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Abstract

Higher-order tensor canonical polyadic decomposition (CPD) with one or more of the latent factor

matrices being columnwisely orthonormal has been well studied in recent years. However, most existing

models penalize the noises, if occurring, by employing the least squares loss, which may be sensitive to

non-Gaussian noise or outliers, leading to bias estimates of the latent factors. In this paper, based on

the maximum a posterior estimation, we derive a robust orthogonal tensor CPD model with Cauchy

loss, which is resistant to heavy-tailed noise or outliers. By exploring the half-quadratic property of the

model, a new method, which is termed as half-quadratic alternating direction method of multipliers (HQ-

ADMM), is proposed to solve the model. Each subproblem involved in HQ-ADMM admits a closed-form

solution. Thanks to some nice properties of the Cauchy loss, we show that the whole sequence generated

by the algorithm globally converges to a stationary point of the problem under consideration. Numerical

experiments on synthetic and real data demonstrate the efficiency and robustness of the proposed model

and algorithm.
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1 Introduction

A tensor is a multidimensional array. Owing to its ability to represent data with intrinsically many dimensions,

tensors draw much attention from the communities of signal processing, image processing, machine learning,

etc; see the surveys [7,28,40]. To understand the relationship behind the data tensor, decomposition tools are

needed. In general, tensor decomposition aims at factorizing the data tensor into a set of lower-dimensional

latent factors, where the factors can be vectors, matrices or even tensors. Among the decomposition models,

tensor canonical polyadic decomposition (CPD), which factorizes a tensor into a sum of component rank-1

tensors, is one of the most important models. Tensor CPD finds applications in blind multiuser CDMA, blind

source separation, and so on [40]. Different from matrix decompositions, tensor CPD is unique under quite

mild conditions [28].

In some applications, one or more latent factors of the CPD are required to have orthonormal columns.

For example, in linear image coding [39], one is given a set of data matrices of the same size; to explore their

commonalities, one projects the matrices onto a latent lower-dimensional subspace in which the subspace can

be represented by the Khatri-Rao product [28] of two columnwisely orthonormal matrices. Such a problem
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has been formulated as a third-order tensor CPD with two factor matrices having orthonormal columns. On

the other hand, simultaneous foreground-background extraction and compression can also be formulated as

a model of the same kind; this will be illustrated in Sect. 5. Other applications of CPD with orthonormal

factors can be found in [8–10,41,44].

In reality, due to the NP-hardness of determining the tensor rank [20], and due to the presence of noise,

tensor CPD model with orthonormal factors is rarely exact, and it is necessary to resort to an approximation

scheme. To numerically solve the problem, one usually formulates it as an optimization problem that minimizes

the Euclidean distance between the data tensor and the latent tensor over orthonormal constraints, and then

applies an alternating optimization type method to solve it based on polar decomposition [5, 18,24, 31, 35, 43,

46,48]. Other types of methods can be found in [11,26,30,37]; just to name a few.

Although the optimization model mentioned above is effective in some circumstances, note that the Eu-

clidean distance, built upon the least squares loss that is not robust [25]. As a result, when the data tensor is

contaminated by heavy-tailed noise or outliers, such least squares based models often lead to bias estimates of

the true latent factors, as having been observed in practice. This drawback of the least squares based models

motivates us to develop a new model that is robust to heavy-tailed noise or outliers.

In this work, from the maximum a posterior estimation, we derive a robust tensor CPD model where one

or more latent factors have orthonormal columns. Such a model is based on the Cauchy loss, whose robustness

comes from the redescending property of the loss function, as pointed out in robust statistics [25]. We then

explore the half-quadratic property of the model, based on which, the half-quadratic alternating direction

method of multipliers (HQ-ADMM) is proposed to solve the model. An advantage of HQ-ADMM is that

every subproblem involved in the algorithm admits a closed-form solution. Under a very mild assumption

on the parameter, HQ-ADMM is proved to globally converge to a stationary point of the problem under

consideration, owing to some nice properties of the Cauchy loss. In fact, the spirit of HQ-ADMM can be

extended to solving other Cauchy loss based machine learning and scientific computing problems (besides

tensor problems), which will be remarked later in Sect. 3. Finally, we show via numerical experiments that

the proposed model is resistant to heavy-tailed noise such as Cauchy noise, outliers, and also performs well

with Gaussian noise; the proposed HQ-ADMM is observed to be efficient.

The rest of the paper is organized as follows. The robust tensor approximation model is formulated in

Sect. 2, with some quantitative properties given. The HQ-ADMM is developed in Sect. 3; the convergence

analysis of HQ-ADMM is provided in Sect. 4. Numerical results are illustrated in Sect. 5. We end this paper

in Sect. 6 with conclusions.

2 Problem Formulation and the Optimization Model

Notations Vectors are written as boldface lowercase letters (x,y, . . .), matrices are denoted as italic capitals

(A,B, . . .), and tensors are written as calligraphic capitals (A,B, · · · ). R denotes the real field. Rm×n denotes

real matrices of dimension m × n and Rn1×···×nd denotes tensor space of size n1 × · · · × nd. The Frobenius

norm, ‖·‖F , of a matrix or a tensor, is defined to be the square root of the sum of squares of all the entries.

The inner product 〈·, ·〉 between a pair of matrices or tensors of the same size is given by the sum of entrywise

product. ⊗ denotes the outer product of two vectors. Other notations will be introduced whenever necessary.

Let A = (Ai1···id) ∈ Rn1×···×nd be a d-th order observed data tensor. We consider the inexact CPD of A,

i.e., approximating A by a sum of rank-1 tensors:

A =
∑R

i=1
σi
⊗d

j=1
uj,i +N ∈ Rn1×···×nd ; (2.1)

here uj,i ∈ Rnj , 1 ≤ j ≤ d,
⊗d

j=1 uj,i denotes the rank-1 tensor given by the outer product of uj,i’s, σi’s are
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real scalars, R > 0 is a given integer, where usually R is such that R ≤ min{n1, . . . , nd} for a possibly low-rank

approximation, while N denotes the noisy tensor.

Denote Uj := [uj,1, . . . ,uj,R] ∈ Rnj×R and σ := [σ1, . . . , σR] ∈ RR. Then Uj ’s are called the latent factor

matrices of A. Throughout this work, we follow [28] to write the sum of rank-1 terms as

Jσ;U1, . . . , UdK :=
∑R

i=1
σi
⊗d

j=1
uj,i;

moreover, we write Jσ;UjK := Jσ;U1, . . . , UdK for short. In the sequel, we base our work on the following

setup:

• One or more Uj ’s are columnwiely orthonormal. Without loss of generality, we assume that the last t

(1 ≤ t ≤ d) matrices are columnwisely orthonormal, i.e.,

U>j Uj = I, d− t+ 1 ≤ j ≤ d,

where I is an identity matrix of the proper size;

• The columns of the first d− t matrices are normalized, i.e.,

‖uj,i‖ = 1, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R;

• Entries of the noisy tensor N are i.i.d..

We immediately have the following proposition.

Proposition 2.1. There holds
∥∥∥⊗d

j=1 uj,i

∥∥∥
F

= 1, 1 ≤ i ≤ R, and
〈⊗d

j=1 uj,i1 ,
⊗d

j=1 uj,i2

〉
= 0, i1 6= i2.

Note that the constraints on uj,i and Uj are all Stiefel manifolds st(m,n) := {P ∈ Rm×n | P>P = I}.
Therefore, in the following, we write the constraints on uj,i and Uj as

uj,i ∈ st(nj , 1), 1 ≤ j ≤ d− t, 1 ≤ i ≤ R,

Uj ∈ st(nj , R), d− t+ 1 ≤ j ≤ R.

In the presence of the noisy term N , it is natural to deal with (2.1) via solving the following optimization

problem [5,18,43,46,48]:

min
σ,uj,i∈st(nj ,1),Uj∈st(nj ,R)

‖A − Jσ;UjK‖2F =

n1,...,nd∑
i1=1,...,id=1

(
Ai1···id − Jσ;UjKi1···id

)2
. (2.2)

From a statistical estimation viewpoint, the above model is built upon the least squares loss `2(t) := t2/2, i.e.,

it employs the `2(·) loss to deal with noise. However, it is commonly known that the estimators induced by

the least squares loss are sensitive to heavy-tailed noise or outliers; in other words, by using the model (2.2),

one assumes that every entry of N obeys the standard Gaussian distribution by default.

Derivation of our model In real-world applications, data may be contaminated by heavy-tailed noise,

and even outliers/impulsive noise. A typical non-Gaussian and heavy-tailed noise is the Cauchy noise, whose

probability density function is given by

PCauchy(t) ∝ 1

1 + (t− c)2/δ2
,

where δ > 0 is the scale parameter and c is the location paramter. By assuming the symmetry of the noise,

we let c = 0 in the above function.
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We derive our model from the maximum a posterior (MAP) estimation by assuming that N obeys the

Cauchy distribution whose density function is given above. To this end, denote respectively the indicator

function 1C(·) and the characteristic function ιC(·) of a closed set C as follows

1C(x) = 1, if x ∈ C; 1C(x) = 0, if x 6∈ C,

ιC(x) = 0, if x ∈ C; ιC(x) = +∞, if x 6∈ C.

From the constraints on uj,i and Uj , it is natural to impose a uniform prior belief distributional assumption

on {uj,i, Uj} as follows

P (Jσ;UjK) ∝
∏d−t

j=1

∏R

i=1
1st(nj ,1)(uj,i) ·

∏d

j=d−t+1
1st(nj ,R)(Uj). (2.3)

On the other hand, in the presence of Cauchy noise, the probability of the observed data tensor A conditioned

on Jσ;UjK is given by

P
(
Ai1···id | Jσ;UjKi1···id

)
∝ 1

1 +
(
Jσ;UjKi1···id −Ai1···id

)2
/δ2

, 1 ≤ ij ≤ nj , 1 ≤ j ≤ d. (2.4)

With (2.3) and (2.4) at hand, using Bayes’s rule, the MAP estimation is given by

{σ∗, U∗j } = arg maxP (Jσ;UjK | A)

= arg max
P (A | Jσ;UjK) · P (Jσ;UjK)

P (A)

= arg max

n1,...,nd∏
i1=1,...,id=1

P
(
Ai1···id | Jσ;UjKi1···id

)
· P (Jσ;UjK)

t←− log(t)
= arg min

n1,...,nd∑
i1=1,...,id=1

log

(
1 +

(
Jσ;UjKi1···id −Ai1···id

)2
/δ2
)

−
d−t∑
j=1

R∑
i=1

log
(
1st(nj ,1)(uj,i)

)
−

d∑
j=d−t+1

log
(
1st(nj ,R)(Uj)

)
= arg min

n1,...,nd∑
i1=1,...,id=1

log

(
1 +

(
Jσ;UjKi1···id −Ai1···id

)2
/δ2
)

+

d−t∑
j=1

R∑
i=1

ιst(nj ,1)(uj,i) +

d∑
j=d−t+1

ιst(nj ,R)(Uj),

where in the last equality, we have defined log(0) = −∞. Therefore, from the above deduction, to deal with

(2.1) in the presence of Cauchy noise (or even other heavy-tailed noise or outliers), we prefer to solve the

following optimization model

min Φδ(A− Jσ;UjK) :=
δ2

2

n1,...,nd∑
i1=1,...,id=1

log

(
1 +

(
Jσ;UjKi1···id −Ai1···id

)2
/δ2
)

s.t. uj,i ∈ st(nj , 1), 1 ≤ j ≤ d− t, 1 ≤ i ≤ R,

Uj ∈ st(nj , R), d− t+ 1 ≤ j ≤ d.

(2.5)

Comparing (2.5) with (2.2), we see that the difference is that the least squares loss `2(t) = t2/2 is replaced by

the statistically motivated loss function

φδ(t) :=
δ2

2
log
(
1 + t2/δ2

)
. (2.6)

φδ(·) is called the Cauchy loss. In recent years, various research has been focused on Cauchy loss based models;

see, e.g., [12, 17,19,27,32,34,38,49].
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Figure 1: Left: Plots of φδ(t) = δ2

2
log

(
1 + t2/δ2

)
with different δ values versus `2(t) = t2/2; Right: Plots of

φ′δ(t) = t/(1 + t2/δ2). σ = 0.1 (the dashed curve), σ = 0.2 (the dotted-dashed curve), and σ = 0.5 (the dotted curve);

`2(t) (the solid curve).

We discuss some properties of the proposed model (2.5) from the robust statistics viewpoint, which shows

(2.5) is not only resistant to Cauchy noise, but may also be resistant to other heavy-tailed noise or outliers.

Firstly, we observe that

lim
|t|→+∞

φ′δ(t) = lim
|t|→+∞

t

1 + t2/δ2
= 0. (2.7)

Such a property is called the redescending property in robust statistics [25], and the minimizer of (2.5) is

called a redescending M-estimator. It is known that the redescending M-estimator is robust to heavy-tailed

noise and outliers [25]. As a comparison, the derivative of the least squares loss `2(t) = t2/2 is t, whose limit

is infinity, which does not have the redescending property. Other loss functions admitting the redescending

property include the Welsch loss [13,14,21], the Tukey loss [3], the German loss [15], and so on.

Secondly, the parameter δ in (2.6) controls the robustness of the model (2.5). From (2.7), we see that the

smaller δ is, the faster φ′δ(t) converges to zero. We plot φ′δ(t) with different δ in the right panel of Fig. 1.

On the other hand, taking Taylor expansion of φδ(t) at 0 yields φδ(t) = t2/2 + o(t2/δ2), which shows that

φδ(t) ≈ t2/2 as δ → ∞. These observations imply that a small δ can enhance the robustness of (2.5). This

also reminds us that our model (2.5) is also resistant to Gaussian noise by simply setting a large enough δ.

We also plot φδ(t) with different δ in the left panel of Fig. 1.

Remark 2.1. We discuss several differences between our model (2.5) and some existing robust tensor models.

In recent years, robust techniques have been incorporated into tensor decomposition/approximation/recovery/-

completion/PCA problems, where the L1 loss function, namely, `1(t) = |t|, is frequently employed to deliver

robustness. In general, such kind of models can be formulated as [16]

min
X∈Rn1×···×nd

‖L(X )− b‖1 + λR(X ), (2.8)

where L is a linear operator, and b has the same size as L(X ); R(X ) denotes a certain regularizer that controls

the low-rankness of X , such as the sum of nuclear norms of unfolding matrices of X [42], and λ > 0 is the

regularization parameter. A special case of (2.8) is the robust tensor PCA, in which L is the identity operator

and b denotes the observed tensor [16]. It is known that L1 loss is more suitable for Laplacian noise; on the

other hand, one sees that the derivative of |t| does not tend to zero as |t| → +∞, meaning that it does not admit

the redescending property, while it was pointed out in [33] that the L1 estimator might behave as bad as the `2(t)

estimator in some cases. Comparing with the resulting tensor, (2.8) yields a full tensor of size n1×· · ·×nd, while
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ours is compressed into a set of factor matrices, which takes much less storage. Moreover, our orthonormality

assumption on some factor matrices is more suitable for certain applications [8–10, 39, 41, 44].

In [1], a robust tensor CP decomposition model has been considered. The differences are that the noise there

are required to be sparse, and all the factor matrices are assumed to be columnwisely orthogonal, which are

stringent. By using outlier detection techniques, [36] proposed a robust Tucker model. However, the underlying

model cannot be clearly formulated as an optimization problem, and the tensor model is different from ours.

By using variational inference and Kullback-Leibler divergence, [6] devised a robust algorithm to find CP

approximation with orthonormal factors, where the model and the solution method are quite different from

ours. In particular, the authors pointed out that their algorithm boils down to the alternating least squares [43]

in the absence of outliers. In a recent survey [22], various statistically motivated loss functions are incorporated

into tensor CPD, in which the Huber’s loss is considered. As Huber’s loss can be regarded as a smoothed `1

loss, it does not admit the redescending property as well. The orthonormality is not taken into account in [22].

Note that the idea of employing Cauchy loss has been considered in the authors’ earlier work [49]. Comparing

with (2.5), the resulting tensor in [49] is a full tensor and also does not take into account the orthonormality,

and the solution method is also different.

The remaining problem is how to solve (2.5) efficiently. For this purpose, several quantitative properties

concerning the Cauchy loss for designing and analyzing the solution method are first introduced in the following

subsection.

2.1 Quantitative properties concerning φδ(·)

First, we introduce the so-called half-quadratic (HQ) property of φδ(·), which turns the function into a weighted

least squares problem and is crucial for designing the algorithm. Such a property of the Cauchy loss has

appeared in the literature; see, e.g., [17, 19], in which the verification is based on the utilization of conjugate

functions. While we present a very direct and concise proof. Recall that we have defined log(0) = −∞.

Lemma 2.1 (Half-quadratic property). Given |t| < +∞, it holds that

φδ(t) = min
ω≥0

ω

2
t2 +

δ2

2
%(ω), (2.9)

where %(ω) = ω − log(ω)− 1. Moreover, the minimizer of (2.9) is given by

ω∗ =
δ2

δ2 + t2
. (2.10)

Proof. First we verify that (2.10) is a minimizer of the right hand-side of (2.9). Denote g(ω) := ωt2/2 +

δ2%(ω)/2. As %(·) is convex, it suffices to show that ω∗ in (2.10) is a stationary point of infω≥0 g(ω). Since

|t| < +∞, we see that the minimizer of infω≥0 g(ω) cannot occur at ω = 0. Thus any stationry point of

infω≥0 g(ω) meets

g′(ω) = 0⇔ t2 + δ2 − δ2

ω
= 0,

and so ω = (1 + t2/δ2)−1, which is exactly (2.10). Inserting this expression into (2.9), we get

2g(t) =
δ2

δ2 + t2
(t2 + δ2) + δ2 log(1 + t2/δ2)− δ2

= δ2 log(1 + t2/δ2),

boiling down to the expression of φδ(t). The proof is completed.
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Note that the HQ property has a very clear indication on robustness: Take t = Ai1···id − Jσ;UjKi1···id in

Lemma 2.1 as the noise; we see that the larger the magnitude of t, the smaller the weight ω it yields, and so

the corresponding φδ(t) is less important in the objective Φδ(·) in (2.5).

The next two properties are helpful for convergence analysis. Recalling that φ′δ(t) = δ2t
δ2+t2 , we have

Proposition 2.2 (Lipschitz gradient). For any t1, t2 ∈ R and δ > 0, it holds that∣∣∣∣ δ2t1
δ2 + t21

− δ2t2
δ2 + t22

∣∣∣∣ ≤ |t1 − t2|.
Proof. By the mean value theorem, It suffices to show that |φ′′δ (t)| ≤ 1. In fact,

|φ′′δ (t)| =
∣∣∣∣δ2(δ2 − t2)

(δ2 + t2)2

∣∣∣∣ ≤ ∣∣∣∣ δ2

δ2 + t2

∣∣∣∣ ≤ 1,

and the result follows.

Proposition 2.3 (Liptshitz-like inequality). Let t1, t2 ∈ R be arbitrary, and let δ > 0. Then it holds that

|e| :=
∣∣∣∣δ2t1( 1

δ2 + t21
− 1

δ2 + t22

)∣∣∣∣ ≤ |t1 − t2| .
Proof. It is clear that

|e| =
∣∣∣∣σ2t1

(t1 + t2)(t1 − t2)

(σ2 + t21)(σ2 + t22)

∣∣∣∣ ≤ σ2|t1|
|t1|+ |t2|

(σ2 + t21)(σ2 + t22)
· |t1 − t2|.

To prove the above relation, it suffices to show the coefficient of |t1 − t2| is not greater than 1, i.e.,

ϕ(t1, t2) := (σ2 + t21)(σ2 + t22)− σ2|t1|(|t1|+ |t2|) ≥ 0.

In fact,

ϕ(t1, t2) = σ4 + σ2t22 + |t1t2|(|t1t2| − σ2)

≥ σ4 + σ2t22 −
σ4

4
≥ 0.

Therefore, |e| ≤ |t1 − t2|, as desired.

3 HQ-ADMM

By using Lemma 2.1, we equivalently rewrite the objective function Φδ(·) of (2.5) in what follows. Specifically,

since Φδ(·) is the sum of φδ(·) functions, taking t = Ai1···id − Jσ;UjKi1···id in Lemma 2.1, we have

Φδ(A− Jσ;UjK)

=
1

2
min

Wi1···id≥0

n1,...,nd∑
i1=1,...,id

[
Wi1···id (Ai1···id − Jσ;UjKi1···id)

2
+ δ2%(Wi1···id)

]
, (3.11)

where we denoteW = (Wi1···id) ∈ Rn1×···×nd as a tensor variable. From Lemma 2.1, we see that the optimizer

is Wi1···id = δ2
(

1 +
(
Jσ;UjKi1···id −Ai1···id

)2
/δ2
)−1

. As explained in the paragraph below Lemma 2.1, W

can be interpreted as weights to the problem. From the expression of W, we see that the larger the noise is,

the smaller the weight gives to the problem. Such a mechanism helps mitigate heavy-tailed noise or outliers.

In view of (3.11), a straightforward idea to solve (2.5) (with the objective replaced by (3.11)) is to employing

an alternating minimization method (AM) by iteratively updating σ, Uj , and W. In fact, applying AM to
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solve Cauchy loss-based problems have been considered in the literature; see, e,g., [17, 19]. However, for our

problem, this would result in that the subproblems related to Uj do not have closed-form solutions. [32] also

applied AM to solve Cauchy loss-based problem; however, as their proposed model is unconstrained and the

objective function is smooth, AM yields closed-form solutions to each subproblem. [38] incorporated Cauchy

loss into models for image processing. However, the problem is convexified by imposing a quadratic term,

which results in that the Cauchy loss related subproblem admits a unique solution that can be analytically

solved by solving a cubic equation. If the subproblem is nonconvex, then numerical methods have to be applied

to solving the Cauchy loss related subproblem, as pointed out in [38], which might result in inefficiency. For

other Cauchy loss based image processing problems, [12, 27, 34] proposed to use the conventional alternating

direction method of multipliers (ADMM) directly. However, without noticing the HQ property, in the ADMM,

solving the Cauchy loss related subproblem also does not admit a closed-form solution. As a result, solving

such a subproblem still requires an iterative method. [49] used a linearization technique, which ignored the

HQ property.

In view of the above limitations in dealing with Cauchy loss-based problems, in this section, by combining

the HQ property and the ADMM framework, we proposed a new method, termed as HQ-ADMM, to solve

our model (2.5). The advantage of HQ-ADMM is that all the subproblems involved in the algorithm admit

closed-form solutions. In what follows, we derive our method step by step.

Note that (3.11) is quadratic with respect to each Uj , leading to the following formulation

Φδ(A− Jσ;UjK) =
1

2
min

Wi1···id≥0
‖
√
W ~ (A− Jσ;UjK) ‖2F +

δ2

2

n1,...,nd∑
i1=1,...,id

%(Wi1···id),

where
√
W = (

√
Wi1···id) ∈ Rn1×···×nd and ‘~’ denotes the Hadamard product. With this expression at hand,

by introducing a slack variable T ∈ Rn1×···×nd , we rewrite (2.5) as

min
σ,Uj ,T ,W

Φδ(A− T ) =
1

2
‖
√
W ~ (A− T ) ‖2F +

δ2

2

n1,...,nd∑
i1=1,...,id

%(Wi1···id)

s.t. T = Jσ;UjK, W ≥ 0,

u>j,iuj,i = 1, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R,

U>j Uj = I, d− t+ 1 ≤ j ≤ d.

(3.12)

By introducing a Lagrangian multiplier Y ∈ Rn1×···×nd , the augmented Lagrangian function of (3.12) is given

by

Lτ (σ, Uj , T ,Y,W) :=
1

2
‖
√
W ~ (A− T ) ‖2F +

δ2

2

n1,...,nd∑
i1=1,...,id

%(Wi1···id)

− 〈Y, Jσ;UjK− T 〉+
τ

2
‖Jσ;UjK− T ‖2F , (3.13)

where τ > 0. In what follows, for notational convenience we denote (Y + τT )
⊗d

l 6=j ul,i ∈ Rnj as the gradient

of
〈
Y + τT ,

⊗d
l=1 ul,i

〉
with respect to uj,i. Then, the last two terms of (3.13) can be rewritten as

−〈Y, Jσ;UjK− T 〉+
τ

2
‖Jσ;UjK− T ‖2F = 〈Y, T 〉+

τ

2
‖T ‖2F − 〈Y + τT , Jσ;UjK〉+

τ

2
σ>σ (3.14)

= 〈Y, T 〉+
τ

2
‖T ‖2F −

〈
Y + τT ,

R∑
i=1

σi

d⊗
j=1

uj,i

〉
+
τ

2
σ>σ

= 〈Y, T 〉+
τ

2
‖T ‖2F −

R∑
i=1

σi

〈
(Y + τT )

d⊗
l 6=j

ul,i,uj,i

〉
+
τ

2
σ>σ,

where the first equality is due to Proposition 2.1.

8



Before presenting the algorithm, we first derive the stationary point system. To this end, we further define

Lagrangian multipliers ηj,i ∈ R, 1 ≤ j ≤ d − t, 1 ≤ i ≤ R attached to the constraints u>j,iuj,i = 1, and

Λj ∈ RR×R, d− t+ 1 ≤ j ≤ d attached to U>j Uj = I, where Λj ’s are symmetric matrices. Denote

L̂τ (σ, Uj , T ,Y,W) := Lτ (σ, U1, . . . , Ud, T ,Y,W)

+
∑d−t,R

j,i=1
ηj.i
(
u>j,iuj,i − 1

)
+
∑d

j=d−t+1

〈
Λj , U

>
j Uj − I

〉
. (3.15)

Thus taking derivative of L̂(·) with respect to each uj,i, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R and noticing (3.14) yields

σi(Y + τT )
⊗d

l 6=j
ul,i = ηj,iuj,i, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R. (3.16)

Since uj,i’s are normalized, we get ηj,i = σi

〈
Y + τT ,

⊗d
l=1 ul,i

〉
. On the other hand, noticing the representa-

tion (3.14), taking derivative of L̂(·) with respect to σ gives that σi =
〈
Y + τT ,

⊗d
l=1 ul,i

〉
/τ , which together

with the expression of ηj,i gives ηj,i = σ2
i τ ; therefore, (3.16) is in fact as follow

(Y + τT )
⊗d

l 6=j
ul,i = σiτuj,i, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R. (3.17)

Next, taking derivative with respect to uj,i, d− t+ 1 ≤ j ≤ d, 1 ≤ i ≤ R and noticing (3.14) gives

σi(Y + τT )
⊗d

l 6=j
ul,i =

∑R

r=1
(Λj)i,ruj,r, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R. (3.18)

Denote E ∈ Rn1×···×nd as the all-one tensor; taking derivative with respect to T and rearranging terms yields

W ~ (T − A) + Y − τ (Jσ;UjK− T ) = 0

⇔ (W + τE) ~ T =W ~A− Y + τJσ;UjK. (3.19)

As a result, taking (3.17), (3.18), (3.19) and Lemma 2.1 into account, any stationary point {σ, Uj , T ,Y,W}
satisfies the following system

(Y + τT )
⊗d
l6=j ul,i = σiτuj,i, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R,

u>j,iuj,i = 1, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R,
σi(Y + τT )

⊗d
l6=j ul,i =

∑R
r=1(Λj)i,ruj,r, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R,

U>j Uj = I, d− t+ 1 ≤ j ≤ d,
(W + τE) ~ T =W ~A− Y + τJσ;UjK,
Jσ;UjK = T ,

Wi1···id = δ2
(
δ2 +

(
Ti1···id −Ai1···id

)2)−1
.

(3.20)

HQ-ADMM framework Combining the HQ property and the ADMM, our HQ-ADMM computes the

following subproblems at each iterate

Uk+1
j ∈ arg min‖uj,i‖=1,1≤i≤R Lτ (σk, Uk+1

1 , . . . , Uk+1
j−1 , Uj , U

k
j+1, . . . , U

k
d , T

k,Yk,Wk), 1 ≤ j ≤ d− t,
Uk+1
j ∈ arg minU>j Uj=I

Lτ (σk, Uk+1
1 , . . . , Uk+1

j−1 , Uj , U
k
j+1, . . . , U

k
d , T

k,Yk,Wk), d− t+ 1 ≤ j ≤ d,

T k+1 = arg minT Lτ (σk, Uk+1
j , T ,Yk,Wk),

Yk+1 = Yk − τ
(
Jσk;Uk+1

j K− T k+1
)
,

σk+1 = arg minσ Lτ (σ, Uk+1
j , T k+1,Yk+1,Wk),

Wk+1 = arg minW Lτ (ωk+1, Uk+1
j , T k+1,Yk+1,W).

Comparing with the standard ADMM framework, HQ-ADMM involves an additional subproblem to update

the weights W. In what follows, we present how to solve each subproblem.

Uj-subproblems For notational convenience, let

vk+1
j,i := (Yk + τT k)uk+1

1,i ⊗ · · · ⊗ uk+1
j−1,i ⊗ ukj+1,i ⊗ · · · ⊗ ukd,i

9



represent the gradient of
〈
Yk + τT k,

⊗d
l=1 ul,i

〉
with respect to uj,i at the point (uk+1

1,i , . . . ,u
k+1
j−1,i,u

k
j,i, . . . ,u

k
d,i).

Denote V k+1
j := [vk+1

j,1 , . . . ,vk+1
j,R ] ∈ Rnj×R.

When 1 ≤ j ≤ d − t, from the definition of Lτ (·), vj,i, and noticing the expression (3.14), we have that

each column of Uj can be updated as follows

uk+1
j,i = arg min

‖uj,i‖=1
−σki

〈
vk+1
j,i ,uj,i

〉
⇔ uk+1

j,i = vk+1
j,i /‖vk+1

j,i ‖, 1 ≤ i ≤ R.

However, for the convenience of convergence analysis we compute the following instead

uk+1
j,i = ṽk+1

j,i /‖ṽk+1
j,i ‖, where ṽk+1

j,i = σki v
k+1
j,i + αukj,i, 1 ≤ i ≤ R; (3.21)

here α > 0 is an arbitrary constant. Note that uk+1
j,1 , . . . ,uk+1

j,R can be updated simultaneously.

When d− t+ 1 ≤ j ≤ d, from the definition of Lτ , vk+1
j,i , V k+1

j and recalling (3.14), it follows

Uk+1
j = arg min

U>j Uj=I
−

R∑
i=1

〈
σiv

k+1
j,i ,uj,i

〉
= arg max

U>j Uj=I

〈
V k+1 · diag(σk), Uj

〉
,

where diag(σ) = diag[σ1, . . . , σR] ∈ RR×R is a diagonal matrix. Similar to (3.21), we in fact compute the

following problem instead

Uk+1
j = arg max

U>j Uj=I

〈
Ṽ k+1
j , Uj

〉
, where Ṽ k+1

j = V k+1 · diag(σk) + αUkj . (3.22)

The above problem is to compute the polar decomposition of Ṽ k+1
j , which admits a closed-form solution.

Specifically, assume Ṽ k+1
j = PΞQ> is the SVD of Ṽ k+1

j , where P ∈ Rnj×R, Λ, Q ∈ RR×R, P>P = I,

Q>Q = QQ> = I, Ξ = diag(λ1, . . . , λR) with λi being the singular value of Ṽ k+1
j . Then Uk+1

j = PQ>.

Moreover, letting Hk+1
j := QΞQ>. Then we see that (3.22) gives the following relation

Ṽ k+1
j = Uk+1

j Hk+1
j . (3.23)

T -, σ- and W-subproblems From (3.19), we have that

T k+1
i1···id =

(
Wk
i1···idAi1···id − Y

k
i1···id + τ

q
σk;Uk+1

j

y
i1···id

)
/
(
Wk
i1···id + τ

)
. (3.24)

To compute σk+1, from the expression of (3.14) it is easily seen that

σk+1
i = (Yk+1 + τT k+1)

⊗d

j=1
uk+1
j,i /τ, 1 ≤ i ≤ R. (3.25)

To compute Wk+1, similar to (3.20) we have

Wk+1
i1···id = δ2

(
δ2 +

(
T k+1
i1···id −Ai1···id

)2)−1
. (3.26)

In summary, the HQ-ADMM is described in Algorithm 1, where each subproblem admits a closed-form

solution.

Remark 3.1. 1. HQ-ADMM can be applied to a more general form of (2.5). Specifically, consider the data-

fitting term given by Φδ (L (Jσ;UjK)− b), where L is a linear operator, and b denote the observed data of the

same size as L (Jσ;UjK). When L represents the identity operator and b denotes A, the data-fitting term boils

down to the objective of (2.5). When Φδ (L (Jσ;UjK)− b) = Φδ(Ω~ (Jσ;UjK−A)), where Ω ∈ Rn1×···×nd is

a given 0 − 1 tensor with Ωi1···id = 1 if Ai1···id being observed while Ωi1···id = 0 if Ai1···id missing, it can be

used to deal with robust tensor approximation with incomplete data. When L is formed by a set of input data

tensors, and each entry of b denotes the output score of the corresponding input data tensor, it is the objective

10



Algorithm 1: HQ-ADMM for solving (2.5)

Require: U0
j = [u0

j,i, . . . ,u
0
j,R], with ‖uj,i‖ = 1, 1 ≤ j ≤ d − t, 1 ≤ i ≤ R; (U0)>U0

j = I, d − t + 1 ≤ j ≤ d; σ0, T 0, Y0, W0,

α > 0, τ > 0, δ > 0.

1: for k = 0, 1, . . . , do

2: Compute uk+1
j,i via (3.21), 1 ≤ j ≤ d− t, 1 ≤ i ≤ R

3: Compute Uk+1
j via (3.22), d− t+ 1 ≤ j ≤ d

4: Compute T k+1 via (3.24),

5: Compute Yk+1 = Yk − τ
(
Jσk;Uk+1

j K− T k+1
)

,

6: Compute σk+1 via (3.25),

7: Compute Wk+1 via (3.26).

8: end for

of the (robust) tensor regression problem. To minimize Φδ (L (Jσ;UjK)− b) over orthonormal constraints,

similar to (3.12), one can also formulate the problem as

min
σ,Uj ,T ,w

Φδ (L (T )− b) =
1

2
‖
√

w ~ (L (T )− b) ‖2F +
δ2

2

∑
i=1

%(wi)

s.t. T = Jσ;UjK, w ≥ 0,

u>j,iuj,i = 1, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R,

U>j Uj = I, d− t+ 1 ≤ j ≤ d,
where w is the same size as b defined similar to that in (3.11). The framework of HQ-ADMM then applies

as well.

2. The idea of combing HQ property and ADMM framework can also be extended to solve other Cauchy

loss based problems such as those studied in [27, 34]. Specifically, for problems of the form

min
x

Φδ(Lx− b) +R(x),

where L is a matrix, b is a vector of proper size, one can also convert it to

min
x,w

∥∥√w ~ (Ly − b)
∥∥2
F

+
∑

i=1
%(wi) +R(x), s.t. x = y,

with w defined similar to that in (3.11); an algorithm in the spirit of HQ-ADMM can be applied to solve it.

3. An alternative way to obtain closed-form solutions in ADMM for solving (2.5) is to use a linearization

technique. For example, one can apply a linearized ADMM to solve the original problem (2.5) instead of

the equivalent form (3.12), in which one also replace Jσ;UjK by T ; however, to solve the T -subproblem, i.e.,

minT Φδ(T − A) + 〈Y, T 〉+ τ/2 ‖T − Jσ;UjK‖2F , which does not admit a closed-form solution, one linearizes

Φδ(T − A) and then imposes a proximal term. The issue is that by doing this, one does not fully explore the

structure of the model, which may lead to inefficiency. On the other hand, extra effort has to be paid to find

a suitable step-size for this linearized subproblem.

4 Convergence of HQ-ADMM

This section establishes the convergence of HQ-ADMM. We note that to ensure the convergence, the only

requirement is that τ ≥
√

10. Throughout this section, to simplify the notations, we denote

∆k+1,k
Uj

:= Uk+1
j − Ukj .

11



The definitions of ∆k+1,k
T , ∆k+1,k

W , and ∆k+1,k
Y are analogous. In addition, we define the following proximal

augmented Lagrangian function

L̃τ (σ, Uj , T ,Y,W, T ′) := Lτ (σ, Uj , T ,Y,W) +
2

τ
‖T − T ′‖2F ,

which is needed to study the diminishing property of the terms
∥∥∥∆k+1,k

Uj

∥∥∥
F

and
∥∥∥∆k+1,k
T

∥∥∥
F

. For convenience

we also denote

L̃k+1,k
τ := L̃τ (σk+1, Uk+1

j , T k+1,Yk+1,Wk+1, T k). (4.27)

We present the first main result in the following, showing that the sequence generated by the algorithm is

bounded, and every limit point of the sequence generated by HQ-ADMM is a stationary point. The proof is

left to Section 4.1.

Theorem 4.1 (Subsequential convergence). Let {σk, Ukj , T k,Yk,Wk} be generated by Algorithm 1 with τ ≥√
10 and α > 0. Then

1. {σk, Ukj , T k,Yk,Wk} is bounded;

2. the sequence {L̃k+1,k
τ } defined in (4.27) is bounded, nonincreasing and convergent;

3. it holds that
∞∑
k=1

 d∑
j=1

∥∥∥∆k+1,k
Uj

∥∥∥2
F

+
∥∥∥∆k+1,k
T

∥∥∥2
F

 < +∞, (4.28)

and ∥∥∆k+1,k
σ

∥∥→ 0,
∥∥∥∆k+1,k
W

∥∥∥
F
→ 0,

∥∥Jσk;Ukj K− T k
∥∥
F
→ 0. (4.29)

Moreover, every limit point {σ∗, U∗j , T ∗,Y∗,W∗} satisfies the optimality condition (3.20). In particular,

{σ∗, U∗j } is also a stationary point of the original problem (2.5).

Next, based on the Kurdyka- Lojasiewicz (KL) property [4] which is widely used for proving the global

convergence of nonconvex algorithms, we can show that the whole sequence converges to a single limit point.

The proof is left to Sect. 4.2.

Theorem 4.2 (Global convergence). Under the setting of Theorem 4.1, the whole sequence of {Ukj , T k}
converges to a single limit point, i.e.,

lim
k→∞

Ukj = U∗j , 1 ≤ j ≤ d, lim
k→∞

T k = T ∗.

4.1 Proof of Theorem 4.1

To prove the convergence of a nonconvex ADMM, a key step is to upper bound the size of the successive

difference of the dual variables by that of the primal variables [23, 29, 47]. For HQ-ADMM, the weight Wk

brings barriers in the estimation of the upper bound. Fortunately, this can be overcome by realizing the

relations between Wk, T k and T k−1 by using Lemma 4.1. The resulting estimate is given as follows.

Lemma 4.1. It holds that

‖∆k+1,k
Y ‖F ≤ ‖∆k+1,k

T ‖F + ‖∆k,k−1
T ‖F .

Proof. From (3.24), we have

Wk ~
(
T k+1 −A

)
+ Yk − τ

(
Jσk;Uk+1

j K− T k+1
)

= 0,

12



which together with the definition of Yk+1 yields

Wk ~
(
T k+1 −A

)
+ Yk+1 = 0. (4.30)

Therefore we have

‖∆k+1,k
Y ‖ =

∥∥∥Wk ~
(
T k+1 −A

)
−Wk−1 ~

(
T k −A

)∥∥∥
F

=
∥∥∥Wk ~

(
T k+1 −A

)
−Wk ~

(
T k −A

)
+Wk ~

(
T k −A

)
−Wk−1 ~

(
T k −A

)∥∥∥
F

≤
∥∥∥Wk ~

(
T k+1 − T k

)∥∥∥
F

+
∥∥∥(Wk −Wk−1) ~

(
T k −A

)∥∥∥
F

(4.31)

Now denote E1 :=
∥∥Wk ~

(
T k+1 − T k

)∥∥
F

and E2 :=
∥∥(Wk −Wk−1) ~

(
T k −A

)∥∥
F

. We first consider E1.

From the definition of Wk, we easily see that Wk
i1···id ≤ 1 for each i1, . . . , id. Therefore,

E1 ≤ ‖∆k+1,k
T ‖. (4.32)

Next we focus on E2. To simplify notations we denote aki1···id := T ki1···id −Ai1···id and

ei1···id := δ2aki1···id

(
1

δ2 + (aki1···id)2
− 1

δ2 + (ak−1i1···id)2

)
.

Then E2 can be expressed as

E2
2 =

n1,...,nd∑
i1=1,...,id=1

(
Wk+1
i1···id −W

k
i1···id

)2
(Ti1···id −Ai1···id)

2

=

n1,...,nd∑
i1=1,...,id=1

δ4(aki1···id)2

(
1

δ2 + (aki1···id)2
− 1

δ2 + (ak−1i1···id)2

)2

=

n1,...,nd∑
i1=1,...,id=1

e2i1···id .

It follows from Proposition 2.3 that

|ei1···id | ≤ |aki1···id − a
k−1
i1···id |,

and so

E2 ≤ ‖T k −A− (T k−1 −A)‖F = ‖∆k,k−1
T ‖F . (4.33)

(4.31) combining with (4.32) and (4.33) yields the desired result.

With Lemma 4.1, we then establish a sufficiently decreasing inequality with respect to {L̃k+1,k
τ } defined in

(4.27).

Lemma 4.2. Let the parameter τ satisfy τ ≥
√

10. Then there holds

L̃k,k−1τ − L̃k+1,k
τ ≥ α

2

d∑
j=1

∥∥∥∆k+1,k
Uj

∥∥∥2
F

+
1

τ

∥∥∥∆k+1,k
T

∥∥∥2
F
, ∀k,

where α > 0 is defined in (3.21) and (3.22).

Proof. We first consider the decrease caused by Uj . When 1 ≤ j ≤ d − t, according to the algorithm, the
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expression of Lτ (·), that
∥∥ukj,i∥∥ = 1 and recalling the definition of uk+1

j,i , vk+1
j,i and ṽk+1

j,i , we have

Lτ (σk, Uk+1
1 , . . . , Uk+1

j−1 , U
k
j , . . . , U

d
j , T k,Yk,Wk)−

Lτ (σ, Uk+1
1 , . . . , Uk+1

j , Ukj+1, . . . , U
k
d , T k,Yk,Wk)

=

R∑
i=1

〈
σki · (Yk + τT k)uk+1

1,i ⊗ · · · ⊗ uk+1
j−1,i ⊗ ukj+1,i ⊗ · · · ⊗ ukd,i,u

k+1
j,i − ukj,i

〉
=

R∑
i=1

〈
σki · vk+1

j,i ,uk+1
j,i − ukj,i

〉
=

R∑
i=1

〈
σk · vk+1 + αukj,i,u

k+1
j,i − ukj,i

〉
+
α

2

∥∥uk+1
j,i − ukj,i

∥∥2
=

R∑
i=1

〈
ṽk+1
j,i ,

ṽk+1
j,i∥∥ṽk+1
j,i

∥∥ − ukj,i

〉
+
α

2

∥∥uk+1
j,i − ukj,i

∥∥2
≥ α

2

R∑
i=1

∥∥uk+1
j,i − ukj,i

∥∥2 =
α

2

∥∥∥∆k+1,k
Uj

∥∥∥2
F
, (4.34)

where the fourth equality follows from the definition of uk+1
j,i and ṽk+1

j,i , and the inequality is due to ‖v‖ ≥ 〈v,u〉
for any vectors u,v of the same size with ‖u‖ = 1.

The decrease of Uj when d− t+ 1 ≤ j ≤ d is similar. From the definition of V k+1
j , It holds that

Lτ (σk, Uk+1
1 , . . . , Uk+1

j−1 , U
k
j , . . . , U

k
d , T k,Yk,Wk)−

Lτ (σk, Uk+1
1 , . . . , Uk+1

j , Ukj+1, . . . , U
k
d , T k,Yk,Wk)

=

R∑
i=1

〈
σki · (Yk + τT k)uk+1

1,i ⊗ · · · ⊗ uk+1
j−1,i ⊗ ukj+1,i ⊗ · · · ⊗ ukd,i,u

k+1
j,i − ukj,i

〉
=

〈
V k+1
j · diag(σk), Uk+1

j − Ukj
〉

=
〈
V k+1
j · diag(σk) + αUkj , U

k+1
j − Ukj

〉
+
α

2

∥∥Uk+1
j − Ukj

∥∥2
F

≥ α

2

∥∥∥∆k+1,k
Uj

∥∥∥2
F
, (4.35)

where the inequality follows from the definition of Uk+1
j in (3.22).

To show the decrease of T , note that Lτ (·) is strongly convex with respect to T , which we can easily deduce

that

Lτ (σk, Uk+1
j , T k,Yk,Wk)− Lτ (σk, Uk+1

j , T k+1,Yk,Wk) ≥ τ

2

∥∥∥∆k+1,k
T

∥∥∥2
F
. (4.36)

Next, it follows from the definition of Yk+1 and Lemma 4.1 that

Lτ (σk, Uk+1
j , T k+1,Yk,Wk)− Lτ (σk, Uk+1

j , T k+1,Yk+1,Wk)

=
〈
Yk+1 − Yk, Jσk;Uk+1

j K− T k+1
〉

= −1

τ

∥∥∥∆k+1,k
Y

∥∥∥2
F

≥ −2

τ

(∥∥∥∆k+1,k
T

∥∥∥2
F

+
∥∥∥∆k,k−1
T

∥∥∥2
F

)
. (4.37)

Finally, it follows from the definition of σk+1 and Wk+1 that

Lτ (σk, Uk+1
j , T k+1,Yk+1,Wk)− Lτ (σk+1, Uk+1

j , T k+1,Yk+1,Wk+1) ≥ 0. (4.38)
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As a result, summing up (4.34)–(4.38) yields

Lτ (σk, Ukj , T k,Yk,Wk)− Lτ (σk+1, Uk+1
j , T k+1,Yk+1,Wk+1)

≥ α

2

d∑
j=1

∥∥∥∆k+1,k
Uj

∥∥∥2
F

+

(
τ

2
− 2

τ

)∥∥∥∆k+1,k
T

∥∥∥2
F
− 2

τ

∥∥∥∆k,k−1
T

∥∥∥2
F

≥ α

2

d∑
j=1

∥∥∥∆k+1,k
Uj

∥∥∥2
F

+

(
2

τ
+

1

τ

)∥∥∥∆k+1,k
T

∥∥∥2
F
− 2

τ

∥∥∥∆k,k−1
T

∥∥∥2
F
, (4.39)

where the last inequality follows from the range of τ . Rearranging the terms of (4.39) gives the desired results.

This completes the proof.

We then show that L̃k,k−1τ defined in Lemma 4.2 is lower bounded and the sequence {σk, Uki , T k,Yk,Wk}
is bounded as well.

Theorem 4.3. Under the setting of Lemma 4.2, {L̃k,k−1τ } is bounded. The sequence {σk, Ukj , T k,Yk,Wk}
generated by Algorithm 1 is bounded as well.

Proof. Denote Qk(T ) := 1
2

∥∥∥√Wk ~ (T − A)
∥∥∥2
F

; thus we have ∇Qk(T ) =Wk ~ (T − A), and it then follows

from the quadraticity of Qk(·) and Yk = −Wk−1 ~
(
T k −A

)
from (4.30) that

Qk−1(T k)−Qk−1(Jσk;Ukj K)−
〈
Yk, Jσk;Ukj K− T k

〉
=

〈
Wk−1 ~

(
Jσk;Ukj K−A

)
, T k − Jσk;Ukj K

〉
+

1

2

∥∥∥√Wk−1 ~
(
Jσk;Ukj K− T k

)∥∥∥2
F
−
〈
Yk, Jσk;Ukj K− T k

〉
=

1

2

∥∥∥√Wk−1 ~
(
Jσk;Ukj K− T k

)∥∥∥2
F

+
〈
Wk−1 ~

(
Jσk;Ukj K−A

)
−Wk−1 ~

(
T k −A

)
, T k − Jσk;Ukj K

〉
= −1

2

∥∥∥√Wk−1 ~
(
Jσk;Ukj K− T k

)∥∥∥2
F
≥ −1

2

∥∥Jσk;Ukj K− T k
∥∥2
F
, (4.40)

where the last inequality uses the fact that 0 <Wk−1
i1···id ≤ 1.

Based on (4.40), it follows from the proof of Lemma 4.2 that for any k ≥ 2,

L̃k−1,k−2τ = L̃τ (σk−1, Uk−1j , T k−1,Yk−1,Wk−1, T k−2) ≥ L̃τ (σk, Ukj , T k,Yk,Wk−1, T k−1)

= Qk−1(T k) +
δ2

2

n1,...,nd∑
i1=1,...,id=1

%(Wk−1
i1···id)−

〈
Yk, Jσk;Ukj K− T k

〉
+
τ

2

∥∥Jσk;Ukj K− T k
∥∥2
F

+
2

τ

∥∥∥∆k,k−1
T

∥∥∥2
F

≥ Qk−1(Jσk;Ukj K) +
τ − 1

2

∥∥Jσk;Ukj K− T k
∥∥2
F

+
δ2

2

n1,...,nd∑
i1=1,...,id=1

%(Wk−1
i1···id) +

2

τ

∥∥∥∆k,k−1
T

∥∥∥2
F

> −∞, (4.41)

where the first inequality follows from (4.40) and the last one is due to the range of τ and %(·) ≥ 0. Thus

{L̃k,k−1τ } is a lower bounded sequence. This together with Lemma 4.2 shows that {L̃k,k−1τ } is bounded.

We then show the boundedness of {σk, Ukj , T k,Yk,Wk}. The boundedness of {Ukj } and {Wk} is obvious.

Next, denote g(σk) as the formulation in line 3 of (4.41) with respect to σk. Since by Proposition 2.1, namely,

the orthonormality of
⊗d

j=1 ukj,i,∥∥Jσk;Ukj K− T k
∥∥
F

=
∥∥σk∥∥2 − 2

〈
Jσk;Ukj K, T k

〉
+
∥∥T k∥∥2

F
,

while Qk−1(Jσk;Ukj K) is convex with respect to σk, we see that g(σk) is strongly convex with respect to σk.

This together with the boundedness of {L̃k,k−1τ } and (4.41) gives the boundedness of {σk}. Quite similarly we
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have that {T k} is bounded. Finally, the boundedness of {Yk} follows from the expression of the T -subproblem

(3.24). As a result, the sequence {σk, Ukj , T k,Yk,Wk} is bounded. This completes the proof.

Proof of Theorem 4.1. Lemma 4.2 in connection with Theorem 4.3 yields points 1, 2, and (4.28); (4.28) to-

gether with Lemma 4.1 and the definition of Yk+1, σk+1 and Wk+1 gives (4.29). On the other hand, since

the sequence is bounded, limit points exist. Assume that {σ∗, U∗j , T ∗,Y∗,W∗} is a limit point with

lim
l→∞
{σkl , Uklj , T

kl ,Ykl ,Wkl} = {σ∗, U∗j , T ∗,Y∗,W∗}.

(4.28), (4.29) then implies that

lim
l→∞
{σkl+1, Ukl+1

j , T kl+1,Ykl+1,Wkl+1} = {σ∗, U∗j , T ∗,Y∗,W∗}.

Therefore, taking the limit into l with respect to the uj,i-subproblem (3.21) yields

v∗j,iσ
∗
i + αu∗j,i =

∥∥ṽ∗j,i∥∥u∗j,i, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R. (4.42)

Multiplying both sides by u∗j,i gilves∥∥ṽ∗j,i∥∥ = α+ σ∗i
〈
v∗j,i,u

∗
j,i

〉
= α+ σ∗i

〈
Y∗ + τT ∗,

⊗d

j=1
u∗j,i

〉
= α+ τ(σ∗i )2, (4.43)

where the second equality follows from the definition of vj,i and the last one is given by passing the limit into

the expression of σkl+1
i (3.25). Thus (4.42) together with (4.43) gives

(Y∗ + τT ∗)
⊗d

l 6=j
u∗l,i = σ∗i τu

∗
j,i, (4.44)

i.e., the first equation of the stationary point system (3.20).

Taking the limit into l with respect to the Uj-subproblem (3.22) and noticing the expression (3.23), we get

V ∗j diag(σ∗) + αU∗j = U∗jH
∗
j ,

where H∗j is a symmetric matrix. Writing it columnwisely, we obtain

σ∗i (Y∗ + τT ∗)
⊗d

l 6=j
u∗l,i =

∑R

i=1
(H∗j )i,ru

∗
j,r − αu∗j,i, d− t+ 1 ≤ j ≤ d, 1 ≤ i ≤ R.

Denoting Λ∗j := H∗j − αI, the above is exactly the third equality of (3.20). On the other hand, passing the

limit into the expression of T k (3.24) and Wk (3.26) respectively gives the T ∗- and W∗- formulas in (3.20).

Finally, the first expression of (4.29) yields T ∗ = Jσ∗;U∗j K. Taking the above pieces together, we have that

{σ∗, U∗j , T ∗,Y∗,W∗} satisfies the stationary point system (3.20).

Next, we show that {σ∗, U∗j } is also a stationary point of problem (2.5). We define its Lagrangian function

as LΦ := Φδ(σ, Uj)−
∑d−t,R
j,i=1 ηj.i

(
u>j,iuj,i − 1

)
−
∑d
j=d−t+1

〈
Λj , U

>
j Uj − I

〉
, similar to that in (3.15). Taking

derivative yields
∂uj,iΦδ(σ;Uj) = ηj,iuj,i ⇔W ~ (Jσ, UjK−A) · σi

⊗
l 6=j uj,i = ηj,iuj,i, 1 ≤ j ≤ d− t, 1 ≤ i ≤ R,

∂uj,iΦδ(σ, Uj) =
∑R
r=1(Λj)i,ruj,r ⇔W ~ (Jσ, UjK−A) · σi

⊗
l 6=j uj,i =

∑R
r=1(Λj)i,ruj,r, , d− t+ 1 ≤ j ≤ d, 1 ≤ i ≤ R,

∂σΦδ(σ, Uj) = 0⇔
〈
W ~ (Jσ;UjK−A) ,

⊗d
j=1 uj,i

〉
= 0, 1 ≤ i ≤ R,

(4.45)

where Wi1···id = δ2
(

1 +
(
Jσ;UjKi1···id −Ai1···id

)2
/δ2
)−1

; multiplying uj,i in both sides of the first equality

above, and noticing the last equality, we get ηj,i = 0.

Since T ∗ =
q
σ∗;U∗j

y
, the T -subproblem (3.24) also gives Y∗ =W∗ ~

(q
σ∗;U∗j

y
−A

)
. This together with

(4.44) and that T ∗
⊗d

l 6=j u∗j,i =
q
σ∗;U∗j

y⊗d
l 6=j u∗j,i = σ∗i u

∗
j,i gives W∗ ~

(q
σ∗, U∗j

y
−A

)⊗
l 6=j u∗j,i = 0, i.e.,

the first equality of (4.45) by noticing ηj,i = 0. In a similar vein, we get that

σ∗iW∗ ~
(q
σ∗;U∗j

y
−A

)
=
∑R

i=1
(H∗j )i,ru

∗
j,r − (α+ τσ∗i )u∗j,i.

Taking Λj := H∗j − (α + τσ∗i )I gives the second relation of (4.45). The last equality follows directly from

W∗ ~
(q
σ∗, U∗j

y
−A

)⊗
l 6=j u∗j,i = 0. The proof has been completed.
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4.2 Proof of Theorem 4.2

To prove Theorem 4.2, we first recall some definitions from nonsmooth analysis. Denote domf := {x ∈ Rn |
f(x) < +∞}.

Definition 4.1 (c.f. [2]). For x ∈ domf , the Fréchet subdifferential, denoted as ∂̂f(x), is the set of vectors

z ∈ Rn satisfying

lim inf
y 6=x
y→x

f(y)− f(x)− 〈z,y − x〉
‖x− y‖

≥ 0. (4.46)

The subdifferential of f at x ∈ domf , written ∂f , is defined as

∂f(x) :=
{

z ∈ Rn : ∃xk → x, f
(
xk
)
→ f(x), zk ∈ ∂̂f

(
xk
)
→ z

}
.

It is known that ∂̂f(x) ⊂ ∂f(x) for each x ∈ Rn [4]. An extended-real-valued function is a function

f : Rn → [−∞,∞], which is proper if f(x) > −∞ for all x and f(x) <∞ for at least one x. It is called closed

if it is lower semi-continuous (l.s.c. for short). The global convergence relies on the the Kurdyka- Lojasiewicz

(KL) property given as follows:

Definition 4.2 (KL property and KL function, c.f. [2,4]). A proper function f is said to have the KL property

at x ∈ dom∂f := {x ∈ Rn | ∂f(x) 6= ∅}, if there exist ε̄ ∈ (0,∞], a neighborhood N of x, and a continuous

and concave function ψ : [0, ε̄)→ R+ which is continuously differentiable on (0, ε̄) with positive derivatives and

ψ(0) = 0, such that for all x ∈ N satisfying f(x) < f(x) < f(x) + ε̄, it holds that

ψ′(f(x)− f(x))dist(0, ∂f(x)) ≥ 1,

where dist(0, ∂f(x)) means the distance from the original point to the set ∂f(x). If a proper and l.s.c. function

f satisfies the KL property at each point of dom∂f , then f is called a KL function.

We then simplify L̃τ (·) by eliminating the variables W and σ. First, from the definition of Wk+1 and

Lemma 2.1, we have that∥∥∥√Wk+1
~
(
T k+1 −A

)∥∥∥2
F

+ δ2
n1,...,nd∑

i1=1,...,id=1

%(Wk+1
i1···id) = Φδ(T k+1 −A),

where Φδ(·) is defined in (2.5). This eliminate the W from L̃τ (·). On the other hand, it follows from the

definition of σk+1 (3.25) that

−
〈
Yk+1, Jσk+1;Uk+1

j K− T k+1
〉

+
τ

2

∥∥Jσk+1;Uk+1
j K− T k+1

∥∥2
F

=
〈
Yk+1, T k+1

〉
+
τ

2

∥∥T k+1
∥∥2
F
− 1

2τ

R∑
i=1

(Yk+1 + τT k+1
) d⊗
j=1

uk+1
j,i

2

.

Thus σ is also eliminated. In what follows, whenever necessary, σki still represents the expression (Yk +

τT k)
⊗d

j=1 ukj,i/τ , but we only treat it as a representation instead of a variable.

Then L̃τ (σk+1, Uk+1
j , T k+1,Yk+1,Wk+1T k) can be equivalently written as

L̃τ (Uk+1
j , T k+1,Yk+1, T k)

=
1

2
Φδ(T k+1 −A) +

〈
Yk+1, T k+1

〉
+
τ

2

∥∥T k+1
∥∥2
F
− 1

2τ

R∑
i=1

(Yk+1 + τT k+1
) d⊗
j=1

uk+1
j,i

2

+
2

τ

∥∥∥∆k+1,k
T

∥∥∥2
F
.

In addition, we denote

L̃τ,α(Uj , T ,Y, T ′) := L̃τ (Uj , T ,Y, T ′)−
α

2

d∑
j=1

‖Uj‖2F +

d−t,R∑
j=1,i=1

ιst(nj ,1)(uj,i) +

d∑
j=d−t+1

ιst(nj ,R)(Uj).
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We can see that under the constraints of the optimization problem (2.5), L̃τ,α(·) = L̃τ (·) + c where c is a

constant. This together with Theorem 4.1 shows that {L̃τ,α(Uk+1
j , T k+1,Yk+1, T k), } is also a bounded and

nonincreasing sequence. In addition, we have that L̃τ,α(·) is a KL function.

Proposition 4.1. L̃τ,α(Uj , T ,Y, T ′) defined above is a proper, l.s.c., and KL function.

Proof. It is clear that L̃τ,α(·) is proper and l.s.c.. Next, since the constrained sets in (2.5) are all Stiefel

manifolds, items 2 and 6 of [4, Example 2] tell us that they are semi-algebraic sets, and their indicator

functions are semi-algebraic functions. Therefore, the indicator functions are KL functions [4, Theorem 3].

On the other hand, the remaining part of L̃τ,α (besides the indicator functions) is an analytic function and

hence it is KL [4]. As a result, L̃τ,α(Uj , T ,Y, T ′) is a KL function.

In the sequel, we mainly rely on L̃τ,α(·) to prove the global convergence. For convenience, we denote

L̃k+1,k
τ,α := L̃τ,α(Uk+1

j , T k+1,Yk+1, T k), and ∂L̃k+1,k
τ,α := ∂L̃τ,α(Uk+1

j , T k+1,Yk+1, T k);

denote ∆k+1,k
Uj ,T := (Uk+1

j , T k+1)− (Ukj , T k), and

∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

:=

√∑d

j=1

∥∥∥∆k+1,k
Uj

∥∥∥2
F

+
∥∥∥∆k+1,k
T

∥∥∥2
F
.

Lemma 4.3. There exists a large enough constant c0 > 0, such that

dist(0, ∂L̃k+1,k
τ,α ) ≤ c0

(∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
∥∥∥∆k,k−1

Uj ,T

∥∥∥
F

)
. (4.47)

Proof. We first consider ∂uj,i
L̃k+1,k
τ,α , 1 ≤ j ≤ d− t, 1 ≤ i ≤ R, and ∂Uj

L̃k+1,k
τ,α , d− t+ 1 ≤ j ≤ d, respectively.

In what follows, we denote

vk+1
j,i := σk+1

i

(
Yk+1 + τT k+1

)⊗d

l 6=j
uk+1
l,i + αuk+1

j,i , and V
k+1

j := [v̄k+1
j,1 , . . . , v̄k+1

j,R ].

We also recall vk+1
j,i := (Yk + τT k)uk+1

1,i ⊗ · · · ⊗ uk+1
j−1,i ⊗ ukj+1,i ⊗ · · · ⊗ ukd,i and ṽk+1

j,i = σki v
k+1
j,i + αukj,i for

later use. In addition, denote Ṽ k+1
j := [ṽk+1

j,1 , . . . , ṽk+1
j,R ].

For 1 ≤ j ≤ d− t, one has

∂uj,i
L̃k+1,k
τ,α = −σk+1

i

(
Yk+1 + τT k+1

)⊗d

l 6=j
uk+1
l,i − αuk+1

j,i + ∂ιst(nj ,1)(u
k+1
j,i )

= −vk+1
j,i + ∂ιst(nj ,1)(u

k+1
j,i ). (4.48)

we then wish to show that

ṽk+1
j,i ∈ ∂̂ιst(nj ,1)(u

k+1
j,i ) ⊂ ∂ιst(nj ,1)(u

k+1
j,i ). (4.49)

The proof is similar to that of [48, Lemma 6.1]. First, from the definition of ιst(nj ,1)(·) and ∂̂ιst(nj ,1)(·) in (4.46),

it is not hard to see that if y 6∈ st(nj , 1), then (4.46) clearly holds when z = ṽk+1
j,i ; otherwise if y ∈ st(nj , 1),

i.e., ‖y‖ = 1, then from the definition of uk+1
j,i , we see that

uk+1
j,i = arg max

‖y‖=1

〈
y, ṽk+1

j,i

〉
⇔ 〈ṽk+1

j,i ,uk+1
j,i − y〉 ≥ 0, ∀‖y‖ = 1,

which together with ιst(nj ,1)(y) = 0 and ιst(nj ,1)(u
k+1
j,i ) = 0 gives

lim inf
y 6=uk+1

j,i ,y→uk+1
j,i

ιst(nj ,1)(y)− ιst(nj ,1)(u
k+1
j,i )− 〈ṽk+1

j,i ,y − uk+1
j,i 〉

‖y − uk+1
j,i ‖

≥ 0.

As a result, (4.49) is true, which together with (4.48) shows that

ṽk+1
j,i − vk+1

j,i ∈ ∂uj,iL̃
k+1,k
τ,α , 1 ≤ j ≤ d− t, 1 ≤ i ≤ R.
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Let 0 denote the original. Then by using the triangle inequality and the boundeness of {σk, Uk, T k,Yk}, and

noticing the definition of ∆k+1,k
Uj ,T , there must exist large enough constants c1, c2 > 0 only depending on τ, α,

and the size of {σk, Uk, T k,Yk}, such that

dist(0, ∂uj,i
L̃k+1,k
τ,α )

≤
∥∥ṽk+1

j,i − vk+1
j,i

∥∥
≤ c1

 d∑
j=1

∥∥∥∆k+1,k
Uj

∥∥∥
F

+
∥∥∥∆k+1,k
T

∥∥∥
F

+
∥∥∥∆k+1,k
Y

∥∥∥
F


≤ c1

 d∑
j=1

∥∥∥∆k+1,k
Uj

∥∥∥
F

+ 2
∥∥∥∆k+1,k
T

∥∥∥
F

+
∥∥∥∆k,k−1
T

∥∥∥
F


≤ c2

(∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
∥∥∥∆k,k−1

Uj ,T

∥∥∥
F

)
, 1 ≤ j ≤ d− t. (4.50)

On the other hand, for d− t+ 1 ≤ j ≤ d, by noticing the definition of V
k+1

j , we have

∂Uj L̃
k+1,k
τ,α = −V k+1

j + ∂ιst(nj ,R)(U
k+1
j ).

From the definition of Uk+1
j in (3.22) and similar to the above argument, we can show that Ṽ k+1

j ∈ ∂ιst(nj ,R)(U
k+1
j ).

Thus

Ṽ k+1
j − V k+1

j ∈ ∂Uj L̃
k+1,k
τ,α , d− t+ 1 ≤ j ≤ d.

Similar to (4.50), there exists a large enough constant c3 > 0 such that

dist(0, ∂uj,iL̃
k+1,k
τ,α ) ≤ c3

(∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
∥∥∥∆k,k−1

Uj ,T

∥∥∥
F

)
, d− t+ 1 ≤ j ≤ d. (4.51)

We then consider

∇T L̃k+1,k
τ,α =Wk+1 ~

(
T k+1 −A

)
+ Yk+1 − τ

(
Jσk+1;Uk+1

j K− T k+1
)

+
4

τ

(
T k+1 − T k

)
.

Note that Wk+1 and σk+1 above are only representations instead of variables, which represent (3.26) and

(3.25). From the expression of Yk+1 in (4.30), we have∥∥Wk+1 ~
(
T k+1 −A

)
+ Yk+1

∥∥
F

=
∥∥(Wk+1 −Wk

)
~
(
T k+1 −A

)∥∥
F

≤
∥∥∥∆k+1,k
T

∥∥∥
F
,

where the inequality follows from Proposition 2.3. On the other side,

τ
∥∥Jσk+1;Uk+1

j K− T k+1
∥∥
F

= τ
∥∥Jσk+1;Uk+1

j K− Jσk;Uk+1
j K + Jσk;Uk+1

j K− T k+1
∥∥
F

≤ τ
∥∥Jσk+1;Uk+1

j K− Jσk;Uk+1
j K

∥∥
F

+
∥∥∥∆k+1,k
Y

∥∥∥
F

≤ c4

(∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
∥∥∥∆k,k−1

Uj ,T

∥∥∥
F

)
, (4.52)

where c4 > 0 is large enough. Combining the above pieces shows that there exists a large enough constant

c5 > 0 such that ∥∥∥∇T L̃k+1,k
τ,α

∥∥∥
F
≤ c5

(∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
∥∥∥∆k,k−1

Uj ,T

∥∥∥
F

)
. (4.53)

Next, it follows from (4.52) that∥∥∥∇Y L̃k+1,k
τ,α

∥∥∥
F

=
∥∥Jσk+1;Uk+1

j K− T k+1
∥∥
F
≤ c4

τ

(∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
∥∥∥∆k,k−1

Uj ,T

∥∥∥
F

)
. (4.54)

Finally, ∥∥∥∇T ′L̃k+1,k
τ,α

∥∥∥
F

=
4

τ

∥∥∥∆k+1,k
T

∥∥∥
F
. (4.55)
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Combining (4.50), (4.51), (4.53), (4.54), (4.55), we get that there exists a large enough constant c0 > 0

independent of k, such that

dist(0, ∂L̃k+1,k
τ,α ) ≤ c0

(∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
∥∥∥∆k,k−1

Uj ,T

∥∥∥
F

)
,

as desired.

Now we can present the proof concerning global convergence.

Proof of Theorem 4.2. We have mentioned that {L̃k+1,k
τ,α } inherits the properties of {L̃k+1,k

τ }, i.e., it is bounded,

nonincreasing and convergent. We denote its limit as L̃∗τ,α = limk→∞ L̃k+1,k
τ,α = L̃τ,α(U∗j , T ∗,Y∗, T ∗) where

{U∗j , T ∗,Y∗, T ∗} is a limit point. According to Definition 4.2 and Proposition 4.1, there exist an ε0 > 0, a

neighborhood of {U∗j , T ∗,Y∗, T ∗}, and a continuous and concave function ψ(·) : [0, ε0)→ R+ such that for all

{Uj , T ,Y, T ′} ∈ N satisfying L̃∗τ,α < L̃τ,α(Uj , T ,Y, T ′) < L̃∗τ,α + ε0, there holds

ψ′(L̃τ,α(Uj , T ,Y, T ′)− L̃∗τ,α)dist(0, ∂L̃τ,α(Uj , T ,Y, T ′) ≥ 1. (4.56)

Let ε1 > 0 be such that

Bε1 := {
(
Uj , T ,Y, T ′

)
| ‖

∥∥Uj − U∗j ∥∥F < ε1, 1 ≤ j ≤ d, ‖T − T ∗‖F < ε1, ‖Y − Y∗‖F < 2ε1,
∥∥T ′ − T ∗∥∥

F
< 2ε1} ⊂ N ,

and let BUj ,T
ε1 := {(Uj , T ) |

∥∥Uj − U∗j ∥∥F < ε1, 1 ≤ j ≤ d, ‖T − T ∗‖F < ε1}. From the stationary point system

(3.20) and the expression of Yk+1 in (4.30), we have∥∥Yk − Y∗∥∥
F

=
∥∥Wk−1 ~

(
T k −A

)
−W∗ ~ (T ∗ −A)

∥∥
F

≤
∥∥Wk−1 ~

(
T k −A

)
−Wk ~

(
T k −A

)∥∥
F

+
∥∥Wk ~

(
T k −A

)
−W∗ ~ (T ∗ −A)

∥∥
F

=
∥∥∥∆k,k−1
T

∥∥∥
F

+
∥∥∥∆k,∗
T

∥∥∥
F

(4.57)

where the last inequality follows from Propositions 2.3 and 2.2. On the other hand,∥∥T k−1 − T ∗∥∥
F
≤
∥∥∥∆k,k−1
T

∥∥∥
F

+
∥∥∥∆k,∗
T

∥∥∥
F
. (4.58)

As Theorem 4.1 shows that there exists k0 > 0 such that for k ≥ k0,
∥∥∥∆k,k−1
T

∥∥∥
F
< ε1, (4.57) and (4.58)

tells us that if k ≥ k0 and (Ukj , T k) ∈ BUj ,T
ε1 , then {Ukj , T k,Yk, T k−1} ∈ Bε1 ⊂ N . Such k0 must exist as

{U∗j , T ∗,Y∗, T ∗} is a limit point. In addition, denote c1 := min{α/2, 1/τ}; then there exists k1 ≥ k0 such that

(Uk1j , T k1) ∈ BUj ,T
ε1/2

and

c0
2
√
c1c2

∥∥∥∆k1,k1−1
Uj ,T

∥∥∥
F
<
ε1
16
,

c0
2
√
c1c2

∥∥∥∆k1−1,k1−2
Uj ,T

∥∥∥
F
<
ε1
16
,

c2
2
√
c1
ψ(L̃k1,k1−1τ,α − L∗τ,α) <

ε1
4
,

L∗τ,α < L̃k1,k1−1τ,α < L∗τ,α + ε0,

(4.59)

where c0 is the constant appeared in Lemma 4.3, and c2 is a constant such that c2 > 16c0/
√
c1.

In what follows, we use induction method to show that
(
Ukj , T k

)
∈ BUj ,T

ε1 for all k > k1. Since ψ(·) in

Definition 4.2 is concave, it holds that for any k,

ψ′(L̃k,k−1τ,α − L∗τ,α)
(

(L̃k,k−1τ,α − L̃∗τ,α)− (L̃k+1,k
τ,α − L̃∗τ,α)

)
≤ ψ(L̃k,k−1τ,α − L̃∗τ,α)− ψ(L̃k+1,k

τ,α − L̃∗τ,α); (4.60)

on the other side, from the previous paragraph we see that (Uk1j , T k1) ∈ BUj ,T
ε1/2

, {Uk1j , T k1 ,Yk1 , T k1−1} ∈
Bε1 ⊂ N , and so (4.56) holds at {Uk1j , T k1 ,Yk1 , T k1−1}. Recall c1 = min{α/2, 1/τ}. From Lemma 4.2 and

the relation between L̃τ and L̃τ,α, we obtain

c1

∥∥∥∆k1+1,k
Uj ,T

∥∥∥2
F
≤ L̃k1,k1−1τ,α − L̃k1+1,k1

τ,α

≤
ψ(L̃k1,k1−1τ,α − L̃∗τ,α)− ψ(L̃k1+1,k1

τ,α − L̃∗τ,α)

ψ′(L̃k1,k1−1τ,α − L̃∗τ,α)

≤ c2

(
ψ(L̃k1,k1−1τ,α − L̃∗τ,α)− ψ(L̃k1+1,k1

τ,α − L̃∗τ,α)
)
· c−12 dist(0, ∂L̃k1,k1−1τ,α ),
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where the second inequality is due to (4.60) while the last one comes from (4.56). Using
√
ab ≤ a+b

2 for

a ≥ 0, b ≥ 0, invoking (4.47) and noticing the range in (4.59), we obtain

√
c1

∥∥∥∆k1+1,k
Uj ,T

∥∥∥
F
≤ c2

2

(
ψ(L̃k1,k1−1τ,α − L̃∗τ,α)− ψ(L̃k1+1,k1

τ,α − L̃∗τ,α)
)

+
c0
2c2

(∥∥∥∆k1,k1−1
Uj ,T

∥∥∥
F

+
∥∥∥∆k1−1,k1−2

Uj ,T

∥∥∥
F

)
<

√
c1ε1
4

+

√
c1ε1
8

<

√
c1ε1
2

,

and so ∥∥∥∆k1+1,∗
Uj ,T

∥∥∥
F
≤
∥∥∥∆k1+1,k1

Uj ,T

∥∥∥
F

+
∥∥∥∆k1,∗

Uj ,T

∥∥∥
F
<
ε1
2

+
ε1
2

= ε1,

namely, (Uk1+1
j , T k1+1) ∈ BUj ,T

ε1 .

Now assume that (Ukj , T k) ∈ BUj ,T
ε1 for k = k1, . . . ,K. This implies that (4.56) is true at {Ukj , T k,Yk, T k−1},

and similarly to the above analysis, we have

√
c1

∥∥∥∆k+1,k
Uj ,T

∥∥∥
F
≤ c2

2

(
ψ(L̃k,k−1τ,α − L̃∗τ,α)− ψ(L̃k+1,k

τ,α − L̃∗τ,α)
)

+
c0
2c2

(∥∥∥∆k,k−1
Uj ,T

∥∥∥
F

+
∥∥∥∆k−1,k−2

Uj ,T

∥∥∥
F

)
, k = k1, . . . ,K.

(4.61)

We then show that (UK+1
j , T K+1) ∈ BUj ,T

ε1 . Summing (4.61) for k = k1, . . . ,K yields

√
c1

K∑
k=k1

∥∥∥∆k+1,k
Uj ,T

∥∥∥
F
≤ c2

2

(
ψ(L̃k1,k1−1τ,α − L̃∗τ,α)− ψ(L̃K+1,K

τ,α − L̃∗τ,α)
)

+
c0
2c2

K∑
k=k1

(∥∥∥∆k,k−1
Uj ,T

∥∥∥
F

+
∥∥∥∆k−1,k−2

Uj ,T

∥∥∥
F

)
≤ c2

2

(
ψ(L̃k1,k1−1τ,α − L̃∗τ,α)− ψ(L̃K+1,K

τ,α − L̃∗τ,α)
)

+
c0
c2

K−1∑
k=k1

∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
2c0
c2

∥∥∥∆k1,k1−1
Uj ,T

∥∥∥
F

+
c0
c2

∥∥∥∆k1−1,k1−2
Uj ,T

∥∥∥
F
. (4.62)

Rearranging the terms, noticing (4.59) and noticing that c2
c0
>
√
c1

16 , we have

15
√
c1

16

K∑
k=k1

∥∥∥∆k+1,k
Uj ,T

∥∥∥
F
≤
√
c1
4
ε1 +

√
c1ε1
16

+

√
c1ε1
16

,

and so ∥∥∥∆K+1,∗
Uj ,T

∥∥∥
F
≤

∥∥∥∆K+1,k1
Uj ,T

∥∥∥
F

+
∥∥∥∆k1,∗

Uj

∥∥∥
F

<

K∑
k=k1

∥∥∥∆k+1,k
Uj ,T

∥∥∥
F

+
ε1
2

<
3ε1
8

+
ε1
2
< ε1.

Thus induction method implies that (Ukj , T k) ∈ BUj ,T
ε1 for all k ≥ k1, i.e., {Ukj , T k,Yk, T k−1} ∈ N , k ≥ k1.

As a result, (4.61) holds for all k ≥ k1, so does (4.62). Therefore, letting K →∞ in (4.62) yields

∞∑
k=1

∥∥∥∆k+1,k
Uj ,T

∥∥∥
F
< +∞,

which shows that {Ukj , T k} is a Cauchy sequence and hence converges. Since (U∗j , T ∗) in Theorem 4.1 is a

limit point, the whole sequence converges to (U∗j , T ∗). This completes the proof.

5 Numerical Experiments

We evaluate the robustness of model (2.5) solved by HQ-ADMM in this section using synthetic and real data.

The least squares based model (2.2) is used as a comparison. (2.2) is solved by the alternating least squares

21



(ALS) method. All the computations are conducted on an Intel i7-7770 CPU desktop computer with 32 GB of

RAM. The supporting software is Matlab R2015b. The Matlab package Tensorlab [45] is employed for tensor

operations. The Matlab code of HQ-ADMM is available at https://github.com/yuningyang19/hqadmm_

rota.

The stopping criterion for HQ-ADMM is
∣∣∣∥∥qσk+1;Uk+1

j

y
−A

∥∥
F
−
∥∥qσk;Ukj

y
−A

∥∥
F

∣∣∣ ≤ 10−6 or k ≥ 2000

for practical reasons. The parameter α in HQ-ADMM is set to 10−8, τ ∈ {0.7, 1}; δ = 0.05.

Synthetic data We consider randomly generated tensors contaminated by different kinds of noises listed in

the following

• A = A0/ ‖A0‖F + β · N/‖N‖F , where A0 is the ground truth tensor specified later, and N denotes the

Cauchy noise, with scale parameter δ = 0.05. β = 0.5;

• A = A0/ ‖A0‖F +O. Here O denotes sparse outliers, with sparsity 0.1, i.e., 10% of the entries of A0 are

contaminated by outliers. Outliers are drawn uniformly from [0, 10];

• A = A0/ ‖A0‖F + β · N/‖N‖F , where N denotes Gaussian noise, with β = 0.1.

The ground truth tensor A0 =
∑R
i=1 σi

⊗d
j=1 uj,i, where Uj are randomly drawn from a uniformly distribution

in [−1, 1]. Uj , d − t + 1 ≤ j ≤ d, are then made to be columnwisely orthonormal, while the remaing Uj are

columnwisely normalized. σi are drawn from Gaussian distribution. For convenience, we set d = 3 or 4,

n1 = · · · = nd, and R = 5 in all the experiments in this part. The initializers for HQ-ADMM and ALS are

randomly generated. The reported results are averaged over 50 instances for each case.

Table 1: Comparison of HQ-ADMM for (2.5) and ALS

for (2.2) when the ground truth tensor is contaminated

by Cauchy noise.

HQ-ADMM for (2.5) ALS for (2.2)

n (d, t) err. iter. time err. iter. time

10 (3, 1) 5.57E-02 395 0.16 4.29E-01 149 0.04

20 (3, 1) 4.66E-02 315 0.21 4.20E-01 147 0.05

50 (3, 1) 4.30E-02 45 0.09 4.33E-01 309 0.27

80 (3, 1) 3.05E-02 71 0.77 4.31E-01 190 1.16

90 (3, 1) 3.04E-02 47 0.76 4.29E-01 152 1.28

100 (3, 1) 3.21E-02 86 1.62 4.41E-01 210 1.82

10 (3, 2) 5.25E-02 453 0.19 3.84E-01 33 0.01

20 (3, 2) 2.93E-02 137 0.10 4.12E-01 17 0.01

60 (3, 2) 2.25E-02 200 1.03 4.42E-01 11 0.04

80 (3, 2) 2.20E-02 58 0.60 4.18E-01 11 0.07

90 (3, 2) 2.02E-02 136 2.11 4.33E-01 14 0.11

100 (3, 2) 2.57E-02 96 1.84 4.23E-01 10 0.09

80 (3, 3) 1.39E-02 35 0.34 1.41E+00 2 0.02

100 (3, 3) 2.08E-02 89 1.69 1.41E+00 2 0.03

10 (4, 1) 3.86E-02 64 0.08 4.12E-01 341 0.21

20 (4, 1) 7.98E-02 40 0.16 4.45E-01 613 1.02

30 (4, 1) 7.37E-02 28 0.71 4.25E-01 485 6.55

40 (4, 1) 5.08E-02 25 1.62 4.47E-01 637 16.68

10 (4, 2) 4.98E-02 75 0.09 4.56E-01 299 0.19

20 (4, 2) 1.11E-01 53 0.20 4.73E-01 527 0.94

30 (4, 2) 7.33E-02 36 1.09 4.76E-01 394 6.06

40 (4, 2) 6.85E-02 27 1.75 4.70E-01 705 19.25

10 (4, 3) 9.57E-02 100 0.12 4.83E-01 664 0.41

20 (4, 3) 8.60E-02 69 0.27 5.00E-01 707 1.04

30 (4, 3) 1.29E-01 35 0.98 5.18E-01 645 9.72

40 (4, 3) 1.40E-01 30 1.86 5.41E-01 878 22.68

Table 2: Comparison of HQ-ADMM for (2.5) and ALS

for (2.2) when the ground truth tensor is contaminated

by outliers.

HQ-ADMM for (2.5) ALS for (2.2)

n (d, t) err. iter. time err. iter. time

10 (3, 1) 4.54E-01 89 0.04 1.40E+00 150 0.04

20 (3, 1) 5.95E-02 46 0.04 1.41E+00 251 0.09

50 (3, 1) 1.99E-02 31 0.10 1.41E+00 757 0.95

80 (3, 1) 2.21E-02 27 0.55 1.41E+00 1456 12.17

90 (3, 1) 3.52E-02 28 0.70 1.41E+00 1204 11.59

100 (3, 1) 2.82E-02 31 0.91 1.41E+00 1390 15.44

10 (3, 2) 4.32E-01 56 0.03 1.41E+00 120 0.04

20 (3, 2) 6.13E-02 35 0.04 1.41E+00 314 0.15

50 (3, 2) 7.50E-03 25 0.07 1.41E+00 592 0.69

80 (3, 2) 7.40E-03 25 0.42 1.41E+00 820 6.05

90 (3, 2) 6.66E-03 26 0.65 1.41E+00 828 7.80

100 (3, 2) 8.16E-03 27 0.90 1.41E+00 928 11.99

80 (3, 3) 6.08E-03 25 0.42 1.41E+00 2 0.02

100 (3, 3) 6.72E-03 27 0.80 1.41E+00 2 0.04

10 (4, 1) 1.04E-01 76 0.23 1.42E+00 187 0.14

20 (4, 1) 2.91E-02 34 0.28 1.41E+00 439 1.02

30 (4, 1) 4.40E-02 28 1.06 1.41E+00 1173 18.40

40 (4, 1) 6.09E-02 27 2.00 1.41E+00 885 26.09

10 (4, 2) 1.31E-01 67 0.08 1.41E+00 246 0.16

20 (4, 2) 5.23E-02 28 0.13 1.41E+00 729 1.12

30 (4, 2) 6.17E-02 27 0.85 1.41E+00 697 12.68

40 (4, 2) 3.36E-02 29 1.88 1.41E+00 1047 29.12

10 (4, 3) 1.40E-01 64 0.08 1.41E+00 208 0.13

20 (4, 3) 8.14E-02 29 0.12 1.41E+00 622 0.92

30 (4, 3) 8.45E-02 38 1.15 1.41E+00 900 14.85

40 (4, 3) 1.13E-01 30 2.12 1.41E+00 846 24.38
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Comparisons of HQ-ADMM for solving (2.5) and ALS for solving (2.2) with Cauchy noise are reported

in Table 1, where err. = ‖A0/ ‖A0‖F −A∗/ ‖A∗‖F ‖F , with A∗ =
q
σ∗;U∗j

y
the tensor generated by the

algorithm. “iter.’ denotes the number of iterates, and “time” stands for the CPU time consumed by the

algorithm. From the “err.” columns, we see that in all cases, HQ-ADMM performs much better than ALS;

in particular, “err.” of HQ-ADMM is smaller than 0.1 in almost all cases, which confirms that the proposed

model and algorithm are consistent with Cauchy noise. Considering the efficiency, we see that HQ-ADMM

all converges within 500 iterates, and it consumes 1 ∼ 2 seconds. Comparing with ALS, when d = 3, ALS is

more efficient in most cases, while HQ-ADMM outperforms ALS when d = 4. Thus HQ-ADMM is efficient.

The cases contaminated by outliers are reported in Table 2, from which we can still observe that HQ-

ADMM for solving (2.5) is consistent with outliers, owing to the redescending property of the Cauchy loss.

HQ-ADMM outperforms ALS in terms of the iterates and CPU time.

The cases with Gaussian noise are reported in Table 3. It is known that model (2.2) is consistent with

Gaussian noise, which can be seen from the table. We also observe that (2.5) is consistent with Gaussian noise

from the third column, although the results are slightly worse than (2.2), as reported in the table. However,

it is interesting to see that in some cases, namely, (n, d, t) = (80, 3, 1), (30, 4, 1), (40, 4, 1), (20, 4, 2), (30, 4, 3),

HQ-ADMM for (2.5) is slightly better than ALS for (2.2). HQ-ADMM still shows its efficiency, and is more

stable than ALS, as ALS needs much more iterates when t = 1.

Table 3: Comparison of HQ-ADMM for (2.5) and ALS for (2.2) when the ground truth tensor is contaminated by Gaussian

noise.

HQ-ADMM for (2.5) ALS for (2.2)

n (d, t) err. iter. time err. iter. time

10 (3, 1) 4.51E-02 198 0.09 4.09E-02 676 0.18

20 (3, 1) 3.62E-02 53 0.04 2.73E-02 564 0.19

50 (3, 1) 2.24E-02 30 0.08 2.18E-02 550 0.58

80 (3, 1) 2.14E-02 34 0.57 2.72E-02 716 5.78

90 (3, 1) 2.70E-02 33 0.79 2.44E-02 696 6.69

100 (3, 1) 2.79E-02 34 0.98 2.28E-02 712 7.75

10 (3, 2) 3.89E-02 296 0.13 3.48E-02 16 0.01

20 (3, 2) 2.15E-02 65 0.05 1.87E-02 17 0.01

50 (3, 2) 7.99E-03 24 0.07 7.67E-03 14 0.02

80 (3, 2) 4.90E-03 24 0.40 4.82E-03 20 0.15

90 (3, 2) 4.68E-03 25 0.60 4.34E-03 41 0.40

100 (3, 2) 3.85E-03 24 0.72 3.85E-03 7 0.10

10 (4, 1) 1.01E-01 673 0.83 8.62E-02 613 0.42

20 (4, 1) 7.46E-02 67 0.31 6.21E-02 699 1.33

30 (4, 1) 6.22E-02 29 1.05 6.61E-02 692 11.90

40 (4, 1) 8.68E-02 27 1.92 1.11E-01 858 24.49

10 (4, 2) 1.39E-02 45 0.15 1.74E-02 20 0.02

20 (4, 2) 4.75E-03 23 0.20 9.09E-03 17 0.05

30 (4, 2) 5.42E-03 26 0.91 2.71E-03 14 0.25

40 (4, 2) 2.26E-03 26 2.10 1.96E-03 41 1.24

10 (4, 3) 1.29E-02 48 0.17 1.23E-02 10 0.01

20 (4, 3) 4.93E-03 24 0.21 4.73E-03 10 0.04

30 (4, 3) 2.72E-03 25 0.98 2.88E-03 30 0.53

40 (4, 3) 1.95E-03 26 2.15 1.92E-03 21 0.67

Table 4: HQ-ADMM for video surveillance with different R. The last column shows the compressed ratio of the compressed

background factors D,U, V to the sum of background frames Br, 1 ≤ r ≤ l.

R iter. time
R(1000+144+176)

1000∗144∗176

10 43 33.86 0.05%

20 31 26.02 0.1%

30 26 21.58 0.16%

40 43 38.13 0.21%

50 31 28.78 0.26%
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: Some extracting frames by HQ-ADMM from the video airport. Column (a): The original frames;

Columns (b) and (c): Extracted with R = 10; Columns (d) and (e): Extracted with R = 30; Columns (f) and

(g): Extracted with R = 50.

Simultaneous foreground-background extraction and compression Foreground-background extrac-

tion finds applications in video surveillance, where the aim is to detect moving objects such as human beings

from static background. As the background changes little in the video, it is reasonable to project the back-

ground frames to a low dimensional subspace to compress the data. We show how this problem can be fitted

into our model (2.5). Assume that a gray video consists of l frames, each of size m × n, resulting into a

third-order tensor A ∈ Rl×m×n. Let Ai denotes its i-th frame. Our goal is to decompose it as Ar = Br + Fr,

in which Br and Fr denote the back-/foreground frames, respectively. Under the assumption that Br’s lie in

a low dimensional subspace with commonalities, we write Br = UDrV
> =

∑R
i=1(Dr)iiuiv

>
i , 1 ≤ r ≤ l, where

U = [u1, . . . ,uR], V = [v1, . . . ,vR] are orthonormal matrices, Dr is diagonal, and R is a parameter. On the

other hand, the foreground is often sparse and can be recognized as outliers. Therefore, the Cauchy loss can

be employed to control the effect of outliers. Denoting

φδ(Ar − UDrV
>) :=

∑m,n

s=1,t=1

δ2

2
log
(

1 +
(
(Ar)st − (UDrV

>)st
)2
/δ2
)
,

the problem can be modeled as

minU>U=I,V >V=I

∑l

r=1
φδ(Ar − UDrV

>).

If we further denote D ∈ Rl×R where the r-th row is exactly the diagonal entries of Dr, the it can be written

in the form of (2.5), i.e.,

minU>U=I,V >V=I Φδ (A− JD,U, V K) ,

where σ is absorbed into D.

The tested video “airport” was downloaded from http://perception.i2r.a-star.edu.sg/bk_model/

bk_index.html. The video consists of 4583 frames, each of size 144 × 176. We use 1000 frames, resulting

into a tensor A ∈ R1000×144×176. A is then normalized for conveniently choosing parameters, where we set

δ = 0.05, τ = 1, and α = 10−8. The parameter R varies in {10, 20, 30, 40, 50}. The quantitative results
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are reported in Table 4, in which we can see that HQ-ADMM stops around 30 ∼ 40 iterates, and consumes

around 30 seconds, which demonstrates the efficiency of the algorithm. The last column shows the compressed

ratio of the compressed background factors D,U, V to the sum of background frames Br, 1 ≤ r ≤ l, from

which we observe that the ratio is very high, resulting into low storage space. Some extracted frames with

R ∈ {10, 30, 50} are illustrated in Fig. 2. From the figures, we see that even when R = 10, HQ-ADMM can

successfully seperate the back-/foreground; of course, when R ≥ 30, the extrated frames are of higher quality,

in that the background frames reconstructed from UDrV
> are more clear.

6 Conclusions

Heavy-tailed noise and outliers often contaminate real-world data. In the context of tensor canonical polyadic

approximation problem with one or more latent factor matrices having orthonormal columns, most existing

models rely on the least squares loss, which is not resistant to heavy-tailed noise or outliers. To gain robustness,

a Cauchy loss based robust orthogonal tensor approximation model was proposed in this work. To efficiently

solve this model, by exploring its half-quadratic property, a new algorithm, termed as HQ-ADMM, was

developed under the framework of alternating direction method of multipliers. Its global convergence was

then established, thanks to some nice properties of the Cauchy loss. Numerical experiments on synthetic as

well as real data demonstrate the efficiency and robustness of the proposed model and algorithm. In future

work, it would be interesting to incorporate other robust losses in the orthogonal tensor approximation problem

and to apply HQ-ADMM to solve other Cauchy loss based problems, as noted in Remark 3.1.

References

[1] A. Anandkumar, P. Jain, Y. Shi, and U. N. Niranjan. Tensor vs. matrix methods: Robust tensor

decomposition under block sparse perturbations. In Artificial Intelligence and Statistics, pages 268–276,

2016. 6

[2] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and tame prob-

lems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math.

Program., 137(1-2):91–129, 2013. 17

[3] Al. Beaton and J. Tukey. The fitting of power series, meaning polynomials, illustrated on band-

spectroscopic data. Technometrics, 16(2):147–185, 1974. 5

[4] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and

nonsmooth problems. Math. Program., 146(1-2):459–494, 2014. 12, 17, 18

[5] J. Chen and Y. Saad. On the tensor SVD and the optimal low rank orthogonal approximation of tensors.

SIAM J. Matrix Anal. Appl., 30(4):1709–1734, 2009. 2, 3

[6] L. Cheng, Y.-C. Wu, and H. V. Poor. Probabilistic tensor canonical polyadic decomposition with orthog-

onal factors. IEEE Trans. Signal Process., 65(3):663–676, 2016. 6

[7] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan. Tensor

decompositions for signal processing applications: From two-way to multiway component analysis. IEEE

Signal Process. Mag., 32(2):145–163, 2015. 1

[8] A. L. F. De Almeida, A. Y. Kibangou, S. Miron, and D. C. Araújo. Joint data and connection topology
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