.

Note that for the sake of simplicity, if p1 = p2 = p, a B-Spline space of degree p

should be understood as a B-Spline space of degree p in each parametric direction.
The parametrization of curves and surfaces using B-Spline functions allows an

exact representation of a large spectrum of geometries. However, they fail to represent
conic sections exactly, which are widely present in the design of various engineering
applications. In order to circumvent this, Non-Uniform Rational B-Splines (NURBS)
are used instead (see [11] and [34], for instance).

Definition 4 Let p, k, p1, p2, k1, k2 ∈ N as above. NURBS mappings can be
considered as weighted B-Spline mappings. They can be defined as follows;

r(x) :=
k−1∑
i=0

ciwib
p
i (x)∑k−1

j=0 wjb
p
j (x)

in 1D,

r(x) :=
k1−1∑
i1=0

k2−1∑
i2=0

ci1,i2wi1,i2 · b
p1
i1

(x) · b
p2
i2

(x)
∑k1−1

j1=0

∑k2−1
j2=0 wj1,j2 · b

p1
j1

(x) · b
p2
j2

(x)
in 2D.

Thereby, wi, wi1,i2 ∈ R are elements of a vector of dimension k and a matrix of
dimension k1 × k2, containing weighting coefficients of the NURBS, respectively,
and ci, ci1,i2 are the control points.

Remark 4 The corresponding univariate NURBS space in the parameter domain is
defined analogously to the B-Spline space, namely,

S
w
p (Ξ) = span {{rp

i }k−1
i=0 }

with r
p
i (x) := wib

p
i (x)∑k−1

j=0 wj b
p
j (x)

. However, contrary to B-Splines, NURBS spaces on

higher dimensional domains cannot be defined using simple tensor product relation-
ships. This is due to the weights wi1,...,id , which cannot be represented in general as a
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tensor product of univariate weights. For convenience, the two-dimensional NURBS
space reads

S
w
p1,p2

(Ξ1, Ξ2) = span

⎧⎨
⎩

{
wi1,i2 · b

p1
i1

· b
p2
i2∑k1−1

j1=0

∑k2−1
j2=0 wj1,j2 · b

p1
j1

· b
p2
j2

}k1−1, k2−1

i1=0, i2=0

⎫⎬
⎭ .

We refer the reader to [4, Section 2], e.g., and the literature cited therein, for a more
detailed introduction to NURBS and NURBS spaces.

In order to guarantee the existence of a regular mapping between the parame-
ter and the physical domain, multiple patches defined through a family of regular
parameterizations may in some cases be necessary.

Definition 5 Let Ω be a two-dimensional Lipschitz domain with boundary Γ . The
domain Ω is called a multipatch domain, if there exists a family of NΩ disjoint
patches such that Ω = ⋃

i Ωi and a regular parametrization ri (x) : [0, 1]2 →
Ωi for every single patch Ωi , with 0 ≤ i < NΩ . Furthermore, we require the
parametrization at interfaces to coincide.

Equivalently, Γ is also considered a multipatch domain with Γ = ⋃
i Γi and

ri(x) : [0, 1] → Γi , ∀Γi , with 0 ≤ i < NΓ .

Knowing that B-Splines form a partition of unity [34], it is easy to see that B-
Splines are a special type of NURBS, when the weights are equal to 1.

In the following, if we refer to the geometry, we mean NURBS mappings. If we
refer to the spaces used for the discretizations, we mean B-Spline mappings. The
motivation for this follows from [7], namely, the spline preserving property of B-
Splines is needed for a conforming discretization of the De Rham complex.

3.2 Error estimates for an isogeometric FEM-BEM discretization

Let the assumptions of Section 2 on Ω hold. We consider the discrete Problem 3 with
V
 = S

0(Ω) and X
 = S
2(Γ ), where S0(Ω) and S

2(Γ ) are B-Spline spaces defined
as in [7] and [44]. Namely,

S
0(Ω) = {u ∈ H 1(Ω) : u|Ωi

∈ Sp,p(Ωi), ∀ 0 ≤ i < NΩ } (15)

and
S
2(Γ ) = {φ ∈ H− 1

2 (Γ ) : φ|Γi
∈ Sp−1(Γi), ∀ 0 ≤ i < NΓ }. (16)

Thereby, NΩ and NΓ denote the number of domain patches and boundary patches,
respectively. Note that the degrees of the B-Spline spaces (15) and (16) are solely
fixed by one parameter p > 0.

Definition 6 Let Ξ = {ξ0, . . . , ξk+p} be a p-open knot vector. A patch element in
the parameter domain is defined as [ξi, ξi+1], for some 0 ≤ i < k + p. The local
mesh size is defined as the length of an element, i.e., hi = ξi+1−ξi . Furthermore, we
denote by h = max0≤i<k+p hi the global mesh size of a single patch. Equivalently,
h denotes the largest local mesh size of all patches for a multipatch domain.
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Throughout the rest of this work, we assume the following:

(A4) All knot vectors are p-open and locally quasi-uniform, i.e., for all non-empty,
neighboring elements [ξi1 , ξi1+1] and [ξi2 , ξi2+1], there exists θ ≥ 1, such that

θ−1 ≤ hi1h
−1
i2

≤ θ .

(A5) The multipatch geometry of Ω is generated by a family of regular, smooth
parameterizations.

Definition 7 Let D = {Ω, Γ } be a multipatch domain with n patches. For some
s ∈ R, we define the space of patchwise regularity by

Hs
pw(D) = {u ∈ L2(D) : ‖u‖Hs

pw(D) < ∞},
where

‖u‖2
Hs
pw(D) =

∑
0<i≤n

∥∥u|Di

∥∥2
Hs(D)

. (17)

Lemma 3 Let u ∈ H 1(Ω) ∩ H 1+s
pw (Ω) and φ ∈ H− 1

2 (Γ ) ∩ H
− 1

2+s
pw (Γ ). Consider

S
0(Ω) and S

2(Γ ) as given in (15) and (16), respectively. There exists C0, C2 > 0
depending only on p and θ such that

inf
u
∈S0(Ω)

‖u − u
‖H 1(Ω) ≤ C0 hs‖u‖
H 1+s
pw (Ω)

, 0 ≤ s ≤ p,

inf
φ
∈S2(Γ )

‖φ − φ
‖
H

− 1
2 (Γ )

≤ C2 hs‖φ‖
H

− 1
2+s

pw (Γ )

,
1

2
≤ s ≤ p + 1

2
.

Proof The first estimate is given in [7, Corollary 2], and the second one follows from
[7, Corollary 4].

Theorem 4 We assume CU
ell > 1

4 . Let (u, φ) ∈ H be the solution of the Problem 1
and let (u
, φ
) ∈ H
 := S

0(Ω) × S
2(Γ ) be the solution of the discrete Problem 3.

Then for 0 ≤ s ≤ 1
2 and u ∈ H 1(Ω) ∩ H 1+s

pw (Ω) and φ ∈ H− 1
2 (Γ ) ∩ H 0

pw(Γ )

‖u − u
‖H 1(Ω) + ‖φ − φ
‖
H

− 1
2 (Γ )

≤ C hs
(
‖u‖

H 1+s
pw (Ω)

+ ‖φ‖H 0
pw(Γ )

)
.

For 1
2 ≤ s ≤ p, and u ∈ H 1(Ω) ∩ H 1+s

pw (Ω) and φ ∈ H− 1
2 (Γ ) ∩ H

− 1
2+s

pw (Γ ), we
have

‖u − u
‖H 1(Ω) + ‖φ − φ
‖
H

− 1
2 (Γ )

≤ C hs

(
‖u‖

H 1+s
pw (Ω)

+ ‖φ‖
H

− 1
2+s

pw (Γ )

)

with a constant C = C(CCéa, p, θ) > 0, which is in particular independent of h.
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Proof From [7] we know that S0(Ω) and S
2(Γ ) are closed subspaces of H 1(Ω)

and H− 1
2 (Γ ), respectively. Moreover, Assumption (A3) is fulfilled per construc-

tion of the B-Spline spaces. Hence, the usual analysis for a conforming Galerkin
discretization of a non-symmetric FEM-BEM coupling can be considered also in
the isogeometric context. Now, using Lemma 3 and the quasi-optimality stated in
Theorem 3 yield the assertion.

Remark 5 Throughout this section, we required for the analysis that CU
ell > 1

4 . How-
ever, this assumption is sufficient for the solvability of the Johnson-Nédélec coupling,
but not necessary. See also [2] and [15, Remark 10], where numerical experiments
still converge although the condition is violated.

4 Extension of themodel problem

Let Ω, Ω1, Ωb, Ω2 ⊂ R
2 be bounded Lipschitz domains with diam (Ωb) < 1 (see

Fig. 1). We denote by Γb = Γ1 ∪ Γ2 the boundary of Ωb and by Γ0,1 and Γ0,2 the
Dirichlet boundaries of Ω1 and Ω2, respectively. Furthermore, we define

H 1
0 (Ωi, Γ0,i ) := {u ∈ H 1(Ωi) : u|Γ0,i = 0} for i = 1, 2.

Fig. 1 We see a possible domain arrangement for the boundary value problem discussed in Problem (18)
with two disjoint domains separated by a gap. The domain Ωb can be very thin and represents, e.g., an air
gap. It is surrounded by two bounded domains Ω1 and Ω2
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We consider the following boundary value problem: Find (u1, u2, ub) ∈
H 1

0 (Ω1, Γ0,1) × H 1
0 (Ω2, Γ0,2) × H 1(Ωb) such that

− div (Ui∇ui) = fi in Ωi, i = 1, 2, (18a)

−Δub = 0 in Ωb, (18b)

ub|Γi
− ui |Γi

= u0,i on Γi, i = 1, 2, (18c)

Ui∇ui |Γi
· νi + ∇ub|Γi

· νb = φ0,i on Γi, i = 1, 2, (18d)

ui |Γ0,i = 0 on Γ0,i , i = 1, 2. (18e)

Hereby, νi and νb denote the outer normal vector of Ωi and Ωb, respectively,

(fi, u0,i , φ0,i ) ∈ H 1
0 (Ωi)

′ × H
1
2 (Γi) × H− 1

2 (Γi) with i = 1, 2 are some given data,
and Ui are possibly non-linear operators with the assumptions (A1) and (A2). We
emphasize that the model problem (18) can be used to simulate electric machines (see
also the example in Section 5.2), which motivates its consideration. Next, we want
to derive a weak formulation for model problem (18). We consider the weak form of
the two problems in Ω1 and Ω2. Hence, we multiply (18a) with test functions vi and
apply the first Green’s identity to get

(Ui∇ui, ∇vi)Ωi
− 〈Ui∂νi

ui, vi |Γi

〉
Γi

= 〈fi, vi〉Ωi
(19)

for i = 1, 2. Note that ui = 0 on Γ0,i . We may transfer (18b) in Ωb to an integral
equation on Γb in order to apply BEM in the following. Hence, the (interior) repre-
sentation formula (4) (κ = 0) hold if we replace u by ub. Let φ := ∂νbub denote the
conormal derivative of ub on Γb, the BIE is obtained as in Section 1

Vφ =
(
1

2
+ K

)
ub|Γb , (20)

where the single layer operator V and the double layer operator K are defined in (6)
over Γb instead of Γ but of course with the same fundamental solution G(x, y). Note
that the normal vector νb points outwards with respect to Ωb since it is considered as
an interior problem in our integral equation notation.

In what follows we strongly follow the work of [32], where a boundary value prob-
lem with hard inclusion is considered. As in [32], we can derive two equivalent weak
formulations. It is enough to consider here only one. The following considerations
might help for a better understanding for the weak coupling formulation below. Note
that for a constant it follows ( 12 + K)1 = 0 on Γb. Furthermore, if K′ is the adjoint
operator of K and we have V−1K = K′V−1. Then, with (20) we see that

〈φ, 1〉Γb
=
〈
Vφ,V−11

〉
Γb

=
〈(

1

2
+ K

)
ub|Γb ,V

−11

〉

Γb

=
〈
ub|Γb ,

(
1

2
+ K′

)
V−11

〉

Γb

=
〈
ub|Γb ,V

−1
(
1

2
+ K

)
1

〉

Γb

= 0.

Note that this φ together with the representation formula leads to ub in Ωb (see
also [30, Theorem 7.5]). Therefore, we introduce the following subspace

H
− 1

2
� (Γb) = {ψ ∈ H− 1

2 (Γb) : 〈ψ, 1Γb

〉
Γb

= 0}.
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Furthermore, similar as in Section 2 we introduce a product space with its norm,
namely

H0 := H 1
0 (Ω1, Γ0,1) × H 1

0 (Ω2, Γ0,2) × H
− 1

2
� (Γb), (21)

‖v‖H0
:= (‖v1‖2H 1(Ω1)

+ ‖v2‖2H 1(Ω2)
+ ‖ψ‖2

H
− 1
2 (Γb)

) 1
2 for v := (v1, v2, ψ) ∈ H0.

Remark 6 Instead of considering a subspace and thus eliminating the constants from

the solution space, a suitable orthogonal decomposition of H− 1
2 (Γb) in the following

proofs could also be considered (see [32]).

Using Γb = Γ1 ∪ Γ2 and inserting the corresponding jump conditions (18c)
and (18d) in (20) and (19), respectively, yield the following weak formulation for
problem (18):

Find u := (u1, u2, φ) ∈ H0 := H 1
0 (Ω1, Γ0,1) × H 1

0 (Ω2, Γ0,2) × H
− 1

2
� (Γb) such

that

(U1∇u1, ∇v1)Ω1
+ 〈φ|Γ1 , v1|Γ1

〉
Γ1

= 〈f1, v1〉Ω1
+ 〈φ0,1, v1|Γ1

〉
Γ1

,

(U2∇u2, ∇v2)Ω2
+ 〈φ|Γ2 , v2|Γ2

〉
Γ2

= 〈f2, v2〉Ω2
+ 〈φ0,2, v2|Γ2

〉
Γ2

,

〈ψ,Vφ〉Γb
−

2∑
i=1

〈
ψ,

(
1

2
+ K

)
ui |Γi

〉

Γb

=
2∑

i=1

〈
ψ,

(
1

2
+ K

)
u0,i

〉

Γb

hold ∀v := (v1, v2, ψ) ∈ H0.
As before we first write the problem in a compact form.

Problem 4 Find u := (u1, u2, φ) ∈ H0 such that b(u, v) = ι(v) holds ∀v :=
(v1, v2, ψ) ∈ H0.

Thereby,

b(u, v) :=
2∑

i=1

(
(Ui∇ui, ∇vi)Ωi

+ 〈φ|Γi
, vi |Γi

〉
Γi

−
〈
ψ,

(
1

2
+ K

)
ui |Γi

〉

Γb

)

+ 〈ψ,Vφ〉Γb

and

ι(v) :=
2∑

i=1

(
〈fi, vi〉Ωi

+ 〈φ0,i , vi |Γi

〉
Γi

+
〈
ψ,

(
1

2
+ K

)
u0,i

〉

Γb

)
.

In this case no stabilization is needed, since both subproblems involve a Dirich-
let boundary condition. Hence, we prove directly the strong monotonicity of b(·, ·).
Equivalently to (13), the form b(·, ·) induces a non-linear operator B : H0 → H′

0
with

〈B(u), v〉 := b(u, v) ∀u, v ∈ H0. (22)

The next theorem states the strong monotonicity of the method for the extended BVP.
It can be considered as an extension to our problem setting of the stability estimate
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result given in [32] for an interior Dirichlet BVP of a diffusion equation with a hard
inclusion. The key idea therein is to estimate the energy of the bounded finite element
domains with the energy of some related problem in the exterior domain. Let λ > 0
be the minimal eigenvalue of the related exterior problem. If both corresponding

Steklov-Poincaré operators are H
1
2 (Γ )-elliptic, then we have that

λ
〈
Sextv, v

〉 ≤
〈
Sintv, v

〉
, for all v ∈ H

1
2 (Γ ), (23)

where Sext and Sint are the Steklov-Poincaré operators of the exterior and the interior
domain, respectively, c.f. [32]. The constants in the following theorem have similar
dependencies as described in Remark 2.

Theorem 5 Let us consider the non-linear operator B : H0 → H′
0 defined in (22)

with H0 := H 1
0 (Ω1, Γ0,1) × H 1

0 (Ω2, Γ0,2) × H
− 1

2
� (Γb). Furthermore, λ1, λ2 > 0

are the eigenvalues of (23) with respect to the domains Ω1 and Ω2. We state the
following three assertions:

1. B is Lipschitz continuous, i.e., there exists CLip > 0 such that

‖B(u) − B(v)‖H′
0

≤ CLip‖u − v‖H0
(24)

for all u, v ∈ H0.
2. if CUi

ell > 1
4λi

for i = 1, 2 then

〈B(u) − B(v),u − v〉 ≥ Cstab

(
‖∇u1 − ∇v1‖2L2(Ω1)

+ ‖∇u2 − ∇v2‖2L2(Ω2)

+‖φ − ψ‖2V
)

(25)

for all u := (u1, u2, φ) ∈ H0, v := (v1, v2, ψ) ∈ H0 with

Cstab=min

{
1,

1

2

(
1 + C

U1
ell −

√(
C

U1
ell − 1

)2 + 1

λ1

)
,
1

2

(
1 + C

U2
ell −

√(
C

U2
ell − 1

)2 + 1

λ2

)}
.

3. if CUi

ell > 1
4λi

for i = 1, 2, then B is strongly monotone, i.e., there exists Cell > 0
such that

〈B(u) − B(v),u − v〉 ≥ Cell‖u − v‖2H0
(26)

for all u, v ∈ H0.

Proof The Lipschitz continuity follows merely from the Lipschitz continuity of U1
and U2 and the continuity of the boundary integral operators.

The stability estimate follows strongly the steps of the proofs of [32, Theo-
rem 2.2.ii.] and in [32, Section 5.1]. Since we are dealing with a different BVP and
non-linear material tensors, we sketch the main steps of the proof, for convenience.
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For ease of notation, let w := (w1, w2, ξ) = u − v = (u1 − v1, u2 − v2, φ − ψ) ∈
H0. From (22), we get

〈B(u) − B(v),w〉 :=
2∑

i=1

(
(Ui∇ui − Ui∇vi, ∇wi)Ωi

+
〈
ξ,

(
1

2
− K

)
wi |Γi

〉

Γb

)

+ 〈ξ,Vξ〉Γb
. (27)

First, we start with the domain parts. Provided Ui , i = 1, 2, are strongly monotone,
then it holds

(Ui∇ui − Ui∇vi, ∇wi)Ωi
≥ C

Ui

ell ‖∇wi‖2L2(Ωi)
.

For wi ∈ H 1
0 (Ωi, Γ0,i ), we now consider the splitting wi = wi + w0,i , where wi is

the harmonic extension of wi |Γi
and w0,i ∈ H 1

0 (Ωi, ∂Ωi) (see, e.g., [15]). From this
follows

‖∇wi‖2L2(Ωi)
= ∥∥∇w0,i

∥∥2
L2(Ωi)

+ 〈Siwi |Γi
, wi |Γi

〉
Γi

,

where Si , i = 1, 2, denote the interior Steklov-Poincaré operators of the bounded
domains Ω1 and Ω2, respectively. Hence,

(Ui∇ui − Ui∇vi, ∇wi)Ωi
≥ C

Ui

ell

(∥∥∇w0,i
∥∥2

L2(Ωi)
+ 〈Siwi |Γi

, wi |Γi

〉
Γi

)
. (28)

Next, by using the contractivity of K, as given in [32, Lemma 2.1] (we consider here
the worst case CK = 1), as well as the invertibility of V , we obtain

〈
ξ,

(
1

2
− K

)
wi |Γi

〉

Γb

≤ ‖ξ‖V
√〈

Sext
i wi |Γi

, wi |Γi

〉
Γb

, i = 1, 2,

where Sext
i : H

1
2 (Γb) → H− 1

2 (Γb) are the Steklov-Poincaré operators associated to
the corresponding exterior eigenvalue problem (see [32, Section 2.2]). Similarly, we
assume the following spectral equivalence

〈
Sext

i wi |Γi
, wi |Γi

〉
Γi

≤ 1

λi

〈
Siwi |Γi

, wi |Γi

〉
Γi

, for all wi ∈ H 1
0 (Ωi, Γ0,i ),

where λi , i = 1, 2 are characterized as minimal eigenvalues of the related problem.
Thus,

〈
ξ,

(
1

2
− K

)
wi |Γi

〉

Γb

≤ ‖ξ‖V
√

1

λi

〈
Siwi |Γi

, wi |Γi

〉
Γi

, i = 1, 2. (29)

Inserting (28) and (29) in (27), 〈ξ,Vξ〉Γb
= ‖ξ‖2V and some manipulations as in the

proof of [15, Theorem1] lead to the assertion.
To prove the last claim we consider v := (v1, v2, ψ) ∈ H0. Note that v1 = 0

on Γ0,1 and v2 = 0 on Γ0,2 with |Γ0,1|, |Γ0,2| > 0. Due to Friedrichs’s inequality
and (7) it follows that ‖∇v1‖2L2(Ω1)

+‖∇v2‖2L2(Ω2)
+‖ψ‖2V is an equivalent norm on

H0. Thus, (26) follows directly from (25).

Equivalently to Theorem 2, the strong monotonicity and the Lipschitz continu-
ity of the non-linear operator B provide the well-posedness of Problem 4 for any(
fi, u0,i , φ0,i

) ∈ H 1
0 (Ωi)

′ × H
1
2 (Γi) × H− 1

2 (Γi) with i = 1, 2.
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As for the interface problem, we consider a conforming Galerkin discretization in
the sense of an isogeometric FEM-BEM discretization. Namely, the discrete problem
is obtained by replacing u := (u1, u2, φ) ∈ H0 := H 1

0 (Ω1, Γ0,1) × H 1
0 (Ω2, Γ0,2) ×

H
− 1

2
� (Γb) in Problem 4 with u
 := (u1,
, u2,
, φ
) ∈ H0,
 := S

0(Ω1, Γ0,1) ×
S
0(Ω2, Γ0,2) × S

2(Γb). Note that accordingly to the notation in the continuous set-
ting, S0(Ω, Γ ) denotes the B-Spline space S0(Ω) of order p as defined in (15) with
a Dirichlet boundary Γ ⊆ ∂Ω and S2(Γb) is defined in (16).

Problem 5 Find u
 := (u1,
, u2,
, φ
) ∈ H0,
 := S
0(Ω1, Γ0,1) × S

0(Ω2, Γ0,2) ×
S
2(Γb) such that b(u
, v
) = ι(v
) holds ∀v
 := (v1,
, v2,
, ψ
) ∈ H0,
.

Analogously to the interface problem, we state in the following theorem the quasi-
optimality in the sense of the Céa-type Lemma of the Galerkin discretization of
Problem 4, as well as an a priori error estimate for the introduced B-Spline discretiza-
tion. To simplify the presentation, we introduce in this section a piecewise defined
product space

Hs
pw := (

H 1(Ω1) ∩ H 1+s
pw (Ω1)

)× (H 1(Ω2) ∩ H 1+s
pw (Ω2)

)

×(H− 1
2

� (Γb) ∩ H
− 1

2+s
pw (Γb)

)
(30)

for s ≥ 0, which is used to get convergence rates with the aid of Lemma 3. The
corresponding norm defined in the sense of (17) is denoted by ‖ · ‖Hs

pw .

Theorem 6 For i = 1, 2, let C
Ui

ell > 1
4λi

, where λi > 0 are the eigenvalues of (23)
with respect to the domains Ωi . Moreover, let u ∈ H0 be the solution of Problem 4
and u
 ∈ H0,
 be the discrete solution of Problem 5. Then we have the following
results:

– Quasi-optimality:

‖u − u
‖H0 ≤ CCéa min
v
∈H0,


‖u − v
‖H0 , (31)

where CCéa = CLip
Cell

.

– A priori estimate: For 1
2 ≤ s ≤ p and u ∈ Hs

pw

‖u − u
‖H0 ≤ C hs‖u‖Hs
pw

with a constant C = C(CCéa, p, θ) > 0, which is independent of h. For 0 ≤ s ≤
1
2 , we get a similar result as stated in Theorem 4 with φ ∈ H

− 1
2

� (Γb) ∩ H 0
pw(Γb).

Proof Quasi-optimality follows from the strong monotonicity and Lipschitz continu-
ity stated in Theorem 5, by following the lines of Theorem 3. The a priori estimate
follows from the quasi-optimality and Lemma 3, as is done in Theorem 4 for the
interface problem.
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The non-linear operators Ui , i = 1, 2, are now considered to have the form
Ui∇u := gi(|∇u|)∇u with non-linear functions gi : R → R. Similarly to the
interface problem, we state the following stability result.

Lemma 4 Let C
Ui

ell > 1
4λi

, i = 1, 2, with λi as in Theorem 6. Furthermore, the non-
linear operators Ui , i = 1, 2, shall have the form Ui∇u := gi(|∇u|)∇u with the
non-linear functions gi : R → R. Moreover, let u ∈ H0 be the unique solution of

Problem 4 and
(
fi, u0,i , φ0,i

) ∈ H 1
0 (Ωi)

′ × H
1
2 (Γi) × H− 1

2 (Γi), with i = 1, 2, be
some suitable inputs. There exists C > 0 such that

‖u‖H0
≤ C

2∑
i=1

(
‖fi‖H 1(Ωi)

′ + ∥∥ui,0
∥∥

H
1
2 (Γi )

+ ∥∥φi,0
∥∥

H
− 1
2 (Γi )

)
.

Proof We know from the strong monotonicity of B that

Cell‖u − v‖2H0
≤ 〈B(u) − B(v),u − v〉

holds for all u, v ∈ H0. Without loss of generality, we choose v = (0, 0, 0) and note
that Ui∇vi = 0, i = 1, 2, for our specific non-linearity. Since u := (u1, u2, φ) is the
unique solution of the problem, we conclude that

Cell‖u‖2H0
≤ 〈B(u),u〉 = ι(u),

=
2∑

i=1

(
〈fi, ui〉Ωi

+ 〈φ0,i , ui |Γi

〉
Γi

+
〈
φ,

(
1

2
+ K

)
u0,i

〉

Γb

)
.

Using inequality (8) along with the boundedness of K, and rearranging the terms
provides the assertion.

In many practical applications, one is not directly interested in the solution (u1, u2,

φ) of Problem 4 rather than in some derived quantities. These quantities are, for
example, evaluated in the exterior/air gap domain. As it can be observed for stan-
dalone BEM applications, estimating the error in functionals of the solution may lead
to so called super-convergence, i.e., linear functionals of the solution may converge
better than the solution in the energy norm (see [37, Section 4.2.5]). With enough
regularity the convergence rate doubles.

In the following, this behavior is also shown for the coupled problem. For this, we
use the following Aubin-Nitsche argument, similar to [37, Theorem 4.2.14].

Theorem 7 Let F ∈ H′
0 be a continuous and linear functional, u := (u1, u2, φ) ∈

H0 := H 1
0 (Ω1, Γ0,1) × H 1

0 (Ω2, Γ0,2) × H
− 1

2
� (Γb) be the solution of Problem 4 and

u
 := (u1,
, u2,
, φ
) ∈ H0,
 be the discrete solution of Problem 5. Furthermore,
w ∈ H0 is the unique solution of the dual problem

b(v,w) = F(v) (32)
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for all v ∈ H0. Then there exists a constant C1 = C1(CLip) > 0 such that

|F(u) − F(u
)| ≤ C1 ‖u − v
‖H0‖w − z
‖H0 (33)

for arbitrary v
 ∈ H0,
, z
 ∈ H0,
. Furthermore, let
1
2 ≤ s, t ≤ p and remember the

product space defined in (30). Provided u and w are additionally in Hs
pw and Ht

pw,
respectively, there exists a constant C2 = C2(CLip, p, θ) > 0 such that

|F(u) − F(u
)| ≤ C2 hs+t‖u‖Hs
pw‖w‖Ht

pw
. (34)

Proof The proof follows strongly the lines in [37, Theorem 4.2.14]. Since we allow
non-linearities, we give a brief sketch. First of all, we note that Theorem 5 holds
for arbitrary functions. Thus, well-posedness, and hence the existence of a unique
solution can be established also for the dual problem (32). Furthermore, the dual
problem (32), the Galerkin orthogonality b(u−u
, z
) = 0 for all z
 ∈ H0,
, and the
Lipschitz continuity of the form b(·, ·) provide
|F(u) − F(u
)| = |F(u − u
)| = |b(u − u
,w − z
)| ≤ C1‖u − u
‖H0‖w − z
‖H0

for arbitrary z
 := (z1,
, z2,
, ϕ
) ∈ H0,
.
With (31) we get the claim (33). Since Lemma 3 holds for arbitrary u, (34) follows

from (33).

Remark 7 In practice the functional of Theorem 7 may be, e.g., the representation
formula of the BEM part Ωb, i.e., for u := (u1, u2, φ) ∈ H0

ub(x)=F(u) :=
2∑

i=1

( ∫

Γi

G(x, y)φ|Γi
dσy −

∫

Γi

∂ν(y)G(x, y)(ui|Γi
+ u0,i|Γi

) dσy

)
.

Next, let us assume the regularity u ∈ Hp
pw for the solution of Problem 4 and w ∈

Hp
pw of its dual problem (32), where the spaces are defined in (30). Then with the

discrete solution u
 ∈ H0,
 of Problem 5 and (34) we calculate the pointwise error
in Ωb as

|ub(x) − ub,
(x)| = |F(u)(x) − F(u
)(x)| ≤ Ch2p, (35)

which is the maximal possible super-convergence. Since the constant C depends
on ‖u‖Hp

pw
and ‖w‖Hp

pw
, a possible estimate of these norms would probably

involve their right-hand sides. The right-hand side of the dual problem (32) is
the functional F(u). Thus, the constant C might include a factor like

∑2
i=1(

‖G(x, ·)‖
H

1
2+p

(Γi)
+ ‖∂νG(x, ·)‖

H
− 1
2+p

(Γi)

)
. Note that this term is finite for all

x ∈ R
2\Γb and p ≥ 0. However, because of the singularity of the kernels, it tends

to infinity when approaching the boundaries. Thus, also C from (35) might tend
to infinity. This effect is even more severe, if we consider functionals that involve
derivatives of the kernels, e.g., for the computation of forces and torques using the
Maxwell Stress Tensor. Finally, we mention that the regularity assumptions might
only hold for smooth surfaces.
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Remark 8 In the linear case, the dual problem to Problem 1 or Problem 4 is the corre-
sponding Bielak-MacCamy coupling [2]. Hence, the same approximation properties
hold for the dual problem (see [2]).

Remark 9 Note that similar results as in Theorem 7 and in Remark 7 for the extended
Problem 4 can be gained for the interface Problem 1.

5 Numerical illustration

To illustrate the theoretical results, we consider for each model problem one example.
The description of NURBS geometric entities are obtained by means of the NURBS
toolbox included in GeoPDEs, which is implemented in MATLAB (see [17] and
[45]). In the same spirit, the required matrices associated to the boundary integral
operators are implemented by using, adapting, and supplementing some structures
of GeoPDEs. The implementation of the BIOs for arbitrary ansatz functions is
performed numerically using standard Gauss-Legendre quadrature for regular con-
tributions and by means of some Duffy-type transformations with a subsequent
combination of logarithmic and Gaussian quadrature for the singular parts (see,
e.g., [3, Chapter 4.3]). The number of quadrature points on each boundary ele-
ment is denoted by NGauss. In the following, the H and H0-norm of (10) and (21),
respectively, are computed by Gaussian quadrature. However, we replace the non-
computable norm ‖·‖

H
− 1
2 (Γ )

by the equivalent norm ‖·‖2V stated in (7). Moreover,

we measure the error for the evaluated solution in the BEM domain in the following
way. First we define an evaluation path Γe in the BEM domain. For a certain number
N of evaluation points xi ∈ Γe, i = 1, . . . , N , xi �= xj , with i �= j , we define the
pointwise error as

error = max
i=1,...,N

|ue(xi) − ue
(xi)| and error = max
i=1,...,N

|ub(xi) − ub,
(xi)|. (36)

Here, ue
 and ub,
 are the discrete evaluations of the corresponding representation
formula (4) with the Cauchy data from the corresponding discrete coupling problem.
Note that for both problem types the trace has to be calculated with the aid of the
jump condition (9c) and (18c), respectively.

In all our experiments, we consider uniform h-refinement, for different degrees
of B-Splines, starting from the minimal degrees needed to represent the geometry
exactly. Increasing the degree of basis functions is called p-refinement. Furthermore,
note that the number of elements in every h-refinement step is calculated by Ne =
NΩ

hd , where NΩ denotes the number of patches and d the dimension of the considered

manifold. The element size h is obtained in every refinement step 
 ∈ N by h = 1

+1 .

Remark 10 In the following two examples we confirm our results for B-Spline spaces
with different polynomial degrees. In particular, we only provide examples with
uniform h-refinement. Therefore, we do not consider geometries like an L-shaped
domain (with a reentrant corner). For such geometries the solution has in general
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singularities, where only a local h-refinement of the elements leads to an improved
convergence rate (see, e.g., [16]).

5.1 Single domain

In the first example, we consider a square domain Ω := (−0.25, 0.25)2 and denote
its boundary by Γ . We parametrize Ω as a single patch domain using linear B-Spline
functions in each parametric direction. It is obvious that Assumption (A5) about the
multipatch geometry is satisfied.

Moreover, we consider the interface problem (9) with a linear material tensor U :=
Id, which obviously satisfies (A1), (A2), and CU

ell > 1
4 . As in [15], we prescribe the

exact solutions

u(x) =
(
1 − 100x2

1 − 100x2
2

)
e−50(x21+x22 ), x = (x1, x2) ∈ Ω,

and

ue(x) = log(
√

x2
1 + x2

2), x ∈ Ωe.

We calculate the jumps u0, φ0, and the right-hand side f appropriately. Solving the
coupled problem using the isogeometric framework, as described in the previous
section, yields a discrete solution (u
, φ
) ∈ H
 := S

0(Ω)×S
2(Γ ). An isogeometric

approach for this example is not mandatory since the domain Ω is standard Carte-
sian (see, e.g., [15]). However, we want to demonstrate our higher order coupling
approach and in particular the super-convergence behavior of this example. Figure 2
shows the solution u
 ∈ S

0(Ω) in the interior domain, as well as the exterior solution
ue
 in a subset of Ωe, which we call an evaluation domain Ωe

e := (−0.5, 0.5) \Ω .
The exterior solution ue


 is obtained from the representation formula (4) (κ = 1) with
the computed Cauchy data (u
|Γ − u0, φ) from our discrete solution of the inter-
face problem. Thereby, the degree of the considered B-Spline space for the domain
discretization is p = 2 and its dimension corresponds to an h-refinement level

 = 20.

As a first numerical experiment, we analyze the convergence of the isogeometric

FEM-BEM coupling with respect to the norm
√

‖u − u
‖2H 1(Ω)
+ ‖φ − φ
‖2V , which

is equivalent to H-norm in Ω . Since the solution is smooth, the expected order of
convergence is equal to the degree of the considered discrete space H
, as given in
the a priori estimate from Theorem 4. In Fig. 3 we observe the predicted optimal
convergence of the method for B-Spline spaces of degree p = 1, 2, 3, 4.

In the second experiment, we investigate the convergence of the solution in the
exterior domain. Note that our exterior solution is smooth. At a first step, we evalu-
ate the solution on an evaluation path Γe, which we define here as the boundary of
(−0.35, 0.35)2. We calculate the error according to (36) with N = 20 evaluations
points. In Fig. 4, we observe a doubling of the convergence rates with respect to the
pointwise error, which confirms the theoretical considerations in Remark 7 (see also
Remarks 8 and 9).

Furthermore, we want to investigate the dependency of the super-convergence
on the position of the evaluation point for a fixed degree p = 3 of the B-Spline
space. For this, we compare the convergence behavior of the exterior solution on
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Fig. 2 Solution
(
u
, u

e



) ∈ S
0(Ω)×S

0(Ωe
e ) of example in Section 5.1, where we restrict the representation

of the exterior solution to Ωe
e := (−0.5, 0.5) \Ω . The considered B-Spline space corresponds to S

0(Ω)

with degree p = 2 and an h-refinement level 
 = 20. The exterior solution is obtained by the evaluation
of 25 points in each of the 4 exterior patches

Fig. 3 Convergence of discrete solution (u
, φ
) ∈ H
 to the solution (u, φ) ∈ H for the example in
Section 5.1. The considered B-Spline spaces have the degrees p = 1, 2, 3, 4, respectively, and the error is

presented in the norm
√

‖·‖2
H 1(Ω)

+ ‖·‖2V , which is equivalent to the standard H = H 1(Ω) × H− 1
2 (Γ )

norm
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Fig. 4 Convergence of the exterior solution for the example in Section 5.1. The error =
maxi=1,...,N |ue(xi )−ue
(xi )| is calculated withN = 20 evaluations points on Γe. The considered B-Spline
spaces have the degrees p = 1, 2, 3, 4, respectively. We observe a doubling of the convergence rates. For
p = 4 the error even achieves machine precision

three distinct evaluation paths. We denote the paths by Γe,1, Γe,2, and Γe,3, which
are the boundaries of (−1, 1)2, (−0.35, 0.35)2, and (−0.26, 0.26)2, respectively. For
each evaluation path we choose again 20 evaluation points to compute the pointwise
error (36). The result is visualized in Fig. 5, where we observe the expected behavior
(see Remark 7). In particular, super-convergence is readily observed for the solution
on Γe,1 and Γe,2. We note that for the error in Γe,1 we are already at machine preci-
sion. Note that the related constant is larger for the solution on Γe,2, since the path is
closer to the interface boundary Γ = ∂Ω with Ω := (−0.25, 0.25)2 than Γe,1. The
same behavior can be observed for the path Γe,3, which is even closer to Γ than Γe,2.
However, the quality of the computation is also deteriorated in the asymptotic area.
Additionally, we observe saturation effects for higher refinement levels. This can be
improved by increasing the number of Gaussian quadrature points NGauss on each
boundary element, as it is shown in Fig. 6. However, this in turn is time consuming.
With using special extraction techniques, such as the ones developed for 3D in [39],
this undesirable effect can be reduced. However, a further investigation is beyond the
scope of this work.

5.2 Multiple domains

In this second example, we consider the non-symmetric isogeometric FEM-
BEM coupling for the extended boundary value problem (18) as described in
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Fig. 5 Dependence of the super-convergence on the evaluation points. The boundary Γ of (−0.25, 0.25)2

is the discretization boundary for the BEM. The N = 20 evaluations points to calculate the
error = maxi=1,...,N |ue(xi ) − ue
(xi )| are on Γe,1, Γe,2, and Γe,3, which are the boundaries of
(−1, 1)2, (−0.35, 0.35)2, and (−0.26, 0.26)2, respectively. We observe the growing constant of the
super-convergence constant, which leads to an undesirable saturation for the closest path Γe,3 with respect to Γ

Section 4. The topology of the model problem and the notation can be adopted
from Fig. 1. However, we consider here a problem domain constructed over cir-
cles (see Fig. 7). In particular, if we denote by B((x1, x2); r) a circular domain
with midpoint (x1, x2) and radius r we arrive at the following setting: Ω1 =
B((0, 0); 0.39)\B((0, 0); 0.1), Ω2 = B((0, 0); 0.6)\B((0, 0); 0.4), and the thin air
gap Ωb = B((0, 0); 0.4)\B((0, 0); 0.39), which describes in fact three rings. We
prescribe the right-hand side fi in Ωi as

f1(x1, x2) = 0 and f2(x1, x2) = 100 sin(ϕ),

where ϕ is the standard angle in a polar coordinate system. In addition, we do not
allow jumps, i.e., we set u0,i = 0 and φ0,i = 0. Furthermore, the non-linear material
tensor is modeled as follows

Ui∇ui := g(|∇ui |)∇ui, i = 1, 2, with g(t)

=

⎧⎪⎨
⎪⎩

hc
bs

for t = 0,
hc
t
tanh−1( t

bs
) for 0 < t ≤ tc := bs − ε,

1 + β exp(−αt) for t > tc,

(37)

where hc and bs depend on the material. Moreover, we choose ε > 0 arbitrarily such
that g(t) < 1, for all 0 < t ≤ tc, and α, β such that g(t) is continuously differentiable
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Fig. 6 Dependence of the saturation effect on the number of Gaussian points. The boundary Γ of
(−0.25, 0.25)2 is the discretization boundary for the BEM. The evaluations points N = 20 to calculate
error = maxi=1,...,N |ue(xi )−ue
(xi )| are on Γe,3 of Fig. 5, i.e., the boundary of (−0.26, 0.26)2. The num-
ber of Gaussian points used for the evaluation as well as the assembling of the matrices are 25, 50, and
100, respectively. We observe an amelioration of the undesirable saturation with increasing the number of
Gaussian points. For NGauss = 100, the expected super-convergence is restored to some extent

for all t > 0 and strongly monotone. Hence, assumptions (A1) and (A2) are satisfied
per construction.

Concretely, the extension coefficients α and β are computed as follows:

α = g′(tc)
1 − g(tc)

, β = (g(tc) − 1) exp(αtc).

For this experiment, we choose ε = 10−2, hc = 3·10−3, and bs = 3
2 . In the following,

this particular choice is discussed.

Remark 11 In general, the eigenvalues λ1 and λ2 of C
Ui

ell > 1
4λi

in Theorem 5 and
Theorem 6 are not explicitly known. However, for circular domains the values are
λ1 = λ2 = 1 (see [32, Section 3] for more details). On the one hand, note that the
non-linear material tensor (37) in this particular setting leads to C

Ui

ell = hc
bs

= 2 ·10−3,

which clearly violates the condition C
Ui

ell > 1
4 . On the other hand, choosing hc and

bs such that hc
bs

> 1
4 holds is not realistic in the context of electric machines. As

discussed in Remark 5, the bound seems to be a theoretical one. Therefore, we prefer
to present results with this setting, and test the numerical validity of the method
beyond this theoretical restriction.
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Fig. 7 Multipatch
representation (4 patches per
domain: the interfaces and
boundaries of the patches are
highlighted by bold lines) of the
example in Section 5.2

Following the isogeometric approach, we model both domains separately and
according to Definition 5 as multipatch domains consisting of four patches (see
Fig. 7). Each patch is represented exactly by a NURBS of degree p = 2 in each para-
metric direction. Moreover, the Assumption (A5) is obviously satisfied. Note that this
model configuration with the circular geometry can be interpreted as a 2D section of

Fig. 8 The solution in the interior domains Ω1 and Ω2 for the electric machine of the example in
Section 5.2 with p = 3 and 
 = 28. The equipotential lines are the magnetic field lines
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a simplified 2-pole synchronous machine [26, Section 5.2]. This type of applications
motivates also the consideration of non-linear operators. In fact, these devices are
mainly made of ferromagnetic materials, which are known to be non-linear. In par-
ticular, by neglecting anisotropies and hysteresis effects, ferromagnetic materials can
be modeled by using non-linear operators of the same type as the ones we consid-
ered in Lemma 2 and Lemma 4, and for this example in (37). For more details about
this topic see [33] and [36], for instance. Furthermore, we refer to [6] for electrical
engineering simulations of electric machines.

In this experiment, the arising non-linear problem is solved by using a standard
Picard iteration method. For the stopping criterion, we consider a relative residual
error of 10−10. In our simulation below we need an average of 35 Picard iterations to
fulfill the criterion.

The solutions u1 and u2 in the interior domains Ω1 and Ω2, respectively, are visu-
alized in Fig. 8 for B-Spline spaces of degree p = 3 and a level of refinement 
 = 28.
In the context of electric machines, ui, i = 1, 2, can be interpreted as the third com-
ponent of the magnetic vector potential. Note that the equipotential lines, i.e., the
continuous black lines in Fig. 8 are the magnetic field lines. The interaction of the
magnetic fields stemming from the rotor and the stator in the air gap may induce a
mechanical torque. Hence, the rotor, i.e., the interior ring, moves in order to reduce
the (spatial) phase shift between both magnetic fields. In particular, the computation

Fig. 9 Saturation effects caused by the non-linear material tensors. The color-bar and the thin lines rep-
resent the levels of the magnetic reluctivity, which is given by g(∇ui), for i = 1, 2, and evaluated using
the derivatives of the solutions u1 and u2 obtained with p = 3 at a refinement level 
 = 28. The thick
equipotential lines show the flow direction of the magnetic field
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of torques and forces involves the computation of the magnetic flux density, which
in turn requires the evaluation of the solution and its derivatives in the gap domain,
c.f., [27], for instance. Therefore, the super-convergence behavior in the air gap of
the machine is of particular interest.

In a post-processing step, we compute the magnetic reluctivity, which is defined
as the reciprocal of the magnetic permeability. Formally, it is given by the function
g(|∇ui |), i = 1, 2, in (37), which we evaluate by using the solutions u1 and u2.
Since we are considering non-linear materials, the reluctivity is not constant across
the electric machine. This is depicted in Fig. 9. We considered thereby B-Spline
spaces of degree p = 3 and a level of refinement 
 = 28. Note that the thick black
lines are the same as those in Fig. 8, i.e., they represent the equipotential lines of the
solutions u1 and u2.

To verify Remark 7 numerically, we evaluate the solution in the BEM domain Ωb
on the evaluation path given as the parametrized circle ∂B((0, 0); 0.395). Note that
in this example, the BEM is applied in an interior domain Ωb. Hence, we use for
the evaluation the representation formula (4) with κ = 0 and the complete Cauchy
data on Γ1 and Γ2, which are available after solving Problem 5 with the jump con-
dition (18c). An analytical solution for our model problem is not known. Hence,
to verify the convergence order, we follow a standard procedure: The mesh of the

Fig. 10 Convergence of the solution on the evaluation path Γe = ∂B((0, 0); 0.395) (circle) in the air gap
Ωb for the example in Section 5.2. The error = maxi=1,...,N |ue(xi ) − ue
(xi )| is calculated with N = 20
evaluations points on Γe. As a replacement for the unknown analytical solution we use an Aitken Δ2

extrapolation of a sequence of successively refined discrete solutions
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current solution is successively refined three times and we calculate the correspond-
ing discrete solutions. We apply the Aitkin’s Δ2-extrapolation to this sequence of
discrete solutions and this extrapolated value is the reference solution ue(xi) for the
error = maxi=1,...,N |ue(xi) − ue
(xi)| calculated from N = 20 evaluations points.
This error is visualized in Fig. 10 for ansatz spaces of degree p = 2 and p = 3,
where we observe an amelioration of the convergence rates. Note that this ameliora-
tion depends on the quality of the numerical integration, as shown in Fig. 6 for the
example of Section 5.1. For this example, noticeable amelioration of the convergence
rates were only observable for a high number of Gaussian quadrature points. In this
case, NGauss = 400 points were considered for the assembling of the BEM matri-
ces, which is very time consuming. The dominance of the quadrature error for this
type of evaluations can however be tackled, as mentioned in the previous section, by
using special extraction techniques. Moreover, efficient assembly of the BEM matri-
ces based on B-Spline tailored quadrature rules, as given in [1], together with suitable
compression methods (see e.g., [12]), would accelerate the computation considerably.
However, this investigation is beyond the scope of this work.

6 Conclusions

The non-symmetric FEM-BEM coupling in the isogeometric context for simulating
practical problems with complex geometries turns out to be a promising alternative to
classical approaches. A transformation to an integral formulation allows a problem in
a domain to be reduced to its boundary, where the BEM can be applied. For exterior
problems there is no need to truncate the unbounded domain, and for simulating thin
gaps there is no need for a complicated remeshing. In both cases numerical errors can
be avoided. Thanks to the definition of B-Splines, h- and p-refinements are applied
in a straightforward manner. Furthermore, multiple domain modeling can be done
independently. This is particularly advantageous if we consider moving or deform-
ing geometries. A classical transmission and a multiple domain problem with parts
of non-linear material are considered. Obviously, FEM is applied to the non-linear
areas, whereas BEM is exclusively used for the linear problem. For both model prob-
lems, well-posedness for the continuous and discrete problem, and quasi-optimality
and convergence rates for the numerical approximation are mathematically analyzed
in the isogeometric framework. Furthermore, we show an improvement of the con-
vergence behavior, if we consider the error in functionals of the solution. This is
motivated by a practice-oriented application such as electric machines. Here the com-
putation of torques are a central task and involve the evaluation of some derivatives
of the solution in the BEM domain. We observe for both model applications this
super-convergence, which confirms the theory. Future extensions of the method may
include the consideration of parabolic-elliptic problems and a rigorous analysis of
the coupling for curl curl-type equations in 3D.
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8. Corno, J., de Falco, C., De Gersem, H., Schöps, S.: Isogeometric simulation of Lorentz detuning in
superconducting accelerator cavities. Comput. Phys. Commun. 201, 1–7 (2016)

9. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math.
Anal. 19(3), 613–626 (1988)

10. Costabel, M.: A symmetric method for the coupling of finite elements and boundary elements. The
Mathematics of Finite Elements and Applications VI(Uxbridge, 1987), 281–288 (1988)

11. Cottrell, J.A., Hughes, T.J., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA.
Wiley (2009)
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