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Abstract
We present two accurate and efficient algorithms for solving the incompressible, irro-
tational Euler equations with a free surface in two dimensions with background flow
over a periodic, multiply connected fluid domain that includes stationary obstacles and
variable bottom topography. One approach is formulated in terms of the surface veloc-
ity potential while the other evolves the vortex sheet strength. Both methods employ
layer potentials in the form of periodized Cauchy integrals to compute the normal
velocity of the free surface, are compatible with arbitrary parameterizations of the free
surface and boundaries, and allow for circulation around each obstacle, which leads to
multiple-valued velocity potentials but single-valued stream functions. We prove that
the resulting second-kind Fredholm integral equations are invertible, possibly after a
physically motivated finite-rank correction. In an angle-arclength setting, we show how
to avoid curve reconstruction errors that are incompatible with spatial periodicity. We
use the proposed methods to study gravity-capillary waves generated by flow around
several elliptical obstacles above a flat or variable bottom boundary. In each case, the
free surface eventually self-intersects in a splash singularity or collides with a boundary.
We also show how to evaluate the velocity and pressure with spectral accuracy throughout
the fluid, including near the free surface and solid boundaries. To assess the accuracy of
the time evolution, we monitor energy conservation and the decay of Fourier modes and
compare the numerical results of the two methods to each other. We implement sev-
eral solvers for the discretized linear systems and compare their performance. The
fastest approach employs a graphics processing unit (GPU) to construct the matrices
and carry out iterations of the generalized minimal residual method (GMRES).
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1 Introduction

Many interesting phenomena in fluid mechanics occur as a result of the interac-
tion of a fluid with solid or flexible structures. Most numerical algorithms to study
such problems require discretizing the bulk fluid [5, 35, 80] or are tailored to the
case of slender bodies [70], flexible filaments [4, 54] or unbounded domains [44].
In the present paper, we propose a robust boundary integral framework for the fast
and efficient numerical solution of the incompressible, irrotational Euler equations
in multiply connected domains that have numerous fixed obstacles, variable bottom
topography, a background current, and a free surface. We present two methods within
a common boundary integral framework, one in which the surface velocity potential
is evolved along with the position of the free surface and another where the vortex
sheet strength is evolved. Treating the methods together in a unified framework con-
solidates the work in analyzing the schemes, reveals unexpected connections between
the integral equations that arise in the two approaches, and provides strong validation
through comparison of the results of the two codes.

Studies of fluid flow over topography of various forms is a rather classical prob-
lem, and any attempt to give a broad overview of the history of the problem would
inevitably fall short within a limited space. We give here a brief discussion, includ-
ing many articles that point to further relevant citations to important works on the
topics. The linear response to a background current for water waves driven by grav-
ity and surface tension was studied long ago and is present in now classical texts
such as [52, 75]. In the case of cylindrical obstacles, Havelock [40, 41] carries out
an analysis using the method of successive images. Further nonlinear studies of the
gravity wave case are undertaken in works such as [29, 57, 63, 69, 71]. Capillary
effects are considered in [34, 37, 55]. Algorithms using point sources for cylindrical
obstacles are introduced and studied in [58, 59]. Analytic solutions in infinite water
columns exterior to a cylinder are given in [28]. Flows in shallow water with vari-
able bottom topography are studied in various contexts as forced Korteweg-de Vries
equations in [18, 31, 32, 38, 43] and again recently in [67]. An algorithm for com-
puting the Dirichlet-Neumann operator (DNO) in three dimensions over topography
has recently been proposed by Andrade and Nachbin [11].

Computational boundary integral tools are developed and implemented in [14],
for instance, and have been made quite robust in the works [9, 13, 21, 45–47, 76] and
many others. Analysis of these types of models and schemes is carried out in [2, 6]. In
two dimensions, complex analysis tools have proved useful for summing over peri-
odic images and regularizing singular integrals; early examples of these techniques
date back to Van de Vooren [73], Baker et al. [14] and Pullin [66].

More recently, the conformal mapping framework of Dyachenko et al. [30] has
emerged as one of the simplest and most efficient approaches to modeling irrotational
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water waves over fluids of infinite depth [22, 53, 56, 82]. The conformal framework
extends to finite depth with flat [72] or variable bottom topography [74] and can also
handle quasi-periodic boundary conditions [77, 78]. However, at large amplitude,
these methods suffer from an anti-resolution problem in which the gridpoints spread
out near wave crests, especially for overturning waves, which is precisely where more
gridpoints are needed to resolve the flow. There are also major technical challenges
to formulating and implementing conformal mapping methods in multiply connected
domains with obstacles, and of course they do not have a natural extension to 3D. By
contrast, boundary integral methods are compatible with adaptive mesh refinement
[76], can handle multiply connected domains (as demonstrated in the present work),
and can be extended to 3D via the theory of layer potentials (see Appendix G).

In multiply connected domains, the integral equations of potential theory some-
times possess nontrivial kernels [33]. This turns out to be the case in the present
work for the velocity potential formulation but not for the vortex sheet formulation.
We propose a physically motivated finite-rank correction in the velocity potential
approach to eliminate the kernel and compute the constant values of the stream func-
tion on each of the obstacles relative to the bottom boundary, which is taken as the
zero contour of the stream function. These stream function values are needed anyway
(in both the velocity potential and vortex sheet formulations) to compute the energy.
This stream function technique does not generalize to 3D, but the challenge of a
multiple-valued velocity potential also vanishes in 3D, alleviating the need to intro-
duce a stream function to avoid having to compute line integrals through the fluid
along branch cuts of the velocity potential in the energy formula. Our study of the
solvability of the integral equations that arise is rigorous, generalizing the approach
in [33] to the spatially periodic setting and adapting it to different sets of boundary
conditions than are treated in [33].

In our numerical simulations, we find that gravity-capillary waves interacting with
rigid obstacles near the free surface often evolve to a splash singularity event in which
the curve self-intersects. In rigorous studies of such singularities [19, 20], the system
is prepared in a state where the curve intersects itself. Time is then reversed slightly
to obtain an initial condition that will evolve forward to the prepared splash singular-
ity state. Here we start with a flat wave profile and the free surface dynamics is driven
by the interaction of the background flow with the obstacles and bottom boundary.
The same qualitative results occur for different choices of parameters governing the
circulation around the obstacles, though in one case the free surface collides with an
obstacle rather than self-intersecting. Thus, if we widen the class of splash singular-
ities to include boundary collisions, they seem to be a robust eventual outcome, at
least for sufficiently large background flow.

Of course, the circulation around obstacles in real fluids would be affected by
viscosity and the shedding of a wake, which can be modeled as a vortex sheet. For
bodies with sharp edges the circulation can be assigned within a potential flow for-
mulation using the so-called Kutta condition at the edge by choosing the circulation
to eliminate a pressure singularity there. Note that for time-dependent problems, this
condition would have to be applied dynamically in time, which adds additional steps
in the solution method. We will not pursue this here, and leave this generalization to
future work.
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We find that the angle-arclength parameterization of Hou, Lowengrub and Shel-
ley (HLS) [46, 47] is particularly convenient for overturning waves. Nevertheless, we
formulate our boundary integral methods for arbitrary parameterizations. This allows
one to switch to a graph-based parameterization of the free surface, if appropriate,
and can be combined with any convenient parameterization of the bottom boundary
and obstacles—it is not necessary to parameterize these boundaries uniformly with
respect to arclength even if a uniform parameterization is chosen for the free sur-
face. One could also build upon this framework to employ adaptive mesh refinement
in angle-arclength variables along the lines of what was done in [76] in a graph-
based setting. We use explicit 8th-order Runge-Kutta timestepping in the examples
presented in Section 7, though it would be easy to implement a semi-implicit Runge-
Kutta scheme [50] or exponential time-differencing scheme [25, 78] using the HLS
small-scale decomposition. The 3/2-order CFL condition of this problem [6, 46, 47]
is a borderline case where explicit timestepping is competitive with semi-implicit
methods if the surface tension is not too large.

One challenge in using the HLS angle-arclength parameterization in a Runge-
Kutta framework is that internal Runge-Kutta stages are only accurate to O(�t2).
When the tangent angle function and arclength are evolved as ODEs, this can lead
to discontinuities in the curve reconstruction that excite high spatial wave numbers
that do not cancel properly over a full timestep to yield a higher order method.
Hou, Lowengrub and Shelley avoid this issue by using an implicit-explicit multistep
method [12]. In the present paper, we propose a more flexible solution in which only
the zero-mean projection of the tangent angle is evolved via an ODE. The arclength
and the mean value of the tangent angle are determined algebraically from periodicity
constraints. This leads to properly reconstructed curves even in interior Runge-Kutta
stages, improving the performance of the timestepping algorithm.

To aid in visualization, we derive formulas for the velocity and pressure in the fluid
that remain spectrally accurate up to the boundary. For this we adapt a technique of
Helsing and Ojala [42] for evaluating layer potentials in 2D near boundaries. Details
are given in Appendix F.

This paper is organized as follows. First, in Section 2, we establish notation for
parameterizing the free surface and solid boundaries and show how to modify the
HLS angle-arclength representation to avoid falling off the constraint manifold of
angle functions and arclength elements that are compatible with spatial periodicity. In
Section 3 we describe the velocity potential formulation and introduce multi-valued
complex velocity potentials to represent background flow and circulation around
obstacles. In Section 4 we describe the vortex sheet formulation and derive the evolu-
tion equation for the vortex sheet strength on the free surface. Connections are made
with the velocity potential method. In Section 5, we summarize the methods, show
how to implement different choices of the tangential velocity, derive formulas for the
energy that remain valid for multi-valued velocity potentials, and show how to com-
pute the velocity and pressure in the interior of the fluid from the surface variables
that are evolved by the timestepping scheme. In Section 6, we analyze the solvability
of the velocity potential and vortex sheet methods and prove that the resulting inte-
gral equations are invertible after a finite-rank modification of the integral operator
for the velocity potential method. We also show that the systems of integral equations
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for the two methods are adjoints of each other after modifying one of them to evaluate
each layer potential by approaching the boundary from the “wrong” side.

In Section 7, we present numerical results for four scenarios of free surface flow
over elliptical obstacles with a flat or variable bottom boundary. In each case, the
mesh is refined several times in the course of evolving the solution. We stop at
the point that the solution is still resolved with spectral accuracy but cannot be
evolved further on the finest mesh due to a self-intersection event or collision with
the boundary that appears imminent. The results are validated by monitoring energy
conservation, decay of spatial Fourier modes, and quantitative comparison of the
results of the velocity potential and vortex sheet methods. We then discuss the per-
formance of the algorithms using Gaussian elimination or the generalized minimal
residual method (GMRES) in the integral equation solvers. Our fastest implemen-
tation employs a graphics processing unit (GPU) to accelerate the computation of
the integral equation matrices and perform GMRES iterations. Concluding remarks
are given in Section 8, followed by seven appendices containing further technical
details. In particular, Appendix G discusses progress and challenges in extending the
algorithms to multiply connected domains in 3D.

2 Boundary parameterization andmotion of the free surface

We consider a two-dimensional fluid whose velocity and pressure satisfy the incom-
pressible, irrotational Euler equations. The fluid is of finite vertical extent, and is
bounded above by a free surface and below by a solid boundary. The location of the
free surface is given by the parameterized curve

(ξ(α, t), η(α, t)),

with α the parameter along the curve and with t the time. We denote this free surface
by �, or to be very precise, we may call it �(t). We will also write ξ0, η0 and �0
when enumerating the free surface as one of the domain boundaries. We consider the
horizontally periodic case in which

ξ(α + 2π, t) = ξ(α, t) + 2π, η(α + 2π, t) = η(α, t), (α ∈ R, t ≥ 0). (2.1)

The bottom boundary, �1, is time-independent. Its location is given by the parame-
terized curve (ξ1(α), η1(α)), which is horizontally periodic with the same period,

ξ1(α + 2π) = ξ1(α) + 2π, η1(α + 2π) = η1(α), (α ∈ R). (2.2)

One may also consider one or more obstacles in the flow, such as a cylinder. As
we are considering periodic boundary conditions, in fact there is a periodic array of
obstacles. We denote the location of such objects by the parameterized curves

(ξj (α), ηj (α)), (2 ≤ j ≤ N), (2.3)

where N is the number of solid boundaries. Like the bottom boundary, these curves
are time-independent. We denote these curves by �j , 2 ≤ j ≤ N . The region below
the free surface, above the bottom boundary, and outside of these obstacles is denoted
by � = �(t) (see Fig. 1). We have simple periodicity of the location of the obstacles,

ξj (α + 2π) = ξj (α), ηj (α + 2π) = ηj (α), (2 ≤ j ≤ N, α ∈ R). (2.4)
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While the periodic images of the free surface and bottom boundary are swept out
by extending α beyond [0, 2π), the periodic images of the obstacles can only be
obtained by discrete horizontal translations by 2πZ. We take the parameterization of
the solid boundaries to be such that the fluid lies to the left, i.e., the normal vector
(−ηj,α, ξj,α) points into the fluid region for 1 ≤ j ≤ N , where an α-subscript
denotes differentiation. Thus, the bottom boundary is parameterized left to right and
the obstacles are parameterized clockwise. The free surface is also parameterized left
to right, so the fluid lies to the right and the normal vector points away from the fluid.
This is relevant for the Plemelj formulas later.

Since each of these boundaries is described by a parameterized curve, there is no
restriction that any of them must be a graph; that is, the height of the free surface and
the height of the bottom need not be graphs with respect to the horizontal. Similarly,
the shapes of the obstacles need not be graphs over the circle. We denote the length
of one period of the free surface by L(t) or L0(t), the length of one period of the
bottom boundary by L1, and the circumference of the j th obstacle by Lj . We will
often benefit from a complexified description of the location of the various surfaces,
so we introduce the following notations:

ζ(α, t) = ζ0(α, t) = ξ(α, t) + iη(α, t),

ζj (α) = ξj (α) + iηj (α), (1 ≤ j ≤ N). (2.5)

2.1 Graph-based and angle-arclength parameterizations of the free surface

At a point (ξ(α, t), η(α, t)) we have unit tangent and normal vectors. Suppressing
the dependence on (α, t) in the notation, they are

t̂ = (ξα, ηα)

|(ξα, ηα)| , n̂ = (−ηα, ξα)

|(ξα, ηα)| . (2.6)

We describe the motion of the free surface using the generic evolution equation

(ξ, η)t = U n̂ + V t̂. (2.7)

Fig. 1 The fluid region is bounded above by a free surface, �(t), below by a solid boundary, �1, and
internally by obstacles �2,. . . ,�N . The domain is spatially periodic in x, with the fluid velocity and free
surface having the same period, normalized to be 2π . We allow for a background flow in which the velocity
potential increases by 2πV1 when x increases by 2π along a path passing above each of the obstacles
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HereU is the normal velocity and V is the tangential velocity of the parameterization.
One part of the Hou, Lowengrub and Shelley (HLS) [46, 47] framework is the idea
that V need not be chosen according to physical principles, but instead may be chosen
to enforce a favorable parameterization on the free surface. The normal velocity,
however, must match that of the fluid.

In Sections 3 and 4 below, we present two methods of computing the normal
velocity U = ∂φ/∂n of the fluid on the free surface, where φ(x, y, t) is the velocity
potential. A simple approach for cases when the free surface is not expected to over-
turn or develop steep slopes is to set ξ(α) = α and evolve η(x, t) in time. Setting
ξt = 0 in (2.7) and using (2.6) gives V = ηαU and

ηt =
√
1 + η2α U, U = ∂φ

∂n
. (2.8)

This is the standard graph-based formulation [26, 81] of the water wave equations,
where the Dirichlet-Neumann operator mapping the velocity potential on the free
surface to the normal velocity now involves solving the Laplace equation on a mul-
tiply connected domain. Mesh refinement can be introduced by choosing a different
function ξ(α) such that ξα(α) is smaller in regions requiring additional resolution.
This is done in [76] for the case without obstacles to resolve small-scale features at
the crests of large-amplitude standing water waves.

Hou, Lowengrub and Shelley [46, 47] proposed a flexible alternative to the graph-
based representation that allows for overturning waves and simplifies the treatment
of surface tension. Rather than evolving the Cartesian coordinates ξ(α, t) and η(α, t)

directly, the tangent angle θ(α, t) of the free surface relative to the horizontal is
evolved in time. In the complex representation (2.5), we have

ζα = sαeiθ , ζt = (V + iU)eiθ , (2.9)

where sα(α, t) is the arclength element, defined by sα = |ζα| = √
ξ2α + η2α . Equating

ζαt = ζtα in (2.9), one finds that

θt = Uα + V θα

sα
, sαt = Vα − θαU . (2.10)

One can require a uniform parameterization in which sα(α, t) = L(t)/2π is
independent of α, where L(t) is the length of a period of the interface. This gives

Vα = θαU − 1

2π

∫ 2π

0
θαU dα. (2.11)

By taking the tangential velocity, V, to be a solution of (2.11), we ensure that the nor-
malized arclength parameterization is maintained at all times. When solving (2.11)
for V, a constant of integration must be chosen. Three suitable choices are (a) the
mean of V can be taken to be zero; (b) V (0, t) = 0; or (c) ξ(0, t) = 0. We usually
prefer (c) as it conveniently anchors the coordinate system for describing the surface.

2.2 Staying on the constraint manifold

In solving the evolution of the surface profile in the HLS framework, we must ensure
that a periodic profile arises at each stage of the iteration. As we have described
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the HLS method so far, the curve ζ(α) is represented by θ(α) and sα = L/2π
together with two integration constants, which we take to be ξ(0) = 0 and 〈η〉 =
1
2π

∫ 2π
0 η(α)ξα(α) dα = 0. The latter quantity is the average height of the free sur-

face, which, by incompressibility, remains constant in time and can be set to 0 by
a suitable vertical adjustment of the initial conditions and solid boundaries if neces-
sary. The problem is that not every function θ and number sα are the tangent angle
and arclength element of a periodic curve (in the sense of (2.1)). We refer to those
that are as being on the constraint manifold.

A drawback of the HLS formulation is that numerical error can cause the solu-
tion to deviate from this constraint manifold, e.g., in internal Runge-Kutta stages or
when evolving the interface over many time steps. Internal Runge-Kutta stages typi-
cally contain O(h2) errors that cancel out over the full step if the solution is smooth
enough; thus, it is critical that the curve reconstruction not introduce O(h2) grid
oscillations.

Our idea is to evolve only Pθ in time and select P0θ and sα as part of the recon-
struction of ζ(α) to enforce ζ(2π) = ζ(0)+2π . Here P0 is the orthogonal projection
in L2(0, 2π; dα) onto the constant functions while P projects onto functions with
zero mean,

P = I − P0, P0f = 1

2π

∫ 2π

0
f (α) dα. (2.12)

Note that P0η is the mean of η with respect to α on [0, 2π ], which differs from the
mean in physical space, 〈η〉 = P0[ηξα]. Given Pθ , we define

C = P0
[
cosPθ ],

S = P0
[
sinPθ ],

P0θ = arg(C − iS),

θ = Pθ + P0θ
sα = (C2 + S2)−1/2. (2.13)

We then define ζα = sαeiθ and note that

ζ(2π) − ζ(0) = (sαeiP0θ )

∫ 2π

0
ei(P θ)(α)dα = C − iS

C2 + S2 [2π(C + iS)] = 2π .

(2.14)
Thus, any antiderivative ζ(α) of ζα = ξα + iηα will lie on the constraint manifold.
We also note for future reference that

P [cos θ ] = cos θ − s−1
α , P [sin θ ] = sin θ . (2.15)

Next, we compute the zero-mean antiderivatives

ξ aux =
∫

[ξα − 1] dα, ηaux =
∫

ηα dα

via the FFT. Both integrands have zero mean due to (2.14), so ξ aux and ηaux are 2π -
periodic. The conditions ξ(0) = 0 and 〈η〉 = 0 are achieved by adding integration
constants

ξ(α) = α + ξ aux(α) − ξ aux(0), η(α) = ηaux(α) − P0[ηauxξα]. (2.16)

The α term in ξ(α) accounts for the 1 in the integrand in the formula for ξ aux. This
completes the reconstruction of ζ(α) = ξ(α) + iη(α) from Pθ .
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We compute the normal velocity, U , of the fluid on the reconstructed curve ζ(α)

as described in Sections 3 or 4 below. The evolution of Pθ is obtained by applying
P to the first equation of (2.10),

(P θ)t = P

(
Uα + V θα

sα

)
. (2.17)

In Appendix A, we show that θ and sα from (2.13) satisfy (2.10) even though P0θ

and sα are computed algebraically rather than by solving ODEs. We also show that
(2.10) implies that the curve kinematics are correct, i.e., (ξt , ηt ) = Un + V t. As far
as the authors know, this approach of evolving Pθ via (2.17) and computing P0θ and
sα algebraically (rather than evolving them) is an original formulation (although a
different algebraic formula for just sα has been used previously [2]).

We reiterate that the advantage of computing P0θ and sα from Pθ is that the
reconstructed curve is always on the constraint manifold. This avoids loss of accuracy
in internal Runge-Kutta stages or after many steps due to grid oscillations that arise
when computing periodic antiderivatives from functions with nonzero mean.

3 Cauchy integrals and the velocity potential formulation

As explained above, we let the fluid region, �, be 2π -periodic in x with free surface
� = �0, bottom boundary �1, and cylinder boundaries �2, . . .�N . The cylinder
boundaries need not be circular, but are assumed to be smooth. We view � as a subset
of the complex plane. Let us decompose the complex velocity potential 
(z) =
φ(z) + iψ(z) as


(z) = 
̃(z) + 
mv(z), (3.1)

where 
̃(z) = 
0(z) + · · · + 
N(z) and


mv(z) = V1z +
N∑

j=2

aj
cyl(z − zj ), 
cyl(z) = −i log
(
1 − eiz

)
. (3.2)

Here zj is a point inside the j th cylinder; V1 and the aj are real parameters cor-
responding to the background flow strength and circulation around each cylinder,
divided by 2π , which allow φ(z) (but not ψ(z)) to be multi-valued on �; and 
̃(z)

is represented by Cauchy integrals:


0(z) = 1

2πi

∫ 2π

0

1

2
cot

ζ0(α) − z

2
ω0(α) ζ ′

0(α) dα, (free surface),


j (z) = 1

2πi

∫ 2π

0

1

2
cot

ζj (α) − z

2
iωj (α) ζ ′

j (α) dα,

(
solid boundaries

1 ≤ j ≤ N

)
.

(3.3)

Here ωj (α) is a real-valued function for 0 ≤ j ≤ N , and we use primes interchange-
ably with α subscripts to denote derivatives of ζj (α), ωj (α), etc. We refer to these
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as Cauchy integrals as they correspond to a principal value sum of the Cauchy kernel
over periodic images via a Mittag-Leffler formula [1], namely

PV
∑

k

1

ζ + 2πk − z
= 1

2
cot

ζ − z

2
. (3.4)

We have temporarily dropped t from ζ0(α, t) since time may be considered frozen
when computing the velocity potential. The subscript 0 is optional only for ζ0, ξ0, η0,
�0 and for quantities such as sα and θ defined in terms of ηα and ξα . In particular,

, φ, ψ are not the same as 
0, φ0, ψ0 in our notation. The real and imaginary parts
of 
̃, 
mv, 
j and 
cyl will be denoted by φ̃, ψ̃ , φmv, etc.

3.1 Properties of�cyl(z) and time independence of V1, a2, . . . , aN

We regard 
cyl(z) as a multi-valued analytic function defined on a Riemann surface
with branch points z ∈ 2πZ. On the nth sheet of the Riemann surface, 
cyl(z) is
given by


upper,n(z) = −i Log
(
1 − eiz

)
+ 2πn, (n ∈ Z), (3.5)

where Log(z) is the principal value of the logarithm. The functions (3.5) are analytic
in the upper half-plane and have vertical branch cuts extending from the branch points
down to −i∞. Their imaginary parts are all the same, given by − ln |1 − eiz|, which
is continuous across the branch cuts (except at the branch points) and harmonic on
C \ 2πZ. The real part of 
upper,n(z) jumps from 2π(n + 1/2) to 2π(n − 1/2) when
crossing a branch cut from left to right. We obtain 
cyl(z) by gluing 
upper,n(z) on
the left of each branch cut to 
upper,n+1(z) on the right. Equivalently, we can define
horizontal branch cuts Ik = (2πk, 2π(k + 1)) ⊂ R for k ∈ Z and glue 
upper,n(z) to


lower,m(z) = −i Log
(
1 − e−iz

)
+ z + (2m − 1)π, (m ∈ Z) (3.6)

along In−m. 
lower,m(z) is analytic in the lower half-plane and has vertical branch
cuts extending from the points z ∈ 2πZ up to+i∞. Both
upper,n(z) and
lower,m(z)

are defined and agree with each other on the strip z = x + iy with y ∈ R and
x ∈ In−m, so they are analytic continuations of each other to the opposite half-plane
through In−m. To show this, one may check that


upper,0(x) =
(

x − π

2
− i ln

√
2 − 2 cos x

)
= 
lower,0(x), (0 < x < 2π).

By the identity theorem, 
upper,0(z) = 
lower,0(z) on the strip z = x+iy with x ∈ I0
and y ∈ R. The result follows using the property that
upper,n(z) is 2π -periodic while

lower,m(z + 2πk) = 
lower,m(z) + 2πk for k ∈ Z.

Following a path from some point z∗ to z∗ +2π that passes above all the cylinders
will cause 
mv(z) to increase by 2πV1. The free surface is such a path. If the path
passes below all the cylinders, 
mv(z) will increase by 2π(V1 + a2 + · · · + aN).
More complicated paths from z∗ to z∗ + 2πn1 that loop nj ∈ Z times around the
j th cylinder in the counter-clockwise (nj > 0) or clockwise (nj < 0) direction
relative to a path passing above all the cylinders will cause 
mv(z) to change by
2π(n1V1 + n2a2 + · · · + nNaN).
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The derivative of 
cyl(z) is single-valued and has poles at the points z ∈ 2πZ.
Explicitly,


′
cyl(z) = 1

2
− i

2
cot

z

2
. (3.7)

A more evident antiderivative of this function is
z

2
− i log sin

z

2
, (3.8)

which has the same set of possible values as
[

cyl(z) + π

2 + i ln 2
]
for a given z.

However, using the principal value of the logarithm in (3.8) leads to awkward branch
cuts that are difficult to explain how to glue together to obtain a multi-valued function

cyl(z) on a Riemann surface.

It follows from the Euler equations for u = ∇φ,

ρ∇
(

φt + 1

2
‖∇φ‖2 + p

ρ
+ gy

)
= ρ[ut + u · ∇u] + ∇p + ρgŷ = 0, (3.9)

that V1 and the aj are independent of time. This is because the change in φt around
a path encircling a cylinder or connecting (0, y∗) to (2π, y∗) is the negative of the
change in 1

2‖∇φ‖2 + p
ρ

+ gy, which is single-valued and periodic. For the cylinders,
this also follows from the Kelvin circulation theorem.

3.2 Integral equations for the densitiesωj

Evaluation of the Cauchy integrals in (3.3) on the boundaries via the Plemelj for-
mulas [60] gives the results in Table 1. When j = k ∈ {0, . . . , N} and β → α,
Kjj (α, β) → Im{ζ ′′

j (α)/[2ζ ′
j (α)]}, so the apparently singular integrands are actually

regular due to the imaginary part. They are automatically regular when j �= k since
ζj (β) and ζk(α) are never equal. So far Gkj only arises with j �= k; the regularizing
term (1/2) cot[(β − α)/2] will become relevant in (3.24) below.

Next we consider the operator B mapping the dipole densities ωj to the values of
φ̃ on �−

0 and ψ̃ on �+
k for 1 ≤ k ≤ N . Recall from (3.1) that a tilde denotes the con-

tribution of the Cauchy integrals to the velocity potential. We regard the functions ωj ,

Table 1 Evaluation of the Cauchy integrals on the boundaries

φ0(ζ0(α)−) = − 1
2ω0(α) + 1

2π

∫ 2π
0 K00(α, β)ω0(β) dβ,

φj (ζ0(α)) = 1
2π

∫ 2π
0 G0j (α, β)ωj (β) dβ, (1 ≤ j ≤ N)

ψ0(ζk(α)) = 1
2π

∫ 2π
0 −Gk0(α, β)ω0(β) dβ, (1 ≤ k ≤ N)

ψj (ζj (α)+) = 1
2ωj (α) + 1

2π

∫ 2π
0 Kjj (α, β)ωj (β) dβ, (1 ≤ j ≤ N)

ψj (ζk(α)) = 1
2π

∫ 2π
0 Kkj (α, β)ωj (β) dβ, (1 ≤ j, k ≤ N, j �= k)

Kkj (α, β) = Im

{
ζ ′
j (β)

2 cot
(

ζj (β)−ζk(α)

2

)}
, (0 ≤ j, k ≤ N)

Gkj (α, β) = Re

{
ζ ′
j (β)

2 cot
(

ζj (β)−ζk(α)

2

)
− δkj

1
2 cot

β−α
2

}
, (0 ≤ j, k ≤ N)

The Plemelj formulas [60] are used to take one-sided limits from within �, where the positive side of a
parameterized curve lies to the left. In the last formula, δkj = 1 if k = j and 0 otherwise. This term will
be relevant in (3.24) below
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φ̃|�−
0
and ψ̃ |�+

k
as elements of the (real) Hilbert space L2(0, 2π). They are functions

of α, and we do not assume the curves ζj (α) are parameterized by arclength. The
operator B has a block structure arising from the formulas in Table 1. For example,
when N = 2, B has the form

Bω :=
⎛
⎜⎝

φ̃|�−
0

ψ̃ |�+
1

ψ̃ |�+
2

⎞
⎟⎠ =

⎡
⎣
⎛
⎝

− 1
2 I

1
2 I

1
2 I

⎞
⎠ +

⎛
⎝

K00 G01 G02
−G10 K11 K12
−G20 K21 K22

⎞
⎠
⎤
⎦
⎛
⎝

ω0
ω1
ω2

⎞
⎠ , (3.10)

where

Kkjωj = 1

2π

∫ 2π

0
Kkj (·, β)ωj (β) dβ, Gkjωj = 1

2π

∫ 2π

0
Gkj (·, β)ωj (β) dβ.

(3.11)
Here k and j are fixed; there is no implied summation over repeated indices. Up to
rescaling of the rows by factors of −2 or 2, the operator B is a compact perturbation
of the identity, so has a finite-dimensional kernel. The structure of B for N > 2 is
easily extended as in (3.10), with the entries on the diagonal continuing to be of the
form 1

2 I for each new obstacle. The dimension of the kernel turns out to be N − 1,
spanned by the functions ω = 1m given by

(1m)j (α) =
{
1, j = m

0, j �= m

}
, (0 ≤ j ≤ N, 2 ≤ m ≤ N). (3.12)

Indeed, if ω = 1m with m ≥ 2, then each 
j(z) is zero everywhere if j �= m and
is zero outside the mth cylinder if j = m, including along ζm(α)+. Summing over j

and restricting the real part to �−
0 or the imaginary part to �+

k , 1 ≤ k ≤ N , gives zero
for each component of Bω in (3.10). In Section 6 we will prove that all the vectors in
kerB are linear combinations of these, and that the range of B is complemented by
the same functions 1m, 2 ≤ m ≤ N . The operator

Aω = Bω −
N∑

m=2

1m〈1m, ω〉, 〈μ, ω〉 =
N∑

j=0

1

2π

∫ 2π

0
μj (α)ωj (α) dα. (3.13)

is then an invertible rank N − 1 correction of B. We remark that (3.13) is tailored
to the case where V1, a2, . . . , aN in the representation (3.1) for 
 are given and the
constant values ψ |k are unknown. The case when ψ is completely specified on �k

for 1 ≤ k ≤ N is discussed in Appendix B.
In the water wave problem, we need to evaluate the normal derivative of φ on

the free surface to obtain the normal velocity U . In the present algorithm, we evolve
ϕ̃ = φ̃|� in time, so its value is known when computing U . On the bottom boundary
and cylinders, the stream function ψ should be constant (to prevent the fluid from
penetrating the walls). Let ψ |k denote the constant value of ψ on the kth boundary.
We are free to set ψ |1 = 0 on the bottom boundary but do not know the other ψ |k in
advance. We claim that ψ |k = 〈1k, ω〉 for 2 ≤ k ≤ N . From (3.1),

ψ(z) = ψ̃(z) + ψmv(z) = ψ |k = const, (z ∈ �+
k , 1 ≤ k ≤ N). (3.14)
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This is achieved by solving

Aω = b, b0(α) = ϕ̃(α), bk(α) = −ψmv(ζk(α)), (1 ≤ k ≤ N), (3.15)

which gives ψ̃ |�+
k

= (Bω)k = bk + ∑
m≥2 δkm〈1m, ω〉 = −ψmv|�k

+ 〈1k, ω〉 for
2 ≤ k ≤ N . Thus, ψ(z) = ψ |k = 〈1k, ω〉 is constant for z ∈ �+

k , as required. (For
k = 1, each δkm is zero and ψ |k = 0.)

3.3 Numerical discretization

We adopt a collocation-based numerical method and replace the integrals in Table 1
with trapezoidal rule sums. Let M0, . . . , MN denote the number of grid points
chosen to discretize the free surface and solid boundaries, respectively. Let αkl =
2πl/Mk for 0 ≤ l < Mk , and define Kkj,ml = Kkj (αkm, αjl)/Mj and Gkj,ml =
Gkj (αkm, αjl)/Mj so that

Kkjωj (αkm) ≈
Mj −1∑
l=0

Kkj,mlωj (αjl), Gkjωj (αkm) ≈
Mj −1∑
l=0

Gkj,mlωj (αjl).

When N = 2, the system (3.15) becomes

⎛
⎜⎝

− 1
2I0 + K00 G01 G02

−G10
1
2I1 + K11 K12

−G20 K21
1
2I2 + K22 − E2

⎞
⎟⎠
⎛
⎝

ω0
ω1
ω2

⎞
⎠ =

⎛
⎝

ϕ̃

−ψmv|�1−ψmv|�2

⎞
⎠ , (3.16)

where Em = M−1
m eeT with e = (1; 1; . . . ; 1) ∈ R

Mm represents 1m〈1m, ·〉 and the
right-hand side is evaluated at the grid points. For example, in (3.16) with N = 2,
−ψmv|�1 has components−V1η1(α1m)−a2ψcyl(ζ1(α1m)−z2) for 0 ≤ m < M1. The
generalization to N > 2 solid boundaries is straightforward, with additional diagonal
blocks of the form 1

2I + Kjj − Ej .

3.4 Computation of the normal velocity

Once the ωj are known from solving (3.16), we can compute U = ∂φ/∂n on the
free surface, which is what is needed to evolve both ϕ̃ and ζ(α, t) using the HLS
machinery. From (3.7), we see that the multi-valued part of the potential, φmv(z) =
Re{
mv(z)}, contributes

sα
∂φmv

∂n
=Re{(φmv,x − iφmv,y)(n1 + in2)sα} = Re{
′

mv(ζ(α))iζ ′(α)}

= −
⎛
⎝V1 + 1

2

N∑
j=2

aj

⎞
⎠ η′(α) +

N∑
j=2

aj Re

{
1

2
cot

(
ζ(α)−zj

2

)
ζ ′(α)

}
,

(3.17)
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where sα = |ζ ′(α)| and η(α) = Im ζ(α). This normal derivative (indeed the entire
gradient) of φmv is single-valued. We can differentiate (3.3) under the integral sign
and integrate by parts to obtain


′
j (z) = 1

2π

∫ 2π

0

1

2
cot

ζj (β) − z

2
ω′

j (β) dβ, (1 ≤ j ≤ N). (3.18)

We can then evaluate

sα
∂φj

∂n
= Re{(φj,x − iφj,y)(n1 + in2)sα} = Re{
′

j (ζ(α))iζ ′(α)}

= 1

2π

∫ 2π

0
Kj0(β, α)ω′

j (β) dβ, (1 ≤ j ≤ N). (3.19)

Note that the integration variable β now appears in the first slot of Kj0. For j = 0,
after integrating (3.3) by parts, we obtain


′
0(z) = 1

2πi

∫ 2π

0

1

2
cot

ζ(β) − z

2
ω′
0(β) dβ. (3.20)

Taking the limit as z → ζ(α)− (or as z → ζ(α)+) gives


′
0(ζ(α)±) = lim

z→ζ(α)±
1

2πi

∫ 2π

0

ζ ′(β)

2
cot

ζ(β) − z

2

(
ω′
0(β)

ζ ′(β)

)
dβ

= ± ω′
0(α)

2ζ ′(α)
+ 1

2πi
PV

∫ 2π

0

1

2
cot

ζ(β) − ζ(α)

2
ω′
0(β) dβ (3.21)

where PV indicates a principal value integral and we used the Plemelj formula to take
the limit. Finally, we regularize the integral using the Hilbert transform,

Hf (α) = 1

π
PV

∫ 2π

0

1

2
cot

α − β

2
f (β) dβ (3.22)

to obtain

ζ ′(α)
′
0(ζ(α)±) = ±1

2
ω′
0(α) + i

2
Hω′

0(α)

+ 1

2πi

∫ 2π

0

[
ζ ′(α)

2
cot

ζ(β) − ζ(α)

2
− 1

2
cot

β − α

2

]
ω′
0(β) dβ.

(3.23)

The term in brackets approaches −ζ ′′(α)/[2ζ ′(α)] as β → α, so the integrand is not
singular. The symbol of H is Ĥk = −i sgn k, so it can be computed accurately and
efficiently using the FFT. Using sα∂φ0/∂n = Re{iζ ′(α)
′

0(ζ(α)−)}, we find

sα
∂φ0

∂n
= −1

2
Hω′

0(α) − 1

2π

∫ 2π

0
G00(β, α)ω′

0(β) dβ, (3.24)

which we evaluate with spectral accuracy using the trapezoidal rule. The desired
normal velocity U is the sum of (3.17), (3.19) for 1 ≤ j ≤ N , and (3.24), all divided
by sα .
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3.5 Time evolution of the surface velocity potential

The last step is to find the evolution equation for ϕ̃(α, t) = φ̃(ζ(α, t), t), where φ̃ is
the component of the velocity potential represented by Cauchy integrals. The chain
rule gives

ϕ̃t = ∇φ̃ · ζt + φ̃t , ζt = U n̂ + V ŝ. (3.25)

We note that φ̃t = φt , and the unsteady Bernoulli equation gives

φt = −1

2
|∇φ|2 − p/ρ − gη0 + C(t), (3.26)

where p is the pressure, ρ is the fluid density, g is the acceleration of gravity, and
C(t) is an arbitrary function of time but not space. At the free surface, the Laplace-
Young condition for the pressure is p = p0 −ρτκ , where κ = θα/sα is the curvature
and ρτ is the surface tension. The constant p0 may be set to zero without loss of
generality. We therefore have

ϕ̃t = (ϕ̃α/sα)V + (∂φ̃/∂n)U − 1

2
|∇φ|2 − g η(α, t) + τ

θα

sα
+ C(t), (3.27)

where ζ = ξ + iη, ζα = sαeiθ , and |∇φ|2 = (ϕα/sα)2 + (∂φ/∂n)2. These equations
are valid for arbitrary parameterizations ζj (α, t) and choices of tangential compo-
nent of velocity V for the curve. In particular, they are valid in the HLS framework
described in Section 2. C(t) can be taken to be 0 or chosen to project out the spatial
mean of the right-hand side, for example.

4 Layer potentials and the vortex sheet strength formulation

We now give an alternate formulation of the water wave problem in which the vor-
tex sheet strength is evolved in time rather than the single-valued part of the velocity
potential at the free surface. We also replace the constant stream function bound-
ary conditions on the rigid boundaries by the equivalent condition that the normal
velocity is zero there. Elimination of the stream function provides a pathway for
generalization to 3D. However, in the 2D algorithm presented here, we continue to
take advantage of the connection between layer potentials and Cauchy integrals (see
Appendix C).

4.1 Vortex sheet strength and normal velocities on the boundaries

In this section, the evolution equation at the free surface will be written in terms of
the vortex sheet strength γ0(α) = −ω′

0(α). We also define

γ0(α) = −ω′
0(α), γj (α) = ω′

j (α), (1 ≤ j ≤ N). (4.1)
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Expressing (3.18) and (3.20) in terms of the γj , we see that the j th boundary
contributes a term uj = (uj , vj ) = (φj,x, φj,y) to the fluid velocity given by

(u0 − iv0)(z) = 1

2πi

∫ 2π

0

1

2
cot

z − ζ0(β)

2
γ0(β) dβ,

(uj − ivj )(z) = − 1

2πi

∫ 2π

0

1

2
cot

z − ζj (β)

2
iγj (β) dβ, (1 ≤ j ≤ N). (4.2)

The calculation in (3.21) and a similar one for 
′
j (ζk(α)±) then gives

(u0−iv0)(ζk(α)±) = ∓δk0

2
γ0(α)

ζ ′(α)∗

s2α
+ W ∗

k0(α), (0 ≤ k ≤ N),

(uj −ivj )(ζk(α)±) = ∓δkj

2
γj (α)

(
iζ ′

j (α)
)∗

s2j,α

+W ∗
kj (α),

(
0≤k≤N

1≤j ≤N

)
. (4.3)

Here W ∗
kj (α) = Wkj1(α) − iWkj2(α) are the Birkhoff-Rott integrals obtained by

substituting z = ζk(α) in the right-hand side of (4.2) and interpreting the integral in
the principal value sense if k = j (see (D.1) in Appendix D). The resulting singular
integrals (when k = j ) can be regularized by the Hilbert transform, as we did in
(3.23). The vector notationWkj (α) = (

Wkj1(α), Wkj2(α)
)
will also be useful below.

Although there is no fluid outside the domain �, we can still evaluate the layer
potentials and their gradients there. In (4.3), the tangential component of u0 jumps by
−γ0(α)/sα on crossing the free surface �0 while the normal component of u0 and all
components of the other uj ’s are continuous across �0. By contrast, if 1 ≤ k ≤ N ,
the normal component of uk jumps by −γk(α)/sk,α on crossing the solid boundary
�k , whereas the tangential component of uk and all components of the other uj ’s are
continuous across �k . Here crossing means from the right (−) side to the left (+)

side.
In this formulation, we need to compute U = ∂φ/∂n to evolve the free surface

and set ∂φ/∂n = 0 on all the other boundaries. We have already derived formulas for
∂φ/∂n on the free surface in (3.17), (3.19) and (3.24). Nearly identical derivations in
which �0 is replaced by �k yield

sk,α

∂φmv

∂nk

= −
⎛
⎝V1 + 1

2

N∑
j=2

aj

⎞
⎠ η′

k(α) +
N∑

j=2

aj Re
{
1
2 cot

(
ζk(α)−zj

2

)
ζ ′
k(α)

}
,

sk,α

∂φ0

∂nk

= δk0

2
Hγ0(α) + 1

2π

∫ 2π

0
G0k(β, α)γ0(β) dβ,

sk,α

∂φj

∂nk

= −δkj

2
γj (α) + 1

2π

∫ 2π

0
Kjk(β, α)γj (β) dβ,

(
0 ≤ k ≤ N

1 ≤ j ≤ N

)
, (4.4)

where 0 ≤ k ≤ N in the first two equations. Here Kkj (α, β) and Gkj (α, β) are as in
Table 1 above. Since γ0 is evolved in time, it is a known quantity in the layer poten-
tial calculations. Given γ0, we compute γ1, . . . , γN by solving the coupled system
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obtained by setting ∂φ/∂n = 0 on the solid boundaries. When N = 3, the system
looks like
⎛
⎜⎝

− 1
2 I + K

∗
11 K

∗
21 K

∗
31

K
∗
12 − 1

2 I + K
∗
22 K

∗
32

K
∗
13 K

∗
23 − 1

2 I + K
∗
33

⎞
⎟⎠
⎛
⎝

γ1
γ2
γ3

⎞
⎠ =

⎛
⎜⎜⎝

−G
∗
01γ0 − s1,α

∂φmv
∂n1

−G
∗
02γ0 − s2,α

∂φmv
∂n2

−G
∗
03γ0 − s3,α

∂φmv
∂n3

⎞
⎟⎟⎠, (4.5)

where

K
∗
jkγj = 1

2π

∫ 2π

0
Kjk(β, ·)γj (β) dβ, G

∗
jkγj = 1

2π

∫ 2π

0
Gjk(β, ·)γj (β) dβ.

(4.6)
The system for N > 3 has an identical structure. The matrices representing K

∗
jk and

G
∗
jk in the collocation scheme have entries

(K
†
jk)ml = (Mk/Mj )Kjk,lm = Kjk(αjl, αkm)/Mj ,

(G
†
jk)ml = (Mk/Mj )Gjk,lm = Gjk(αjl, αkm)/Mj . (4.7)

Here a dagger is used in place of a transpose symbol as a reminder to also re-
normalize the quadrature weights. Once γ0, . . . , γN are known, the normal velocity
U is given by

U = 1

sα

⎡
⎣1

2
Hγ0 + G

∗
00γ0 +

N∑
j=1

K
∗
j0γj + sα

∂φmv

∂n0

⎤
⎦ . (4.8)

In Section 6, we will show that in the general case, with N arbitrary, the system (4.5)
is invertible. In practice, the discretized version is well-conditioned once enough grid
points Mj are used on each boundary �j .

4.2 The evolution equation for γ0

In the case without solid boundaries (i.e., the case of a fluid of infinite depth and in
the absence of the obstacles), we only have γ0 to consider. The appendix of [7] details
how to use the Bernoulli equation to find the equation for γ0 in this case. This is a
version of a calculation contained in [14]. The argument of [7] and [14] for finding the
γ0,t equation considers two fluids with positive densities; after deriving the equation,
one of the densities can be set equal to zero. We present here an alternative calculation
that only requires consideration of a single fluid, accounts for the solid boundaries,
and leads to simpler formulas to implement numerically. Connections to the results
of [7] and [14] are worked out in Appendix D.

The main observation that we use to derive an equation for γ0,t is that φt is a
solution of the Laplace equation in � with homogeneous Neumann conditions at
the solid boundaries and a Dirichlet condition (the Bernoulli equation) at the free
surface. Decomposing φ = φ̃ + φmv as before, we have φt = φ̃t since φmv is time-
independent. The Dirichlet condition at the free surface is then

φ̃t = −1

2
|∇φ|2 − p

ρ
− gη0. (4.9)
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Let
W(α) = W00(α) + W01(α) + · · · + W0N(α) + ∇φmv(ζ(α)) (4.10)

denote the contribution of the Birkhoff-Rott integrals from all the layer potentials
evaluated at the free surface, plus the velocity due to the multi-valued part of the
potential. By (4.3),

∇φ(ζ(α)) = W + γ0

2sα
t̂,

1

2
|∇φ|2 = 1

2
W · W + γ0

2sα
W · t̂ + γ 2

0

8s2α
. (4.11)

To evaluate the left-hand side of (4.9), we differentiate (3.3) with z fixed to obtain


0,t (z) = 1

2πi

∫ 2π

0

ζ ′(β)

2
cot

ζ(β) − z

2

(
ω0,t (β) − ζt (β)

ζ ′(β)
ω′
0(β)

)
dβ,


j,t (z) = 1

2π

∫ 2π

0

ζ ′
j (β)

2
cot

ζj (β) − z

2
ωj,t (β) dβ, (1 ≤ j ≤ N), (4.12)

where we used ∂t

{
(ζ ′/2) cot[(ζ − z)/2]} = ∂β {(ζt /2) cot[(ζ − z)/2]} and inte-

grated by parts. Here a prime indicates ∂β (i.e., ∂α) and a subscript t indicates
∂t . We continue to suppress t in the arguments of functions, keeping in mind that
the solid boundaries do not move. Letting z → ζ(α)− and using (4.1) as well as
ζt = (V + iU)ζ ′/sα , we obtain


0,t (ζ(α)−) = −1

2
ω0,t (α) − V + iU

2sα
γ0(α)

+ 1

2πi
PV

∫ 2π

0

ζ ′(β)

2
cot

ζ(β) − ζ(α)

2
ω0,t (β) dβ

+ 1

2πi
PV

∫ 2π

0

ζt (β)

2
cot

ζ(β) − ζ(α)

2
γ0(β) dβ,


j,t (ζ(α)) = 1

2π

∫ 2π

0

ζ ′
j (β)

2
cot

ζj (β) − ζ(α)

2
ωj,t (β) dβ, (1 ≤ j ≤ N).

(4.13)

Next we take the real part, sum over j ∈ {0, . . . , N} to get φ̃t at the free surface,
and use the Bernoulli equation (4.9). The first PV integral becomes regular when
the real part is taken, so we can differentiate under the integral sign and integrate
by parts in the next step. Finally, we differentiate with respect to α, which con-
verts −(1/2)ω0,t (α) into (1/2)γ0,t (α); integrate by parts to convert the ωj,t terms in
the integrals into −γj,t terms; and use the boundary condition for the pressure (the
Laplace-Young condition, p = p0 − ρτκ) to obtain

(
1

2
I + K

∗
00

)
γ0,t −

N∑
j=1

G
∗
j0γj,t

= ∂

∂α

(
−1

2
W · W + (V −W · t̂)

2sα
γ0 − γ 2

0

8s2α
+ τ

θα

sα
−gη0−F00γ0

)
, (4.14)
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where

F00γ0(α) = 1

2π
PV

∫ 2π

0
Im

{
ζt (β)

2
cot

ζ(β) − ζ(α)

2

}
γ0(β) dβ. (4.15)

The additional equations needed to solve for the γj,t can be obtained by differen-
tiating (4.5) with respect to time; note that all the Kjk terms correspond to rigid
boundaries that do not change in time. Equivalently, the γj,t can be interpreted as
the layer potential densities needed to enforce homogeneous Neumann boundary
conditions on φt on the solid boundaries,

sk,α

∂φt

∂nk

=
N∑

j=0

Re{
′
j,t (ζk(α)+)iζ ′

k(α)} = 0, (1 ≤ k ≤ N). (4.16)

Either calculation yields the same set of additional linear equations, illustrated here
in the N = 3 case, with identical structure when N > 3:
⎛
⎜⎝
G

∗
01 − 1

2 I + K
∗
11 K

∗
21 K

∗
31

G
∗
02 K

∗
12 − 1

2 I + K
∗
22 K

∗
32

G
∗
03 K

∗
13 K

∗
23 − 1

2 I + K
∗
33

⎞
⎟⎠

⎛
⎜⎜⎝

γ0,t
γ1,t
γ2,t
γ3,t

⎞
⎟⎟⎠=

⎛
⎝

−∂α(F10γ0)

−∂α(F20γ0)

−∂α(F30γ0)

⎞
⎠ , (4.17)

where

Fk0γ0(α) = 1

2π

∫ 2π

0
Re

{
ζt (β)

2
cot

ζ(β) − ζk(α)

2

}
γ0(β) dβ, (1 ≤ k ≤ N).

(4.18)
The formulas (4.15) and (4.18) can be regularized (when k = 0) and expressed in
terms of K and G operators by writing ζt = (V + iU)ζα/sα . The result is

F00γ0 = −1

2
H

(
Uγ0

sα

)
+ K00

(
V γ0

sα

)
+ G00

(
Uγ0

sα

)
,

Fk0γ0 = Gk0

(
V γ0

sα

)
− Kk0

(
Uγ0

sα

)
, (1 ≤ k ≤ N). (4.19)

In Appendix D, we present an alternative derivation of (4.14) that involves solving
(4.11) for γ0 and differentiating with respect to time. The moving boundary affects
this derivative, which complicates the intermediate formulas but has the advantage of
making contact with results reported elsewhere [7, 14] for the case with no obstacles
or bottom topography.

5 Method summary and the computation of velocity, pressure
and energy

In this section, we show how to compute the fluid velocity and pressure accurately
throughout the fluid, including near the free surface and boundaries, and how to
compute the energy when the velocity potential is multiple-valued. But first we sum-
marize the steps needed to evolve the water wave problem. As it is more complicated,
involving the computation of more integral kernels, we will focus on the vortex sheet
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strength formulation. The implementation for the velocity potential approach is sim-
ilar, with γ0 replaced by ϕ̃ and evolved via (3.27). We have so far left the choice of
V unspecified. We consider two options here. In both variants, the bottom bound-
ary ζ1(α) and obstacles ζ2(α), . . . , ζN(α) can be parameterized arbitrarily, though
we assume they are smooth and 2π -periodic in the sense of (2.2) and (2.4) so that
collocation via the trapezoidal rule is spectrally accurate.

The simplest case is to assume ξ(α) = α for all time. At the start of a timestep
(and at intermediate stages of a Runge-Kutta method), η(α) and γ0(α) are known
(still suppressing t in the arguments of functions), and we need to compute ηt and
γ0,t . We construct the curve ζ(α) = α+ iη(α) and compute the matrices G

†
jk , K

†
jk in

(4.7). Computing these matrices is the most expensive step, but is trivial to parallelize
in openMP and straightforward to parallelize on a cluster using MPI or on a GPU
using Cuda. We solve the linear system (4.5) using GMRES to obtain γj (α, t) for
1 ≤ j ≤ N and compute the normal velocity U from (4.8). From (2.8), we know
V = ηαU and ηt = √

1 + η2α U . Once U and V are known, we compute Fk0γ0 via
(4.19) and solve (4.14) and (4.17) for γj,t , 0 ≤ j ≤ N . This gives γ0,t .

Alternatively, in the HLS framework, using the improved algorithm of Section 2.2,
Pθ(α) and γ0(α) are evolved in time. At the start of each time step (and at interme-
diate Runge-Kutta stages), the arclength element sα and curve ζ(α) are reconstructed
from Pθ(α) using (2.13) and (2.16). We then compute the matrices G

†
jk , K

†
jk in (4.7)

in parallel using openMP, and, optionally, MPI or Cuda. We solve the linear system
(4.5) using GMRES to obtain γj (α) for 1 ≤ j ≤ N and compute the normal velocity
U from (4.8). We then solve

V = ∂−1
α

(
θαU − 1

2π

∫ 2π

0
θαU dα

)
, V (0) = U(0)

η′(0)
ξ ′(0)

, (5.1)

where the antiderivative is computed via the FFT and the condition on V (0) keeps
ξ(0) = 0 for all time. This formula can break down if an overturned wave crosses
α = 0, leading to ξ ′(0) = 0; in such cases, one can instead choose the inte-
gration constant in (5.1) so that

∫ 2π
0 V dα = 0 and evolve ξ(0) via the ODE

∂t [ξ(0)] = Re
{
(V (0) + iU(0))ζ ′(0)/sα

}
. Once U and V are known, we compute

(P θ)t = P [(Uα + V θα)/sα] in (2.17) and obtain γ0,t by solving (4.14) and (4.17).
We also employ a 36th-order filter [45–47] in which the kth Fourier modes of Pθ

and γ0 are multiplied by

exp
[
−36 (|k|/kmax)

36
]
, |k| ≤ kmax = M0/2. (5.2)

The filter is applied at the end of each Runge-Kutta timestep (but not in intermediate
Runge-Kutta stages).

Remark 1 The velocity potential and vortex sheet formulations thus give two
equivalent systems of evolution equations in the (P θ, ϕ̃)(α, t) and (P θ, γ0)(α, t) rep-
resentations, respectively. As we will illustrate with specific examples in Section 7.3
below, it is important to recognize that when 
mv is nonzero, ϕ̃(α, 0) ≡ 0 is not
equivalent to γ0(α, 0) ≡ 0. Indeed, to obtain equivalent initial data in the two
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systems, one must compute γ0(α) = −ω′
0(α) as in (4.1), where the ωj terms are

computed as in (3.15).

5.1 Numerical evaluation of the fluid velocity and pressure

Though they are secondary variables in the velocity potential and vortex sheet formu-
lations, one often wishes to compute the fluid velocity and pressure throughout the
fluid. We do this as a post-processing step, after ζ(α, t) and ϕ̃(α, t) or γ0(α, t) have
been computed at a given time. To make countour plots such as those of Section 7
below, we generate a triangular mesh in the fluid region using the distmesh package
[64] and compute

u(x, y, t) − iv(x, y, t) = 
′(x + iy, t), 
t (x + iy, t) (5.3)

at each node of the mesh. This gives the velocity components (u, v) directly and is
sufficient to compute the pressure via

p

ρ
= C(t) − φt − 1

2
|∇φ|2 − gy, (5.4)

where C(t) is determined by whatever choice is made in (3.27). In our code, we
chooseC(t) so that the mean of ϕ̃(α, t)with respect to α remains zero for all time. On
the free surface, the Laplace-Young condition p = p0−ρτκ holds, where κ = θα/sα
is the curvature and we have set p0 = 0. This furnishes boundary values for C(t)−φt

in (5.4), which is a harmonic function in � that we solve for from these boundary
values using the Cauchy integral framework of Section 3, as explained below.

Numerical evaluation of Cauchy integrals and layer potentials near boundaries
requires care. In Appendix F, we adapt to the spatially periodic setting an idea of
Helsing and Ojala [42] for evaluating Cauchy integrals with spectral accuracy even
if the evaluation point is close to (or on) the boundary. Suppose f (z) is analytic in �

and we know its boundary values. Then, as shown in Appendix F,

f (z) = 1

2πi

∫

∂�

f (ζ )

2
cot

ζ − z

2
dζ ≈

N∑
k=0

Mk−1∑
m=0

λkm(z)f (ζk(αkm)), (z ∈ �),

λkm(z) = λ̃km(z)∑
k′m′ λ̃k′m′(z)

, λ̃km(z) = 1

Mk

(
1

2
cot

ζk(αkm) − z

2
ζ ′(αkm)

)
. (5.5)

The complex numbers λkm(z) serve as quadrature weights for the integral. They
express f (z) as a weighted average of the boundary values f (ζk(αkm)). The formula
does not break down as z approaches a boundary point ζk(αkm) since λ̃km(z) → ∞
in that case, causing λk′m′(z) to approach δkk′δmm′ and f (z) to approach f (ζk(αkm)).
If z coincides with ζk(αkm), we set f (z) = f (ζk(αkm)).

To evaluate (5.3) at the mesh points via (5.5), we just need to compute the val-
ues of 
′(z, t) and 
t(z, t) at the boundary points z = ζk(αkm, t). These boundary
values only have to be computed once for a given t (which can now be suppressed
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Fig. 2 Evolution of the free surface and plots of the fluid velocity at the final time computed, t = 2.1, for
problem 1 of (7.2). The computation breaks down when evolved beyond t = 2.1 with macro-steps of size
�t = 0.025, but is on track to self-intersect in a splash singularity. The flow is reversed in the channels
between cylinder 2 and its neighbors, and below cylinder 4. As a result, the change in velocity potential
across the domain is 0 or 2π depending on whether the path passes below or above cylinder 2

D.M. Ambrose et al.Page 22 of 6246



-0.4
-0.2

0
0.2
0.4

0 π/2 π 3π/2 2π

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

0 π/2 π 3π/2 2π

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 5.2  5.3  5.4  5.5  5.6  5.7  5.8  5.9 5 5.2 5.4 5.6 5.8 6
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0 1 2 3 4 5 6
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0

0.5

1

1.5

2

2.5

Fig. 3 Evolution of the free surface and plots of the fluid velocity at the final time computed, t = 5.575,
for problem 2 of (7.2). The interface is on track to self-intersect in a splash singularity shortly after this,
as is evident in panel (c). The velocity field in panel (d) on the upper surface of the air pocket is nearly
tangential, whereas it has an appreciable normal component on the lower surface. This provides further
evidence that a splash singularity is imminent
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Fig. 4 Evolution of the free surface and plots of the fluid velocity for problem 3 at t = 4.475, when the
stream function on the rigid boundaries is ψ |1 = 0, ψ |3 = 2.243, ψ |4 = 2.580 and ψ |2 = 3.387, and the
fluid flux in the channels is (ψ |2 − ψ |4) = 0.807 and (ψ |2 − ψ |3) = 1.144

D.M. Ambrose et al.Page 24 of 6246



0 1 2 3 4 5 6
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-0.5

0

0.5

1

1.5

2

2.5

Fig. 5 Pressure in the fluid at the final times computed for problems 1–3 of (7.2)
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Fig. 6 Time evolution of the free surface and plots of velocity and pressure at t = 1.6067. The time
increments shown in panels (a), (c) and (e) are 0.08, 0.01333 and 0.00667, respectively. In panel (c), an
offset �δ = (0.06, 0.15) was added to the free surface plots to avoid obscuring the contour plot. In panel
(e), the free surface approaches the obstacle at an accelerating rate as the gap shrinks and the curvature of
the free surface grows. The numerical solution is still resolved with spectral accuracy at t = 1.6067, but
we cannot proceed without further mesh refinement
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Fig. 7 The pressure is lowest where the free surface has high curvature and where the fluid velocity is
highest, e.g., due to flowing through a constriction. The hydrostatic term −ρgy in (5.4) is responsible for
the high-pressure regions in the bottom corners of the basin in panel (b). This term has been eliminated by
adding ρgy to p in panel (c)

in the notation) to evaluate 
′(z) and 
t(z) at all the mesh points of the fluid. The
only values that change with z are the quadrature weights λkm(z), which are easy to
compute rapidly in parallel. Since 
′(z) and 
t(z) are single-valued, we include the
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contribution of 
mv(z) in the boundary values. Equation (4.3) gives the needed
formulas for 
′(z) on the boundaries. These formulas are most easily evaluated via


′(ζk(αkm)) = u − iv = ∂φ

∂sk
t̂k + ∂φ

∂nk

n̂k =
(

∂φ

∂sk
− i

∂φ

∂nk

)
sk,α

ζ ′
k(αkm)

, (5.6)

where t̂k = ζ ′
k(α)/sk,α = sk,α/ζ ′

k(α) and n̂k = −i t̂k . Formulas for ∂φ/∂nk were
already given in (4.4), where φ = φmv+φ0+· · ·+φN . A similar calculation starting
from (4.3) gives ∂φ/∂sk:

sk,α

∂φmv

∂sk
=

⎛
⎝V1 + 1

2

N∑
j=2

aj

⎞
⎠ ξ ′

k(α) +
N∑

j=2

aj Im
{
1
2 cot

(
ζk(α)−zj

2

)
ζ ′
k(α)

}
,

sk,α

∂φ0

∂sk
= ∓δk0

2
γ0(α) + 1

2π

∫ 2π

0
K0k(β, α)γ0(β) dβ,

sk,α

∂φj

∂sk
= −δkj

2
Hγj (α) − 1

2π

∫ 2π

0
Gjk(β, α)γj (β) dβ,

(
0 ≤ k ≤ N

1 ≤ j ≤ N

)
,

(5.7)

where 0 ≤ k ≤ N in the first two equations. On the solid boundaries, ∂φ/∂nk = 0,
so only ∂φ/∂sk needs to be computed in (5.6) when k �= 0. In the velocity potential
formulation of Section 3, {γj }Nj=0 are computed via (4.1) first, before evaluating (4.4)
and (5.7).

In the velocity potential formulation, we compute 
t − C(t) on the boundaries,
which is needed in (5.4), by solving a system analogous to (3.15), which we denote
Aωaux = baux. The right-hand side is

baux0 (α) = φt |�0 − C(t) = τκ − 1

2
|∇φ|2 − gη, bauxk (α) = 0, (5.8)

where k ranges from 1 to N . We solve for ωaux using the same code that we use
to compute ω in (3.15). Replacing ω by ωaux in (3.3) gives formulas for 
t − C(t)

throughout �. Instead of computing the normal derivative of the real part of the
Cauchy integrals on �−

0 , we now need to evaluate their real and imaginary parts on
�−
0 and �+

j for 1 ≤ j ≤ N , using the Plemelj formula. We regularize the integrand

by including the δkj
1
2 cot

β−α
2 term in Gkj (α, β) in Table 1, which introduces Hilbert

transforms in the final formulas for 
t − C(t) on the boundaries. We omit details as
they are similar to the calculations of Section 3.

In the vortex sheet formulation, one can either proceed exactly as above, solving
the auxiliary Dirichlet problem (5.8) by the methods of Section 3, or we can use
(4.12). The functions ωj,t are known from (4.1) up to constants by computing the
antiderivatives of γj,t using the FFT. The constants in ωj,t for 2 ≤ j ≤ N have no
effect on 
j,t in �, so we define ωj,t as the zero-mean antiderivative of γj,t . We can
also do this for ω1,t since it only affects the imaginary part of 
1,t , due to (6.3), and
therefore has no effect on the pressure. Varying the constant in ω0,t by A causes p/ρ

to change by A/2 throughout �, due to (6.3). We can drop C(t) in (5.4) since the
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mean of ω0,t has the same effect. To determine the mean, we tentatively set it zero,
compute the right-hand side of (5.4) at one point on the free surface and compare to
the Laplace-Young condition p/ρ = −τκ . The mean of ω0,t is then corrected to be
twice the difference of the results. Once each ωj,t has been determined, we compute

t on the boundaries via the Plemelj formulas applied to (4.12), and at interior mesh
points using the quadrature rule (5.5).

5.2 Numerical evaluation of the energy

We next derive a formula for the conserved energy in the multiply connected setting.
A standard calculation for the Euler equations [23] gives

d

dt

∫∫

�

ρ

2
u · u dA =

∫∫

�

ρ

2

D(u · u)

Dt
dA =

∫∫

�

u ·
(

ρ
Du
Dt

)
dA

= −
∫∫

�

div (u(p + ρgy)) dA = −
∫

∂�

(p + ρgy)u · n± ds, (5.9)

where D/Dt is the convective derivative and n± is the outward normal from �,
which is n on �0 and −n on �1, . . . , �N . On the solid boundaries, u · n = 0. On the
free surface, p = −ρτκ , y = η, u · n = U = ζt · n and

d

dt

∫
sα dα =

∫
ζα

sα
· ζαt dα = −

∫
Re

(
iθαeiθ ζt

)
dα = −

∫
κ(ζt · n) ds,

d

dt

∫
1

2
η2ξα dα =

∫
η (ηt ξα − ηαξt ) dα =

∫
η(ζt · n) ds. (5.10)

Finally, using u · u = |∇ψ |2, we have
∫∫

�

ρ

2
u · u dA = 1

2

∫∫

�

div(ψ∇ψ) dA = 1

2

∫

∂�

ψ
∂ψ

∂n±
ds, (5.11)

where ∂ψ/∂n± = ∇ψ · n± = ±∂φ/∂s with the plus sign on the free surface and the
minus sign on the solid boundaries. On the j th solid boundary, ψ = ψ |j is constant,
and we arranged in (3.15) for ψ |1 = 0. For j ≥ 2,

∫
�j

dφ = −2πaj . There is no
contribution from the left and right sides of � in (5.9) or (5.11) due to the periodic
boundary conditions. Combining these results shows that

E = 1

2π

∫ 2π

0

(
ρτsα + 1

2
ρgη2ξα + 1

2
(ψ |�0)ϕα

)
dα +

N∑
j=2

1

2
aj ψ |j (5.12)

is a conserved quantity, which we evaluate numerically via the trapezoidal rule at
the M0 points used to discretize the free surface in Section 3.3 above. We non-
dimensionalize ρ = 1 and g = 1 and include the factor of 1/2π to obtain the average
energy per unit length, which we slightly prefer to the energy per wavelength. Note
that the stream function is constant on the obstacle boundaries when time is frozen,
but the ψ |j vary in time and have to be computed to determine E(t). This is easy
since we arranged in (3.14) and (3.15) for ψ |j = 〈1j , ω〉 for 2 ≤ j ≤ N . Also, ψ |�0

depends on both α and t since the free surface is generally not a streamline.
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To compute the energy in the vortex sheet formulation, the simplest approach is
to compute ω0 = − ∫

γ0 dα and ωj = ∫
γj dα as zero-mean antiderivatives and

evaluate the Cauchy integrals (3.3) to obtain φ and ψ on the boundaries. The mean
of ωj for 2 ≤ j ≤ N has no effect on 
(z) in �, and the mean of ω0 and ω1 only
affect φ and ψ in � up to a constant, respectively. This constant in φ has no effect
on the energy E in (5.12), and we replace ψ |j in (5.12) by (ψ |j − ψ |1), which is
equivalent to modifying the mean of ω1 to achieve ψ |�1 = 0. One could alternatively
avoid introducing the stream function in the vortex sheet formulation by replacing
ψ by φ in (5.11), which is valid since u · u = |∇φ|2 as well. But ∂� now has to
include branch cuts to handle the multi-valued nature of φ. This leads to additional
line integrals on paths through the interior of the fluid that would have to be evaluated
using quadrature. So in the two-dimensional case, it is preferable to take advantage of
the existence of a single-valued stream function when computing the energy in both
the velocity potential and vortex sheet formulations. (In 3D, the velocity potential is
single-valued, so this complication does not arise.)

6 Solvability of the integral equations

In this section we prove invertibility of the operator A in (3.13), the system (4.5), and
the combined system (4.14) and (4.17). A variant of (3.13) is treated in Appendix B.
We follow the basic framework outlined in Chapter 3 of [33] to study the integral
equations of potential theory as they arise here. Many details change due to imposing
different boundary conditions on the free surface versus on the solid boundaries. The
periodic domain also leads to significant deviation from [33]. To avoid discussing
special cases, we assume N ≥ 2, though the arguments can be modified to handle
N = 1 (no obstacles), N = 0 (no bottom boundary or obstacles), or an infinite depth
fluid with obstacles.

6.1 Invertibility ofA in (3.13)

After rescaling the rows of B in (3.10) by 2 or −2, it becomes a compact pertur-
bation of the identity in L2(∂�). Thus, its kernel and cokernel have the same finite
dimension. To show that A in (3.13) is invertible in L2(∂�), we need to show that
(1): V = span{1m}Nm=2 is the entire kernel of B; and (2): V complements the range
of B in L2(∂�). The second condition can be replaced by (2’): V ∩ ranB = {0}.
Indeed, (1) establishes that the cokernel also has dimensionN−1, so (2’) implies that
V ⊕ ranB = L2(∂�). We note that it makes sense to apply A and B to L2 functions,
but the ωj need to be continuous in order to invoke the Plemelj formulas to describe
the behavior of the layer potentials near the boundary. We will address this below.

Suppose ω = (ω0; . . . ; ωN) ∈ L2(∂�) is such that Bω ∈ V , i.e., Bω is zero on
�0 and �1 and takes on constant values ψ |j on �j for 2 ≤ j ≤ N . Since Bω is
continuous, the ωj are also continuous, due to the ±(1/2)I terms on the diagonal
of B in (3.10), and since the Kkj and Gkj operators in (3.10) map L2 functions to
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continuous functions. Let 
(z) = 
0(z) + · · · + 
N(z) with 
j(z) depending on
ωj as in (3.3). The real part φ(x, y) = Re
(x + iy) satisfies

�φ = 0 in �, φ = 0 on �−
0 ,

∂φ

∂n
= 0 on �+

1 , . . . , �+
N . (6.1)

Since homogeneous Dirichlet or Neumann conditions are specified on all the bound-
aries and one of them is a Dirichlet condition, φ ≡ 0 on �. This can be proved, e.g.,
by the maximum principle and the Hopf boundary point lemma [65]. One version
of this lemma states that if � has a C1 boundary and u is harmonic in �, contin-
uous on �, and achieves its global maximum at a point x0 on the boundary where
the (outward) normal derivative ∂u/∂n exists, then either ∂u/∂n > 0 at x0 or u is
constant in �. Since φ is a constant function in �, so is its conjugate harmonic func-
tion, ψ = Im
. But ψ ≡ 0 on �+

1 since Bω|�1 = 0, so ψ ≡ 0 in �. We conclude
that ψ |j , which is the value of ψ on �+

j , is zero for 2 ≤ j ≤ N . This shows that
V ∩ ranB = {0}.

We have assumed that Bω ∈ V and shown that Bω = 0. It remains to show that
ω ∈ V . Since the normal derivative of φ is continuous across the free surface (see
(4.3)), we know that ∂φ/∂n = 0 on �+

0 . Next consider a field point z = x + iy with
y very large. From (3.3), we see that

lim
y→∞ 
(z) = 1

2πi

∫ 2π

0

i

2

⎡
⎣ω0(α)ζ ′

0(α) + i

N∑
j=1

ω1(α)ζ ′
1(α)

⎤
⎦ dα = const, (6.2)

so φ∞ = limy→∞ φ(x, y) exists and does not depend on x. For the rest of this
section, a prime will indicate a component of the complement of the domain or a
function defined on this complement, rather than a derivative as in (6.2). Let �′

0 =
{(x, y) : y > ζ0(x)}. If there were any point (x0, y0) ∈ �′

0 for which φ(x0, y0) >

φ∞, then we could choose a Y > y0 large enough that φ(x, Y ) < φ(x0, y0) for 0 ≤
x ≤ 2π . Since the sides of a period cell are not genuine boundaries, the maximum
value of the periodic function φ over the region �′

0 ∩ {(x, y) : 0 ≤ x ≤ 2π , y < Y }
must occur on �+

0 . This contradicts ∂φ/∂n = 0 by the boundary point lemma. Using
the same argument for the minimum value, we conclude that φ is constant on �′

0.
We denote its value by φ|′0 = φ∞. A similar argument with φ replaced by ψ and
y → −∞ shows that ψ takes on a constant value ψ |′1 in �′

1 = {(x, y) : y < ζ1(x)}.
On the interior boundaries �−

j of the holes �′
j , we have ∂ψ/∂n = 0. Thus ψ satisfies

the homogeneous Neumann problem in each hole, and therefore has a constant value
ψ |′j in each hole.

Since ω0 gives the jump in φ across �0 while ωj for 1 ≤ j ≤ N gives the jump in
ψ across �j , we conclude that ωj is constant on �j for 0 ≤ j ≤ N . Once the ωj ’s
are known to be constant, the integrals (3.3) can be computed explicitly using (3.7)
to express the antiderivative of the integrands in terms of 
cyl(·). This gives


j(z) = σjωj

2π

[

cyl

(
ζj (α) − z

) − ζj (α) − z

2

]2π
α=0

, (0 ≤ j ≤ N), (6.3)

where σ0 = 1 and σj = i for 1 ≤ j ≤ N . From the discussion in Section 3.1, we
conclude that 
0(z) = ±ω0/2 if z is above (+) or below (−) the free surface ζ0(α);
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1(z) = ±iω1/2 if z is above (+) or below (−) the bottom boundary ζ1(α); and

j(z) = 0 if z is outside �j and −iωj if z is inside �j . For z ∈ �, we conclude that

(z) = (−ω0 + iω1)/2. Since we already established that φ and ψ are identically
zero in �, we find that ω0 = 0, ω1 = 0, and the other ωj are arbitrary real numbers.
Thus, kerB = V , as claimed.

6.2 Solvability of the linear systems in the vortex sheet strength formulation

There are two closely related tasks here, the solvability of (4.5) and the solvability
of the larger system consisting of (4.14) and (4.17). Noting that all the operators in
these equations involveK∗

jk orG
∗
jk , let us generically denote one of these systems by

E
∗γ = b. In both cases, rescaling the rows ofE∗ by±2 yields a compact perturbation

of the identity, so either E and E∗ are invertible or dim kerE = dim kerE∗ < ∞. We
will show that kerE = {0} to conclude that E∗ is invertible.

We begin with (4.14) and (4.17). This system is the adjoint of the exterior version
of the problem considered in Section 6.1 above. In other words, E here agrees with
B there, but with all the signs ±(1/2)I reversed. This corresponds to taking limits of
the layer potentials from the opposite side of each boundary via the Plemelj formulas.
Suppose Eω = 0. As argued above, it follows that each ωj (α) is continuous, and that
the real and imaginary parts of the corresponding function 
(z) = 
0(z) + · · · +

N(z) satisfy

φ|�+
0

≡ 0, ψ |�−
j

≡ 0, (1 ≤ j ≤ N). (6.4)

Since ψ satisfies homogeneous Dirichlet conditions inside each obstacle, it is zero
there. The 2π -periodic region above the free surface can be mapped conformally
to a finite domain via w = eiz, with z = i∞ mapped to w = 0. Similarly, the
region below the bottom boundary can be mapped to a finite domain via w = e−iz.
Under the former map, φ becomes a harmonic function of w and satisfies homoge-
neous Dirichlet boundary conditions. Under the latter map,ψ has these properties. As
shown in Appendix E, φ and ψ are also harmonic at w = 0 under these maps. Thus,
φ ≡ 0 above the free surface and ψ ≡ 0 below the bottom boundary. Since φ ≡ 0
above the free surface, ψ is constant there, and is continuous across �0. Since ψ ≡ 0
in �′

j for 1 ≤ j ≤ N and its normal derivative is continuous across �j , we learn that

ψ is harmonic in �, has a constant value on �−
0 , and satisfies homogeneous Neu-

mann conditions on �+
j for 1 ≤ j ≤ N . By the maximum principle and the boundary

point lemma, ψ is constant in �, as is its conjugate harmonic function φ. Denote
these constant values by ψ0 and φ0. Then ω is constant on each boundary, with val-
ues ω0 = −φ0 and ωj = ψ0 for 1 ≤ j ≤ N . From (6.3), 
(z) = (ω0 + iω1)/2
for z above the free surface and 
(z) = −(ω0 + iω1)/2 below the bottom bound-
ary. Since φ ≡ 0 above the free surface, ω0 = 0. Since ψ ≡ 0 below the bottom
boundary, ω1 = 0. Since ωj = ω1 for 2 ≤ j ≤ N , all components of ω are zero, and
kerE = {0} as claimed.

The analysis of the solvability of (4.5) is nearly identical, except there is no free
surface. Setting Eω = 0 yields 
(z) = 
1(z) + · · · + 
N(z) such that ψ ≡ 0 inside
each cylinder and below the bottom boundary. Continuity of ∂nψ across the bound-
aries gives a solution of the homogeneous Neumann problem in � that approaches a
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constant, ψ∞, as y → ∞. If ψ(z) were to differ from ψ∞ somewhere in �, the max-
imum principle and boundary point lemma would lead to a contradiction. Since ωj is
the jump in ψ across �j , it is a constant function with value ψ∞. Below the bottom
boundary, (6.3) gives 
(z) = −iω1/2, so ω1 = 0. Since ωj = ω1 for 2 ≤ j ≤ N ,
all components of ω are zero, and kerE = {0} as claimed.

7 Numerical results

In this section we study the dynamics of a free surface interacting with multiple
obstacles, driven by a background flow of strength V1 = 1.

In Section 7.1, the bottom boundary is flat and we investigate the effect of vary-
ing the circulation parameters aj . In all three cases considered, the evolution is on
track to terminate in a splash singularity shortly after the final timestep of our numer-
ical simulation. We evolve the numerical solution on successively finer grids until
proceeding further would cause us to run out of resolution on the finest grid, based
on whether the spatial Fourier modes of θ(α, t), ϕ̃(α, t) and γ0(α, t) decay below a
given tolerance, which we take to be 10−12 in double-precision.

In Section 7.2, the bottom boundary drops down to form a basin in which we place
a large obstacle. Some of the fluid flows through the channel bounded by the basin
and the obstacle, which pulls the free surface down around a second smaller obstacle.
In this case, rather than self-intersecting in a splash singularity, the free surface is on
track to collide with the smaller obstacle shortly after the final timestep computed.

In Section 7.3, we present numerical evidence to show that our solutions remain
fully resolved with spectral accuracy at all times shown in the plots of Sections 7.1
and 7.2. We use energy conservation, Fourier mode decay plots, and quantitative
comparison of the solutions computed by the velocity potential and vortex sheet
methods as measures of the error. We also present the running times of the veloc-
ity potential method and the vortex sheet method for different mesh sizes and study
the effect of floating-point arithmetic on the smoothness of the decay of the Fourier
modes of the solutions. We find that the velocity potential method is somewhat faster
while the vortex sheet method has somewhat smoother Fourier decay properties.

7.1 Free surface flow around three elliptical obstacles

In this section we consider a test problem of free surface flow around three obstacles
in a fluid with a flat bottom boundary at y = −3. The dimensionless gravitational
acceleration and surface tension are set to g = 1 and τ = 0.1, respectively. The
obstacles are ellipses centered at (xj , yj ) with major semi-axis qj and minor semi-
axis bj :

j xj yj qj bj θj

2 π −1.00 0.5 0.5 0.0
3 4.0 −1.75 0.6 0.4 1.0
4 2.3 −1.60 0.7 0.3 −0.5

(7.1)
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The major axis is tilted at an angle θj (in radians) relative to the horizontal. With this
geometry, we consider three cases for the parameters of 
mv(z) in (3.2), namely

V1 a2 a3 a4

problem 1 1.0 −1.0 0.0 0.0
problem 2 1.0 0.0 0.0 0.0
problem 3 1.0 1.0 0.0 0.0

(7.2)

The initial wave profile is flat and the initial single-valued part of the surface velocity
potential, ϕ̃(α, 0), is set to zero. The physical evolution governed by the Navier-
Stokes equations would then develop a boundary layer of vorticity around the bodies
that would eventually shed in a wake–vortex street regime. This will leave a nonzero
circulation around each body. To see the effects of the circulation within the present
potential flow framework we consider three cases with different circulation parame-
ters chosen for the initial conditions. Since the wave eventually overturns in each case
listed in (7.2), we use the modified HLS representation in which Pθ(α, t) is evolved
and the curve is reconstructed by the method of Section 2.2. We solve each problem
twice, once with the velocity potential method of Section 3 and once with the vortex
sheet method of Section 4. Identical spatial and temporal discretizations are used for
both methods.

For the spatial discretization, we use M1 = 96 gridpoints on the bottom bound-
ary and Mj = 128 gridpoints on each ellipse boundary, where j ∈ {2, 3, 4}. The
ellipses are discretized uniformly in α (rather than arclength) using the parameteri-
zation ζj (α) = eiθj

(
qj cos(α) + ibj sin(α)

)
. We start with M0 = 256 gridpoints on

the free surface and add gridpoints as needed to maintain spectral accuracy as time
evolves. This is done by monitoring the solution in Fourier space and requiring that
the Fourier mode amplitudes |θ̂k(t)| and | ˆ̃ϕk(t)| or |γ̂k(t)| decay to 10−12 before k

reaches M0/2. We use the sequence of mesh sizes M0 listed in Table 2.
For timestepping, we use the 8th-order Dormand-Prince Runge-Kutta scheme

described in [39]. The solution is recorded at equal time intervals of width �t =
0.025, which we refer to as macro-steps. The timestep of the Runge-Kutta method
is set to �t/d , where d increases with M0 as listed in Table 2. These subdivisions
are chosen empirically to maintain stability. We also monitor energy conservation
(as explained further below) and increase d until there is no further improvement in
the number of digits preserved at the output times t ∈ N�t . The number of macro-
steps taken for each choice of M0 and d in problems 1, 2 and 3 is given in the rows
labeled ns1, ns2 and ns3, respectively. In problems 2 and 3, timesteps are taken until
M0 = 7776 would be insufficient to resolve the solution through an additional macro-
step �t . In problem 1, we stopped at M0 = 3456 as this is sufficient to observe
the dynamics we wished to resolve. In all three cases, the solution appears to form
a splash singularity [19, 20] shortly after the final time reported here. The running
times of the solver options we tested are given in the last 5 rows of Table 2; these will
be discussed in Section 7.4 below.

Figures 2, 3, and 4 show the time evolution of the free surface as it evolves over
the cylinders for problems 1–3, defined in (7.2), along with contour plots of the mag-
nitude of the velocity. The arrows in the velocity plots are normalized to have equal

D.M. Ambrose et al.Page 34 of 6246



Table 2 Parameters used to timestep problems 1–3 from the initial flat rest state to a near splash singularity
and comparison of running times

M0 256 384 512 768 1152 1728 2592 3456 4608 6144 7776

d 10 15 20 32 56 90 150 200 300 500 700

ns1 17 11 8 16 11 5 6 10 – – –

ns2 120 30 15 12 13 11 8 4 3 4 3

ns3 50 36 16 13 10 6 6 3 10 25 4

GEPP(ϕ̃) 0.54 1.05 1.88 4.38 12.7 37.8 128 300 648 2010 4450

GEPP(γ0) 0.78 1.42 2.31 5.08 14.6 43.3 178 318 714 2370 4970

GMRES(ϕ̃) 0.52 0.92 1.41 3.17 8.10 22.9 76.2 181 455 1349 3464

GMRES(γ0) 0.69 1.19 1.86 3.92 10.2 26.1 107 218 562 1786 4232

GMRES(GPU, ϕ̃) 0.26 0.44 0.64 1.27 2.82 6.88 17.9 35.8 78.6 239 778

M0 is the number of spatial gridpoints used to discretize the free surface; d is the number of Runge-Kutta
steps taken to advance time by one macro-step of length �t = 0.025 separating the times at which the
output is recorded; ns1, ns2 and ns3 are the number of macro-steps taken for the given M0 in problems 1,
2 and 3, respectively; and the last five rows are the wall-clock running time (in seconds) of one macro-step
(i.e., of d Runge-Kutta steps) of the solvers we implemented (see Section 7.4 below)

length to show the direction of flow. In each plot, the aspect ratio is 1, i.e., the x and
y-axes are scaled the same. In all three problems, the background flow rate is V1 = 1
and there is zero circulation around cylinders 3 and 4. In panels (a) and (b) of Fig. 2
and panels (a)–(c) of Figs. 3 and 4, snapshots of the free surface are shown at equal
time intervals over the time ranges given. The curves are color coded to evolve from
green to blue to red, in the direction of the arrows. The initial and final times plotted
in each panel are also indicated with black dashed curves.

In Fig. 2, the clockwise circulation around cylinder 2 (due to a2 = −1) pulls the
free surface down to the right of the cylinder, toward the channel between cylinders
2 and 3. This causes an upwelling to the left of cylinder 2 in order to conserve mass.
At t = 1.35, we see in panel (b) that the lowest point on the free surface stops
approaching the channel and begins to drift to the right, around cylinder 3. The left
(upstream) side of the interface (relative to its lowest point) accelerates faster than
the right side, which causes the interface to sharpen and fold over itself. Shortly
after t = 2.1, our numerical solution loses resolution as the left side of the interface
crashes into the right side to form a splash singularity [19, 20]. The colormap of
the contour plot in panel (c) is the same as in panel (d). We see that the velocity is
largest in magnitude in the region above and to the right of cylinders 2 and 3, and
is relatively small throughout the fluid otherwise. The change in velocity potential
along a path crossing the domain below all three cylinders is zero in this case since
V1 +a2 +a3 +a4 = 0, whereas the change along a path crossing above the cylinders
is 2π .

In Fig. 3, a2 is set to zero, which causes the change in velocity potential along
any path across the domain to be 2π , whether it passes above, below or between the
cylinders. As a result, the magnitude of velocity is more evenly spread throughout
the fluid. This magnitude is largest below cylinder 3 and above cylinders 2 and 3,
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where the width of the fluid domain is smallest. Similar to problem 1, the free surface
initially drops to the right of the cylinders and rises to the left, but it does not get
pulled toward the channel between cylinders 2 and 3 since the flow is not reversed
there this time. Nevertheless, the free surface eventually folds over itself, but farther
downstream and at a later time than in problem 1. Panel (b) shows the development
of an air pocket expanding into the fluid as it travels down and to the right. This air
pocket sharpens in panel (c) to form a splash singularity shortly after t = 5.575.

In Fig. 4, a2 is set to 1. The counter-clockwise circulation around cylinder 2 causes
the change in velocity potential to be 2π along a path crossing the domain above all
three cylinders and to be 4π along a path passing below any subset of the cylinders
that includes cylinder 2. The magnitude of velocity is largest in the channels between
cylinder 2 and its neighbors, and below all three cylinders. The net flux below cylin-
der 3 is still larger than that passing between cylinders 2 and 3, as noted in the caption.
There is an upwelling of the free surface above and to the right of cylinder 2 with a
drop in fluid height to the left of the cylinders, which is the opposite of what happens
in problems 1 and 2. Capillary waves form at the free surface ahead of the cylinders,
with the largest oscillation eventually folding over to form a splash singularity. In the
final stages of this process, shown in panel (c), a structure resembling a Crapper wave
[3, 27] forms, which travels slowly to the right as the fluid flows faster around and
below it (from left to right). As it evolves, the sides of this structure slowly approach
each other while also slowly rotating counter-clockwise.

Figure 5 shows the pressure in the fluid at the final times shown in Figs. 2, 3,
and 4. On the free surface, the pressure is given by the Laplace-Young condition,
p = p0 − ρτκ , where we take p0 = 0, ρ = 1 and τ = 0.1. Setting p0 = 0 means
pressure is measured relative to the ambient pressure, so negative pressure is allowed.
The curvature κ = θα/sα is positive when the interface curves to the left (away from
the fluid domain) as α increases, i.e., moving along the interface from left to right.
Inside the fluid, we compute p using (5.4) and (5.8), as explained in Section 5.1
above. From (5.4), we see that pressure increases with fluid depth and decreases in
regions of high velocity, up to the correction φt in (5.4), which is a harmonic function
satisfying homogeneous Neumann boundary conditions on the solid boundaries.

In all three panels of Fig. 5, the pressure is visibly lower near the capillary wave
troughs, especially the largest trough that folds over into a structure similar to a
Crapper wave before the splash singularity forms. As the circulation parameter a2
increases from −1 in panel (a) to 0 in panel (b) and to 1 in panel (c), the pressure
decreases near the bottom boundary. Problem 3 has higher velocities than problems
1 and 2 below the cylinders and in the channels between cylinders, which leads to
smaller pressures in these regions in panel (c) than in panels (a) and (b). This effect
would have been even more evident if we had used the same colorbar scaling in all
three plots, but this would have washed out some of the features of the plots.

The contour plots of Figs. 2, 3, and 4 confirm that the fluid velocity increases in
the neighborhood of the capillary wave troughs (where the pressure is lower), and is
quite large below the Crapper wave structure. We also see in Fig. 5 that in problem 1,
which involves negative circulation around the top-most body, the pressure above this
obstacle is significantly lower than elsewhere. This sheds light on an effect observed
experimentally [79] whereby an air bubble can be permanently trapped between the
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top of an airfoil and the free surface. We will investigate this phenomenon in more
detail in future work.

7.2 Free surface flow in a geometry with variable bottom topography

Next we consider an example (problem 4) in which the bottom boundary drops off
rapidly and later rises again, forming a basin in between. We define ζ1(α) = α +
iη1(α) with η1(α) satisfying

η1(0) = −1

2
, η′

1(α) = −5 sin63 α, 0 ≤ α ≤ 2π . (7.3)

The 63rd power of sin(α) is close to zero except near α = π
2 and α = 3π

2 , causing
η1(α) to be quite flat in both the shallow and deep regions. The fluid depth ranges
from η1(0) = −0.5 to η1(π) = −2.072774, and is 2π -periodic since sin63 α has zero
mean. We place a large ellipse in the center of the basin to create a channel between
the ellipse and the bottom boundary. We force some of the fluid to flow through the
channel by setting a2 = 1/2. We place a smaller ellipse near the entrance of the
channel and set the circulation parameter of this ellipse to be a3 = 0. In the notation
of (7.1), the ellipse positions, sizes and circulation parameters are given by

Obstacle data in problem 4
j xj yj qj bj θj aj

2 π −9/8 4/3 3/4 0.0 0.5
3 1.8 −0.4 0.2 0.1 0.0 0.0

(7.4)

As in Section 7.1, we also set V1 = 1, τ = 0.1 and g = 1.
In Fig. 6, panel (a) shows the time evolution of the free surface for 0 ≤ t ≤ 1.6,

computed using the velocity potential method. The curves are shown at equal time
intervals of size �t = 0.08. They are color coded to evolve from green to blue to red
in the direction of the arrows. The interface is initially flat and the periodic part of
the velocity potential is initially set to zero, ϕ̃(α, 0) = 0. Setting V1 = 1, a2 = 1/2
and a3 = 0 causes the fluid entering the domain from the left to split into two parts,
one flowing down through the channel between the basin and the large ellipse and the
other flowing above the large ellipse from left to right. This leads to a stagnation point
in the upper left quadrant of the large ellipse, as shown in panel (b) at t = 1.6067. A
similar stagnation point is present in the upper right quadrant, where the two streams
recombine to flow over the right edge of the basin. This leads to an upwelling of
fluid above the right edge of the basin, as shown in panels (a) and (b). The opposite
occurs at the left edge of the basin, where the free surface is pulled down by the
fluid entering the channel below. The presence of the small obstacle causes the free
surface to form two air pockets moving downward on either side of the obstacle. We
exclude arrows in the velocity direction field near these air pockets in panel (b) to
avoid obscuring the contour plots.

Panel (c) of Fig. 6 provides a magnified view of the flow near the small obstacle,
including the direction field near the upstream air pocket (to the left of the obstacle).
The contour plot and direction field correspond to t = 1.6067. We also show the time
evolution of the free surface leading up to this state, with t ranging from 1.44667 to
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1.60667, plotted at time increments of 0.01333. We plot ζ(α, t) + �δ, where we have
introduced the offset �δ = (0.06, 0.15) to separate the evolving curves from the con-
tour plot. As time evolves, each of the air pockets sharpens as it is pulled further into
the fluid. The upstream air pocket begins to form a Crapper wave structure similar to
those seen in Figs. 2, 3, 4, and 5 in Section 7.1, and would likely form a splash sin-
gularity at a later time. But before this happens, the right air pocket approaches the
obstacle and appears on track to collide with it shortly after t = 1.6067.

Panel (d) of Fig. 6 shows the magnitude and direction of the velocity in the neigh-
borhood of the point of closest approach at t = 1.6067. The fluid moves fastest in the
small gap between the free surface and the obstacle. The increased speed is caused
by a large pressure drop in the gap, shown in panel (e), which causes the fluid to
accelerate as it approaches the gap and decelerate afterwards. The pressure drop is
caused by surface tension and the high curvature of the interface near the gap. Also
shown in panel (e) are snapshots of the interface from t = 1.53333 to t = 1.60667
in increments of �t = 0.00667. These curves are plotted in black since the direction
of motion is clear. The free surface appears to approach the obstacle at an accelerat-
ing rate as it sharpens. We believe an impact will occur with a simultaneous blow-up
of the curvature there, though it is possible that the interface will slide around the
obstacle before crashing into it or crash into it before forming a curvature singular-
ity. Further investigation would likely require using a non-uniform grid (rather than
arclength parameterization) and adapting the ideas of Appendix F to handle the close
approach of the interface to the obstacle without excessive mesh refinement; however,
these are topics for future research.

Zooming out from panel (e) of Fig. 6 and rescaling the colorbar yields the pressure
plot (at t = 1.6067) shown in panel (a) of Fig. 7. Comparison with panel (c) of Fig. 6
shows that the pressure is lowest where the velocity is highest, with local minima
occurring under the two air pockets of the free surface, at the left edge of the basin
where the bottom boundary drops off, and along part of the lower-left boundary of
the small obstacle. Zooming out further to the entire domain gives the pressure plot
in panel (b). The scaling of the colorbar is the same as in panel (a). Here the effects of
the hydrostatic term −ρgy in the formula (5.4) for p are clearly seen, with the largest
values of pressure occurring in the bottom corners of the basin. In panel (c) we plot
the deviation from this hydrostatic state, which would be the equilibrium pressure
if the fluid were at rest with a flat free surface. We see a large negative deviation
where the fluid flows fastest and where the free surface curves upward most rapidly,
and positive deviations near the stagnation points on the large obstacle, in the bottom
corners of the basin, and in the upwelling above the right edge of the basin.

We used the sequence of meshes and stepsizes listed in Table 3 to evolve the
solution with spectral accuracy from t = 0 to t = 1.6067, the time at which the
velocity and pressure are plotted in Figs. 6 and 7. In all cases, we discretize the bottom
boundary with M1 = 768 points and set M2 = M3 for the two obstacles. M3 must
increase as the interface approaches the small obstacle in order to maintain spectral
accuracy in the Fourier representation of ω3(α, t). It would have been sufficient to
use M2 = 256 throughout the computation since the free surface does not approach
the large obstacle; however, for simplicity, our code assumes each obstacle has the
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same number of gridpoints. In the terminology of Table 2, we have set the macro-step
size to �t = 0.00667. This is the temporal spacing of the curves plotted in panel (e)
of Fig. 6. The curves in panels (a) and (c) were plotted with time increments of 0.08
and 0.01333, which are every 12th and every 2nd macro-step, respectively.

In each column of Table 3, ns macro-steps were taken with the listed values of M0,
M3 and d , where d is the number of Runge-Kutta steps per macro-step. The last 5
rows report the wall-clock running time (in seconds) of evolving the solution through
one macro-step using the velocity potential or vortex sheet method with Gaussian
elimination or GMRES to solve the linear systems that arise. We also implemented a
GPU-accelerated version of the GMRES solver in the velocity potential framework.
The final macro-step to evolve the solution from t = 1.60000 to t = 1.60667 was
done in two stages with the parameters listed in the last two columns of the table.
Both d and the running times are scaled in the table to correspond to one full macro-
step. Multiplication by ns gives the total number of Runge-Kutta steps and the total
computational time of that phase of the numerical solution. The running times of the
solvers we tested will be discussed further in Section 7.4 below.

7.3 Fourier mode decay, energy conservation and comparison of results

In this section we compare the numerical results of the velocity potential and vortex
sheet formulations for the test problems (7.2). Since we have taken the single-valued
part of the surface velocity potential to be zero initially, i.e., ϕ̃(α, 0) = 0, we have
to compute the corresponding initial vortex sheet strength γ0(α, 0) to solve an equiv-
alent problem using the vortex sheet formulation. This is easily done within the
velocity potential code by first computing ωj (α, 0) by solving (3.10) and then eval-
uating γ0(α, 0) = −ω′

0(α, 0) in (4.1). Because V1 and possibly a2 are nonzero, this
initial condition γ0(α, 0) is nonzero for each of the three problems (7.2).

Table 3 Parameters used to timestep problem 4 from the initial flat state to a near collision of the free
surface with an obstacle

M0 768 1536 3072 5184 9216 12288 16384

M3 256 256 256 288 768 1296 1536

d 8 20 50 90 210 300 450

ns 138 48 30 18 6 2/3 1/3

GEPP(ϕ̃) 2.80 13.7 77.2 370 3103 9605 29184

GEPP(γ0) 4.14 17.1 97.7 419 3734 10779 35437

GMRES(ϕ̃) 1.98 9.07 59.6 260 2019 6278 15925

GMRES(γ0) 3.25 13.8 93.1 334 2831 9897 27921

GMRES(GPU, ϕ̃) 0.62 2.37 12.6 48.7 364 937 2492

We set M1 = 768 and M2 = M3 in each case. Here d and ns have the same meanings as in Table 2,
except that the macro-step size is �t = 0.00667 instead of 0.025. The fractional steps with ns = 2/3 and
1/3 indicate a change in mesh size part-way through the final macro-step from t = 1.6 to 1.60667, shown
in panel (e) of Fig. 6. The last 5 rows report the wall-clock running time (in seconds) of one macro-step
for the solvers we implemented
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Figure 8 shows the Fourier mode amplitudes of θ(α, t) and ϕ0(α, t) or γ0(α, t) for
problem 3 at the final time computed, t = 4.475. The results are similar for problems
1 and 2 at t = 2.1 and t = 5.575, respectively, so we omit them. At t = 4.475 in
problem 3, there are M0 = 7776 gridpoints on the free surface, so the Fourier mode
index ranges from k = 0 to 3888. We only plotted every fifth data point (with k

divisible by 5) so that individual markers can be distinguished from one another. The
blue and black markers show the results of the velocity potential and vortex sheet
formulations, respectively. In both formulations, the Fourier modes decay to 10−12

before a rapid drop-off due to the Fourier filter occurs. Beyond k = 2500, the Fourier
modes of the velocity potential formulation begin to look noisy and scattered, which
suggests that roundoff errors are having an effect. This is not seen in the vortex
sheet formulation. A possible explanation is that because ϕ̂0k decays faster than γ̂0k ,
there is some loss of information in storing ϕ0(α, t) in double-precision to represent
the state of the system relative to storing γ0(α, t). Indeed, combining (3.17), (3.19)
and (3.24) in the velocity potential formulation gives the same formula (4.8) for the
normal velocityU in the vortex sheet formulation, but we have to solve for the ωj and
then differentiate these to obtain the γj before computing U in the velocity potential
formulation.

This is not a complete explanation for the smoother decay of γ̂0k as the right-hand
sides of (4.14) and (4.17), which govern γj,t (α, t), contain an extra α-derivative rel-
ative to the right-hand side of (3.27) for ϕ̃t (α, t). But it appears that the dispersive
nature of the evolution equations and the Fourier filter suppresses roundoff noise
caused by this α-derivative. We emphasize that the smoother decay of Fourier modes
in the vortex sheet formulation does not necessarily mean that these results are more
accurate than the velocity potential approach. The α-derivatives in the right-hand
sides of (4.14) and (4.17) may cause just as much error as arises in computing γj (α, t)

from ϕ̃0, but it is smoothed out more effectively in Fourier space for the vortex sheet
formulation. A higher-precision numerical implementation would be needed to inves-
tigate the accuracy of each method independently, which is beyond the scope of the
present work.
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Fig. 8 Fourier mode amplitudes of θ0(α, t) and ϕ0(α, t) or γ0(α, t) for problem 3 of (7.2) at t = 4.475,
computed using the velocity potential (blue) or vortex sheet (black) formulations
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In Fig. 9, we plot the norm of the difference of the numerical solutions obtained
from the velocity potential and vortex sheet formulations for problem 1 (left) and
problems 2 and 3 (right). Since the tangent angle θ(α, t) is computed directly in both
formulations, we use

err1(t) =
√

1

2π

∫ 2π

0
|θvp(α, t) − θvs(α, t)|2 dα (7.5)

as a measure of the discrepancy between the two calculations, where vp and vs refer
to “velocity potential” and “vortex sheet.” The results are plotted in blue, green and
red for problems 1, 2 and 3, respectively. In all three cases, err1(t) grows exponen-
tially in time from the initial flat state to the final time computed, just before the
splash singularity would occur. This exponential growth is likely due to nearby solu-
tions of the water wave equations diverging from one another with an exponential
growth rate with this configuration of obstacles, background flow, and circulation
parameters aj . We do not believe the exponential growth is due to numerical instabil-
ities in the method beyond those associated with dynamically increasing the number
of mesh points, M0, and timesteps, d , per time increment plotted, �t = 0.025, as
listed in Table 2. At the final time, err1(t) has only grown to around 10−9 in spite
of the rapid change in θ(α, t) by 2π radians over a short range of α values when
traversing the structures resembling Crapper waves in Figs. 2, 3, 4, and 5.

As a second measure of error, we also plot in Fig. 9 the change in energy from the
initial value,

err2(t) = E(t) − E(0), (7.6)

for all three problems, shown in lighter shades of blue, green and red. In each numer-
ical calculation, this change in energy remains in the range 10−16–10−14 for early
and intermediate times. For comparison, the values of E(0) are

problem 1 2 3
E(0) 0.79004 1.29626 3.71426

(7.7)
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Fig. 9 Time evolution of err1(t) and err2(t) from (7.5) and (7.6) for problems 1, 2 and 3 from the initial
flat state to the final time computed for each problem, just before the splash singularity
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At later times, err2(t) begins to grow exponentially at a rate similar to that of err1(t)
but remains 3–4 orders of magnitude smaller. Thus, while energy conservation is a
necessary condition for maintaining accuracy, it tends to under-predict the error of a
numerical simulation.

7.4 Running time and performance

The wall-clock times listed in Tables 2 and 3 above were obtained by running our
C++ implementation of the velocity potential and vortex sheet methods with 24
OpenMP threads on a server with two 12-core 3.0 GHz Intel Xeon Gold 6136 pro-
cessors. The rows labeled GEPP(ϕ̃) or GEPP(γ0) in the tables correspond to using
Gaussian elimination with partial pivoting to solve (3.15) in the velocity potential
method or (4.5), (4.14) and (4.17) in the vortex sheet method. The rows labeled
GMRES(ϕ̃) or GMRES(γ0) correspond to using the generalized minimal residual
method [36] to solve these linear systems.

We also implemented a version of the GMRES code in which the matrix entries
of these linear systems are computed and stored on a graphics processing unit (GPU)
and the matrix-vector multiplications of the GMRES algorithm are performed on the
GPU. This approach is effective as O(M2imax) work is done on the GPU for each
linear system solved, with only O(M imax) communication cost between the CPU
and GPU, where

M = M0 + M1 + · · · MN (7.8)
is the size of the linear systems (3.15), (4.14) and (4.17) and imax is the num-
ber of GMRES iterations required for convergence (typically 30–120, as discussed
below). This part of the code was written in Cuda and run on the same server, which
has an Nvidia Tesla P100-PCIE-16GB GPU with 3584 cores running at 1.2 GHz.
Less expensive operations such reconstructing ζ(α, t) from Pθ(α, t), computing α-
derivatives, and applying the Fourier filter (5.2) at the end of each Runge-Kutta step
are still done on the CPU.

The performance results are plotted on a log-log plot in the left panel of Fig. 10.
Since problem 4 has a different macro-step size �t from problems 1–3, we divided
the wall-clock running times by �t to obtain the wall-clock time per unit simulation
time as a function of problem size, M . The bottom 5 rows of Table 2 are plotted
with solid lines that extend from M = 736 to 8256 while the bottom 5 rows of
Table 3 are plotted with dashed lines that extend from M = 2048 to 20224. The
orange and light green curves show the GEPP and GMRES results for the vortex
sheet method, respectively, while the red and dark green curves show the GEPP and
GMRES results for the velocity potential method. The blue curves show the results
of the GPU-accelerated GMRES code for the velocity potential method. We did not
implement the GPU variant of the GMRES algorithm in the vortex sheet framework.

We find that the wall-clock running time of the GEPP algorithm scales like
O(M3.75) at the larger grid sizes used in problem 4. This is demonstrated with the
dotted black line in the left panel of Fig. 10. One expectsO(M4.5) scaling, with a fac-
tor of O(M3) from the cost of Gaussian elimination and a factor of d from Tables 2
and 3, the number of Runge-Kutta steps taken per macro-step of fixed size �t . A
small-scale decomposition analysis [46, 47] shows that the surface tension terms in

D.M. Ambrose et al.Page 42 of 6246



40 60 80 100 120 140
0

3

10

32

96

320

960

3200

9600
2048
2816
4352
6528
11520
15648
20224

1

10

100

1000

10000

1e+05

1e+06

1e+07

 640  1280  2560  5120  10240  20480

Fig. 10 Wall-clock running time per unit simulation time versus problem size for the velocity potential
(ϕ̃) and vortex sheet (γ0) formulations using Gaussian elimination (GEPP) or GMRES to solve the linear
systems that arise in problems 1–3 and 4, and histogram of the number of GMRES iterations required to
achieve convergence in problem 4

(3.27) and (4.14) make the systems mildly stiff, and d should grow like O(M
3/2
0 )

to maintain stability using an explicit Runge-Kutta method. Since M0 ≥ (3/8)M in
all cases considered here, this gives an O(M4.5) growth rate. But the linear algebra
runs more efficiently on a multi-core CPU for larger problem sizes, which reduces
the wall-clock running time to O(M3.75) in this test problem. This modest reduc-
tion does not change the fact that the method becomes expensive far large grid sizes.
For example, the total running time of the GEPP solver for problem 4 was 12.4 h
in the velocity potential framework and 14.8 h in the vortex sheet framework, and
36% of this time was devoted in each case to evolving the solution through the final
macro-step via the last two columns of Table 3.

Switching to GMRES eliminates the O(M3) operations of the LU-factorization
but requires several matrix-vector multiplications to be performed iteratively, each
costing O(M2) operations. We denote the number of iterations required to reduce the
norm of the residual to 10−15 times the norm of the right-hand side by imax. There
is still a factor of d , which scales like O(M3/2), so the expected running time is
O(M3.5imax). As with GEPP on the CPU, the GPU makes more efficient use of its
many cores for larger problem sizes. Thus, even though imax grows somewhat with
M , as discussed below, we find that the wall-clock running time scales likeO(M3.25),
shown by the dotted navy line in the left panel of Fig. 10. Instead of 12.4 h, the
running time of problem 4 drops to 1.4 h using the GPU in the velocity potential
framework, with 28.6% of the time devoted to the final macro-step.

Next we investigate how the number of GMRES iterations needed for conver-
gence, imax, depends on M . A benefit of discretizing second-kind integral equations
is that the condition number remains O(1) as the mesh size approaches zero. But
in the current case, the mesh is refined in response to the domain evolving toward
increasingly complicated geometries, which affects the condition number. The right
panel of Fig. 10 shows a histogram of the resulting imax for each of the linear systems
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solved during the course of evolving problem 4 in the velocity potential framework.
Each column of Table 3 corresponds to a batch of Runge-Kutta steps with a fixed
value of M . Each of these Runge-Kutta steps contributes 12 values of imax to the his-
togram (as it is a 12-stage, 8th-order scheme), and there are a handful of additional
imax values in the histogram from computing the energy at the output times.

We color code the histogram results by problem size. We see that colors corre-
sponding to larger problem sizes occupy bins further to the right in the histogram,
which means that as the free surface evolves to a more complicated state and requires
more gridpoints, the number of GMRES iterations also increases. But the change is
not drastic. Tables 4 and 5 give the average value of imax for each linear system with
a given problem size M that arises in problems 3 and 4, where problem 3 is represen-
tative of problems 1–3, which have the same grid parameters. We see in Table 5, for
example, in the velocity potential framework, that increasing M from 2048 to 20224
in problem 4 causes the average value of imax to increase from 43.0 to only 70.0.

Also listed in Tables 4 and 5 are the GMRES restart parameters used, as well as
the percentage of linear systems of each problem size in which the iteration count
reached the restart parameter before the convergence criterion was reached, triggering
a restart. In problem 3, this was rare, occurring less than 1% of the time in all cases
except M = 8256 with the vortex sheet method, when it occurred just under 4%
of the time. But in problem 4, while still rare for the velocity potential method, it
was common for GMRES to stall in the first cycle of iterations and then converge
rapidly after a single restart. As seen in Table 5, this occurred 72% of the time with
M = 2048, 63% of the time withM = 15648, and 66% of the time withM = 20224.
In these cases, we find that increasing the restart parameter has a negative impact on
performance as the extra iterations of the first GMRES cycle are not as effective at
reducing the residual as they would have been had a restart already occurred. But we
also find that reducing the restart parameter to a small value like 10 or 12 does not
work well as the number of restart cycles can then increase significantly. With the
restart parameters listed in Tables 4 and 5, convergence was always reached with at

Table 4 GMRES performance in problem 3

M 736 864 992 1248 1632 2208 3072 3936 5088 6624 8256

Restart parameter 50 50 50 50 50 50 50 60 60 70 90

imax(ϕ̃) 31.6 34.0 34.7 35.1 36.2 37.2 39.0 40.0 41.0 47.2 66.5

imax(γ0) 33.2 35.6 36.2 36.6 37.5 38.2 39.1 40.1 42.2 47.1 67.9

% restarted(ϕ̃) 0 0 0 0 0 0 0 0 0 0.10 0.50

% restarted(γ0) 0.017 0.092 0 0.020 0 0 0 0 0.749 0 3.97

imax(γ0; aux) 20 20 20 20 20 20 20 20 20 20 20.6

% restarted(γ0; aux) 0 0 0 0 0 0 0 0 0 0 0

The rows labeled imax give the average number of GMRES iterations required for convergence. Also
shown are the percentage of cases in which GMRES was restarted due to the iteration count reaching the
restart parameter. The rows labeled “aux” refer to the auxiliary linear system (4.5) of the vortex sheet
formulation
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Table 5 GMRES performance in problem 4

M 2048 2816 4352 6528 11520 15648 20224

Restart parameter 60 70 80 90 100 110 120

imax(ϕ̃) 43.0 46.9 53.2 59.1 62.7 63.6 70.0

imax(γ0) 63.0 52.5 56.4 57.2 59.7 105 116

% restarted(ϕ̃) 0 0.0087 0.54 0.68 2.0 0.42 0.88

% restarted(γ0) 72 2.4 6.0 0.18 0.59 63 66

imax(γ0; aux) 26.4 26.4 26.3 26.4 27.0 27.2 27.4

% restarted(γ0; aux) 0 0 0 0 0 0 0

Each column corresponds to a batch of Runge-Kutta steps with a fixed spatial discretization. In the first
column and last two columns, a large fraction of the linear systems in the vortex sheet formulation stall on
the first GMRES cycle, but then converge rapidly after a single restart. This causes the average imax to be
45–65% larger in the vortex sheet framework than the velocity potential framework in these columns

most one restart in all cases encountered. For background on selecting optimal restart
parameters in GMRES, see [16].

In the vortex sheet approach, one also has to solve the auxiliary linear system
(4.5) for γ1, . . . , γN . This system only involves discretization points on the solid
boundaries, which do not become more geometrically complicated as the free surface
evolves. We find that the value of imax for this auxiliary system is extremely stable,
taking on the value of 20 or 21 for all 58671 linear systems that arose in timestepping
problem 3, independent ofM in (7.8), and ranging between 26 and 32 in all cases that
arose in timestepping problem 4, with the average value increasing from 26.4 to 27.4
as M changes from 2048 to 20224. There were no instances of a restart occurring for
the auxiliary problem in problems 3 or 4.

We find that the vortex sheet method takes 13–50% longer to solve problems 1–4
when implemented using the same solver. Table 6 gives the total running times (in
hours) of the velocity potential method and the percentage increase in running time
of the vortex sheet method. With Gaussian elimination, the discrepancy is due to
having to solve the auxiliary problem (4.5) in addition to the system (4.14) and (4.17).
The latter system is computationally equivalent to the system (3.15) in the velocity
potential method. However, the auxiliary problem is smaller (of size M − M0 =
M1+· · ·+MN ), adding 13–19% rather than doubling the running time in problems 1–
4.With GMRES, the performance is somewhat worse, ranging from 24 to 29% slower

Table 6 Total running times (in hours) of the velocity potential method on problems 1–4 with the solvers
implemented and the percentage increase in running time of the vortex sheet method

Solver GEPP GMRES GMRES (GPU)

Problem 1 2 3 4 1 2 3 4 1 2 3 4

Total time (ϕ̃) 1.17 7.3 21.3 12.4 0.71 5.3 14.9 8.0 0.157 1.11 2.84 1.41

% increase(γ0) 13.1 14.5 15.9 19.0 24 26 29 49 – – – –
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in problems 1–3 and 49% slower in problem 4. This is partly due to the additional
cost of the auxiliary problem, and also due to a larger average number of GMRES
iterations being needed in the vortex sheet method, especially in problem 4, as noted
in Table 5.

We remark that d can be reduced to O(M) via the HLS small-scale decomposition
[46, 47] using an implicit-explicit Runge-Kutta scheme [50] or exponential time-
differencing scheme [25]. The latter has been implemented in [78], for example. But
these are 4th- or 5th-order schemes, so there is a trade-off between the stability con-
straints of an 8th-order explicit method and the accuracy constraints of an IMEX or
ETD scheme. We did not explore this here, but it would impact the scaling of running
time versus problem size in both the GEPP and GMRES approaches discussed above.

We also note that GMRES is faster than Gaussian elimination, though not by
as much as one might predict from an operation count. While factoring the matrix
requires O(M3) operations, they run at level 3 BLAS speed. By contrast, GMRES
requires imax matrix-vector multiplications to be computed sequentially, each involv-
ing O(M2) operations that run at level 2 BLAS speed. For example, when M =
20224 in problem 4, the average value of itot was 70, and the ratio of flops between
GEPP and GMRES is roughly (2M3/3)/(70 × 2M2) ≈ 96, but the ratio of running
times (from the last column of Table 3) is only 29184/15925 = 1.83. Using the GPU
improves this significantly to 29184/2492 = 11.7. In future work, one could try
switching to a block variant of GMRES [15], which might further improve the per-
formance of the iterative approach by reducing the number of iterations and enabling
much of the work to be done using level 3 BLAS routines. One could also explore
the use of fast algorithms [62, 68] to reduce the O(M2) cost of forming the matrices
and performing GMRES iterations, but the current approach is likely to remain com-
petitive since it is easy to parallelize and could be run on a supercomputer for larger
matrix sizes.

8 Conclusion

We presented two spectrally accurate numerical methods for computing the evolution
of gravity-capillary water waves over obstacles and variable bottom topography. The
methods are closely related, differing in whether the surface velocity potential or the
vortex sheet strength is evolved on the free surface, along with its position. The kine-
matic variable governing the free surface position can be the graph-based wave height
η(x, t) or the tangent angle θ(α, t) introduced by Hou, Lowengrub and Shelley. In
the latter case, we showed how to modify the curve reconstruction by evolving only
the projection Pθ and using algebraic formulas to determine the mean value P0θ and
curve length L = 2πsα from Pθ . This prevents O(�t2) errors in internal Runge-
Kutta stages from causing errors in high-frequency modes that do not cancel when
the stages are combined into a full timestep. The bottom boundary and obstacles can
be parameterized arbitrarily; we do not assume equal arclength parameterizations.

We derived an energy formula that avoids line integrals over branch cuts through
the fluid by taking advantage of the existence of a single-valued stream function.
This formula does not generalize to 3D, but also is not necessary in 3D since the
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velocity potential is single-valued in that case. We overcame a technical challenge
in the velocity potential method by correcting a nontrivial kernel by modifying the
equations to solve for the stream function values on the solid boundaries. This issue
does not arise in the vortex sheet method unless the energy is being computed using
the velocity potential approach. We also derived formulas for velocity and pressure
in the fluid that retain spectral accuracy near the boundaries using a generalization of
Helsing and Ojala’s method [42] to the periodic case. This method also is limited to
2D as it makes use of complex analysis through the Cauchy integral formula or the
residue theorem. A different approach will need to be developed in 3D in future work.

The angle-arclength formulation is convenient for studying overturning waves,
which we demonstrate in a geometry with three elliptical obstacles and another with
two obstacles and a basin-shaped bottom boundary. In all cases, a flat initial inter-
face develops one or more localized indentations that sharpen into overhanging wave
structures. Often these structures resemble Crapper waves with walls that become
narrower as time evolves and appear on track to terminate with a splash singularity
where the curve self-intersects. In one case, the wave structure appears on track to
collide with one of the obstacles, with the fluid velocity in the gap between the free
surface and the obstacle increasing as the gap shrinks and as the curvature of the
free surface above the gap grows. Both methods are demonstrated to be spectrally
accurate, with spatial Fourier modes exhibiting exponential decay. By monitoring
this decay rate, it is easy to adaptively refine the mesh by increasing the number of
gridpoints on the free surface or obstacles as necessary.

In the test problems in which the free surface eventually self-intersects in a splash
singularity, we increased the number of gridpoints M0 on the free surface through the
sequence given in Table 2, which ranges from 256 initially to 7776 just before the
splash singularity. In the test problem in which a collision with an obstacle occurs,
we increased M0 to 16384 at the end. Although we cannot evolve all the way to the
singularity, the solutions remain fully resolved in Fourier space at all times reported,
and energy is conserved to 12–15 digits. In Section 7.3, we computed several of these
solutions using both the velocity potential and vortex sheet methods and compared
them to each other to corroborate the accuracy predicted by monitoring energy con-
servation and the decay of the Fourier modes of θ(α, t), ϕ̃(α, t), γ0(α, t) and the
ωj (α, t) or γj (α, t) for 1 ≤ j ≤ N at the output times. While energy conservation
under-predicts the error, the independent calculations agree with each other to at least
9 digits of accuracy at the final times computed.

Our assessment is that the velocity potential method is simpler to derive and some-
what easier to implement since there is only one “solve” step required to obtain the
ωj from ϕ̃ versus having to solve (4.5), (4.14) and (4.17) for the γj and γj,t in the
vortex sheet formulation. The vortex sheet formulation was also found to require
more GMRES iterations to reduce the norm of the residual to 10−15 times that of
the right-hand side. This leads to longer running times for the vortex sheet method
(by 13–50%), as seen in Table 6. The biggest difference we observe in the numeri-
cal results is that high-frequency Fourier modes continue to decay smoothly in the
vortex sheet formulation but are visibly corrupted by roundoff-error noise in the
velocity potential method. We speculate that there is some loss of information in
storing ϕ̃(α, t) in double-precision to represent the state of the system relative to
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storing γ0(α, t). This could also explain why it takes fewer iterations for GMRES
to drive the residual in ϕ̃ to zero in comparison to γ0. To the extent that one can
neglect the compact perturbations of the identity in (4.14) and (4.17), the equations
are in conservation form with γj,t equal to the α-derivative of a flux function, which
seems to suppress roundoff error noise in the high-frequency Fourier modes. Addi-
tional work employing higher-precision numerical calculations would be needed to
determine if the smoother decay of Fourier modes in the vortex sheet approach leads
to greater accuracy over the velocity potential method.

A natural avenue of future research would be to compute steady-state gravity-
capillary waves with background flow over obstacles and study their stability. For
prediction and design purposes, we are also interested in comparing our numerical
results to laboratory experiments such as towed obstacles or bottom topographies
in a wavetank. Of particular interest is the application of this new numerical tech-
nique to experimental observations of air bubbles permanently trapped between the
free surface and the top of a tilted, submerged airfoil [79]. Further, we hope to con-
sider time-dependent motion of the obstacles and identify a mechanism for physically
selecting the circulation parameters.

On the numerics side, future goals include the development of a non-uniform grid
spacing algorithm that can be dynamically adjusted to resolve emerging singularities
without losing spectral accuracy; adapting the technique of evaluating Cauchy inte-
grals near boundaries outlined in Appendix F to model the final stages of a splash
singularity of the free surface with itself or an obstacle; and developing fast-multipole
methods [62] to improve the scaling of running time versus problem size observed
in Section 7.4. Generalizing the methods to three dimensions would also be a useful
extension with many applications. We include some remarks on the 3D problem in
Appendix G.

Appendix A. Verification of the HLS equations

In Section 2.2, we proposed evolving only Pθ via (2.17) and constructing P0θ , sα and
ζ(α) from Pθ via (2.13) and (2.16). Here we show that both equations of (2.10) hold
even though P0θ and sα are computed algebraically rather than by solving ODEs,
and that these equations, in turn, imply that the curve kinematics are correct, i.e.,
(ξt , ηt ) = Un + V t.

From (2.13), we have St = P0 [(cosPθ)(P θ)t ], Ct = −P0 [(sinPθ)(P θ)t ], and

(P0θ)t = −CSt + SCt

C2 + S2
= −sα [(cosP0θ)St + (sinP0θ)Ct ]

= − sα

2π

∫ 2π

0
[(cosP0θ)(cosPθ) − (sinP0θ)(sinPθ)] (P θ)t dα

= − sα

2π

∫ 2π

0
(cos θ)P

(
Uα + V θα

sα

)
dα

= 1

2π

∫ 2π

0
(s−1

α − cos θ)(Uα + V θα) dα. (A.1)
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In the last step, we used (2.15) and the fact that P is self-adjoint. Combining (2.17)
and (A.1), we obtain

θt = Uα + V θα

sα
− 1

2π

∫ 2π

0
(cos θ)(Uα + V θα) dα. (A.2)

We must show that the second term is zero. This follows from Vα = P(θαU) in
(2.11). Indeed,

∫
(cos θ)(V θα) dα =

∫
V ∂α[sin θ ] dα = −

∫
(sin θ)P (θαU) dα

= −
∫

(sin θ)(θαU) dα =
∫

U∂α[cos θ ] dα

= −
∫

(cos θ)Uα dα,

where the integrals are from 0 to 2π and we used (2.15). Similarly, we have

sαt = −s3α[CCt + SSt ] = −s2α [(cosP0θ)Ct − (sinP0θ)St ]

= s2α

2π

∫
(sin θ)P

(
Uα + V θα

sα

)
dα = sα

2π

∫
(sin θ)(Uα + V θα) dα.

(A.3)

Using Vα = P(θαU) again, we find that
∫

(sin θ)(V θα) dα =
∫

−V ∂α[cos θ ] dα =
∫

(cos θ)P [θαU ] dα

= v

∫
(cos θ − s−1

α )(θαU) dα

=
∫

U∂α[sin θ ] dα − 1

sα

∫
θαU dα.

Combining this with (A.3), we obtain sαt = −P0[θαU ], as claimed.
As for the second assertion that (ξt , ηt ) = Un + V t, note that the equations of

(2.10) are equivalent to

∂t

[
sαeiθ

]
= ∂α

[
(V + iU)eiθ

]
. (A.4)

By equality of mixed partials, the left-hand side equals ∂α [ζt ], so we have ζt =
(V + iU)eiθ up to a constant that could depend on t but not α. However, to enforce
ξt (0) = ∂t0 = 0 in (2.16), we choose V (0) in (5.1) so that the real part of (V +iU)eiθ

is zero at α = 0. We conclude that ζt − (V + iU)eiθ = ia, where a is real and could
depend on time but not α. We need to show that a = 0. Note that

2πa =
∫ 2π

0
aξα dα =

∫ 2π

0
(0, a) · n̂sα dα =

∫

�

[
(ξt , ηt ) · n̂ − U

]
ds. (A.5)

The divergence theorem implies that
∫
�

U ds = 0. This is because ∇φ is single-
valued and divergence free in�;U = ∇φ·n̂ on �;∇φ·n̂ = 0 on the solid boundaries;
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and (∇φ · n̂)|x=2π = −(∇φ · n̂)|x=0 since ∇φ is periodic while n̂ changes sign. From
(2.16),

∫ 2π
0 ηξα dα = 0 for all time. Differentiating, we obtain

0 =
∫ 2π

0
[ηtξα − ξtηα] dα =

∫

�

(ξt , ηt ) · n̂ ds. (A.6)

Thus a = 0 and ζt = (V + iU)eiθ , as claimed.

Appendix B. Variant specifying the stream function on the solid
boundaries

The integral equations of Section 3.2 are tailored to the case where V1, a2, . . . , aN

in the representation (3.1) for 
 are given and the constant values ψ |k are unknown.
If instead ψ is completely specified on �k for 1 ≤ k ≤ N , then we would have to
solve for a2, . . . , aN along with the ωj . In this scenario, ϕ = φ|�−

0
is given on the

free surface, from which we can extract V1 as the change in ϕ over a period divided
by 2π . So we can write


(z) = 
̌(z) + V1z =
⎛
⎝
̃(z) +

N∑
j=2

aj [ω]
cyl(z − zj )

⎞
⎠ + V1z, (B.1)

where aj [ω] = 〈1j , ω〉 = 1
2π

∫ 2π
0 ωj dα are now functionals that extract the mean

from ω2, . . . , ωN . Instead of (3.13), we would define

Aω = Bω +
N∑

m=2

⎛
⎜⎜⎜⎝

φcyl(ζ0(α) − zm)

ψcyl(ζ1(α) − zm)
...

ψcyl(ζN(α) − zm)

⎞
⎟⎟⎟⎠ 〈1m, ω〉. (B.2)

The right-hand side b in (3.15) would become b0(α) = [ϕ(α) − V1ξ(α)] and bk(α) =
[ψ(ζk(α)) − V1ηk(α)], where ϕ and ψ |�k

are given. The latter would usually be
constant functions, though a nonzero flux through the cylinder boundaries can be
specified by allowing ψ |�k

to depend on α. However, we still require ψ |�k
to be

periodic (since the stream function is single-valued in our formulation), so the net
flux out of each cylinder must be zero.

We now prove invertibility of this version of A, which maps ω to the restriction
of the real or imaginary parts of 
̌(z) to the boundary. We refer to these real or
imaginary parts as the “boundary values” of 
̌. In the same way, B maps ω to the
boundary values of 
̃ in (3.10). Note thatA differs from B by a rank N −1 correction
in which a basis for V = kerB is mapped to a basis for the space Rcyl of boundary
values of span{
cyl(z − zj )}Nj=2. From Section 6.1, we know that dim (coker(B)) =
N−1, so we just have to show thatRcyl∩ran(B) = {0}. Suppose the boundary values
of 
c(z) = ∑N

j=2 aj
cyl(z − zj ) belong to ran(B). Then there are dipole densities

ωj such that the corresponding sum of Cauchy integrals 
̃(z) = ∑N
j=0 
j(z) has

these same boundary values. The imaginary part, ψ̃ , satisfies the Laplace equation in
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�, has the same Dirichlet data as ψc on �1, . . . , �N , and the same Neumann data as
ψc on �0 (due to ∂nψ = ∂sφ). Since solutions are unique, ψ̃ = ψc. But the conjugate
harmonic function to ψ̃ is single-valued while that of ψc is multiple-valued unless all
the aj = 0. We conclude thatRcyl ∩ ran(B) = {0}, as claimed.

Appendix C. Cauchy integrals, layer potentials and sums over
periodic images

In this section we consider the connection between Cauchy integrals and layer poten-
tials and the effect of summing over periodic images and renormalization. As is
well-known [60], Cauchy integrals are closely related to single- and double-layer
potentials through the identity

dζ

ζ − z
= d log(ζ − z) = d log r + i dθ = dr

r
+ i dθ, (C.1)

where ζ − z = reiθ . We adopt the sign convention of electrostatics [24, 49] and
define the Newtonian potential as N(ζ, z) = −(2π)−1 log |ζ − z|. The double-layer
potential (with normal nζ pointing left from the curve ζ , as in Section 3 above) has
the geometric interpretation

∂N

∂nζ

= ∇ζ N(ζ, z) · nζ = 1

2π

(x − ξ, y − η)

(x − ξ)2 + (y − η)2
· (−ηα, ξα)

(ξ2α + η2α)1/2
= 1

2π

dθ

ds
. (C.2)

For a closed contour in the complex plane, we have

1

2πi

∫

�

ω(ζ )

ζ − z
dζ =

∫

�

∂N

∂nζ

ω(ζ ) ds + i

∫

�

N(ζ, z)

(
−dω

ds

)
ds, (C.3)

so, if ω is real-valued, the real part of a Cauchy integral is a double-layer potential
with dipole density ω while the imaginary part is a single-layer potential with charge
density −dω/ds. In the spatially periodic setting, the real part of the two formulas in
(3.3) may be written

φ0(z) = 1

2π

∫ 2π

0
Im

{
ζ ′(α)

2
cot

ζ(α) − z

2

}
ω0(α) dα

= lim
M→∞

M∑
m=−M

1

2π

∫ 2π

0
Im

{
ζ ′(α)

ζ(α) + 2πm − z

}
ω0(α) dα

= lim
M→∞

M∑
m=−M

∫ 2π

0

∂N

∂nζ

(ζ(α) + 2πm, z) ω0(α)sα dα

= PV

∫ ∞

−∞
∂N

∂nζ

(ζj (α), z) ω0(α)sα dα (C.4)
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and

φj (z) = 1

2π

∫ 2π

0
Re

{
ζ ′
j (α)

2
cot

ζj (α) − z

2

}
ωj (α) dα

= 1

2π

∫ 2π

0
− log

∣∣∣∣sin
ζj (α) − z

2

∣∣∣∣ω′
j (α) dα

= lim
M→∞

M∑
m=−M

∫ 2π

0
N(ζj (α) + 2πm, z) ω′

j (α) dα (1 ≤ j ≤ N) (C.5)

= lim
M→∞

∫ 2π(M+1)

−2πM

N(ζj (α), z) ω′
j (α) dα, (j = 1 only). (C.6)

Equation (C.5) follows from Euler’s product formula sinw=w
∏∞

m=1(1−(w/mπ)2),
which gives

− 1

2π
log

∣∣∣∣sin
ζ1(α) − z

2

∣∣∣∣ = lim
M→∞

M∑
m=−M

(N (ζ1(α) + 2πm, z) − cm) , (C.7)

where c0 = − 1
2π log 2 and cm = − 1

2π log |2πm| if m �= 0. It was possible to drop
the terms cm in (C.5) and (C.6) since ω′

j (α) is integrated over a period of ωj (α).
However, these terms have to be retained to express (C.6) as a principal value integral,

φ1(z) = PV

∫ ∞

−∞
N1(α, z) ω′

1(α) dα,

(
N1(α, z) = N (ζ1(α), z) − cm

2πm ≤ α < 2π(m + 1)

)
. (C.8)

Through (C.7), we can regard log | sin(w/2)| as a renormalization of the divergent
sum of the Newtonian potential over periodic images in 2D. Setting aside these tech-
nical issues, it is conceptually helpful to be able to interpret φ0(z) and φj (z) from
(3.3) as double and single layer potentials with dipole and charge densities ω0(α) and
ω′

j (α)/sα , respectively, over the real line or over the periodic array of obstacles. Of
course, it is more practical in 2D to work directly with the formulas involving com-
plex cotangents over a single period, but (C.4) and (C.5) are a useful starting point
for generalization to 3D.

Appendix D. Alternative derivation of the vortex sheet strength
equation

In this appendix, we present an alternative derivation of (4.14) that makes contact
with results reported elsewhere [7, 14] in the absence of solid boundaries. As in
Section 3, the velocity potential is decomposed into φ(z) = φ̃(z)+φmv(z)where φ̃(z)

is the sum of layer potentials and φmv(z) is the multi-valued part. We also define W
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as in (4.10), where the component Birkhoff-Rott integralsW0j are given in complex
form by

W ∗
k0(α) = 1

2πi
PV

∫ 2π

0

1

2
cot

ζk(α) − ζ0(β)

2
γ0(β) dβ,

W ∗
kj (α) = − 1

2πi
PV

∫ 2π

0

1

2
cot

ζk(α) − ζj (β)

2
iγj (β) dβ. (D.1)

The Plemelj formulas (4.3) imply that when the interface is approached from the
fluid region,

∇φ = W + γ0

2sα
t̂. (D.2)

Recall that ϕ(α, t) = φ(ζ(α, t), t) is the restriction of the velocity potential to the
free surface as it evolves in time, and note that ϕα = sα∇φ · t̂. Solving for γ0, then,
we have

γ0 = 2ϕα − 2sαW · t̂. (D.3)
Differentiating with respect to time, we get

γ0,t = 2ϕαt − 2sαtW · t̂ − 2sαWt · t̂ − 2sαW · t̂t .
In Section 4.2, we avoided directly taking time derivatives of γ0(α, t), W(α, t) and
ϕ(α, t), which lead to more involved calculations here due to the moving boundary.
We know that t̂t = θt n̂, and that θt = (Uα + V θα)/sα . We substitute these to obtain

γ0,t = 2ϕαt − 2sαtW · t̂ − 2sαWt · t̂ − 2U(Uα + V θα). (D.4)

We now work on the equation for ϕαt . As was done in [7], the convective derivative
(3.25) together with the Bernoulli equation gives

ϕt = ∇φ · (U n̂ + V t̂) − 1

2
|∇φ|2 − p

ρ
− gη0. (D.5)

We write W = U n̂ + (W · t̂)t̂, substitute (D.2) into (D.5), and use W · W = U2 +
(W · t̂)2:

ϕt = U2 + V (W · t̂) + γ0V

2sα
− 1

2

(
U2 + (W · t̂)2

)
− γ0

2sα
(W · t̂) − γ 2

0

8s2α
− p

ρ
− gη0.

We differentiate with respect to α:

ϕαt = UUα + Vα(W · t̂) + V (W · t̂)α +
(

γ0V

2sα

)

α

−(W · t̂)(W · t̂)α −
(

(W · t̂)γ0
2sα

)

α

−
(

γ 2
0

8s2α

)

α

− pα

ρ
− gη0,α . (D.6)

We substitute (D.6) into (D.4), noticing that the UUα terms cancel:

γ0,t = 2Vα(W · t̂) + 2V (W · t̂)α +
(

γ0V

sα

)

α

− 2(W · t̂)(W · t̂)α −
(

(W · t̂)γ0
sα

)

α

−
(

γ 2
0

4s2α

)

α

− 2
pα

ρ
− 2gη0,α − 2sαtW · t̂ − 2sαWt · t̂ − 2UV θα .
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We group this as follows:

γ0,t = −2
pα

ρ
+
(

(V − W · t̂)γ0
sα

)

α

− 2sαWt · t̂ −
(

γ 2
0

4s2α

)

α

− 2gη0,α

+
[
2Vα(W · t̂) + 2V (W · t̂)α − 2(W · t̂)(W · t̂)α − 2sαtW · t̂ − 2UV θα

]
.

The quantity in square brackets simplifies considerably using the equations Vα =
sαt + θαU, U = W · n̂, and t̂α = θαn̂. Together with the boundary condition for the
pressure (the Laplace-Young condition), we obtain

γ0,t =
(
2τ

θα

sα
+ (V − W · t̂)γ0

sα
− γ 2

0

4s2α
− 2gη0

)

α

−2sαWt · t̂+2(V −W · t̂)(Wα · t̂).
(D.7)

This agrees with the equation for γ0,t as found in [7] if one assumes (sα)α = 0. The
calculation of [7] has no solid boundaries and a second fluid above the first, which
we take to have zero density when comparing to (D.7).

Our final task is to compute sαWt · t̂ = (W00,t + · · · + W0N,t ) · (sα t̂) in the
right-hand side of (D.7). Differentiating (D.1) with respect to time for 1 ≤ j ≤ N

gives

W ∗
0j,t (α, t) = − 1

2π

∫ 2π

0

1

2
cot

ζ(α, t) − ζj (β)

2
γj,t (β, t) dβ + ζt (α, t)

ζ ′(α, t)
W ∗

0j,α(α, t).

Here, as above, a prime denotes ∂α and we note that the solid boundaries remain
stationary in time. Suppressing t in the arguments of functions again, we conclude
that for 1 ≤ j ≤ N ,

sαW0j,t · t̂ = Re{ζ ′(α)W ∗
0j,t (α)} = − 1

2π

∫ 2π

0
Gj0(β, α)γj,t (β) dβ + ζt · W0j,α,

(D.8)
where ζt is treated as the vector (ξt , ηt ) in the dot product. When j = 0, we regularize
the integral

ζ ′(α)W ∗
00(α) = − i

2
Hγ0(α) + 1

2πi

∫ 2π

0[
ζ ′(α)

2
cot

ζ(α) − ζ(β)

2
− 1

2
cot

α − β

2

]
γ0(β) dβ

and then differentiate both sides with respect to time

ζ ′
t (α)W ∗

00(α) + ζ ′(α)W ∗
00,t (α) =

− i

2
Hγ0,t (α) + 1

2πi

∫ 2π

0

[
ζ ′(α)

2
cot

ζ(α)−ζ(β)

2
− 1

2
cot

α−β

2

]
γ0,t (β) dβ

+ 1

2πi

∫ 2π

0

(
∂t

[
ζ ′(α)

2
cot

ζ(α) − ζ(β)

2

])
γ0(β) dβ.

D.M. Ambrose et al.Page 54 of 6246



Observing that ζ ′
t W

∗
00 =

(
[ζtW

∗
00]α − ζtW

∗
00,α

)
, we find that

sαW00,t · t̂ = Re{ζ ′(α)W ∗
00,t (α)}

= − (ζt · W00)α + ζt · W00,α + K
∗
00γ0,t (α)

+Re

{
1

2πi

∫ 2π

0

(
∂α

[
ζt (α)−ζt (β)

2
cot

ζ(α)−ζ(β)

2

])
γ0(β) dβ

}
.

(D.9)

Finally, settingWmv = ∇φmv(ζ(α, t)), we compute

sαWmv,t · t̂ = Re{ζ ′(α)W ∗
mv,t } = Re{ζ ′(α)∂t


′
mv(ζ(α, t))} = Re{ζ ′
′′

mvζt }
= Re{ζt ∂α
′

mv(ζ(α, t))} = Re{ζtW
∗
mv,α} = ζt · Wmv,α . (D.10)

When (D.8), (D.9) and (D.10) are combined and substituted into (D.7), several of the
terms cancel:

−2
N∑

j=0

ζt · W0j,α − 2ζt · Wmv,α + 2(V − W · t̂)(Wα · t̂)
= −2(U n̂ + V t̂) · Wα + 2(V − W · t̂)(Wα · t̂)
= −2(U n̂ + (W · t̂)t̂) · Wα = −2W · Wα = −(W · W)α .

Also, in (D.9), ζt · W00 cancels the ζt (α) term in the integrand, leaving behind a
principal value integral. Including the other terms of (D.7), moving the unknowns to
the left-hand side, and dividing by 2, we obtain (4.14).

Appendix E. Treating the bottom boundary as an obstacle

The conformal map w = e−iz maps the infinite, 2π -periodic region �′
1 below the

bottom boundary to a finite domain, with −i∞ mapped to zero. Let wj = e−izj

denote the images of the points zj in (3.2), which are used to represent flow around
the obstacles via multi-valued velocity potentials. We also define the curves

ϒj(α) = e−iζj (α), (0 ≤ j ≤ N), (E.1)

which traverse closed loops in the w-plane, parameterized clockwise. The image of
the fluid region lies to the right of ϒ0(α) and to the left of ϒj(α) for 1 ≤ j ≤ N .
The terms V1z and aj
cyl(z − zj ) appearing in (3.2) all have a similar form in the
new variables,

V1z(w) = V1i logw, aj
cyl(z(w) − zj ) = aj

(
i logw − i log(w − wj)

)
.

(E.2)
We can think of V1z as a multiple-valued complex potential on the 2π -periodic
domain of logarithmic type with center at z1 = −i∞. It maps to V1i log(w − w1) in
the w-plane, where w1 = 0. From (3.5), we see that the nth sheet of the Riemann sur-
face for 
cyl(z(w) − zj ) is given by −i Log(1 − wj/w) + 2πn, which has a branch
cut from the origin to wj . When traversing the curve w = ϒk(α) with α increasing,
the function 
cyl(z(w)− zj ) decreases by 2π if k = j , increases by 2π if k = 1, and
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returns to its starting value for the other boundaries, including the image of the free
surface (k = 0). This is done so that only the V1z term has a multiple-valued real part
on �0, which simplifies the linear systems analyzed in Section 6.1–6.2 above.

The cotangent-based Cauchy integrals 
j(z) in (3.3) transform to (1/w)-based
Cauchy integrals in the new variables, aside from an additive constant in the kernels
[24]. In more detail,

dϒj

ϒj − w
= −ie−iζj dζj

e−iζj − e−iz
= ie−i(ζj −z)/2 dζj

ei(ζj −z)/2 − e−i(ζj −z)/2
=
(
1

2
cot

ζj − z

2
− i

2

)
dζj .

(E.3)
For 1 ≤ j ≤ N , we then have


j(z(w)) = 1

2πi

∫ 2π

0

iωj (α)

ϒj (α) − w
ϒ ′

j (α) dα + 1

2πi

∫ 2π

0

(
i

2

)
iωj (α) ζ ′

j (α) dα,

(E.4)
with a similar formula for 
0(z(w)), replacing iωj (α) by ω0(α). The second term is
a constant function of w that prevents 11 from being annihilated by B in Section 3.2.
This is the primary way in which the bottom boundary differs from the other obstacles
in the analysis of Sections 6.1–6.2.

We note that 
̃(z(w)) = ∑N
j=0 
j(z(w)) is analytic at w = 0, which allows us

to conclude that if its real or imaginary part satisfies Dirichlet conditions on �−
1 , it

is zero in �′
1. A similar argument using w = eiz works for the region �′

0 above the
free surface, which was needed in Section 6.2 above.

Appendix F. Evaluation of Cauchy integrals near boundaries

In this section we describe an idea of Helsing and Ojala [42] to evaluate Cauchy
integrals with spectral accuracy even if the evaluation point is close to the boundary.
We modify the derivation to the case of a 2π -periodic domain, which means the 1

z

Cauchy kernels in [42] are replaced by 1
2 cot

z
2 kernels here. The key idea is to first

compute the boundary values of the desired Cauchy integral f (z). The interior values
are expressed in terms of these boundary values. From the residue theorem, we have

f (z) = 1

2πi

∫

∂�

f (ζ )

2
cot

ζ − z

2
dζ, 1 = 1

2πi

∫

∂�

1

2
cot

ζ − z

2
dζ, (F.1)

where ∂� = ∪N
k=0�k . Multiplying the second equation by f (z) and subtracting from

the first, we obtain

1

2πi

∫

∂�

f (ζ ) − f (z)

2
cot

ζ − z

2
dζ = 0, (z ∈ �). (F.2)

The integrand is a product of two analytic functions of z and ζ , namely ζ−z
2 cot ζ−z

2

and the divided difference f [ζ, z] = (f (ζ ) − f (z)) /(ζ − z) = ∫ 1
0 f ′(z + (ζ −

z)α) dα. In particular, f [ζ, ζ ] = f ′(ζ ) is finite, and the kth partial derivative of
f [ζ, z] with respect to ζ is bounded, uniformly in z, by maxw∈� |f (k+1)(w)|/(n+1).
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Thus, the integrand is smooth and the integral can be approximated with spectral
accuracy using the trapezoidal rule,

N∑
k=0

1

Mk

Mk−1∑
m=0

f (ζk(αkm)) − f (z)

2
cot

ζk(αkm) − z

2
ζ ′(αkm) ≈ 0. (F.3)

Solving for f (z) gives

f (z) ≈
∑N

k=0
1

Mk

∑Mk−1
m=0

f (ζk(αkm))
2 cot ζk(αkm)−z

2 ζ ′(αkm)
∑N

k=0
1

Mk

∑Mk−1
m=0

1
2 cot

ζk(αkm)−z
2 ζ ′(αkm)

, (z ∈ �). (F.4)

In (5.5), we interpret this as a quadrature rule for evaluating the first integral of (F.1)
that maintains spectral accuracy even if z approaches or coincides with a boundary
point ζk(αkm).

Appendix G. Remarks on generalization to three dimensions

We anticipate that both methods of this paper generalize to 3D with some modifi-
cations. One aspect of the problem becomes easier in 3D, namely that the velocity
potential is single-valued. However, one loses complex analysis tools such as sum-
ming over periodic images in closed form with the cotangent kernel and making use
of the residue theorem to accurately evaluate layer potentials near the boundary.

The velocity potential method can be adapted to 3D by replacing constant bound-
ary conditions for the stream function on the solid boundaries with homogeneous
Neumann conditions for the velocity potential. This entails using a double-layer
potential on the free surface and single-layer potentials on the remaining boundaries.
In her recent PhD thesis [48], Huang shows how to do this in an axisymmetric HLS
framework. She implemented the method to study the dynamics of an axisymmet-
ric bubble rising in an infinite cylindrical tube. One of the biggest challenges was
finding an analog of the Hilbert transform to regularize the hypersingular integral
that arises for the normal velocity. Huang introduces a three-parameter family of har-
monic functions involving spherical harmonics for this purpose. This method can
handle background flow along the axis of symmetry, but many technical challenges
remain for the non-axisymmetric case, e.g., for doubly periodic boundary conditions
in the horizontal directions.

Analogues of the vortex sheet method in three dimensions have been developed
previously in various contexts. Caflisch and Li [17] work out the evolution equations
in a Lagrangian formulation of a density-matched vortex sheet with surface tension
in an axisymmetric setting. Nie [61] shows how to incorporate the HLS method to
study axisymmetric, density-matched vortex sheets. In his recent PhD thesis, Koga
[51] studies the dynamics of axisymmetric vortex sheets separating a “droplet” from
a density-matched ambient fluid. He develops a mesh refinement scheme based on
signal processing and shows how to regularize singular axisymmetric Biot-Savart
integrals with new quadrature rules. Koga implements these ideas using graphics
processing units (GPUs) to accelerate the computations.

Numerical algorithms for water waves with background flow... Page 57 of 62 46



The non-axisymmetric problem with doubly periodic boundary conditions has
been undertaken by Ambrose et al. [10]. They propose a generalized isothermal
parameterization of the free surface, building on work of Ambrose and Masmoudi
[8], which possesses several of the advantages of the HLS angle-arclength parame-
terization in 2D. The context of [10] is interfacial Darcy flow in porous media, which
also involves Birkhoff-Rott integrals in 3D:

W(�α) = 1

4π
PV

∫∫ (
ωαXβ − ωβXα

) × X − X′

|X − X′|3 d �α′. (G.1)

Here �α = (α, β), and the surface is given by X(�α) = (ξ(�α), η(�α), ζ(�α)) with ζ now
the z-coordinate instead of the complexified surface. In the integrand, the subscripts
α and β represent derivatives with respect to these variables, and quantities without a
prime are evaluated at �α while quantities with a prime are evaluated at �α′. The domain
of integration is R2. The quantity ω is, as in the 2D problem, the source strength in
the double-layer potential.

The lack of a closed formula for the sum over periodic images in (G.1) contributes
to the computational challenge of implementing the method in 3D. In [10], a fast
method for calculation of this integral is introduced, based on Ewald summation. This
involves splitting the calculation of the integral into a local component in physical
coordinates and a complementary calculation in Fourier space; the method is opti-
mized so that the two sums take similar amounts of work. We expect that the single
layer potentials that occur at solid boundaries in the multiply connected case of the
present paper could be computed similarly in 3D.
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