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Hermite multiwavelets for manifold-valued data
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Abstract

In this paper we present a construction of interpolatory Hermite mul-
tiwavelets for functions that take values in nonlinear geometries such as
Riemannian manifolds or Lie groups. We rely on the strong connection be-
tween wavelets and subdivision schemes to define a prediction-correction
approach based on Hermite subdivision schemes that operate on manifold-
valued data. The main result concerns the decay of the wavelet coefficients:
We show that our manifold-valued construction essentially admits the same
coefficient decay as linear Hermite wavelets, which also generalizes results
on manifold-valued scalar wavelets.

Keywords: interpolatory Hermite wavelets, subdivision schemes, coeffi-
cient decay, manifold-valued data
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1 Introduction

Wavelets are one of the most important tools for the analysis of signals and im-
ages, as they allow to study local properties of functions at different resolutions.
In the last decades a lot of different types of one or multidimensional wavelets
as well as their properties have been studied; see [8, 28] for an overview. The
literature on wavelet transforms for functions that take values in nonlinear ge-
ometries, such as Riemannian manifolds or Lie groups, is not as exhaustive as in
the linear case. In the manifold setting, the aim is to construct processes which
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are intrinsic to the underlying geometry, for example by preserving invariances
with respect to certain transformation groups.

The idea of considering geometric data goes back to [37], and has led to a
series of results concerning convergence and smoothness of subdivision schemes,
starting with the work of [41, 42], the coefficient decay for interpolatory wavelets
[17], and the definability and stability of multiscale transforms [15, 18].

In this paper, we aim at extending this line of research by defining and analyz-
ingmultiwavelets for manifold-valued data. Linear multiwavelets are a generaliza-
tion of classical (scalar) wavelets and are obtained by allowing several function in
the construction of multiresolution analyses. They are based on a multi-scaling
function that satisfies a vector refinement equation with matrix-valued rather
than scalar coefficients. Multiwavelets can have advantageous properties, for ex-
ample, for constructing bases with short support and high approximation [27].

This paper focuses on multiwavelets of Hermite-type, meaning that the multi-
scaling functions satisfy Hermite conditions [6, 7, 38]. Such wavelet systems
can find applications in contexts where Hermite data need to be processed, for
example for compression or denoising reasons.

In particular, starting from an interpolatory Hermite subdivision scheme re-
producing elements in a given space, for example the space of polynomials or
exponential functions, it is always possible to realize a biorthogonal wavelet sys-
tem, where the associated wavelet operator possesses the property of “cancelling”
those elements [7]. This is the usually required vanishing moment property as-
suring good compression capabilities to the wavelet system.

We use the mentioned tight connection between subdivision schemes and
wavelets to obtain manifold-valued Hermite wavelet schemes, using the construc-
tion presented in [31, 32]. This works in a similar fashion as the scalar construc-
tions of [17, 18].

The main result of this paper is a wavelet coefficient decay property of such
manifold-valued wavelets, which mimics the linear case [6] and can be considered
as an extension of [17] to Hermite-type interpolatory wavelets.

The paper is organized as follows. In Section 2 and Section 3 we introduce
the linear tools necessary to construct Hermite-type wavelets, mainly focusing on
Hermite subdivision schemes. Section 4 introduces linear Hermite multiwavelets
based on [7]. We reinterpret their constructions in terms of operators rather than
symbols, highlighting the similarities with the scalar multiscale transforms of
[18]. Section 5 introduces our Hermite prediction-correction scheme for manifold-
valued data, which is a direct generalization of [7] and makes use of natural tools
in nonlinear geometries such as the exponential map and the parallel transport
operator. In this section we also prove that the wavelet coefficients at level n
decay as 2−2n for dense enough input data, showing that manifold-valued Hermite
wavelets have similar properties as their linear counterparts [6].

2



2 Preliminaries

In this paper we are concerned with wavelets for functions f : R → M , where M
is a manifold. The main examples of manifolds we consider are surface in Rm and
Lie groups. To construct wavelets for manifold-valued functions, we also include
information about the first derivatives f ′.

In the linear version of this problem, the data are of the form (f(x), f ′(x))T ∈
Rm × Rm for x ∈ R. To simplify notation, we denote by V = Rm, so that the
data lies in V 2. Throughout this text, m always denotes the dimension of V .

Elements in V 2 are denoted by bold lower case letters p. We are also concerned
with L(V )2×2, where L(V ) is the space of all linear functions V → V . Elements of
L(V )2×2 are denoted by bold upper case letters A. The space of all vector-valued
sequences Z → V 2 is denoted by ℓ(Z, V 2). Elements of ℓ(Z, V 2) are again denoted
by bold lower case letters p = (pj : j ∈ Z). We also consider the matrix-valued
sequence space ℓ(Z, L(V )2×2). Elements of this space are again denoted by bold
upper case letters A = (Aj : j ∈ Z).

We introduce norms on ℓ(Z, V 2) and ℓ(Z, L(V )2×2):

‖p‖∞ = sup
j∈Z

|pj |∞ (1)

‖A‖∞ = sup
j∈Z

|Aj|∞,

where | · |∞ denotes the infinity-norm in V 2 (resp. L(V )2×2). The space consisting
only of bounded sequences with respect to the norms (1) are denoted by ℓ∞(Z, V 2)
and ℓ∞(Z, L(V )2×2). We further consider ℓ0(Z, L(V )2×2), which is the space of
finitely supported sequences in ℓ(Z, L(V )2×2).

By C(R, V ) we denote the space of continuous functions R → V , while
Cu(R, V ) denotes the space of uniformly continuous and bounded functions. We
further consider the space of continuously differentiable functions C1(R, V ) and
the space C1

u(R, V ) of functions f ∈ C1(R, V ) with f ′ ∈ Cu(R, V ).
The decomposition and reconstruction of data using filter banks is closely

related to wavelets and subdivision schemes. A detailed discussion of the connec-
tion of filter banks and wavelets, especially in the setting of biorthogonal wavelets
that we analyze, can be found in [39, 40].

We consider filters or masks A[n] ∈ ℓ0(Z, L(V )2×2), n ∈ N, of the form

A[n] =

(
a
[n]
00 a

[n]
01

a
[n]
10 a

[n]
11

)
, (2)

where a
[n]
00 ,a

[n]
10 ,a

[n]
01 ,a

[n]
11 ∈ ℓ(Z,R). The entries of A[n] in eq. (2) are to be under-

stood as a
[n]
00 · I, etc., where I denotes the identity matrix. Through this form of

A[n], results for Hermite subdivision schemes with V = R can be directly applied
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to our set up. An important mask is the delta sequence δ = (δj : j ∈ Z) given
by δ0 = I and δj = 0 for j ∈ Z\{0}.

Let p ∈ ℓ(Z, V 2) and j ∈ Z. Given a mask A[n], the associated reconstruction
or subdivision operator of level n, S

A
[n] : ℓ(Z, V 2) → ℓ(Z, V 2), is given by

(S
A

[n]p)j =
∑

k∈Z

A
[n]
j−2kpk, (3)

while the decomposition or wavelet operator D
A

[n] is given by

(D
A

[n]p)j =
∑

i∈Z

A
[n]
i−2jpi.

We also need the shift operator L : ℓ(Z, V 2) → ℓ(Z, V 2) defined as

(Lp)i = pi+1. (4)

The reconstruction and decomposition operators satisfy the following well-known
properties:

S
A

[n]L = L2S
A

[n] and D
A

[n]L2 = LD
A

[n] (5)

3 Linear Hermite subdivision schemes

Consider a sequence of finitely supported masks (A[n] : n ≥ 0). A linear Hermite
subdivision scheme S(A[n] : n ≥ 0) is the iterative procedure of constructing
sequences p[n] from an initial sequence p[0] via the rule

Dn+1p[n+1] = S
A

[n]Dnp[n], n ∈ N. (6)

Here D denotes the D = diag (1, 1/2) ∈ L(V )2×2, where a constant C is to be
understood as C · I. Since we associate p[n] with pairs of function and derivative
each evaluated on the grid 2−n

Z, the matrix D and its powers arise because of
the chain rule.

Schemes of the form eq. (6) are often called level-dependent as opposed to
stationary. In stationary subdivision A[n] = A is satisfied for a fixed mask A,
i.e. the mask does not depend on the iteration level n.

In this paper we are mostly concerned with interpolatory schemes : A scheme
satisfying eq. (6) is called interpolatory if p

[n+1]
2j = p

[n]
j for j ∈ Z, n ∈ N. This

property relates to the sequence of masks (A[n], n ∈ N) satisfying A
[n]
2j = Dδj, j ∈

Z, n ∈ N. In terms of operators the interpolation property can be written as
DδSA

[n] = D.
A Hermite subdivision scheme is called C1-convergent if for every initial data

p[0] ∈ ℓ∞(Z, V 2) there exists a function Φ = [Φk]
1
k=0 : R → V 2 such that the

sequence p[n] satisfies

lim
n→∞

sup
j∈Z

∣∣∣∣p
[n]
j −Φ

(
j

2n

)∣∣∣∣
∞

= 0,
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and where Φ0 ∈ C1
u(R, V ) with Φ′

0 = Φ1. We further assume that there exists at
least one sequence p[0] ∈ ℓ(Z, V 2) such that the resulting limiting function satisfies
Φ 6= 0. Results on the convergence of linear Hermite subdivision schemes can be
found, for example, in [10, 11, 13, 19, 21, 29] for the stationary case, in [3, 26] in
the level-dependent case, and in [4, 20, 33, 34] for smoothness of high order.

When applying a C1-convergent scheme to the delta sequence as initial data
it converges to the so-called basic limit function

F =

(
Φ0 Φ1

Φ′

0 Φ′

1

)
,

see [11] for the case of Hermite schemes. If we consider C1-convergent schemes
starting at level ℓ, i.e. S(A[n+ℓ] : n ≥ 0) for ℓ ≥ 0 applied to the delta sequence,
we obtain a sequence of basic limit functions F [ℓ] with F [0] = F . The basic limit
functions at different levels are connected via a refinement equation, which allows
to use them for the construction of multiresolution analyses [6, 7].

Closely related to the convergence of subdivision schemes and the refinement
property is the property of reproducing certain spaces [2, 3, 25, 29]. Here we
consider Hermite subdivision schemes that reproduce at least a 2-dimensional
space of polynomials and/or exponentials. Since reproduction of constants is a
necessary condition for convergence, the space to be reproduced should either
contain

span{1, x} or span{1, eλx}, (7)

where λ ∈ C \ {0}. Some examples of Hermite schemes reproducing such spaces
can be found in [2, 4, 5, 25, 26]. In the following, we write W to mean either one
of the spaces in (7).

The reproduction property can be formulated in terms of the spectral condition
[2, 12, 29] or sum rules [21]:

S
A

[n]Dnv
[n]
f = Dn+1v

[n+1]
f , f ∈ W, n ∈ N.

where v
[n]
f is the vector-valued sequences

v
[n]
f ;j =

(
f(2−nj)
f ′(2−nj)

)
, j ∈ Z.

defined by a function f ∈ C1(R).

4 Linear wavelets from interpolatory Hermite

subdivision schemes

In [7] multiwavelets are constructed from linear Hermite subdivision schemes and
[6] provides an estimate on the wavelet coefficient decay. These papers rely on
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the symbol of the matrix mask, i.e., the matrix-valued Laurent polynomials

A[n](z) :=
∑

k∈Z

A
[n]
k zk, z ∈ C, (8)

and A[n] ∈ ℓ0(Z, L(V )2×2). To generalize the results of [6, 7] to the manifold-
valued case we rewrite the necessary constructions in terms of operators rather
than symbols.

We consider sets of level-dependent filters {A[n],B[n], Ã
[n]
, B̃

[n]
, n ∈ N},

where Ã
[n]

and B̃
[n]

are the filters associated to the decomposition of data and
A[n] as well as B[n] denote filters associated to the reconstruction.

Definition 1. Given a set of level-dependent filters {A[n],B[n], Ã
[n]
, B̃

[n]
, n ∈

N} we say that they form a biorthogonal system if the following conditions are
satisfied:

D(Ã[n])TSA
[n] = D(B̃[n])TSB

[n] = id,

D(Ã[n])TSB
[n] = D(B̃[n])TSA

[n] = 0,

for all n ∈ N.

The biorthogonal system conditions of Definition 1 are exactly the biorthog-
onal system conditions formulated in terms of symbols in [7], as proved in the
following Proposition.

Proposition 2. The biorthogonal system conditions of Definition 1 are exactly
the biorthogonal system conditions formulated in terms of symbols in [7].

Proof. The biorthogonal system conditions in terms of symbols of [7, Eq. (6)]
are:

(Ã
[n]
)♯(z)A[n](z) + (Ã

[n]
)♯(−z)A[n](−z) = 2I,

(Ã
[n]
)♯(z)B[n](z) + (Ã

[n]
)♯(−z)B [n](−z) = 0,

(B̃
[n]
)♯(z)A[n](z) + (B̃

[n]
)♯(−z)A[n](−z) = 0,

(B̃
[n]
)♯(z)B[n](z) + (B̃

[n]
)♯(−z)B [n](−z) = 2I.

where (Ã
[n]
)♯(z) = (A[n])T (z−1) (see the definition of the symbol (8)). We show

that the first condition is the same as our first operator condition (Definition 1);
the rest can be proved analogously.
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We compute the symbol from the first equation:

2I =
∑

i,j

(Ã
[n]
)Ti z

−iA
[n]
j zj +

∑

i,j

(Ã
[n]
)Ti (−z)−iA

[n]
j (−z)j

=
∑

i,j

(1 + (−1)i+j)(Ã
[n]
)Ti A

[n]
j zj−i

=
∑

k

(∑

i

(1 + (−1)k)(Ã
[n]
)Ti A

[n]
i+k

)
zk

This implies
∑

i

(1 + (−1)k)(Ã
[n]
)Ti A

[n]
i+k =

{
2I if k = 0,

0 if k 6= 0.

In particular

∑

i

(Ã
[n]
)Ti A

[n]
i+k =

{
I if k = 0,

0 if k 6= 0 and k is even.
(9)

Now the equation using operators is

(D(Ã[n])TSA
[n]c)j =

∑

i∈Z

(Ã[n])Ti−2j(SA
[n]c)i =

∑

i,k

(Ã[n])Ti−2jA
[n]
i−2kck

=
∑

k

(∑

i

(Ã[n])Ti−2jA
[n]
i−2k

)
ck =

∑

k

(∑

r

(Ã[n])Tr A
[n]
r+2(j−k)

)
ck

Applying (9) we see that

(D(Ã[n])TSA
[n]c)j = cj .

Thus D(Ã[n])TSA
[n] = id.

Remark 3. From the biorthogonal filter conditions (Definition 1), it follows that

if A[n] satisfies the W -spectral condition then B̃
[n]

satisfies the W -vanishing mo-
ment condition, i.e. elements of W are canceled in the decomposition of data:
D

(B̃
[n]

)T
Dn+1v

[n+1]
f ;k = 0 for f ∈ W .

Indeed, if f ∈ W , then

S
A

[n]Dnv
[n]
f ;k = Dn+1v

[n+1]
f ;k =⇒ D(B̃[n])TD

n+1v
[n+1]
f ;k = D(B̃[n])TSA

[n]Dnv
[n]
f ;k = 0.

See [7] for more details on the relation between spectral and vanishing moment
conditions.

For a given level-dependent biorthogonal wavelet system {A[n],B[n], Ã
[n]
, B̃

[n]
, n ∈

N} we rewrite the discrete wavelet transform formula, for the decomposition and
the reconstruction, in terms of the respective operators:

7



Definition 4. Let N ∈ N and c[N ] ∈ ℓ(Z, V 2). For n = N − 1, . . . , 0, the
decomposition scheme reads as

c[n] = D(Ã[n])T c
[n+1],

d[n] = D(B̃[n])T c
[n+1].

Repeated application of the decomposition scheme leads to coarse data c[0]

and wavelet coefficients d[0], . . . ,d[N−1]. One can reconstruct the data c[n] via the
reconstruction scheme:

Definition 5. Let N ∈ N and c[0],d[0], . . . ,d[N−1] ∈ ℓ(Z, V 2). For n = 0, . . . , N−
1, the reconstruction scheme reads as:

c[n+1] = S
A

[n]c[n] + S
B

[n]d
[n].

The reconstruction of c[n], n = 1, . . . , N , is called perfect reconstruction, if

S
A

[n]D(Ã[n])T + S
B

[n]D(B̃[n])T = id . (10)

for all n.
Using the biorthogonality conditions (Definition 1), we may write the decom-

position scheme in the following way (compare [18, p.3, eq. (5)]):

c[n] = D(Ã[n])T c
[n+1],

d[n] = D(B̃[n])T

(
c[n+1] − S

A
[n]c[n]

)

= D(B̃[n])T

(
id−S

A
[n]D(Ã[n])T

)
c[n+1]. (11)

4.1 Prediction-correction scheme

For the construction of non-linear multiresolution analyses, we restrict ourselves
to a special case of biorthogonal wavelet systems, namely prediction-correction
schemes. These schemes are typically associated with an interpolatory subdivi-
sion operator S

A
[n] (predictor), i.e. an operator satisfying

DδSA
[n] = D.

To obtain the other operators, we use the prediction-correction scheme as
defined in [7, Eq. (25)] in terms of symbols:

B[n](z) = zI, Ã[n](z) = D−1, B̃[n](z) = zD−1(A[n])♯(−z), (12)

again with notation (A[n])♯(z) := (A[n])T (z−1).

Lemma 6. The prediction-correction scheme defined in (12) can be written in
terms of operators in the following way:

8



1. S
B

[n] = L−1Sδ,

2. D(Ã[n])T = D−1Dδ.

3. D(B̃[n])T = DD(Ã[n])TL
(
id−S

A
[n]D(Ã[n])T

)
= DδL

(
id−S

A
[n]D−1Dδ

)

Remark 7. From Lemma 6 it is apparent that the prediction-correction construc-
tion of [7] is a Hermite version of [18, Example 1.1.].

Proof of Lemma 6. The first two parts are immediate from the definition of the
symbol.

To see part (3), we first compute (B̃[n])Tk from its symbol:

(B̃[n])Tk = (−1)1−kA
[n]
1−kD

−1, (13)

see also [7, p. 14]. Therefore

(D(B̃[n])T c)i =
∑

k

(B̃[n])Tk ck+2i =
∑

k

(−1)1−kA
[n]
1−kD

−1ck+2i. (14)

Now compute the other operator, using the first two parts of this lemma and the
interpolation property of A[n]:

(
DD(Ã[n])TL

(
id−S

A
[n]D(Ã[n])T

)
c
)
i
= (DδLc)i − (DδLSA

[n]D
−1Dδc)i

= c2i+1 − (S
A

[n]D
−1Dδc)2i+1

= c2i+1 −
∑

j

A
[n]
−2j+1D

−1(Dδc)i+j

= c2i+1 −
∑

j

A
[n]
−2j+1D

−1c2(i+j)

= c2i+1 −
∑

j

A
[n]
−2j+1D

−1c2(i+j) +
∑

j

A
[n]
−2jD

−1c2(i+j)+1 − c2i+1

=
∑

k

(−1)kA
[n]
k D−1c2i+1−k

=
∑

k

(−1)1−kA
[n]
1−kD

−1c2i+k.

From (14) the result follows.

Based on Lemma 6, the decomposition scheme (Definition 4) in the prediction-
correction case is given by

c
[n]
i = D−1c

[n+1]
2i (15)

d
[n]
i =

(
c[n+1] − S

A
[n]c[n]

)
2i+1

.

9



We note that due to the interpolation property of S
A

[n], i.e., since S
A

[n]c
[n]
2i =

Dc
[n]
i = c

[n+1]
2i , we have

(
c[n+1] − S

A
[n]c[n]

)
2i
= 0.

Given a function f ∈ C1(R, V ), the discrete data c
[n]
i is interpreted as samples

of the function and its derivative at i/2n. This means

c[n] = Dnv
[n]
f . (16)

Through this interpretation, we obtain the Hermite wavelet transform of f , which
represents f in terms of the decomposition sequence

c[0],d[0],d[1], . . . (17)

The reconstruction scheme in the prediction correction case is

c
[n+1]
2i = Dc

[n]
i (18)

c
[n+1]
2i+1 =

(
S
A

[n]c[n]
)
2i+1

+ d
[n]
i .

This can be used to reconstruction the function f from the decomposition se-
quence (17).

5 Hermite subdivision and wavelets for manifold-

valued data

5.1 Basic constructions in manifolds

By M we denote a smooth, finite-dimensional manifold which carries a linear
connection1. A linear connection allows to compute derivatives along tangent
directions of vector fields (and more general, tensors), see [30, Chapter IV] for an
introduction. The most important examples of such manifolds are Riemannian
manifolds with the Levi-Civita connection [9], and Lie groups with a Cartan-
Schouten connection [1, 36].

AsM carries a linear connection we have notions of parallel transport, geodesics
and the exponential map, which we now define.

By TM we denote the tangent bundle, and by TpM the tangent space at
p ∈ M , which is a linear space. For I = [0, 1], let c : I → M be a smooth
curve such that c(0) = p and c(1) = q with p, q ∈ M . A vector field along c is a
smooth curve V : I → TM such that V(t) ∈ Tc(t)M . Via the linear connection
on M we can differentiate vector fields along c. If in local charts (using Einstein
summation) we have V = vk∂k and ċ = xk∂k, then

DV

dt
:=

(
dvk

dt
+ vixjΓk

ji

)
∂k.

1By this we mean a linear connection on the tangent bundle TM → M , which induces a
covariant derivative in the sense of [30, Section 19.11-19.12].

10



Here the coefficients Γk
ji are uniquely determined by the underlying linear con-

nection. If M is a Riemannian manifold, they are called Christoffel symbols.
The vector field V is called parallel along c if

DV

dt
= 0.

In charts this is a linear ODE, which implies that for a curve c, c(0) = p and
v ∈ TpM there exists a unique vector field V along c such that V(0) = v.

Since ċ is a vector field along c, we define a geodesic to be a curve c satisfying

Dċ

dt
= 0.

There exists a unique geodesic joining two points p and q (if not too far apart).
In the Riemannian case, geodesics locally minimize length.

The exponential map is defined by expp(v) := g(1), where g is the unique
geodesic g satisfying g(0) = p and ġ(0) = v.

We mention that the exponential map is always smooth, but in general not
globally defined. Two important examples for which it is globally defined are
complete Riemannian manifolds and matrix groups [22, 35]. Similarly, the inverse
exponential is generally only smooth if p and q are close together. Manifold-valued
subdivision schemes often rely on the exponential map and therefore results are
usually only valid for “dense enough” input data, see for example [14, 31, 42, 43,
44]. However, there exist convergence results valid for all input data in specific
cases [23, 24, 43]. Dense enough input data is also a necessary assumption for
our results in Section 4.

If c(0) = p and c(1) = q, then the parallel transport along c is the linear map
P q
p (c) : TpM → TqM , v 7→ V(1), where V is the unique parallel vector field along

c with V(0) = v. The map P q
p (c) is an isomorphism, and if M is a Riemannian

manifold, it is also an isometry. The parallel transport satisfies

P q
m(c) ◦ P

m
p (c) = P q

p (c), (19)

where m is a point on c. In this paper we always choose the curve to be the
geodesic joining p and q when we compute the parallel transport. We introduce
the simplified notation

[v]q := P q
p (g)(v),

where v ∈ TpM and g is the geodesic from p to q. Equation (19) now reads
[[v]m]q = [v]q.

5.2 Hermite subdivision schemes for manifold-valued data

and the proximity condition

Following [31], we define a Hermite subdivision operator for manifold-valued data.

11



Definition 8. A Hermite subdivision operator on M is a map T : ℓ(Z, TM) →
ℓ(Z, TM) such that

1. L2T = T L, where L is the left shift operator (4),

2. T has compact support, i.e. there exists N such that (T c)2j and (T c)2j+1

depend only on cj−N , . . . , cj+N , for all j ∈ Z and c ∈ ℓ(Z, TM).

Compare this definition with the properties of linear Hermite subdivision op-
erators (3) and (5).

We use a linear Hermite subdivision operator SA, with maskA of the form (2),
to define a manifold-valued analogue TA satisfying the properties of Definition 8.
This is based on the parallel transport construction of [32].

Choose a base point sequence m ∈ ℓ(Z,M). For c = (p, v)T ∈ ℓ(Z, TM) we
define

(TAc) = c̃, (20)

where c̃ = (p̃, ṽ)T ∈ ℓ(Z, TM) is given by

p̃j = expmj

(
∑

k∈Z

a00j−2k exp
−1
mj
(pk) + a01j−2k[vk]mj

)
,

ṽj =

[
∑

k∈Z

a10j−2k exp
−1
mj
(pk) + a11j−2k[vk]mj

]

p̃j

for j ∈ Z.
From the manifold-valued subdivision operator based on a mask A (20), we

can define a manifold-valued subdivision scheme as the iterative process to con-
struct c[n] ∈ ℓ(Z, TM) from c[0] ∈ ℓ(Z, TM) via

Dn+1c[n+1] = T
A

[n]Dnc[n], n ∈ N, (21)

where (A[n], n ∈ N) is a sequence of masks.
Results for manifold-valued subdivision schemes on topics such as conver-

gence, smoothness, and approximation order, are often derived from their linear
counterparts via a proximity condition [14, 16, 31, 32, 42, 43, 44]. A comparison
between a linear and a manifold-valued operator only makes sense in a chart or
an embedding of M . In this paper we use charts and thus assume that TM ⊂ V 2.

We now define a proximity condition for Hermite subdivision operators as in
[31], which is also to be understood in charts.

Definition 9 (Proximity condition). Let (S
A

[n] : n ∈ N) be a sequence of linear
Hermite subdivision operators. Let (T

A
[n] : n ∈ N) be its manifold-valued analogue

defined via (20). The proximity condition is satisfied if there exists a constant C
such that

∥∥∥∥(SA
[n] − T

A
[n])

(
p
v

)∥∥∥∥
∞

≤ C

∥∥∥∥
(
∆p
v

)∥∥∥∥
2

∞

, n ∈ N, (p, v)T ∈ ℓ(Z, TM),

12



In [32, Corollary 1] it is shown that if the base point sequence is chosen as
either mi = pi or as the geodesic midpoint between pi and pi+1, and the input
data is bounded, then the proximity condition between SA and TA is satisfied.
Therefore, in this paper, we choose the base point sequence as either one of those
sequences.

5.3 Manifold-valued prediction-correction scheme

We define operations ⊕ and ⊖ in manifolds as generalization of +,− in vector
spaces. Indeed, the operations we define are extensions of ⊕,⊖ defined in [18, 43]
for point-data to Hermite data.

We consider point-vector Hermite data (p, v)T and vector-vector data (u0, u1)
T ,

which is an element of TqM ⊕ TqM , with q ∈ M , hence an element of a fiber of
TM ⊕ TM . We define the addition of such elements as:

(
p

v

)
⊕

(
u0

u1

)
:=

(
expp([u0]p)

[v]expp([u0]p) + [u1]expp([u0]p)

)
. (22)

Similarly, for point-vector data (p, v)T , (q, u)T we define their difference as
(
q

u

)
⊖

(
p

v

)
:=

(
exp−1

p (q)

[u]p − v

)
. (23)

The resulting element lies in the fiber TpM ⊕TpM . In Lemma 10 below we show
that these operations satisfy similar properties as the operations on point-data
defined in [43].

Lemma 10. Consider point-vector data a, ã and vector-vector data b. Then we
have the following properties:

a⊕ (ã⊖ a) = ã,

(a⊕ b)⊖ a = [b]p,

with [b]p = ([u0]p, [u1]p)
T when b = (u0, u1)

T .

Proof. Let a = (p, v)T , ã = (p̃, ṽ)T and b = (u0, u1)
T . Then (23) implies

ã⊖ a = (exp−1
p (p̃), [ṽ]p − v)T .

From (22) we see that the first entry of a⊕ (ã⊖ a) is p̃ and

a⊕ (ã⊖ a) = (p̃, [v]p̃ + [[ṽ]p − v]p̃) = (p̃, [ṽ]p̃) = ã.

Similarly, (22) and (23)

(a⊕ b)⊖ a = ([u0]p, v + [u1]p − v) = ([u0]p, [u1]p) = [b]p.

This concludes the proof.

13



Remark 11. If a and b are taken from the same fiber, i.e. v, u0, u1 ∈ TpM , then
(a⊕ b)⊖ a = a.

Based on ⊕,⊖ and (15), (18), we can define a prediction-correction scheme
for manifold-valued Hermite data where the decomposition scheme is

c
[n]
i = D−1c

[n+1]
2i (24)

d
[n]
i =

(
c[n+1] ⊖ T

A
[n]c[n]

)
2i+1

.

Similar to (16), for a function f ∈ C1(R,M), we can interpret c[n] = Dnv
[n]
f and

use (24) as the decomposition sequence of f . The reconstruction scheme is then
defined by

c
[n+1]
2i = Dc

[n]
i (25)

c
[n+1]
2i+1 =

(
T
A

[n]c[n]
)
2i+1

⊕ d
[n]
i .

5.4 Coefficient decay for manifold-valued Hermite wavelets

We now generalize the linear wavelet coefficient decay result of [6] to the manifold-
valued case.

Theorem 12. Let S(A[n] : n ≥ 0) be a C1-convergent interpolatory Hermite
subdivision scheme satisfying the W -spectral condition. Moreover assume that
there exists N ∈ N such that supp(A[n]) ⊆ [−N,N ] for all n ∈ N, and that
supn∈N ‖F

[n]‖∞ < ∞. Let M be a manifold (as described in Section 5.1) and
let f ∈ C1

u(R,M). We assume that c[N ] is dense enough. Then the associated
manifold-valued wavelet coefficients d[n] (24) satisfy the following property: For
R < 1, there exist m ∈ N and a constant C > 0, depending on W,R, f,N,M and
the subdivision scheme, such that

‖d[n]‖∞ ≤ C 2−2n, n ≥ m.

Proof. We first note that for bounded sequences a, b ∈ ℓ∞(Z, TM), the operator
⊖, as defined in (23), satisfies

‖a⊖ b‖
∞

≤ C ‖a− b‖
∞
,

for some constant C. This follows from the linearizations exp−1
p (q) = q − p +

O(‖q− p‖2) and P p
q (u) = u+O(‖q− p‖‖u‖) for q → p and fixed u, compare [32,

Lemma 1]. Therefore, we have

‖d[n]‖∞ =‖c[n+1] ⊖ T
A

[n]c[n]‖∞ ≤ C‖c[n+1] − T
A

[n]c[n]‖∞

≤ C
(
‖c[n+1] − S

A
[n]c[n]‖∞ + ‖S

A
[n]c[n] − T

A
[n]c[n]‖∞

)
, (26)

14



The first part is bounded by C 2−2n whenever n ≥ m by the linear wavelet
decay result of [6, Theorem 11]. For the second part, the proximity condition
(Definition 9) implies:

∥∥S
A

[n]c[n] − T
A

[n]c[n]
∥∥
∞

≤

∥∥∥∥
(

∆ 0
0 1

)
c[n]
∥∥∥∥
2

∞

.

Since c[n] = Dnv
[n]
f , the two component of the right side are given by

(
∆ 0
0 1

)
c[n] =

(
∆f(j/2n)
2−nf ′(j/2n)

)
.

Since f ∈ C1
u(R,M), f ′ is bounded and therefore f is Lipschitz. Thus
∥∥∥∥∆f

(
j

2n

)∥∥∥∥
∞

=

∥∥∥∥f
(
j + 1

2n

)
− f

(
j

2n

)∥∥∥∥
∞

≤ C 2−n

and we obtain the bound

∥∥S
A

[n]c[n] − T
A

[n]c[n]
∥∥
∞

≤

∥∥∥∥
(

∆ 0
0 1

)
c[n]
∥∥∥∥
2

∞

≤ C 2−2n.

This bound together with the estimate (26) and the linear wavelet coefficient
result [6, Theorem 11] concludes the proof.

6 Conclusions

In this paper we have provided a framework for the construction of Hermite-type
multiwavelets in a manifold setting. In particular we have extended to such a
setting a recent result about the decay of the wavelet coefficients [6]. Our ideas
go in the direction of providing efficient representations of Hermite manifold-
valued data as in a traditional wavelet analysis, for example for compression or
denoising applications. Future research will focus on such applications and on
the generalization of the obtained theoretical results to the case of higher order
derivatives.
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