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Abstract

In transient simulations of particulate Stokes flow, to accurately capture the interaction between
the constituent particles and the confining wall, the discretization of the wall often needs to be locally
refined in the region approached by the particles. Consequently, standard fast direct solvers lose
their efficiency since the linear system changes at each time step. This manuscript presents a new
computational approach that avoids this issue by pre-constructing a fast direct solver for the wall
ahead of time, computing a low-rank factorization to capture the changes due to the refinement, and
solving the problem on the refined discretization via a Woodbury formula. Numerical results illustrate
the efficiency of the solver in accelerating particulate Stokes simulations.

Keywords: boundary integral equations, fast direct solvers, Stokes flow, locally refined discretization,
preconditioner

1 Introduction

A common computational task that arises in simulations of particulate Stokes flow is evaluating the
hydrodynamic interaction of small moving geometries, such as drops, bacteria or biological cells, with
large static structures, such as microfluidic chips, vascular walls, or channel walls. Boundary integral
equation (BIE) methods, solved via iterative solvers accelerated by fast summation methods, are often
used in practice for such systems as they avoid volume meshes as well as the cumbersome task of volume
re-meshing in transient simulations. In [1], a fast direct solver was proposed which further reduces the
cost of simulations by precomputing the compressed inverse of the BIE operator corresponding to the
large static structures, which can be applied in linear time. This can be extremely useful in practice since
most applications require a large number of time-steps to observe the physics of interest e.g., alignment
of vesicles in a periodic channel [2], pattern formation in suspensions of active particles [3, 4] and cell
sorting [5].

However, when the suspended particles evolve in close proximity to the confining walls, the discretization
of the walls must be locally refined to resolve the hydrodynamic interaction [6]; this, in turn, makes direct
solvers less attractive since the inverse operator needs to be re-evaluated continuously. We present a fast
algorithm that avoids re-building the inverse operator from scratch by precomputing an inverse operator
corresponding to a reference mesh and rapidly updating it whenever the boundary discretization is locally
refined (or coarsened). This work is an extension of Zhang-Gillman [7, 8], where Laplace BIEs on locally-
perturbed geometries were considered. The central idea is that the discretized BIE on the walls can be
written as an extended version of the linear system for the original geometry and a fast direct solver on
the original geometry can be reused to reduce the computational burden of solving the problems on the
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refined discretization. Since the conditioning of the discretized BIE for Stokes problem is at least the
square of the Laplace BIE defined on the same geometry, special care is needed when using the Woodbury
formula to apply the inverse of the extended system for numerical stability.

Related work. At a high-level, fast direct solvers exploit the fact that the off-diagonal blocks of the
discretized system are low-rank. In the context of integral equations, some of them include the Hierar-
chically Block Separable (HBS) [9, 10], the Hierarchically Semi-Separable (HSS) [11, 12], the Hierarchical
Interpolative Factorization (HIF) [13] and the H or H2- matrix methods [14]. The techniques developed
in [7, 8] for the extended linear system (ELS), designed for problems with locally perturbed geometries,
can be coupled with any of the above direct solver approaches. In this work, we employ a particular
fast direct solver based on HBS matrix representation and inverse presented in [10]. For the rest of the
manuscript, when a HBS representation or inverse is built for a discretized boundary integral equation,
it refers to the particular compression and inverse approximation given in [10]. Other fast direct solvers
can be used in place of the HBS solver and the results will be comparable.

An alternative to using the ELS is to update the hierarchical representation of the discretized integral
operator directly. Existing techniques in [15, 16] update the HIF of the system with a cost that is bounded
above by the cost of building a HIF of the perturbed or refined problem from scratch. For problems that
do not require a large number of discretization points, updating HIF directly is expected to be cheaper
than building a new one from scratch. This idea is first investigated in [15], and a parallel implementation
for Stokes BIEs on multiply-connected domains is presented in [16]. Being direct solvers, these techniques
are advantageous when a large number of solves are required for each new geometry. Generalizing the
idea to other standard fast direct solvers, such as those based on HBS or HSS matrix, requires knowledge
of the particular compression techniques used in the chosen fast direct solver and is non-trivial.

Several previous works employ fast direct solvers as preconditioners for the linear systems that result
from the discretization of integral equations and differential equations [17, 18, 19, 20, 21]. Most of
them build a low-accuracy direct solver for the linear system and apply the forward operator via a fast
matrix multiplication technique. While convergence of the iterative solver is generally improved, it can
be more dramatically improved by the use of a more accurate direct solver as a preconditioner. Section
4 explores the left preconditioner option and how the accuracy of the direct solver impacts the quality of
the preconditioner.

Contributions. Motivated by the applications mentioned above, we apply the solution technique given
in [7, 8] to Stokes flow problems defined on complex geometries, some of which are adapted from real
application geometry data. The linear system associated with the discretization of an integral equation
for Stokes flow has a physical nullspace corresponding to the pressure being unique up to a constant.
Fast direct solvers like HBS are sensitive to the existence of such nontrivial nullspace due to the fact that
matrices of smaller sizes are inverted in the hierarchical structure and singularity will immediately cause
trouble. The nullspace can be corrected via an analytic technique, but the resulting linear system can
have high condition number due to the physics and/or complexity of the geometry. In general, the linear
system that needs to be solved for Stokes problems have a condition number that is at least squared that
of the linear system for a Laplace problem on the same geometry. The high condition number of the
system leads to similar condition number of the small matrices inverted in the hierarchical structure of a
fast direct solver, resulting in loss of accuracy that is not often seen in Laplace problems. This is even
more cumbersome when local refinement is added to the original discretization. The solution technique
given in [7, 8] requires inverting a matrix whose conditioning may be worse than the original discretized
BIE. Since the condition number of the linear system for Stokes problems is often high (at least square
that of Laplace), this technique without additional modifications to improve stability can be problematic.

The work in this manuscript improves the stability of the extended linear system solver from [7, 8] by
changing the technique used to create the low rank factorizations of the update matrix. The updates to
the previous versions of the solver are inspired by the theory which specifies the conditions needed for
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the Woodbury formula to be stable. Even this updated solver cannot defeat a high condition number
and how that impacts the accuracy of a direct solver. The work presented in this manuscript tackles this
issue by using the local refinement fast direct solver as a preconditioner for the ELS. When coupled with
a fast matrix multiplication technique for applying the ELS, the resulting solution technique converges
in a constant number of iterations independent of the number of discretization points (as long as the
geometric features are sufficiently resolved).

Limitations. This manuscript only considers two dimensional problems even though the ideas introduced
here generalize to higher dimensions. Additional work is needed in integrating with other computational
machinery (e.g., quadratures) and carefully testing the efficiency of the overall solver. In dense suspension
flows, the particle-wall near interactions happen over long length- and time-scales. Clearly, the solver
developed here is not applicable to this setting since the wall geometry needs to be globally-refined, in
which case the approach prescribed in [1] is better suited. Lastly, when the particles approach arbitrarily
close to the walls, close evaluation schemes (e.g., [22, 6]) are required to improve the accuracy of interaction
force computation. Although these schemes are not expected to change the computational efficiency,
incorporating them and testing the solver is left to future work.

Outline. The manuscript begins by reviewing boundary integral formulations for Stokes problems and a
technique for discretizing the resulting integral equations in Section 2. Next the ELS for locally refined
discretization and the corresponding direct solver are presented in Section 3. The proposed preconditioner
for the ELS is presented in Section 4. Next Section 5 illustrates the performance of the presented solution
techniques. Finally Section 6 closes the manuscript with a summary and concluding remarks.

2 Boundary integral formulation

This manuscript considers integral equation techniques for solving both interior and exterior Stokes flow
problems. The indirect integral equation formulation is employed, wherein, the solution can be cast as
a convolution over the boundary Γ of a kernel with an unknown boundary charge density. For example,
the velocity u can be represented by

u(x) =

∫
Γ
K(x,y)τ(y)dsy = (KΓτ)(x),

where K denotes a kernel related to the fundamental solution of the Stokes equations and τ denotes the
unknown charge density. The kernel is chosen based on the problem under consideration. One option
is to represent the solution via the single layer integral operator denoted by u(x) = (SΓτ)(x), where S
denotes the Stokes single layer kernel (Stokeslet) defined in its tensor components by

Sij(x,y) =
1

4πµ

(
δij log

(
1

r

)
+
rirj
r2

)
, i, j = 1, 2, (1)

where r := x− y, r = ‖r‖ and δij is the Kronecker delta.

Another option is to use a double layer integral operator u(x) = (DΓτ) to represent the velocity. The
tensor components of the double layer kernel D are

Dij(x,y) =
1

π

rirj
r2

r · ny

r2
, i, j = 1, 2

where ny is the surface normal vector at the point y ∈ Γ.

Likewise, the pressure can be represented via an integral operator. It should be chosen to match the
representation of the velocity. For example, if the velocity is represented with the single layer integral
operator, then the pressure is given by

p(x) =

∫
Γ
Q(x,y)τ(y)dsy
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where

Qj(x,y) =
1

2π

rj
r2
, j = 1, 2

and τ is the same boundary charge density as for the velocity. If the velocity is represented via the double
layer integral operator, then the pressure is given by

p(x) =

∫
Γ
P(x,y)τ(y)dsy

where
Pj(x,y) =

µ

π

(
−nj,y
r2

+ 2
rj
r4

r · ny

)
, j = 1, 2

and nj,y denotes the jth component of the surface normal vector ny.

2.1 Interior Stokes problem

Consider the incompressible Stokes equation inside a geometry Ωin given by

−µ∆u(x) +∇p(x) = 0, for x ∈ Ωin

∇ · u(x) = 0, for x ∈ Ωin

u(x) = g(x), for x ∈ Γ = ∂Ωin,

(2)

where µ denotes the viscosity, u denotes the velocity, g(x) is a vector-valued function denoting the
boundary data, and p(x) is a scalar valued function denoting the pressure. Figure 1(a) gives a sample
geometry. The Dirichlet boundary data needs to satisfy the consistency condition∫

Γ
g(x) · nx dsx = 0 (3)

where nx denotes the outward pointing normal vector at x ∈ Γ.

Representing the velocity via the double layer kernel

u(x) = (DΓτ)(x)

results in having to solve the the following boundary integral equation

−1

2
τ(x) + (Dτ)(x) = g(x) (4)

for the unknown density τ [23]. Discretization of the BIE (4) via the Nyström method results in having
to solve a dense linear system of the form(

−1

2
I + D

)
τ = gxf (5)

where D denotes the matrix that results from the discretization of the double layer integral operator, g
denotes a vector with entries given by the evaluation of g(x) at the quadrature nodes, and the vector τ
denotes the vector of the unknown density values at the discretization points.

Remark 2.1. The solution to (2) is unique up to a constant which results in the the linear system (5)
having a rank-1 nullspace. This nullspace can be corrected by adding the discretized integral operator N

(N τ)(x) = nx

∫
Γ
τ(y) · ny dsy (6)
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to the discretized integral equation (5). If a Nyström discretization is used, the method in [24] can be used
to discretize (6). Thus the linear system that needs to be solved for interior Stokes problems by using the
double layer representation of the velocity is

−1

2
τ + (D + N)τ = g (7)

where N is the matrix that results from the discretization of (6).

2.2 Exterior Stokes problem

Exterior incompressible Stokes problems are also considered in this paper. By an exterior problem, we
mean that the velocity is sought in the domain Ωout defined as the plane minus the interior of a curve Γ
as shown in Figure 1(b). By using a combined field representation for the velocity

u(x) = (DΓτ)(x) + (SΓτ)(x) = [(D + S)Γτ ](x),

one is left with solving a second kind integral equation

1

2
τ + [(D + S)Γτ ] = g. (8)

The linear system that results from discretizing this integral equation is full-rank.

Remark 2.2. We also consider interior-exterior problems as shown in Figure 1(c), where the boundary
Γ is composed of an enclosing boundary curve Γ0 and one or more holes with boundary Γ1 inside the
enclosed region. The domain Ω is defined as the set that is interior to Γ0 but exterior to Γ1.

ΩinΓ

x

nx

Ωout

Γ

Ω
Γ0

Γ1

(a) (b) (c)

Figure 1: (a) A sample geometry for a purely interior BVP where the domain
Ωin is the interior of the boundary Γ = ∂Ωin, (b) a sample geometry for a
purely exterior BVP where the domain Ωout is the exterior of the boundary
Γ = ∂Ωout, and (c) a sample geometry for an interior-exterior BVP where
the domain Ω is the interior of the outer boundary Γ0 but exterior of the
inner boundary Γ1.

3 An extended linear system and direct solver for boundary value
problems with locally refined discretization

The efficient solver in this paper utilizes techniques previously developed in [7, 8], which are originally
designed to handle BIEs defined on locally perturbed geometries. A geometry is said to be locally perturbed
if small parts of the boundary are modified from a previous BIE solve while the remainder of the boundary
remains the same. We exploit the fact these techniques can be applied to handle local discretization
refinement. For Stokes problems, the original fast solver techniques needed to be modified in order to
handle the higher condition number associated with these problems. This section reviews the techniques
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from [7, 8] and presents the new version needed for Stokes problems. Section 3.1 begins by defining a
problem with locally refined discretization and introducing notation. Section 3.2 then presents the ELS
and the efficient technique of solving that linear system using a solver built for the original discretization.
Section 3.3 introduces compression ideas for the blocks in the ELS that capture changes in discretization.
Finally, Section 3.4 details the robustness of the solution technique and completes the algorithm.

The fast direct solver presented in this section scales linearly with respect to the the number of points
on the original discretization. The solver can also scale linearly with respect to the number of points
that are added in the refinement when a linear scaling inversion scheme is used to invert the discretized
boundary integral operator on the refined part of the boundary. If the number of points added is not
large (in general over a thousand), dense linear algebra is recommended for handling the refined region.
This is because fast inversion algorithms such as HBS inversion [9, 10] tend to be slower than dense linear
algebra for small matrices.

3.1 Model problem with locally refined discretization

Consider the interior BVP defined by equation (2) on the geometry Ωin in Figure 1(a). As an example,
let the boundary originally be discretized with ten 16-point Gaussian panels. Then one panel is chosen
to be refined into four panels. See Figure 2. Let Γr denote the part of the boundary that is refined
and Γk denote the part of the boundary where the discretization remains unchanged (“k” for “kept”).
Figure 2(a) and (b) illustrates the pre- and post-refinement discretization respectively. The endpoints of
the panels are also plotted. For convenience, let Ik, Ic, and Ip denote the discretization points that are
kept, deleted, and added for the refinement. Thus Io = Ik ∪ Ic denotes the collection of points in the
original discretization and In = Ik ∪ Ip denotes the collection of discretization points on the boundary
after refinement.

Γk

Γr

Γk

Γr

(a) (b)

Figure 2: (a) The original Gaussian panel discretization of the geometry
in Figure 1(a). The discretization contains ten 16-point Gaussian panels
uniformly distributed in parameterization space, and the panel in red is
chosen to be refined. (b) A locally refined discretization which replaced the
single red panel in Figure (a) with four blue panels. The part of the boundary
curve that is refined is denoted by Γr and the rest is denoted by Γk.

The linear system (7) for the original and new discretization can be reordered in terms of the subscript
notation. Let A denote the discretized integral equation (7) on the boundary; i.e., A = −1

2I + D + N.
With the original discretization Io, the linear system can be ordered according to which points are added
and deleted as follows

Aooσo =

[
Akk Akc

Ack Acc

](
σk
σc

)
=

(
gk
gc

)
= go. (9)

Likewise the linear system resulting from the refined discretization of the boundary integral equation can
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be ordered as follows

Annτn =

[
Akk Akp

Apk App

](
τk
τp

)
=

(
gk
gp

)
= gn. (10)

In (9) and (10), the subscript notation refers to the submatrices of A on the respective geometries corre-
sponding to different boundary interactions. For example, Akk denotes the submatrix of A corresponding
to the interaction of the points in Ik with themselves (A(Ik, Ik) in Matlab notation) and Akp denotes the
submatrix of A corresponding to the interaction of the points in Ik with the points in Ip.

Remark 3.1. While the techniques in this section were presented for the interior problem (2), the tech-
niques apply directly to exterior problems as well.

3.2 The extended linear system and direct solver

As an alternative to casting the problem solely on the “new” discretization, an ELS that is equivalent to
equation (10) can be considered. In this paper, we use the ELS from [8]. The ELS takes the form

Aextτext =

Akk 0 Akp

Ack Acc 0
Apk 0 App

 τk
τ dum
c

τp

 =

gk
0
gp

 = gext (11)

where τk and τp are the unknown boundary densities evaluated at points in In and τ dum
c is a dummy

boundary density at the points in Ic that is not used to evaluate the solution in the domain. This linear
system can be written as Aext = Ã + Q where

Ã =

[
Aoo 0
0 App

]
and Q =

 0 −Akc Akp

0 0 0
Apk 0 0

 .
The matrix Ã is full rank and block-diagonal with the first block equal to the operator for the original
discretization. Thus if the inverse of Aoo has been precomputed (directly or via a fast direct solver), the
cost of inverting Ã is the cost of the inverting App which is small in the problems under consideration.
The update matrix Q is a block sparse matrix consisting of only three non-zero sub-blocks. Since these
non-zero blocks of Q correspond to non-self interactions, they are low rank; i.e., Q is low rank. Let
Q = LR denote the low rank factorization of Q.

The advantage of writing the linear system in the extended form (11) and writing it as the sum of a block
diagonal matrix with a low rank matrix is that the inverse can be approximated via a Woodbury formula

τext =
(
Ã + Q

)−1
gext ≈

(
Ã + LR

)−1
gext ≈ Ã−1gext − Ã−1L

(
I + RÃ−1L

)−1
RÃ−1gext. (12)

This inverse can be applied rapidly to vectors by exploiting the block structure of the matrices. The

only matrix that needs to be inverted in the application of (12) is
(
I + RÃ−1L

)
. This matrix is of

size k = kkc + kkp + kpk where kkc, kkp, and kpk denote the ε−ranks of the low-rank approximations
of Akc, Akp, and Apk given tolerance ε, respectively. Typically, k is small and thus the matrix can be
inverted via dense linear algebra for little computational cost. Algorithm 1 summarizes the technique for
rapidly applying the inverse of Aext provided a fast direct solver for Aoo has already been computed. The
algorithm is designed so that it can be used with any fast direct solver including the HBS[10], HSS[11, 12],
HIF[13], and H or H2- matrix methods[14]. Section 3.3 presents fast techniques for creating the low rank
factorizations of the blocks in Q and section 3.4 discusses the stability for using the Woodbury formula
and necessary improvements for the low rank factorization of Q.
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Method Pre-computation Solve

[7] with dense linear algebra for App O
(
Nk +N3

c +N3
p

)
O
(
Nk +N2

c +N2
p

)
[7] with fast direct solver for App O

(
Nk +N3

c +Np

)
O
(
Nk +N2

c +Np

)
Algorithm 1 with dense linear algebra for App O

(
Nk +Nc +N3

p

)
O
(
Nk +Nc +N2

p

)
Algorithm 1 with fast direct solver for App O (Nk +Nc +Np) O (Nk +Nc +Np)

Table 1: Cost scaling for the fast direct solver in [7] and the proposed solver
in Algorithm 1. The fast direct solver in [8] has the same scaling as Algorithm
1.

Remark 3.2. The factorization technique for Q (step 1 in Algorithm 1) to be discussed in section 3.3
and 3.4 scales linearly with respect to Nk, Nc and Np. Thus, if a fast direct solver is constructed for A−1

pp ,
then all steps in pre-compuation and solve of Algorithm 1 scale linearly with respect to Nk, Nc and Np.
Otherwise, Algorithm 1 scales linearly with respect to Nk and Nc but cubically with respect to Np due to
the dense linear algebra calculations for A−1

pp . Table 1 lists the cost scaling of Algorithm 1 and the fast
direct solver in [7]. More details on the step-by-step cost analysis is given in [7]. The scaling for the fast
direct solver given in [8] is the same as Algorithm 1.

3.3 Efficient construction of the low-rank factors in Q ≈ LR

There are two steps in the proposed technique for creating the low-rank approximation of Q. This section
introduces the first step which creates low-rank factorizations for the non-zero blocks in Q. The second
step, a recompression step which is necessary for avoiding conditioning issues associated with using the
Woodbury formula to apply the inverse of the ELS in Equation (12), is the delayed to the next section
after a brief review on the numerical stability of the Woodbury formula.

The low rank factorization of the update matrix Q is done in a block format. In other words, low rank
factorizations are constructed for each of the non-zero subblocks of Q;

Akc ≈ Lkc Rkc, Akp ≈ Lkp Rkp, and
2Nk × 2Nc 2Nk × kkc kkc × 2Nc 2Nk × 2Np 2Nk × kkp kkp × 2Np

Apk ≈ Lpk Rpk.
2Np × 2Nk 2Np × kpk kpk × 2Nk

(13)

Here Nk, Nc, and Np are the number of discretization points in Ik, Ic, and Ip respectively.

Thus the low-rank factorization of Q can be expressed as

Q ≈ L1 R1

2Next × 2Next 2Next × k1 k1 × 2Next

(14)

where

L1 =

 0 −Lkc Lkp
0 0 0

Lpk 0 0

 , R1 =

Rpk 0 0
0 Rkc 0
0 0 Rkp

 ,
k1 = kpk +kkc +kkp and Next = Nk +Nc +Np. Note the subscript notation in L1,R1 and k1 are intended
because we reserve the notation L, R and k for the final low-rank factorization of Q obtained from the
recompression which is presented in section 3.4.

The first step in creating the low rank factorization of Q is constructing the low rank factorization of
the non-zero blocks; i.e., the three factorizations in equation (13). The construction of the low rank
factorization of Akp starts with defining a circle P div for Γr which divides Γk into two parts: the far-field
and near-field with respect to Γr. Figure 3(a) illustrates this separation. Let the superscript notation
denote “far” and “near” parts of Γk. The separation corresponds to classifying the rows Akp into two

8



Algorithm 1: Applying the fast direct solver for the locally refined problem

Given a fast direct solver for the original discretization A−1
oo , and the right-hand-side vector

defined for the refined discretization gn =

(
gk
gp

)
, this algorithm determines the solution to the

refined problem (10) by obtaining the solution to the equivalent ELS via a Woodbury formula
(12).

Pre-computation:
Step 1: Factorize the update matrix Q ≈ LR via the method in Section 3.3 and Section 3.4.
Step 2: (invert App)
if Np is small,

Evaluate and invert A−1
pp via dense linear algebra.

else,
Build an approximate inverse of App via a fast direct solver such as HBS.

end if

Step 3: Apply the applying scheme for A−1
oo and A−1

pp to evaluate X = Ã−1L.

Step 4: Evaluate and invert the Woodbury operator (I + RX) via dense linear algebra.

Solve:

Step 1: Evaluate Ã−1gext =

A−1
oo

(
gk
0

)
A−1
pp gp

 utilizing the fast matrix vector applies provided

by the direct solver(s).
Step 2: Evaluate τext via the Woodbury formula (12).
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groups; the near- and far-field interactions. We first construct low-rank approximations to the far-field
and near-field interaction separately and then merge them together for a final low-rank approximation
LkpRkp ≈ Akp.

For far-field interaction, the potential due to points in Ip evaluated at points on Γfar
k can be approximated

by a linear combination of basis functions defined on any proxy surface that shields Γr away from Γfar
k .

Let P bas denote the shielding proxy circle for Γr. Here P bas is chosen to have a smaller radius as P div

but the same center. Figure 3(b) illustrates an example of these circles. A low rank approximation for
Afar
kp can be constructed via an interpolative decomposition (ID) approximation (as defined below) for

the matrix Afar
k,bas which captures the interaction between points on Γfar

k and P bas. This is similar to

the far-field compression idea in [10, 1, 25]. The collection of skeleton row indices J far
k from the ID for

Afar
k,bas correspond to discretiaztion points (or degrees of freedom) on Γk. Let Pfar

k denote the interpolation

matrix, then a low-rank approximation to Afar
kp can be defined as Afar

kp ≈ Lfar
kpRfar

kp where Lfar
kp = Pfar

k and

Rfar
k = Afar

kp (J far
k , :). Here Afar

kp (J far
k , :) denotes the submatrix of Afar

kp with rows specified by J far
k .

Definition 3.1. Given a tolerance ε and a m× n matrix W (assuming m < n), if there exists a positive
integer kε ≤ m, and m× kε matrix P and vector J such that

‖W −PW(J(1 : kε), :)‖ ≤ ε‖W‖,

we call PW(J(1 : kε), :) an interpolative decomposition (ID) approximation for W with respect to the
tolerance ε. Here J is a vector of integers ji such that 1 ≤ ji ≤ m gives an ordering of the rows in W,
and W(J(1 : kε), :) is a submatrix of W with rows specified by the first kε entries of J . P is a m × kε
matrix that contains a kε × kε identity matrix. Namely, P(J(1 : kε), :) = Ikε. The rows specified by
J(1 : kε) is called the skeleton row index, and the matrix P is referred to as the interpolation matrix.

Due to the large number of discretization points on Γfar
k , it is often too expensive to build the ID for

Afar
k,bas directly. Instead, we organize the discretization points on Γfar

k into special structure such as
the dyadic partition (See section 3 of [26]) or binary tree (Such as the binary tree used in the HBS
forward compression). The goal of using the special structure is to keep the cost of building the low-rank
approximation linear with respect to the number of points on Γfar

k . Then an ID for Afar
k,bas is constructed

by first building IDs for interaction between points in each individual partition subset or tree node and
points on P bas, which corresponds to row subblocks of Afar

k,bas. The individual IDs are then combined into

one final ID for Afar
k,bas.

Remark 3.3. Since the removed points Ic and added points Ip discretize the same boundary curve segment
Γr, the far-field part of the low-rank approximation for Akp and Akc can be built from the same ID
approximation for Afar

k,bas. The construction of the approximations do not require explicit evaluation of
the matrices Akp and Akc. Only the submatrices corresponding to the skeleton rows need to be evaluated
for making the R matrices.

The choice of structure for creating the low rank factorization which will result in the most efficient
factorization technique depends on how localized and the position of the portion of the boundary to be
refined Γr relative to Γk. For example, the channel example given in section 5.1 considers two kinds of
local changes to the channel geometry in Figure 7(a): a very localized refinement of the discretization
illustrated in Figure 7(b); and a geometric perturbation consisting of the addition of three interior circular
holes as illustrated in Figure 7(c). For the problem in Figure 7(b), the far-field and near-field separation is
straightforward and a dyadic partition of the far-field points on Γk based on distance to Γr is convenient
and efficient. However, for the problem in Figure 7(c), since the three holes do not cluster, a circle
enclosing all holes would contain a large section of the channel boundary if not all of it, leading to lots
of points on Γk being clustered as “near-field” points although they are quite far away from any of the
holes. An efficient way to handle this problem is to introduce three circles each enclosing an individual
hole and define P bas to be the union of the three circles. And a binary tree, which does not have to
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Γr Γr

(a) (b)

Figure 3: (a) The proxy circle for Γr shown in dash blue line divides Γk
into far (in green) and near (in red) with respect to Γr (b) The interaction
between the far-field part of Γk and points on Γr can be captured by the
interaction between points on Γfar

k and a smaller proxy circle for Γr shown
in dash purple.

depend on distance to Γr, is a more appropriate choice. Figure 4 plots an example dyadic partition for
the refined channel problem in Figure 7(b), and Figure 5 plots the first three levels of an example binary
tree structure for the addition of holes problem in Figure 7(c).

Figure 4: A dyadic partition of Γfar
k based on distance to Γr for a refined

channel discretization. The subintervals corresponding to a 10-level dyadic
partition are plotted.

If there are not a large number of points that are near, which is often the case, the near field interaction
matrix Anear

kp can be compressed directly. Otherwise, a dyadic partition of discretization points on Γnear
k

based on their distance to Γr can be adopted. The ID for Anear
kp can then be constructed in a hierarchical

way utilizing the idea of tree-node wise proxy circles (See section 3 of [26]).

Once both far and near part of Akp are compressed, the low rank factors can be concatenated to form a
low rank approximation for Akp. One may want to apply ID again to the concatenated factors to further
reduce the rank numbers.

The near-field part of Akc can be constructed in similar way as that of Akp. For Apk, we consider again
a far-field and near-field separation of the points on Γk based on distance to Γr, which corresponds to
classifying the columns of the matrix into two groups. The far-field interaction Afar

pk can be obtained by an
ID of Ap,div the interaction between the added points discretizing Γr and sample points on the separation
circle P div. If the number of points added is large, we can relieve the computational burden by using a
dyadic partition or binary tree as for building the ID for Afar

k,bas. The construction for Anear
pk is similar to
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Level 1 Level 2 Level 3 Level 4

Figure 5: Top four levels of a binary tree partition for the channel geometry.
The subintervals (or boxes) corresponding to each level are plotted.

the near-field part of the approximation for the near-field of Akp and Akc.

Remark 3.4. When approximating the three blocks in Q, we always use ID to compress the rows of the
matrices. We also uniformly define the L factor of the low-rank approximation to be the interpolation
matrix (or product of multiple interpolation matrices if special tree structure is used) and the R factor
to be the submatrix of the discretized BIE specified by the skeleton row indices given by the IDs. This
uniform format for all three blocks is intentional as it improves the conditioning of applying the Woodbury
formula. More details will be given in Section 3.4. Note the blockwise compression technique given in
[7] manages to compress all far-field part of the three blocks Akp, Akc, and Apk using one binary tree by
doing row-wise ID for Akp and Akc but column-wise ID for Apk. Namely, the far-field for all three blocks
are approximated by the same set of skeleton points on Γk. For Laplace problems, the technique in [7] is
expected to be more efficient than the one presented here especially for the case where Γfar

k contains lots of
points. But for Stokes problems, the mixed usage of row- and column-wise ID leads to conditioning issues
and should be avoided.

With the special structure and partitioning, the cost of constructing the low-rank factorization for Akp is
O ((Nk +Np)kkp). Similarly, the cost for factorizing Akc is O ((Nk +Nc)kkc). And the cost of factoring
Apk is O ((Nk +Np)kpk).

3.4 Stable application of the Woodbury formula

Woodbury formulas such as (12) are well-known in the linear algebra literature [27] and have been the
cornerstone of recently developed fast direct solvers for applications including periodic Stokes flow [1]
and quasi-periodic scattering problems [25, 26]. While the Woodbury formulas have been used in these
applications, it was done so without any concern for the stability of the approach. This section will
review the stability analysis of the Woodbury formula given in [28], investigate its use in the case of
Stokes problems, and presents the two-step construction of the low-rank factorization of Q started in the
previous section.

The main concern in the stability of the Woodbury formula lies in the stable inversion of the matrix
W = I + RÃ−1L. We will refer to the matrix W as the Woodbury operator. [28] states that in order to
stably solve a linear system via the Sherman-Morrison-Woodbury formula, the following two conditions
must be satisfied by the linear system:

(i) All the relevant matrix-matrix and matrix-vector multiplications in (12) involving Ã−1 are numer-
ically stable.

(ii) The Woodbury operator is well-conditioned.
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For Stokes problems, the first condition is satisfied thanks to the choice of boundary integral formulation
(in Section 2) and the use of a stable fast direct solver. Since Stokes problems tend to have a large
condition number, we choose to modify the second condition to: (ii) The Woodbury operator is as “well-
conditioned” as the full linear system Ã + LR.

The following lemma, which is a modified version of Lemma 1 in [28], provides an upper bound on
the condition number of the Woodbury operator and formally defines what we mean by the Woodbury
operator being as “well-conditioned” as the fully linear system. The lemma is stated in the context
of discretized boundary integral operators and the ELS. Specifically it provides conditions on the low
rank approximation of the update matrix Q ≈ LR which must be satisfied (along with both the linear
systems for the original and refined discretization being well-conditioned) for the Woodbury operator to
be “well-conditioned.”

Lemma 3.1 (Upper bound on the condition number of the Woodbury operator). Assume the operator
Aoo, Ann, Acc and App as defined in (9), (10) and (11) are all invertible. Then the operator Aext in

the ELS Aextσext = gext is invertible. Let Âext = Ã + LR denote the approximation of Aext. If the k
columns in the low-rank factor L and the k rows in R are linearly independent, then the condition number
of the Woodbury operator is bounded above as follows:

κ
(
I + RÃ−1L

)
≤ min

{
κ̂(L)2, κ̂(R)2

}
κ
(
Âext

)
κ
(
Ã
)
, (15)

where
κ̂(L) =

∥∥∥L†∥∥∥ ‖L‖ and κ̂(R) =
∥∥∥R†∥∥∥ ‖R‖

with
L† =

(
LTL

)−1
LT and R† = RT

(
RRT

)−1

defined as the pseudo-inverse for L and R in the standard sense.

The proof of the lemma can be found in [28] and is also included in the Appendix.

Thus, if we construct Q ≈ LR so that Âext = Ã+LR is invertible, L and R are full-rank, and additionally

let a2 = min
{
κ̂(L)2, κ̂(R)2

}
, then κ

(
I + RÃ−1L

)
≤ a2 κ

(
Âext

)
κ
(
Ã
)

. When the original problem and

new problem have similar condition numbers, i.e., κ
(
Âext

)
≈ κ

(
Ã
)
≈ κ, the lemma and the low-rank

approximation construction above together give the bound κ
(
I + RÃ−1L

)
≤ a2κ2. The upper bound

given by the lemma can be improved by building L and R so that at least one of κ̂(L) and κ̂(R) stay
small. One way to do this for the update matrix Q is to build a truncated SVD for Q for some given
tolerance and assign L to be the semi-unitary matrix corresponding to the column space and R to be
the rest of the factors in the decomposition. By doing this, matrix (LTL) and (RTR) stays away from
being singular, leading to minimal values of κ̂(L) and κ̂(R). Since a2 is defined to be the smaller one
among κ̂(L)2 and κ̂(R)2 in (15), only one of κ̂(L)2 and κ̂(R)2 being small is sufficient. For example, if
we construct the truncated SVD for each of the non-zero blocks in Q,

UpkΣpkV
T
pk ≈ Apk, UkcΣkcV

T
kc ≈ Akc, and UkpΣkpV

T
kp ≈ Akp

then we would define the concatenated factors for the updated matrix Lblock and Rblock so that the three
non-zero blocks are uniform in format: for example,

Lblock =

 0 −Ukc Ukp

0 0 0
Upk 0 0

 and Rblock =

ΣpkV
T
pk 0 0

0 ΣkcV
T
kc 0

0 0 ΣkpV
T
kp

 . (16)
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And as a final step to push the factorization closer to optimal, one would build a truncated SVD for
Lblock ≈ UblockΣblockVT

block and define the finalized low-rank approximation as Q ≈ LoptimalRoptimal

with Loptimal = Ublock and Roptimal = ΣblockVT
blockRblock. As a demonstration, Table 2 illustrates the

conditioning of the Woodbury operator corresponding to the concatenated factorization Q ≈ LblockRblock

and the factorization after the extra SVD refactorization Q ≈ LoptimalRoptimal for a sample problem
defined on the fish geometry illustrated in Figure 6. The tolerance for the SVD truncation is set to 10−10

and the condition numbers reported in the table are calculated via Matlab’s cond() function.

Figure 6: Illustration of a fish geometry where the red portion of the bound-
ary is refined. Table 2 reports on the conditioning of the Woodbury operator
for different numbers of discretization points and refinements.

Nk, Nc, Np kblock κblock koptimal κoptimal κ
(
Âext

)
κ
(
Ã
)

Upper bound

752, 48, 384 175 1630.0 141 98.5 378.0 371.0 4.1e+25
1520, 80, 640 158 407.3 124 77.3 376.7 371.0 1.2e+25

3072, 128, 1024 143 523.5 113 77.0 375.0 371.0 1.6e+25

Table 2: The observed rank (same as the size of the Woodbury system)
and condition number for an interior BIE on the fish geometry illustrated in
Figure 2. kblock and κblock are the size and condition number for the Wood-
bury operator defined for the concatenated factorization Q ≈ LblockRblock.
koptimal and κoptimal are the size and condition number for the Woodbury
operator defined for the factorization with an extra SVD applied to Lblock,
i.e., Q ≈ LoptimalRoptimal. All the factorizations are constructed by trun-
cating SVD to the desired accuracy of 10−10. The condition numbers are
all calculated by Matlab’s cond() function. The condition number of the
block-diagonal matrix Ã and the ELS Aext are also reported. Finally the
upper bound given by Lemma 3.1 corresponding to Q ≈ LoptimalRoptimal is
also provided.

Truncated SVDs are expensive to construct. Therefore this optimal approach is not computationally viable
except for problems small in size. Instead we propose an alternative two-step approach which addresses
the above conditioning considerations but is less expensive and thus suitable for large size problems. The
first step is to construct the low-rank approximations for block Apk, Akc and Akp following the method
given in section 3.3. While this constructs a valid low rank factorization of Q, the approximation is often
quite far away from being optimal and results in an unnecessarily large condition number of the Woodbury
operator. In fact, there are many cases where the resulting Woodbury operator is ill-conditioned even
though the original system is well-conditioned. To remedy this artifical poor conditioning, we propose
the refactorization of L1 via the random sampling based ID decomposition. This compresses the rows
of L1 and results in a significantly closer to optimal rank factorization. It is important to maintain
a uniform format in the refactorization technique by always applying the ID to compress the rows of
matrices when building the blockwise factorization and assigning the interpolation matrix factor from the
ID approximation to be blocks in L1.
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Remark 3.5. For the problems considered in this manuscript, the upper bound in Lemma 3.1 is overly
pessimistic. In fact, the observed condition number is much smaller than a2κ2. In practice, when the low-
rank approximation of Q is constructed with care via the SVD technique or via the two-step compression
based on IDs, the observed condition number of the Woodbury system is comparable to the condition number
of the original linear system. For example, Table 2 also reports the upper bound on the condition number
given by Lemma 3.1 for the Woodbury system with the final factorization. While rank and condition
number are improved by the extra SVD recompression, both condition numbers are well below the upper
bound provided by the lemma.

The cost for the extra ID refactorization is O((Np +Nk +Nc)k1k). Thus, the total cost for constructing
the final low-rank approximation for the update matrix scales linearly with respect to Nk +Np +Nc.

4 A preconditioner for BVPs on locally refined discretization

The ELS presented in Section 3.2 is very useful for problems where there is local refinement of the
discretization. While the fast direct solver for the ELS is efficient, it can suffer from a loss in accuracy
when the problem has a high condition number. This is frequent occurrence for Stokes problems especially
in complex geometries. An alternative to fast direct solvers is to use an iterative solver coupled with a fast
matrix vector multiplier such as the FMM in these instances. The large condition number often means
that a large number of iterations are required for the iterative solver to converge. This section presents an
alternative solution technique which is essentially the union of a fast direct solver with an iterative solver.
Roughly speaking, the technique is to use the direct solver presented in Algorithm 1 as preconditioner for
the ELS that is solved via an iterative solver coupled with a fast matrix vector multiplier.

Section 4.1 details how the accuracy in which the direct solver is constructed impacts its ability to be a
preconditioner. Then Section 4.2 details the preconditioner developed for the ELS (11).

4.1 HBS inverse approximation as preconditioner

It is becoming more common to use low accuracy fast direct solvers as preconditioners for linear systems
that arise from discretizations of integral equations and differential equations [17, 18, 19, 20, 21]. This
section explores effectiveness of fast direct solvers as preconditoners for the discretized integral equation
associated with an interior Stokes problem.

Consider the linear system Aσ = g which results from the discretization of equation (4). Let ε denote the
tolerance for which the fast direct solver was constructed and Ainv

ε denote the corresponding approximate
inverse of A. Then the left-preconditioned problem is defined as(

Ainv
ε A

)
σ =

(
Ainv
ε g

)
. (17)

To investigate the performance of the fast direct solver as a preconditioner with different tolerances ε,
we consider the fish geometry in Figure 6 with no local refinements. In particular, we place two hundred
16-point Gaussian panels uniform in parameterization space on the boundary. The linear system (17) is
solved via GMRES[29]. The application of A and Ainv

ε is done via the HBS technique from [10]. The
performance of the solver will be the same for any fast direct solver. The tolerance for the compression
of the matrix vector operator is fixed at 10−10. The time for constructing the HBS representation of the
matrix is 6.81 seconds on a single core 1.6GHz 8GB RAM desktop. Table 3 reports the performance
of the preconditioned solution technique. For all experiments, the tolerance of the iterative solver is set
to 10−11 and the average relative error in the solution compared against the exact solution at sampled
interior locations is roughly 7 × 10−10. Recall from Table 2 that the linear system is well conditioned.
Thus even without a preconditioner, only 55 iterations are needed to achieve the desired tolerance. The
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results indicate that low accuracy approximations (ε > 10−3) do not improve the performance of the
iterative solver enough to justify constructing the preconditioner. For ε < 10−3, the minimum number
of repeated solves needed to justify the use of the preconditioner grows as ε decreases. This experiment
illustrates that the use of a low accuracy fast direct solver as preconditioner is not fruitful in improving the
convergence rate of iterative solvers. For problems where the condition number of the discretized linear
system is large, a preconditioner may be required for the iterative solver to converge within reasonable
number of iterations with the available computing resources.

ε niter Tpre Tsol MinSol

No preconditioner 55 NA 5.2e-1 NA

1e-10 2 7.66 6.6e-2 17

1e-8 2 4.92 1.0e-1 12

1e-6 4 2.89 1.3e-1 8

1e-5 6 2.23 1.5e-1 7

1e-4 11 1.74 2.2e-1 6

1e-3 36 1.12 5.1e-1 –

1e-2 52 1.11 7.9e-1 –

1e-1 53 0.97 8.1e-1 –

Table 3: Number of iteration niter, time in seconds to build the precondi-
tioner Tpre, time in seconds for GMRES to converge Tsol and the minimum
number of solves MinSol needed to justify the use of the preconditioner when
using an HBS inverse approximation with accuracy ε as a preconditioner for
the interior BIE on the fish geometry in Figure 6. The boundary geometry is
discretized with two hundred 16-point Gaussian panels uniformly distributed
in parameterization space. With this discretization, the average relative so-
lution error at sample locations on the interior is roughly 7 × 10−10.

4.2 Preconditioned iterative solver for the locally refined problem

Just like the discreitzed BIE for a Stokes boundary value problem on a given geometry, the ELS (11)
can also suffer from conditioning issues. This section presents a preconditioner based on the solver from
Section 3 and a fast matrix vector multiplier that can be utilized to accelerate an iterative solver. It is
expected that the number of iterations needed to converge will be less than if there was no preconditioner
at all. Additionally, there is no loss of digits associated with inverting poorly conditioned matrices.

The idea behind the preconditioner is simple. Let Ainv
oo and Ainv

pp denote the approximate (or exact if the
matrices are small enough) inverses of Aoo and App, respectively. Then

Ãinv =

[
Ainv
oo 0
0 Ainv

pp

]
≈ Ã−1

and

Ainv
ext = Ãinv − ÃinvL

(
I + RÃinv1L

)−1
RÃinv ≈ A−1

ext.

The Woodbury formula can be applied efficiently to any vector via the technique presented in Algorithm
1.

Instead of solving the true ELS, we propose solving the approximation of the linear system (11) where

Aext is approximated by a block diagonal plus low rank form; i.e., as Aext ≈
(
Ã + LR

)
. The matrix Ã

can be applied to a vector b block-wise

Ãu =

[
Aoo 0
0 App

] [
bo
bp

]
=

[
Aoobo
Appbp

]
.
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The evaluation of Aoobo can be accelerated via fast matrix-vector multiplication algorithms, such as the
FMM or the approximate forward operator created in the process of building a fast direct solver, and
is constructed for the original discretization. Similar to the fast direct solver for the ELS presented in
Algorithm 1, if Np is small, the matrix App can be constructed and applied via dense linear algebra.
Otherwise, a separate fast matrix-vector multiplication can be constructed for App. Since L and R are
block sparse and low-rank, they can be applied to any vector densely with little cost.

In this paper, we assume a forward HBS representation, the HBS inverse, and matrix-vector multiplication
for applying Aoo and Ainv

oo are available. Then the ELS for the problem defined on the refined geometry(
Ã + Q

)
τext ≈

(
Ã + LR

)
τext = gext (18)

only requires building the low rank factorization of the blocks in Q and the operators associated with
the App block and can be solved by an iterative solver such as GMRES. Ainv

ext can be constructed with
the extra cost of carrying out the Woodbury formula and applied as a preconditioner to (18). For a well-
conditioned problem, where many different choices of local refinements and/or right-sides are considered,
the total cost may be greatly reduced by using the fast direct solver in Section 3 as a preconditioner. Table
4 reports the performance of the preconditioner when it is applied to the boundary value problem on the
fish geometry in Figure 6 where the red region of the boundary is refined. The original discretization has
two hundred 16-point Gaussian panels uniformly distributed in parameterization space; 8 panels discretize
the red region and are replaced by 64 panels for the refinement. The number of discretization points kept
was Nk = 3072, the number of discretization points cut was Nc = 128 and the number of discretization
points added was Np = 1024. The tolerance for HBS compression and low-rank approximations were
set to 10−10, and the tolerance for GMRES was set to 10−11. The average relative error of the solution
at sampled locations is roughly 7 × 10−10 for both tests. Recall, we assume the HBS representation of
Aoo and its inverse are available. Thus the time needed to construct these is not included in our results.
The results in the first row of Table 4 are for when the fast matrix vector multiplication for Ã uses the
precomputed HBS representation of Aoo. The time for constructing the efficient forward apply of the ELS(
Ã + LR

)
is 0.53 second, which includes the construction of App and the low-rank factorization Q ≈ LR.

As expected the number of iterations is the same as in Table 2. The second row in Table 4 presents the
results when the preconditioner is used. The extra time required to construct the preconditioner Tpre, i.e.,
for constructing Ainv

ext , includes everything else that was not included in constructing the efficient forward

apply of the ELS
(
Ã + LR

)
such as the construction and inversion of the Woodbury operator. Again the

results are comparable to the the results in the previous section. The preconditioner reduces the number
of iterations from 55 to 2, resulting in a 82.7% reduction in solve time. And the extra cost for building
the preconditioner is justified for problems involving more than one right-hand-side.

If the problem is not well-conditioned, then the preconditioner may be necessary to obtain an accurate
solution with a limited amount of computational resources.

Method niter Tpre Tsol

GMRES with fast mat-vec 55 NA 4.8e-1
GMRES with preconditioner 2 7.2e-1 8.3e-2

Table 4: Number of iterations niter, time in seconds for computing the
preconditoner Tpre and time in seconds for the iterative solver to converge
Tsol when applying the ELS preconditioner to the boundary value problem
on the refined fish geometry in Figure 6. The red portion of the boundary
is refined. Originally there were Nc = 128 points on the red portion. In
the new problem there are Np = 1024 points on the red portion of the
boundary. The number of points unchanged is Nk = 3072. We assume an
HBS representation and the inverse for the original problem are available.
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5 Numerical experiments

This section illustrates the performance of the proposed solution techniques for Stokes problems involving
locally refined discretizations. The fast direct solver scales linearly with respect to the number of points
in the original discretization and is cheaper than building a fast direct solver from scratch for the new
discretization. Section 5.1 illustrates the performance of the fast direct solver when applied to a locally
refined channel. This example is from [16]. Section 5.2 reports on the performance of the fast direct solver
as a preconditioner when the geometry is complex. Finally Section 5.3 illustrates the performance of the
fast direct solver as a preconditioner when there are a sequence of local refinements for the same original
geometry. Such an example arises in many applications including simulations of microfluidic devices.

For all test problems, the right-hand-side of the BVPs is generated from a known flow and the solution error
is the average of relative error at chosen target locations in the domain. All boundaries are discretized via
the Nyström method with 16-point composite Gaussian quadrature, and generalized Gaussian quadrature
corrections [30] are used to handle the weakly singular kernels. The solver also works with other quadrature
corrections, such as [31, 32, 33].

All experiments were run on a dual 2.3 GHz Intel Xeon Processor E5-2695 v3 desktop workstation with
256 GB of RAM. The code is implemented in MATLAB, apart from the interpolatory decomposition
routine, which is in FORTRAN.

To illustrate the performance of the solver, we introduce the following notations for reporting times and
errors. For notation consistency, we use regular capital letters such as T and E for problems defined
on the original discretization (or geometry) and letters with tilde, such as T̃ and Ẽ for problems on the
locally refined discretization (or perturbed geometry). For the problem on the original discretization (or
geometry), we define

• THBS, comp and THBS, inv: the time in seconds for building the HBS compression of the discretized
boundary integral operator and that for inverting the compression, i.e., building the HBS inverse,
respectively.

• THBS,Dsol: the time in seconds for applying the HBS inverse to a given right-hand-side vector. “Dsol”
stands for “one direct solve”.

• THBS,Gsol: the time in seconds for solving for one right-hand-side vector using GMRES with HBS
compression accelerated matrix-vector multiplication. “Gsol” stands for “one GMRES solve”.

• THBS,PGsol: the time in seconds for solving for one right-hand-side vector using a preconditioned
GMRES with HBS compression accelerated matrix-vector multiplication, where the HBS inverse is
used as the preconditioner. “PGsol” stands for “one preconditioned GMRES solve”.

• EHBS,Dsol, EHBS,Gsol and EHBS,PGsol: the average relative error at sample domain locations for the
three different solve options respectively.

For the problem on the locally refined discretization (or perturbed geometry), we define

• T̃HBS, comp, T̃HBS, inv, T̃HBS,Dsol, T̃HBS,Gsol, and T̃HBS,PGsol: time in seconds similar to those categories
for the original discretization (or geometry).

• ẼHBS,Dsol, ẼHBS,Gsol and ẼHBS,PGsol: error similar to those categories for the original discretization
(or geometry).

• T̃ELS, comp: the time in seconds for building App and LR ≈ Q in formulating the fast ELS approxi-
mation. Note we assume a HBS compression for Aoo is available.

• T̃ELS, inv: the time in seconds for building the operators needed in the Woodbury formula for applying

the inverse approximation of the ELS: A−1
pp , Ã−1L, RÃ−1L and

(
I + RÃ−1L

)−1
. Note we assume
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a HBS inverse approximation for Aoo is available.

• T̃ELS,Dsol: the time in seconds for applying the approximate ELS inverse (Ã + LR)−1 via the
Woodbury formula to a given right-hand-side vector.

• T̃ELS,Gsol: the time in seconds for solving the approximate ELS (Ã + LR)τext = gext for one right-
hand-side vector gext using GMRES.

• T̃ELS,PGsol: the time in seconds for solving the approximate ELS (Ã + LR)τext = gext for one
right-hand-side vector gext using GMRES, where the approximate ELS inverse is used as the pre-
conditioner.

• ẼELS,Dsol, ẼELS,Gsol and ẼELS,PGsol: the average relative error at sample domain locations for the
three different ELS solve options respectively.

The accuracy for HBS compression and low-rank approximation is set to 10−10 unless specified otherwise.

5.1 Asymptotic scaling experiments

This section illustrates the performance of the fast direct solver for the ELS (presented in Section 3) when
applied to a Stokes problem with a confined geometry with two types of modifications: locally refining a
part of the boundary and adding holes. Figure 7(a) illustrates the channel. Figure 7(b) and (c) illustrate
the modification of local refinement (in red) and adding holes, respectively. The geometry is generated
by applying cubic splines with periodic conditions to 121 spline knot locations (with the first and last
knots give the same physical point on the geometry) and was first seen in [16]. The channel is discretized
by using the same number of Gaussian panels per subinterval in in the cubic spline geometry generation.
For example, the total number of discretization points on the channel Nchannel = 1920 corresponds to 120
Gaussian panels in total and 1 panel per subinterval. If there are two panels per subinterval, the number
of discretization points doubles. The circular holes are each discretized with 10 panels which means there
are 160 quadrature points per circle.

Remark 5.1. The addition of holes is similar to the original examples used in [16] and fits in the definition
of a locally perturbed geometry as defined in [7, 8]. However, the extended system is slightly different from
the one given in section 2.2 as we are only adding points for the new boundary and there is no deletion or
cutting of points on the original geometry. The corresponding ESL formulation is given in Appendix B.

The Dirichlet boundary data for the interior channel BVP (Figure 7(a) and (b)) is generated by 5 exterior
Stokeslets outside of the channel geometry. For these two problem, the solution is represented with
the double layer kernel (as discussed in Section 2.1). The Dirichlet boundary data for the BVP with
holes (Figure 7(c)) is generated by the same 5 exterior Stokeslets outside the channel geometry and five
additional Stokeslets placed inside the added holes (two stokelets per hole for the bottom two holes and
one stokelet in the top hole). The solution interior to the channel and exterior to the holes is represented
as a double layer potential on the channel plus a combined field potential on the holes.

The observed condition number of the discretized integral operator for all the problems in this section
is on the order of 105. The condition number of the Woodbury operator is on the order of 103 for the
problem with the added holes and 105 for the problem with the local refinement. The observed rank
numbers for the low-rank approximation of the update matrix Q, which is also the size of the Woodbury
system, is roughly 60 for the problem with the local refinement and 340 for the problem with the added
holes.

Let Nchannel denote the number of discretization points on the original channel. Table 5 reports on the
performance of the HBS solver applied to the original geometry (and discretization). For the locally
refined discretization, let Nc and Np denote the number of points removed and added, respectively. For
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the channel with holes geometry, let Nholes be the total number of discretization points placed on the three
holes. The results from Table 6 and 7 report on the performance of the proposed ELS formulation based
fast direct solver applied to the geometries in Figures 7(b) and (c). The size of each test cases is given
by the total degree of freedom, which is double the number of discretization points. To show the scaling
of the ELS fast direct solver, the values for Nchannel, Nc and Np are all doubled as the test size increases.
Both the HBS solver and the proposed fast direct solver scale linearly with respect to the number of
points on the channel geometry. The cost of using Algorithm 1 is significantly less than building the
original HBS solver. This means that Algorithm 1 is more computationally efficient than building a fast
direct solver from scratch for the new discretization. It is worth noting that the time required for building
the ELS compression for the addition of holes example is much higher than that for refining the channel
boundary given the same Nchannel. For example, when 2Nchannel = 122880, ELS compression for adding
holes is about 8 times of that for refining a segment, although the points added for the holes Nholes is only
1/3 of the points added Np due to the refinement. This is due to the fact that change to the system for
adding the three holes is “less local” than that for refining a segment of the channel, resulting in much
higher rank numbers and more expensive compression of the update matrix Q. For the same reason, the
time required for applying the inverse of the ELS when adding holes is also more than that for refining a
segment of the channel.

The solution error for all test cases is maintained at 10−10 since the geometry is fully resolved and the
tolerance for HBS compression and low-rank approximations is set to be 10−10.

(a) (b) (c)

Figure 7: (a) The original channel geometry. (b) The channel geometry
with a locally refined segment highlighted in red. (c) The channel geometry
with three interior holes added.

2Nchannel THBS, comp THBS, inv THBS, sol EHBS,Dsol

30720 65.7 7.0 0.070 1.1e-10
61440 90.7 9.9 0.140 1.4e-10
122880 132.8 15.8 0.264 3.22e-10

Table 5: The time in seconds and error for using HBS compression and in-
version to solve the BIE on the channel geometry with the original discretiza-
tion (illustrated in Figure 7(a)). The number of discretization points on the
channel is Nchannel. The size of the linear system is 2Nchannel × 2Nchannel.

5.2 Complex geometry with local refinement

This section considers an interior problem on the complex Fallopian tube geometry illustrated in Figure 8.
The geometry is created by extracting data points from Figure 1 of [34] and connecting them smoothly via
the technique in [35]. The solution to the problem is generated by placing Stokeslets on the exterior of the
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2Nchannel, 2Nc, 2Np T̃ELS, comp T̃ELS, inv T̃ELS,Dsol ẼELS,Dsol

30720, 192, 768 1.4 0.8 0.088 2.5e-10
61440, 384, 1536 3.0 1.2 0.113 5.8e-10
122880, 768, 3072 7.1 2.3 0.184 4.8e-10

Table 6: The time in seconds and error for using the Woodbury formula
to solve the ELS for the boundary value problem on the channel with local
refinement illustrated in Figure 7(b). The number of discretization points
cut and added on the red portion of the boundary are Nc and Np respectively.

2Nchannel, 2Nholes T̃ELS, comp T̃ELS, inv T̃ELS,Dsol ẼELS,Dsol

30720, 960 14.9 2.1 0.059 9.8e-11
61440, 960 28.8 4.3 0.103 2.3e-10
122880, 960 56.4 7.9 0.296 2.1e-10

Table 7: The time in seconds and error for using the Woodbury formula
to solve the ELS for the boundary value problem on the channel with three
interior holes illustrated in Figure 7(c). The circular holes in Figure 7(b) are
each discretized with 10 panels and 160 quadrature points, resulting a total
of Nholes = 480 points.

geometry. The boundary data is generated via this known solution. Discretizing the complex geometry
in Figure 8 results in an integral equation with a high condition number. An iterative solver requires a
large number of iterations in order to converge. The experiments in this section discretize the original
Fallopian tube boundary (pre-refinement) with 1600 Gaussian panels (25600 points and 51200 degrees
of freedom), which results in relative error of approximately 4× 10−5. To understand the conditioning of
the linear system, we consider the smallest matrices that are inverted in the hierarchical tree using the
HBS solver. These matrices (corresponding to the first three levels in the tree) have condition numbers
on the order of 108 to 1011.

For the refined discretization problem, the red portion of the boundary highlighted in Figure 8 goes from
having 6 panels to 24. Since a 16 point Gaussian quadrature is used, the number of points kept, cut and
added are Nk = 25, 504, Nc = 96, and Np = 384, respectively. The iterative solver stops when the relative
residual is on the order of 10−6. For the boundary integral equation on the original discretization, we either
build only HBS representation of the discretized boundary integral equation and couple it with GMRES
or also build the HBS inverse and apply it directly to the given right-hand-side. For the refined problem,
we consider the discretized BIE and the equivalent ELS and a fast direct solver and an iterative solver
for each. Additionally, we also use the direct solver for the ELS, built as Algorithm 1, to precondition
the GMRES solve.

Table 8 reports the time required to solve the BIE on the original discretization, the BIE on the refined
discretization, and the approximate ELS on the refined discretization using a fast direct solver. The total
time for precomputation includes two parts: the forward compression indicated by subscript notation
“comp” and the inversion indicated by the subscript notation “inv”. Tables 8(b) and 8(c) demonstrate
that for this geometry the proposed direct solver for the ELS is more efficient than building a HBS solver
from scratch for the refined problem. In fact, the cost for constructing a forward compression for the
ELS for the refined problem is only 1.3% of the cost of constructing a HBS from scratch. The cost of
constructing the inverse operator is only 7.3% of that of HBS inverse.

Table 9 reports the time in seconds for the unpreconditioned GMRES approach for the original and refined
problems. The precomputation for this approach only involves the compression of the forward operator
and is lower than that for the direct solution approach since an approximate inverse is not constructed.
However, due to the poor conditioning of the problem, more than 500 GMRES iterations are required to
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reach the desired tolerance of 10−6. The time required to solve the integral equation via unprecondtioned
GMRES is much higher for each new right-hand-side than the direct solver. Tables 9(b) and (c) show that
solving the approximate ELS (18) is two orders of magnitude cheaper than building the HBS compression
of the BIE for the refined problem. Applying the forward operator for the ELS is slightly more expensive
than applying the HBS forward compression.

Table 10 reports the time in seconds for the preconditioned GMRES approach applied to the approximate
ELS. Here Algorithm 1, i.e., the inverse of the ELS obtained by the Woodbury formula, is used to
precondition the fast representation of the ELS. The precomputation time of this approach is equal
to that of the direct solver approach for the ELS. The number of GMRES iterations required for the
convergence criterion to be met is reduced from 520 to 6, leading to a significant reduction in total cost
even for only one right-hand-solve when compared to the results in Table 9(c). The cost of solving one
additional right-hand-side vector via the preconditioned GMRES approach for the ELS is about 5.4% of
that via unpreconditioned GMRES approach.

Figure 8: Partial Fallopian tube based on data extracted from the exper-
iments in [34]. A small segment highlighted in red is chosen to be locally
refined. The geometry is generated by [35].

5.3 Relocating region of local refinement

This section illustrates the potential of using the fast direct solver presented in Algorithm 1 as precondi-
tioner for many Stokes problems involving a body moving through a collection of star-shaped obstacles
shown in Figure 9. This example is representative of applications such as sorting with a microfluidic
device. For the original discretization, 10 panels are placed on each star with less or equal to 5 prongs
and 20 panels are placed on stars with more than 5 prongs. With the 16-point Gaussian quadrature,
this results in a total of 42400 discretization points and 84800 degrees of freedom. For demonstration
purposes, we do not simulate the true physics of any body moving in the domain; instead, we assume the
body appears at certain locations at some time step, as illustrated in in Figure 9. These can be viewed
as snapshots of a body moving through the obstacles. The body moving through the obstacles is much
smaller in scale than any of the stars. Thus the discretization of one or more obstacles will need to be
locally refined as the body approaches those obstacles. Since the body is moving, the regions of local
refinement are expected to be different for each snapshot. Previously refined regions may be coarsened
back into the original discretization as the body moves away. In this example, 19 snapshot locations are
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THBS, comp THBS, inv THBS,Dsol

4.09e+2 2.76e+1 7.87e-2

(a)

T̃HBS, comp T̃HBS, inv T̃HBS,Dsol

4.09e+2 2.76e+1 7.87e-2

(b)

T̃ELS, comp T̃ELS, inv T̃ELS,Dsol

5.33e+0 2.01e+0 9.62e-2

(c)

Table 8: Time in seconds for solving (a) the original and (b) the refined
problem defined on the Fallopian tube geometry (Figure 8) via HBS inver-
sion. (c) corresponds to the proposed fast direct solver for the ELS of the
refined problem.

THBS, comp THBS,Gsol

4.09e+2 5.95e+1 (niter = 519)

(a)

T̃HBS, comp T̃HBS,Gsol

4.09e+2 6.59e+1 (niter = 519)

(b)

T̃ELS, comp T̃ELS,Gsol

5.33e+0 7.07e+1 (niter = 520)

(c)

Table 9: Time in seconds for solving (a) the original and (b) the refined
problem defined on the Fallopian tube geometry (Figure 8) via GMRES
with HBS compression accelerated matrix-vector multiplication. (c) corre-
sponds to solving the ELS of the refined problem via GMRES. The number
of GMRES iterations niter required to converge to tolerance 10−6 is also
reported.

chosen. In 12 of these snapshots, the body is close to an obstacle and local refinement is needed. In the
other 7 snapshots, no local refinement is needed. We consider 5 different ways of solving the linear system
for the 19 different boundary value problems. These solution techniques are:

(1) GMRES-indy: Treat each of the 13 different discretization as independent boundary value problems,
building a forward HBS representation for each, and using this to accelerate the GMRES solve for
each snapshot;

(2) Direct-indy: Treat each of the 13 different discretization as independent boundary value problems
and build a HBS solver for each one;

(3) GMRES-Local: Build a HBS forward representation for the original discretization and use it to accel-
erate the GMRES solve for the ELS for each problem requiring local refinement;

(4) Direct-Local: Build a HBS solver for the original discretization and use it to build a fast direct
solver for the ELS according to Algorithm 1 for each problem needing local refinement;

(5) PGMRES-Local: Build a HBS solver for the original discretization and use it to precondition the
GMRES solve for the ELS for each problem requiring local refinement.
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T̃ELS, comp T̃ELS, inv T̃ELS,PGsol

5.33e+0 2.01e+0 3.80e+0 (niter = 6)

Table 10: Time in seconds for solving the ELS of the refined problem defined
on the Fallopian tube geometry (Figure 8) via preconditioned GMRES, where
Algorithm 1 is used as the preconditioner. The number of GMRES iterations
niter required to converge to tolerance 10−6 is also reported.

The tolerance for GMRES is set to 10−11. For the boundary value problems that do not require local
refinement, using the HBS matrix-vector acceleration of GMRES results in a relative error on the order
of 10−9. Using the HBS solver loses two digits; i.e., the relative error that results from this solver is on
the order of 10−7. Thus for the two techniques (2) and (4) where the direct solver is used as an actual
solver and not a preconditioner, the accuracy is approximately 10−7. When the HBS solver or the ELS
fast direct solver in Algorithm 1 is used as the preconditioner, the error is approximately 10−9.

To compare efficiency of the five approaches, we first report the time in seconds for solving the problem
on the original discretization and that on one particular refined discretization, which corresponds to the
first snapshot with the body located at the very bottom left of Figure 9 (b). The results are presented in
Table 11, 12 and 13 in the same format as the corresponding results for the Fallopian tube geometry in the
previous section. Since the direct solver does not achieve the full possible accuracy of the discretization,
using it as preconditioner is reasonable and it greatly decreases the number of iterations needed for an
iterative solver to converge.

THBS, comp THBS, inv THBS,Dsol

8.23e+2 3.38e+1 2.57e-1

(a)

T̃HBS, comp T̃HBS, inv T̃HBS,Dsol

8.07e+2 3.38e+1 2.98e-1

(b)

T̃ELS, comp T̃ELS, inv T̃ELS,Dsol

8.39e+0 6.43e+0 4.18e-1

(c)

Table 11: Time in seconds for solving (a) the original and (b) the refined
problem defined on the star-shape obstacle geometry in Figure 9 via HBS
inversion. (c) corresponds to the proposed fast direct solver for the ELS of
the refined problem.

With the step-by-step cost summarized in Table 11, 12 and 13, we can approximate the total cost for each
of the five approaches handling all 19 snapshots by simple addition and multiplication, assuming that the
cost for solving the ELS for each snapshot that requires a refinement is the same. To get an idea of the
speed up for solving problems involving the 19 multiple snapshots given in Figure 9(a), Table 14 collects
the time necessary for each part of the 5 solution techniques. The different times reported are:

• Tstatic: The time in seconds for constructing any of the operators needed for the solution technique
on the original discretization. For techniques (1) and (3), only constructing an approximation of
Aoo via HBS is needed. For the other options, the construction of the approximate inverse of Aoo is
also needed. This is a “static” computation since it is independent of future time steps and potential
local refinement.

• TOsol: The time in seconds for solving a problem where local refinement is not needed. “Osol”
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THBS, comp THBS,Gsol

8.23e+2 3.27e+1 (niter = 113)

(a)

T̃HBS, comp T̃HBS,Gsol

8.07e+2 3.30e+1 (niter = 113)

(b)

T̃ELS, comp T̃ELS,Gsol

8.39e+0 3.46e+1 (niter = 113)

(c)

Table 12: Time in seconds for solving (a) the original and (b) the refined
problem defined on the star-shape obstacle geometry in Figure 9 via GM-
RES with HBS compression accelerated matrix-vector multiplication. (c)
corresponds to the solving the ELS of the refined problem via GMRES. The
number of GMRES iterations niter required to converge to tolerance 10−11

is also reported.

T̃ELS, comp T̃ELS, inv T̃ELS,PGsol

8.39e+0 6.43e+0 9.50e+0 (niter = 6)

Table 13: Time in seconds for solving the ELS of the refined problem defined
on the star-shape obstacle geometry in Figure 9 via preconditioned GMRES,
where Algorithm 1 is used as the preconditioner. The number of GMRES
iterations niter required to converge to tolerance 10−11 is also reported.

stands for “solve for the original discretization”

• TRsol: The time in seconds for solving a problem where local refinement is needed. “Rsol” stands
for “solve for one refined discretization”.

Approaches (3-5) which utilize the ELS are more efficient than building new HBS solver from scratch each
time or only when there is local refinement. For these experiments Approach (4) is the most efficient but
if the fully attainable accuracy is desired, Approach (5) should be used as it is both efficient and accurate.
The previous standard solution technique for this type of problem was Approach (1). The proposed direct
solver (4) and the proposed preconditioned solver (5) are 127 and 3.5 times faster than Approach (1) when
local refinement is not needed. When refinement is needed, Approaches (4) and (5) are 55 and 34.6 times
faster than Approach (1), respectively. Since the applications of interest (such as [1]) involve hundreds
to thousands of solves, it is definitely worth using the ELS. If the user is okay losing a couple of digits,
the fast direct solver is an ideal choice. If the digits are needed, then the preconditioned iterative solver
is still going to be significantly faster than Approach (1).

Remark 5.2. The dominate cost TRsol for the ELS solution techniques is the cost of creating the low
rank factorization of Q. In most applications, several snapshots can use the same refinement and thus
the same factorization of Q. The reuse of the factorization will decrease TRsol significantly. For example,
in the experiments corresponding to the two body locations on the left bottom of Figure 9, two different
regions of the same five-prong star are refined in these two consecutive time steps. In practice it might be
more efficient to group the two regions together and treat them as one locally refined region, thus leading
to one refined discretization for the first two time steps.
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Tstatic TOsol TRsol

(1) GMRES-indy 8.23e+2 3.27e+1 8.40e+2
(2) Direct-indy 8.56e+2 2.57e-1 8.41e+2
(3) GMRES-Local 8.23e+2 3.27e+1 4.29e+1
(4) Direct-Local 8.56e+2 2.57e-1 1.52e+1
(5) PGMRES-Local 8.56e+2 9.40e+0 2.43e+1

Table 14: Time in seconds of the construction of all necesary precomputed
operators on the original discretization Tstatic, for solving a problem that
does not need local refinement TOsol and for solving a problem that requires
local refinement TRsol. Here we assume that each of the locally refined dis-
cretization is the same in size and requires the same amount of calculations
to solve.

6 Conclusions

This manuscript presented a fast direct solver for Stokes BIEs on locally refined discretizations. The
technique makes use of an extended linear system that allows for precomputed fast direct solvers on
the unrefined geometry to be utilized. The numerical results illustrate the new solver’s performance on
particulate flow simulations.

For general Stokes problems, two solution approaches are explored. Which solution technique should be
used depends on the conditioning of the problem and how many digits are desired. For well-conditioned
problems, the proposed fast direct solver works extremely well. When the problem has poor conditioning,
the fast direct solver may lose a couple of digits (relative to the compression accuracy). These digits
can be recovered by using the second solution technique presented here, which is to utilize an iterative
solver where the fast direct solver for the linear system serves as a preconditioner and the compressed
representation of the ELS provides the fast matrix vector multiply. Both solution techniques scale linearly
with the size of the unrefined discretization. Linear scaling with respect to the number of unknowns added
in the local refinement can also be achieved but is not necessary for the considered applications since a
relatively low number of points are added. Numerical examples demonstrated significant speedups; in one
test case, the proposed direct solver is roughly 55 times faster than the standard approach. For problems
with large condition number, more accurate solution may be obtained by using the proposed preconditoner
as compared to the direct solver. In another test example, the preconditioned GMRES solve for the ELS
reduced the number of iterations by a factor of 19 (and total solve time by 3.6X). Our immediate future
directions include incorporating close evaluation schemes and extension to three-dimensional problems.
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A Proof of Lemma 3.1 (Lemma 1 in [28])

Proof. The matrix Ã is invertible since it is block diagonal with each block invertible by our assumption.
Let the pseudo-inverses of L and R be defined as above.

It is easy to verify that L†L = RR† = I with dimension k × k. By right-multiplying both sides of
Âext = Ã + LR by Ã−1L, we get

ÂextÃ
−1L =

(
Ã + LR

)
Ã−1L = L + LRÃ−1L = L

(
I + RÃ−1L

)
.
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Now the left-multiplication on both sides of the previous equality by L† results in the following:

L†ÂextÃ
−1L = L†L

(
I + RÃ−1L

)
= I + RÃ−1L.

Simplifying utilizing the basic properties of pseudo-inverse gives the following expression:

L†Â−1
extÃL =

(
I + RÃ−1L

)−1
.

Therefore, the condition number for the Woodbury operator is bounded above by

κ
(
I + RÃ−1L

)
=
∥∥∥I + RÃ−1L

∥∥∥∥∥∥∥(I + RÃ−1L
)−1

∥∥∥∥
=
∥∥∥L†ÂextÃ

−1L
∥∥∥∥∥∥L†Â−1

extÃL
∥∥∥

≤
∥∥∥L†∥∥∥2

‖L‖2
∥∥∥Â−1

ext

∥∥∥∥∥∥Âext

∥∥∥∥∥∥Ã−1
∥∥∥∥∥∥Ã∥∥∥

=
∥∥∥L†∥∥∥2

‖L‖2 κ
(
Âext

)
κ
(
Ã
)
.

A similar argument using R† gives

κ
(
I + RÃ−1L

)
≤
∥∥∥R†∥∥∥2

‖R‖2 κ
(
Âext

)
κ
(
Ã
)
.

Combining the two bounds above gives equation (15).

B Extended system for the channel with added holes problem

Let Γk be the original channel bounday given in Figure 7(a) and Γp be the union of the holes added in
7(b). Following this subscript notation, the discretized BIE on the “channel-with-holes” geometry can be
reordered into the same format as in (10). Since no points are deleted, (10) itself serves as an ELS for
this problem, and it can be written as

Ann = Aext =

[
Akk Akp

Apk App

]
=

[
Akk 0
0 App

]
+ Q (19)

where the update matrix Q can be approximated by a low-rank factorization

Q =

[
0 Akp

Apk 0

]
≈ LR.

If a fast direct solver is already constructed for the original channel geometry, i.e., an approximation to
A−1
kk is available, then the solution to (19) can be quickly obtained by a Woodbury formula as described

in section 2.2. The construction of the low-rank approximation for the update matrix is also simpler for
this particular problem, since only two subblocks need to be handled.
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(a)

(b)

Figure 9: (a) A collection of star-shape obstacles with different snapshots
of body locations. (b) Zoomed-in in the region near the snapshots of the
body locations. The locations are chosen artificially and do not represent
any physical movement of body in Stokes flow. 19 locations are chosen, out
of which 12 are close to certain part of the obstacle boundary and incurs
local refinement of the obstacle discretization.
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