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A POSTERIORI ERROR ESTIMATES FOR THE TIME DEPENDENT NAVIER-STOKES
SYSTEM COUPLED WITH THE CONVECTION-DIFFUSION-REACTION EQUATION

JAD DAKROUB !, JOANNA FADDOUL 2:3, PASCAL OMNES 34 TONI SAYAH 2.

ABsTRACT. In this paper we study the a posteriori error estimates for the time dependent Navier-Stokes
system coupled with the convection-diffusion-reaction equation. The problem is discretized in time using
the implicit Euler method and in space using the finite element method. We establish a posteriori error
estimates with two types of computable error indicators, the first one linked to the space discretization
and the second one to the time discretization. Finally, numerical investigations are performed and
presented.

Keywords: A posteriori error estimation, Navier-Stokes problem, convection-diffusion-reaction equa-
tion, finite element method, adaptive methods.

1. INTRODUCTION

The modeling of physical phenomena arising in engineering and sciences leads to partial differential
equations in space and time, expressing the mathematical model of the problem to be solved. In general,
analytical solutions of these equations do not exist, hence numerical methods such as the finite element
method are employed. A major feature of numerical methods is that they involve different sources of
numerical errors. The focus of this paper is on an a posteriori error analysis for the time dependent
Navier-Stokes system coupled with the convection-diffusion-reaction equation .

The a posteriori analysis was first introduced by Babugka and Rheinboldt [6, 7], and developed, among
other authors, by Verfiirth [31] or Ainsworth and Oden [3]. This analysis controls the overall discretization
error of a problem by providing error indicators that are easy to compute. Once these error indicators
are constructed, their efficiency can be proven by bounding each indicator by the local error, a property
also called optimality. A large amount of work has been made concerning the a posteriori errors. With
no claim to exhaustivity, we can cite for example, Ladevéze [26] for constitutive relation error estimators
for time-dependent non-linear Finite Element analysis, Verfiirth [32] for the heat equation, Bernardi and
Verfiirth [14] for the time dependent Stokes equations, Bernardi and Siili [13] for the time and space
adaptivity for the second-order wave equation, Bergam, Bernardi and Mghazli [8] for some parabolic
equations, Ern and Vohralik [22] for estimations based on potential and flux reconstruction for the heat
equation. A chronological perspective of a posteriori error estimation in various norms for parabolic
problems is presented in [21].

As far as incompressible flow problems are concerned, various works deal with a posteriori error estimators
for mixed finite element discretizations of the Navier-Stokes equations. We may cite Luo and Zhu [27],
El Akkad, El Khalfi and Guessous [20], Bernardi et al. [10], Durango and Novo [19]. Bernardi and Sayah
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establish a posteriori error estimates for the time dependent Stokes [11] and then Navier-Stokes [12] sys-
tems with mixed boundary conditions; for the latter, Nassreddine and Sayah propose improved estimates
in [29]. In the stationary case, Dakroub, Faddoul and Sayah [17] present an a posteriori analysis of the
Newton method applied to the Navier-Stokes problem, while a posteriori error estimations of the Large
Eddy Simulation methodology applied to the Navier-Stokes Problem are given by Nassreddine, Omnes
and Sayah [28].

As far as the coupling of the convection-diffusion equation with other models is concerned, we may cite
Chalhoub et al. [16] who establish optimal a posteriori error estimation of the time dependent convection-
diffusion-reaction equation coupled with the Darcy equation and Agroum [1] for an a posteriori error
analysis for solving the stationary coupled Navier-Stokes problem and convection-diffusion equation.

In this paper we consider the time dependent Navier-Stokes problem coupled with the convection-
diffusion-reaction equation and a discrete formulation based on the Euler scheme in time and on a finite
element scheme for the space discretization, for which Aldbaissy et al. [4] establish an optimal a priori
error estimate. The coupling of both equations is due to the fact that both the viscosity coefficient and
the forcing term in the Navier-Stokes equations depend on the concentration, and to the fact that the
convective velocity in the transport equation is the velocity involved in the Navier-Stokes system. Here,
we establish a posteriori error estimates based on two types of computable error indicators, the first one
being linked to the time discretization and the second one to the space discretization. We also show
corresponding numerical investigations.

Let Q be a connected bounded open domain in R?, d = 2,3, with a Lipschitz continuous boundary 9§
and let [0, 7] be an interval of R. We consider the following system:

%(m,t) —div(2v(C(x,t))D(u)(z,t)) + (u(z,t) - V)u(z,t) + Vp(z,t) =f(x,t,C(x,t)) in Qx]0, T,
%(x,t) + (u(z,t) - V)C(z,t) — aAC(z,t) + 10C(x, t) = g(z,t) in Qx]0, T,
div u(z,t) =0 in Qx]0,T,
u(z,t) =0 on 90x]0,T7,
C(z,t) =0 on 09x]0,T7,
u(z, 0) =g in Q,
C(LIJ,O) = CQ in Q,

(1.1)
where the unknowns are the velocity u, the pressure p and the concentration C in the fluid. Classically,
we have set D(u) = 2(Vu + (Vu)?). The function f represents an external force that depends on the
concentration C' and the function g represents an external concentration source. The viscosity v is the
sum of a constant viscosity v and of an additional term v.(C) that accounts for the variation of the fluid
viscosity as a function of the concentration. In this work, the diffusion coefficient o and the parameter r
are positive constants. To simplify, a homogeneous Dirichlet boundary condition is prescribed on the
concentration C.

The outline of the paper is as follows:

e In Section 2, we introduce some notations and functional spaces that are useful for the study of
the problem.

In section 3, we introduce the variational formulation.

In section 4, we introduce the discrete problem and we recall its main properties.

In section 5, we study the a posteriori error estimation.

Section 6 is devoted to the numerical experiments.

In section 7, we give some conclusions about this work.

2. PRELIMINARIES

In this section, we recall the main notations and results which we will use later on.
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We denote by LP(Q)? the space of measurable functions v such that |v|? is integrable. For v € LP(Q),

the norm is defined by
1/p
13 o= ( [ vtorrax)
We introduce the Sobolev space

wmr(@)f = {v e [L"(Q)]% 0% € [L7(Q)], VIk] < m},
where k = (ki,--- , kq) is a vector of non negative integers, such that |k| = ky + - - - + kg and
||
v = 7]€5 v -
Oxy" -+ - Oxy*

This space is equipped with the semi-norm
1/r

Vo = [ 30 / o*vlrdx |
Q

|k|=m

and is a Banach space for the norm

m 1/r
1% o= (z |v|z,r,9dx) |
=0

When 7 = 2, this space is the Hilbert space H™(2)%. In particular, we consider the following spaces
H(%(Q)d = {V € Hl(Q)de\an = 0}7

1/2
Vi) = vl = (/ Vv2dx) .
Q

The dual of H} ()% is denoted by H~'(Q)%.
We also introduce

equipped with the norm

L3(Q) = {q € LA(Q); / g(x)dx = 0}
Q
and we define the following scalar product in L?()?
(v,w) = / v(x) - w(x)dx, Vv,w e L*(Q)%
Q

Moreover, we shall use the same notation as soon as the integral on the right-hand side has a meaning,
even if v and w are not in L?(2)4. Similar notations are also used for scalar functions instead of vector
valued functions.

2d
Lemma 2.1. Foranyp > 1, whend=1o0r2, orl1 <p< P when d > 3, there exist two positive
constants S, and SY such that
Vv e Hy() || v @< Splviia, (2.1)

and
Vv e HY Q) ||V llzr@< Sy |l vl - (2.2)

Lemma 2.2. When d = 2, for all v € H}(Q)?, we have
1 1/2 1/2
IV @2 < 25 || v I agy VI (2.3)

As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time
interval [a, b] with values in a separable functional space W equipped with a norm || . ||y. For all » > 1
we introduce the space

b
L"(a,b; W) = {f is measurable on ]a, b[ and / | £(2) ||y dt < oo},
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b 1/r
18 ercana= ([ 180 Ty at)
a

L>(a,b; W) = {f is measurable on |a,b[ and sup || £(¢) [|[w< oo},
t€la,b]

equipped with the norm

If r = oo, then

equipped with the norm

£ [ @bwn= sup [ £(£) [[w -
te(a,b]

Remark 2.3. L"(a,b; W) is Banach space if W is a Banach space.
In addition, we define C7(0,T; W) as the space of functions C7 in time with values in W.

We consider the following spaces:
X =H} Q) M =L3(Q) and Y = H}(Q),
and
V ={veX;divv=0in Q}.
Henceforth, we suppose the following hypothesis:
Assumption 2.4. We assume that the data £,g9 and v verify:
i) £ can be written as follows
f(z,t,C(x,t)) = fo(z,t) + f1(z, C(x, 1)),

where £, € C°(0,T; L2()?) and f; is cg, -lipschitz with respect to its second argument from R with
value in R?. In addition, we suppose that

Vo € Q. V¢ € R, |f1(z,8)| < eg |, (2.4)

where cg, s a positive constant.

ii) g€ CO0,T; L2(Q)),

i11) v = vy + vo where vy > 0 is a given constant and 0 < vo € L*°(R) and is Lipschitz-continuous,
with Lipschitz constant ¢,. The upper bound of ve is denoted by Ds: for any 0 € R we have

0 <wve(0) < b (2.5)
iv) ug € L?(Q)%, div ug = 0, ug - ngq = 0 and Cy € L?(Q).

As a consequence of this assumption, since v is a constant, and D(u) is symmetrical, for any functions
(u,v) € [H}(Q)9]? with div u = 0, there holds

(2vD(u), Vv) = 15(Vu, Vv) + (2veD(u), D(v)).
Moreover, for any function u € [Hg(2)?] there holds
Vo\uﬁ{é(md < vp(Vu, Vu) + (2veD(u), D(u)) < (v + 2192)|u|12q5(md. (2.6)

In the next lemma we recall the Gronwall-Bellman inequality shown in [33, p. 292] and in [18, p. 252].
We will use this Lemma in different proofs as in Theorem 5.10, Theorem 5.15 and Theorem 5.19.

Lemma 2.5. (Gronwall lemma) Let

(1) f,§ and k, be integrable functions defined RT™ — R,
(2) g>0,k>0,

(3) g € L*(R"),

(4) gk is an integrable function on R™.
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Ify: RY — R satisfies
t
y(t) < F(t) +d(0) / K(r)y(r)dr,Vt € R* (2.7)
0

then
t

y(t) < f(t)Jrﬁ(t)/O k() f(7) exp(/ k(s)g(s)ds) dr. (2.8)

Lemma 2.6. (Discrete Gronwall lemma) [18, p. 254] Let (Y )n, (fu)n and (Gn)n three positive sequences
that verify:

n—1
Yn < frn + ngyk, Vn > 0.
k=0
Then we have:
n—1 n—1
un < o+ > fegr ] A+3), ¥ >0,
k=0 j=k+1
and
n—1 n—1

Yn < fn + kagk exp (Zg])7 Vn > 0.
k=0 j=Fk
For the sake of simplicity in notations, we set

u(t) =u(.,t), C(t) = C(,t) and p(t) = p(., ).

3. VARIATIONAL FORMULATION

The variational formulation corresponding to problem (1.1) in the sense of distributions on [0,7] is the
following:

Find ¢ — (u(t),p(t),C(t)) € X x M x Ysuch that
%(U(W v) + vo(Vu(t), Vv) + 2ve(C(t)D(u(t), D(v))

. —(p(t),div v) + cy(u(t),u(t),v) = (f(t,C(t)),v) WVveX,
(E) 2O, )+ eo(u(t), C(0),7) +a(VOW0), V1) +1o(Ct) 1) = (o(t)r)  VreY,
(div u(t),q) = 0 Vg € M,

u(0) = up in Q,

C(0) - Co in Q.

(3.1)
with

ca(u(t),u(t),v) = ((u(t) - Vju(t),v)  and  co(u(t),C(t),r) = ((u(t) - V)C(#),7).

The existence and conditional uniqueness of the solution of (F) are treated and studied in [2, 4] for a
slightly different problem and we list here the corresponding theorems:

The existence and conditional uniqueness of the solution of (E) are treated for a slightly different problem
in [2, 4] where the Navier-Stokes equation is coupled with the heat equation without the reaction term
ro(C(t),r) and in which the diffusion term is (v(C(t))Vu(t), Vv). The reaction term adds coercivity in
the concentration equation since o > 0, and thus does not affect the energy estimates which are at the
basis of the results below. The difference in the diffusion term does not affect the results either, because
we still have the key condition (2.6). We list here the corresponding theorems that are still valid in our
case: (Theorem 2.3 in [2] and Theorems 3.1 and 3.2 in [4]).

Theorem 3.1. Under Assumption 2.4, Problem (F) admits at least one solution

(u,p,C) € L*(0,T; HL ()1 N L*°(0,T; L*(Q)%) x L*(0,T; L*(Q)) x L*(0,T; HL(Q)) N L>(0,T; L*(Q)).
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Theorem 3.2. Under Assumption 2.4, every solution of (E) satisfies the bound

| llze o2 @) + [ @ |2 0,msmi @2y + [ C iz o120 + | C llz2(o,m:m1 ()

) (3.2)
< C( 9 20,5200 + Il fo llz2(0,ms22()2) + || w0 l2(0)e + || Co llz2(o) )

where C is a positive constant which depends of SS,vo, a, 7o and c, .

Theorem 3.3. Let d = 2 and assume that v is Lipschitz-continuous, with Lipschitz constant c,. If
Problem (E) admits a solution (u,p, C") which verifies

uc LP(0,T; W (), where p >4 and r > 4,

then this solution is unique.

4. DISCRETE PROBLEM

In this section, we use the semi-implicit Euler method (cf. [23]) for the time discretization and the finite
element method for the space discretization.

In order to describe the time discretization with an adaptive choice of local time steps, we introduce a
partition of the interval [0,T] into sub-intervals [t,_1,¢,], 1 < n < N, with 0 = tg < t; <ty < -+ <
ty =T. For all n € [1, N], we denote by 7, the length of the interval [t,—1,t,]. For later use, we set for
convenience 79 = 77. And finally we denote by o, the regularity parameter

Tn Tn—1
O, = Inax max y .
1<n<N Tn—1 Tn

We introduce the following operator 7 (resp. 7 ;): let Y be a Banach space and g a continuous function
from )0, T (resp. [0,T) into Y, m,g (resp. m rg) denotes the piecewise constant function which is equal
to g(t,) (resp. g(tn—1)) on each interval J¢,_1,t,], 1 <n < N.

In the same way, for (¢, )o<n<n in YV 1 we associate the piecewise constant function 7, ¢, (resp. . .¢,)
which is equal to ¢,, (resp. ¢,—1) on each interval |t,,_1,t,], 1 < n < N. Furthermore, for any (C™)o<n<n
in YN+ we associate the function C; on [0, T] which is globally continuous and affine on each interval
[tn—1,tn], 1 <n < N, and equals to C™ in t,, for 1 <n < N.

More precisely, on the interval [t,,_1,t,], C; is defined by:

t—th— _ —
Cr=—"=2(C"—C" ) +C" ! =

Tn Tn

t—1tn _
—= ("o + o, (4.1)

Moreover, the same type of definition will be used component by component for any family (v*)o<n<n
in (Y4)N*! and the corresponding piecewise affine function is denoted by v..

We assume that Q is a polygon (d = 2) or a polyhedron (d = 3), so it can be completely meshed. Now,
we describe the space discretization. For each step n such that 1 <n < N, let (T,,) be a regular family
of triangles (d = 2) or tetrahedra (d = 3) of Q. The intersection of two different elements of (7,4), if not
empty, is a vertex or a whole edge or a whole face (d = 3) of both of them. We also have:

KETnh
For each element x of T, let hy be its diameter. For each n € {1,---, N}, h,, denotes the maximum
diameter of T, and h denotes the maximum of h,,, for n € {1,--- ,N}.

Let Xpp, Mpp and Yy, such that X, € X, M, C M and Y,,, CY, and for each n € {1,--- , N},

Znn =A{qn € C°() V& € Tun, anp € Pr},
Xon = {vi € CO(Q)? ;YK € Tun, Vs € Pioy Vijoa=o

Yoh = {rh € Znn; Thioo=o}

Myup = {an € Znn; / qndx =0}.
Q
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Here P;(k) is the space of restrictions to « of affine functions, Pj,(x) the sum of a polynomial of P (k)
and a "bubble" function v, Pip(k) = Pi(k) + vect(t),). Denoting by a;,1 < i < d + 1, the vertices of
k and by A; its barycentric coordinates, the basic bubble function v, is the polynomial of degree d + 1
defined by

V(@) = A (@) - At ().
We observe that 1, (z) = 0 on Ok and that ¢, (z) > 0 on k. The graph of ¢),; looks like a bubble attached
to the boundary of x, hence its name.

We introduce the discrete space:
Von = {Vh € Xnn ; Vg € My, /Qqh(:v)div vip(z) = 0}. (4.3)

Remark 4.1. (¢f. [5]) The spaces Xpn and My, satisfy the following discrete inf-sup condition:

/ div vy (2)pp(z) dx

inf sup
Ph€Munv,eX,,  |Valag | Pr Lz

> B, (4.4)

where B is positive constant independent of h.

In order to introduce the discrete scheme, we define the following forms: for all u}, v;, € X5, and for
all C;:, rn € Yon,

du(up ™t ult, vy) = (up ™ - V)up, vy) + %(div(uz_l)uz,vh)
and )
do(uy, Cyra) = ((wh - V)OR, 7a) + 5 (div(ug)C) ).
Proposition 4.2. For all up, vy € X,n and r, € Yo, we have
du(ap, vy, vp) =0 and de(up,rh, ) =0.
Moreover, the definitions of dy and dc can be extended to u,v € X and r € Y and we also have

dy(u,v,v) =0 and dc(u,r,r)=0.

Let us now introduce the fully discrete scheme associated to Problem (P): For every n € {1,---,N},
having u} ! € X(n—1)n and cpte Y(n—1)n, Find (uf, pi) € Xpn X Mpn, C} € Yy such that,
1 - n - n
—(uf — 0 va) + (Vag, Vi) + (2uo(Cf YD), D(vi))
+dy ()t up, vy) — (pi, div vy) = (F7(C7 1Y), va) Vv € Xph,
— (G~ Ch=t ) +do(uy, Cryrw) + (VO Vry) +10(Cfrn) = (9% mh)  Vrn € Yon,
(qn,divuy) =0 Yan € My,

where uf) and C} are given approximations of uy and Cy, and ¢g" and " are defined as follows:

9" =g(tn)
and
frOp ) =fy +£(CY)  with £ = fo(tn).
The following theorem states existence and uniqueness of the solution to Problem (Edsl); the proof is
similar to that given in [4], taking into account that (ve(Cy~")D(u}),D(uf)) > 0:

Theorem 4.3. At each time step n, for a given uZﬁ1 € X(n,l)h,C,’fl € Y—1)n and under Assump-

tion 2.4, problem (Eds1) admits a unique solution (u},py,Cl) € Xup X Myp X Yo Furthermore we
have, form=1,--- N, the following bounds

1 1Z0) U
3 | ap ||i2(9)d T ZTTL'uZl?-Ié(Q)d
m n=0 m (45)
< Cq (Z 7o | 9" 1720 "‘ZTn 15 1720y + | Ch 172y + | w720 )7

n=0 n=0
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1 m « - n — n
3 I Ci 11720 T3 ZTn\CthHg(Q) + 7o ZTn I C3 11720
n=0

n=0

; (1.6)
<Cu( Xl 8" Baart | B ey )
n=0

where Cy et C'y are positive constants independent of h and m.

5. A POSTERIOR ERROR ANALYSIS

In this section, we shall prove a posteriori error estimates between the exact solution of problem (1.1)
and the numerical solution of Problem (Edsl) for d = 2. We assume that the solution of Problem (E)
is unique and sufficiently regular, in particular u € C°(0,T; L?(2)?) and C € C°(0,T; L*(2)). We begin
by constructing the indicators, then we derive the a posteriori error estimates and finally establish their
quasi-optimality, in the sense that we need to require higher regularity of the exact solution to be able
to bound the indicators by the local errors.

5.1. Construction of the error indicators. We first introduce the space
Z’fzh = {gh S L2(Q);v"in S 7;lh7gh|f"v'n € Pl(”in)h

where [ < 1. For 1 <n < N, we fix an approximation f;' of the data f” in Z,;, X Z,;, and g} of the data
g™ in Z,y, we fixe [ = 1. we denote by

e I'! the set of edges of the mesh that are not contained in 99,
) FI;L the set of edges of the mesh which are contained in 9f).

Next, for all k,, € T,n, we denote by:

o &, the set of edges of k,, that are not contained in 012,

A, the union of elements of 7,5, that share at least one common vertex with x,,
hy, the diameter of k,, and h., the diameter of e,,

[]e,, the jump through the edge e, in &, ,

ny, stands for the unit outward normal vector to &, on Ok,

In order to establish the a posteriori error estimates, we shall use for each element «,, of 7, the bubble
function 1), defined below (4.2) and for each edge e,, € k,, the function 1., which is equal to the product
of the d barycentric coordinates associated with the vertices of e,,. We also consider a lifting operator L.,
defined on polynomials on e,, vanishing on de,, into polynomials on at most the two elements ,, and k!,
containing e,, and vanishing on d(k,, Uk,)\en, which is constructed by affine transformation from a fixed
operator on the reference element into k,. For the details of the construction of the lifting operator, we
refer to [31, Page 65].

We recall the following results from ([31], Lemma 3.3):

Property 5.1. Denoting by P,(k,) the space of polynomials of degree smaller than r on k,, we have

1/2
OaNnS || /U,(/J’ié, |
|v

OaNnS cl H v ||0,nn7 (51)

Yv € P.(k ” v |
ol ”>’{ e S L1 o

where ¢ and ¢’ are constants independent of mesh steps and of v.
Property 5.2. Denoting by P,(e,) the space of polynomials of degree smaller than r on e,, we have

Vo € Pr(en) ¢l lloe, < Il vwe/? loen< ¢ 1l 0 lloe,., (5.2)

€n

and for all polynomials v in P.(e,) vanishing on d(ey), if kn is an element which contains e,

| Le,v HO,nn +he,|Le,v L, < Chi,/f | v ||0,en, (5.3)

where ¢ and ¢’ are constants independent of mesh steps and of v.
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We also introduce a Clément type regularization operator Cp, [15] which has the following properties,
see |9, section IX.3]: for all w in H{(2)2, C,,w belongs to the continuous affine finite element space,
preserves homogeneous Dirichlet boundary conditions and satisfies for any «,, in 7,5 and e, in &, :

|w—C < chl/

€n

< chy,

(5.4)

wli,a,,  and |lw—C

where ¢ and ¢’ are constants mdependent of the mesh steps and of w.
Of course, the same type of properties remain true when applying this regularization operator to a scalar
field C' in H}(Q).

For the a posteriom’ error studies, we consider the piecewise affine functions u;, and C}, which take in the
interval [t,—_1,t,], the values

L —tn— n n— [ n n— n
uy(t) = . ! (ujy —up™ hy uy 1= - (uj —uj, Hrul (5.5)
and
t—tp—1 n n—1 n—1 t—t, n n—1 n
Calt) = “—"1(Cp — Cp ) + Ot = (cp — Yy + O (5.6)

The piecewise constant function pj is equal to pj' on the interval ]t,_1,t,]. We prove quasi-optimal a
posteriori error estimates by using the norms

m—wmm=(wmm—mm»mmz

o max (/Ot | u(t) —un(t) % dt, Z || u(t) — munt) % dt>>1/2 (5.7)

tn—1

and

[W—mew=<Hme—GﬁMH%mz
tim 1/2
+a max (/O | (&) = Cut) |12 dt, Z/ | C#) = 7 C(t) |12 dt)> .

Remark 5.3. In definitions 5.7 and 5.8, the quantities fom | u(t)—un(t) [I% dt and [;™ || C(t)—Ch(t) |3
m tn m tn
dt are closely related to > " | ut) — mrun(t) |% dt and Y0, j‘tnfl | Ct) — - Cun(t) |3 dt,

n=1 tn—1
respectively. This distinction would not be necessary to derive upper bounds of the errors (Subsection 5.2);
however it is useful as far as the lower bounds are concerned (Subsection 5.3).

(5.8)

In the following lemma we calculate the residuals which will allow us to define the error indicators.

Lemma 5.4. A standard calculation shows that the solution (u,p,C) of problem (1.1) verifies the fol-
lowing equalities for all (v,q,r) € (X,Y, M) and all (up,pp,rn), for 1 <n < N and t in |t,_1,t,]

+w(V(u(t) = mrun(t)), Vv) + (2ve(C1)D(a(t)) — 2ve(m - Ch)D(mrun(t)), D(v))

(le (7rl7‘l'uh(t))7r7'uh(t)av) - (ﬂ-l,Tuh(t) : VﬂTuh(t),V) - (le V(t)vp(t) 7ph(t))

( (t,C(1) = £(CR ™), v) + (RI(1), v),

_|_

a(V(C = CW)(t), Vr) + (u(t) - VC(t) — mrun(t) - Va,Cp(t), r)

t),r
+7o(C(t) = Cu(t), ) — %(dlv (mrup (£))mrCh(t),7)
= (g(t) g" ) + <Rc(t)7 ’I“>,

/ q(t,z)div(u(t,z) —up(t, ) = —/ q(t, z)div(u, (¢, x)),
Q )
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with
— 1 n n— n n—
o = X { [ (e - Dt w s wdug 429 e
Kn€Tnh Fn n
1
R VAT §div (up~Huy — Vpi)(x) V(CL’)) dx
1 _
5 [ 10vu s 2e(Ch D) - D@ vio)do
en€eun Y N
and
(Re,ry = (R, 7) + (R],7)
where
t, — 1 _
R D VR () I e (OB AR
Tn Kn€Tnh fon
+7“0/ cp— C}’fl)(m)r(:c) dx}
and
1 n— L. n n
@ = 5 [ - er- o - gav o
p Tn 2
Kn€Tnn "
+aAC) —uj - VO — roCp)r(x) dx
1
-3 > a/ [VCH(0)]e, ~nr(o)da}.
en€Ern €n
Moreover, if (up, pr, Ch) is solution of problem (Eds1), then it holds that
(RM v) = (Rl v —vy,) for all v, € Xpp,
and
(R 7y = (Rl r — 1) for all vy, € Y.
Definition 5.5. For each k., € Tnn, we introduce the following indicators:
(M) = T |0 =W 3 s
(ng,n,nn)z = Tn H C;Ll - C}?_l ||%—Il(nn)’
n— 1 n n— n n— n
Ml nw)? = h2 I EM(CRY) - —(uy —w Y+ wAuj + V- (2uo(CpD(up))

1 n
—up Vg - Sdiv (g - Vi) @) 2.,

1 n n— n T
T3 Z he,, | [0V} + 2v0(CL~HD(uy) — ppl)(0)]e,n |
€n€ern
+ || div up 3., ,

2
0,en

uj,

1 n— n n n 1 : n n n
(TIz}:L,n,nn)z = hiﬂ Il g" — ?(Ci? - Ch 1) + aACy —uy - VO — gdlv (up)Cy = roCY, ||(2),nn
1 " N
+3 2 heo | @VCE @), n .., -
en€Ern

)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

These indicators are easy to compute since they only depend on the discrete solution and they involve

polynomials.

Lemma 5.6. There exist constants ¢, and c.. independent of the discretization parameters such that

the following estimates hold for 1 <n < N,
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(1) For allv € X, let v, = Cppv, we have

1/2
(REv—vill <en 3 <m’;,n,m>2) IV lle - (5.20)

kn€Tnh

(2) For allr €Y, let rp, = Cppr, we have

1/2
|<R2,r—rh>|s%( 3 <n2,n,,%>2) 17 e (5.21)

kn€Tnn

In Table 2, we can also see the value of the efficiency index for different values of space-time unknowns
STU but for the uniform mesh. We can notice that the efficiency index varies around 5.

Proof. To derive inequality (5.20), we use Formula (5.10) applied to (v —C,,v) with the Cauchy-Schwarz
inequality on each k, and each e,, then relations (5.4) and the discrete Cauchy-Schwarz inequality,
together with definition (5.18). In order to prove inequality (5.21), we follow the same steps using (5.13)
applied to (r — Cppr) and definition (5.19). O

5.2. Upper bounds of the error. In this section, we establish the a posteriori error estimates where
we bound the error between the exact solution (u,p,C) of problem (1.1) and the numerical solution
(up, pp, Ch) of problem (Edsl) using the indicators given in Definition 5.5. For this, several steps are
needed. First, Theorem 5.7 establishes an upper bound of the concentration error in the energy norm.
Then, in order to obtain an upper bound of the velocity error in the energy norm, we need to introduce an
auxiliary time semi-discrete problem and we perform intermediary estimations given by Theorems 5.10
and Corollary 5.17. The resulting upper bound for the velocity error is given in Corollary 5.18. Next,
combining the results on the concentration and velocity errors lead to Theorem 5.19, which provides a
reliable a posteriori error estimate for the total error; this requires mainly the application of Gronwall’s
Lemma 2.5. Moreover, additional bounds are dealt with respectively in Theorem 5.20 and Theorem 5.21;
they are needed to obtain the efficiency of the estimates which is proven in Subsection 5.3.

First, we establish the upper bound on the concentration error, that depends on the velocity error.

Theorem 5.7. Let u and C be the velocity and concentration solutions of problem (1.1). Supposing that
ue L>(0,T;L3(2)?), C € L>=(0,T; L3(Q)) and VC € L*°(0,T; L*(Q)?), the following a posteriori error
estimate holds between C' and the solution Cj, associated to (C}')o<n<n, solution of problem (Eds1): for
1<m< N,

tm

tm
I Cltn) = Chltn) ey +a [ 1101 = Clo) 1§ ds 200 [ 11C5) = Chlo) Iy s

< C(Z lg—9g" H%%tn,l,t”;Y’) + [l Co — C}? ||2L2(Q) +[u—up ||2L2(o,tm-,x) (5.22)

n=1

A3 () )+ Tn(nﬁn,nn)z))

n=1kKknE€Tnn

where ¢ is a constant independent of the time and mesh steps.

Proof. Let t €]t,,_1,t,]. We first insert (u(t) - VC}, r) in the second equality of (5.9), take r = C' — C},
use (5.11) and (5.15) and use the incompressibility relation div u = 0 to get the equality, valid for any
rn € Yo

1d 2 2 2

> [ 7(@) 220y ol 7@) Iy +ro | () 720
= (9(t) = g™, (1)) + (RL (1), r(£)) + (RE(L),r(t) — ra(t)) (5.23)

—(u(t) - V(C@) = C), () + ((uf —u(t) - VCOF), (1)) + %(div (uy —u(t))Cy, (1))
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1
We start by bounding the term (g(t) — g™, r(t)), by using the relation ab < —a® + %bz; this leads to:
e
(9(t) =g @) < N gt)=g" v r@) Iy
S POR A PN
« 4

Let us now bound the last three terms in (5.23). We first insert Cj(t) and C(t), use Proposition 4.2 and
get

T, = ((ufy —u(?)) - VO, r(t)) — (a(t) - V(C() - Cp),r(t) + %(div (uj —u(t))Cy,r(t))

A

= ((up —u(?)) - V(Cp = Ci(t)),r(t)) + (u(t) - V(Cp — C(1)), (1)) + %(div (uy —u(t))(Cy — Cu(t)),r(t))
+((uf —u(t) - VC(?), (1) + %(div (uy —u(t)) C(t),r(t)).
By integrating by parts the third and fifth terms in the right-hand side of the previous equality, we get

To = (u(t) - V(CR = C(#)),7) + %((UZ —u(t)) - V(C} = Ci(t), (1)) + %((UZ —u(t)) - VC(t), (1))

5 (= (1)) - V(). (CF — Ca(t))) — 5 ((uf, — () - Tr(t), C(1)

= Tl +T2+T3+T4+T5

Now we will bound the terms 7;,i =1,...,5.
We insert Cj(t), recall that r = (C' — C}) and use the relation (u(t) - Vr,r) = 0 to obtain

Ty = (u(t) - V(Cp = C(1)),7(t)) = (u(t) - V(C} = Ci(t)), (1))
Let u € L>(0,T, L3(Q)?). Using (5.6) with [t — t,| < 7,,, the L? — L3 — L5 generalized Cauchy-Schwarz

1
inequality, Lemma 2.1 and the inequality ab < %az + 2—b2 we get for any e; > 0
€

Tl < s 1O =GRt Iy () llzsee)

€1 n n— 1
cr 1 [ o050 D) ICr—=Crt s +2?1 () 13 -

A

IN

We consider the term T, insert uy(t), use (5.6), the L? — L* — L* generalized Cauchy-Schwarz inequality
1
and ab < 2a® + ng with b =2 || CP = C7 " ||y to get

| = %|((uﬁ —uy(t)) - V(Cf = Cu(), (1)) + ((un(t) — u(t)) - V(Cy — Cn),r(1))|
< 1 17(®) sl O = Ci Iy (lag = an(®) a2 + [l un(t) —u(t) [lLa? )
< 5( 178 1700yl wiy = wn(®) [7agqye + 11 7() 4oyl wn(t) = u(t) [F40y2 )

1 .-
G-

By using Lemma 2.2, the fact that the exact and numerical velocities and concentrations are bounded in
L>°(0,T; L?(2)) (cf. Theorem 3.2 and Theorem 4.3), and relation (5.5), we get for any e5 > 0 and €3 > 0

n L n—
ol < (@) Ivllug = wn®) lIx + @) Iyl o) = al) lx ) + 5 1 €= G IE

1 1 €2 | m me €3 L e
< (gt ) @B +a(F k- w8+ w0 ) 1B ) + 16 -G
In order to bound T3, we insert uy(t) use relation (5.5) and the fact that VC € L>°(0,T; L*(22)?). We
also use Lemma 2.1 and we get for any e4 > 0 and €5 > 0
1

Bl = (6 =) TE) + () ) 910 r0)
< S (g s + 1 (®) = u(t) e ) 1 VOW ool 70) s
< G - B w0 1) + (5 + 5 ) 10 1



A POSTERIORI ERROR ESTIMATES FOR THE TIME DEPENDENT COUPLED PROBLEM 13

The term T} is treated by following the same steps as in the bound for 75 and we get for any e¢ > 0 and
€7 >0

(T3] = 5|((uf — (e)) - (1), (CF — Cu(1)|
<—L+ifHmw2w4ﬁuﬂ—w*W+inwm—www Fiep—epe
— \ 26 ' 2e7 Y 2 he X T9 X 4 h ¥

The term T5 can be treated like T3 and we get for any eg > 0 and €9 > 0 by using the fact that
C € L>=(0,T; L3(Q))

1 1
T5] < o5 (5 I —wp ™ B 50 ) —ua(®) 1% ) + (5 + 5 ) Ir®) 13-
258 259

To end the proof, we need to bound the third and fourth terms of (5.23). According to (5.12), we have

t, —1

Tn

(RL(t),r) = (a ; v(Cp - Cp Y (@) - Vr(x) dx + 7o /Q(C[f — P Y (@)r(x) dx). (5.24)

Then we easily obtain for any 19 > 0
- 510 n— 1
(RE(),rO) < ce—- || Ch = L7 I tor Im® I

The final term that we need to bound is (Rl

nor —rp). Choosing rp, = Cppr, and applying (5.21) we get
for any €11 > 0:

€11 1
[(RE 7 —rn)| < er - 5 > )+ % () [I5 - (5.25)
Kn€Tnh

Finally, by regrouping all the above bounds, plugging them into (5.23) and choosing €;,7 = {1,--- ,11}
11
1 1
such that 3 Z — equals to %, we get
i=1 """
d 2 2 2 n |2
o 17 220 +a [ 7() ly +2r0 | 7(t) (20 < C( 19(t) — g™ lly

+lul) —un®) 1% + 1 CF =G+ lap — i %+ Y () )
Kn€Tnh

(5.26)

We integrate (5.26) between ¢,_1 and t,,, use Definition 5.5 and then we sum over n = 1,...m to obtain

tm

t7n
wwwammé W@ﬁ®+%A | 7(8) 32 ds

<el g=9" 132000 + 11 Co=Ch 320y + | w = wn [Z200,0,..5) (5.27)

+ Z Z nc n nn (nz,n,kan)2 + Tn (ng,n,nn)Q)) :

n=1KnETnn

Hence we get the desired result. O

To prove the upper bound of the velocity error, we refer to the idea of Bernardi and Verfiirth in [14] or
Bernardi and Sayah in [11] in order to uncouple time and space errors. In order to achieve our objective,
we introduce an auxiliary problem denoted by (P,y.) and we first compute an upper bound of the error
between the time-affine function u, constructed from its solution by a formula like (4.1) and the exact
solution u of Problem (1.1) and then an upper bound of the error between u, and the discrete solution uy,.
Finally, we combine these two error bounds to obtain the desired a posteriori error estimation.
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We introduce the following time semi-discrete problem and prove an energy estimate on its solution.

Let C;"~! be the concentration component of the finite element solution of (Eds1), then
knowing u”~!, find(u”,p") € X x M such that

1 — n
(Paus) T—(u" — u"il,v) +1v9(Vu", Vv) + 2vc(Cy 1)]D)(u ),D(v))
+ . vur,v) - (divv,p") = (f*(CP7Y),v)  WeX,
(divu™,q) = 0 Vg € M,

with u® = ug and f*(C} ) = £ + £,(C; 1) with £§ = fo(t,,).

Proposition 5.8. Under assumption 2.4, for each iteration n, the solution (u",p") € X x M of problem
(Pyuz) satisfies for anym=1,--- N:

1 m Yo S n

3 | u ||2L2(Q)d T ZTn|u EH&(Q)d
m n=0 m (528)

< Cd(ZTn 19" 120 +ZTn 15 1720y + I Ch 22y + 1| 1o (1720 >7

n=0 n=0

where Cy is a positive constant independent of m.
Proof. The proof is obtained by energy estimates and by the concentration bound of Theorem 4.3. [

In order to derive an estimate between the solution of this auxiliary problem and the exact solution, we
first define the corresponding residual.

Lemma 5.9. By combining (1.1) and (Payz), we get
(= u)(0) =0

and, for 1 <n < N, fort in |t,_1,t,], for any v in X and q in M we have

(%(u —u;)(t),v) +ro(V(u(t) —ur(t), Vv) + (2vc(C(t))D(u(t)) — 2ve(m, -Ch)D(u,(t)), D(v))
+(u(t) - Vu(t) — ur(t) - Vur(t),v) — (div v(¢), p(t) — mp-(t))
= (£(t,0(t)) — £*(C; ™), v) + (B2 (), v),

(le (U. - U—r),Q) =0,
(5.29)
where R7? is defined by

t, —t
(R2(t),v) =
ty—t

Tn

/Q WV (" — u" ) (@) : V(@) + 200(CP D" — u™ ) (z) : D(v(z)) dx

n

/ (W V(- ) @) v dx - / (0" = u"=1) - Vur (1)(z) - v(z) dx.
Q n Q
(5.30)

+

Theorem 5.10. Let u be the velocity of problem (1.1) and u, the velocity associated to (u™)o<n <N solu-
tion of the auziliary problem (Puyz). Suppose that Vu € L*°(0,T; L*(Q)?*?) and u € L>=(0,T; L3(Q)?).
Then, the following a posteriori error estimate holds

I a(t) = wr () [Zags +70 / | u(r) - ur () % dr

(5.31)
< C( | fo — 7o ||%2(O,t;L2(Q)2) + || C = mCh ||2L2(o,t;L4(Q)) + || 7ru—m ||2L2(o,t;x) )

where ¢ is a positive constant independent of the time and mesh steps.
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Proof. We first insert (vc(Cp~1)D(u(t)),D(v)) and (u,(¢)- Vu(t), v) in the first equality of (5.29) where
t e]tn717tn]7 we get

(Q(U(t) = ur(1),v) + 2(ve(C(1) = ve(Cy~H)D(u(t), D(v)) + 2(ve (C;~)D(u(t) — u- (1), D(v))
(

0
t +(V(ut) —u-(t), Vv) + ((at) — u-(?)) - Vua(t), v) — (ur(t) - V(ur(t) —u(t)), v)
—(div v(t), p(t) = mrp- (1) = (£(t,C(2)) — £2(CF 1), v) + (R (2), V).
Let v =u — u,. By using that div u, = 0 and (u,(t) - Vv(t),v(t)) =0, we get

1d -
5o IV ey 20 11 v [ +2(0(C DV (9), Dv (1)) =
(£(1.C(1) ~ (G ™), v(B) + (RF2(1). (1) (5:32)
—(v(t) - Vu(t),v(t)) + 2(rc(Cy ) = ve(C1))D(u(t)), D(v(1)))-
We need to bound the terms in the right-hand side of (5.32). Let us start with the third one. Using the
L? — L* — L* generalized Cauchy-Schwarz inequality as well as (2.3) we obtain

(1) - Vu@), v < [ al) [x] v [
< VB Il v el O I (5.33)
< e flu®) Il V) a5 1O [

In the same way, we bound the first term in the right-hand side of (5.32) as follows:
|(£(t,C 1) = £1(CR ), v < | £(t,C10)) = £(Ch™) llza@e [l V(D) [lz2

(S8)%e n 1
< 02 1 £(t,C 1) = £(Ch ™) 12202 *os, Ivt) 1% -
Using the definition of the function f and the fact that f; is cf -lipschitz, we get
n n— T * n— 1
(£, C(8)) = £(Cp71), V) < (S5) e (|| fo(t) — £ 7202 +¢5, || C() = Ci 7 122y ) + %, [v() 1% -
(5.34)

For the fourth term in the right-hand side of (5.32), we use Assumption 2.4 and the assumption Vu €
L>(0,T; L*(£2)%%2) to get

2(vc(Cy ™) = ve(CH)D(u(h), D(v)) < 2 || ve(Ch ™) = ve(C() i@l D)) [[La@yzxe ]| DV(E)) L2 @)
1 1 2
< c()f G = C®) s +5 || v(t) [Ix -

(5.35)
The second term in the right-hand side of (5.32) is given by (5.30) and denoted by T, =: Ty + T + T5.
We will bound separately 77, To and T5.
T, can be bounded as

t, — 1t
Ty = n / V™ —u" ) (z) : Vv(z) + 21/0(0}?_1)]1)(11” —u" Y (z) : D(v(z))dx
Tn

< (w0 +200) | u" —u T x| v(t) |x
N €4 n n—

< (vo+20)"F u" —u o[5S *oe, I v() [I% -

T, can be treated by inserting u(t) as follow:
ln —1 n—1 n n—1
T = - (u V" —u"7))(z) - v(z)dx

< Ju"t—u(t) (sl vE) szl 0™ = a7 lx + [ u(t) [[ra@)p2ll v(E) lrs@pzl u™ —u™ " |x .

Using the fact that u € L°°(0,T; L?(Q)?) we have the relation

) _ 95 _ 1
Fa®) lls @2 | V() lo@ell 0 = o™ lx< e o —a™ % tom 1V0 I -
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We insert u, and use its definition given by a formula similar to (4.1); using the fact that v = u — u,,
we get

[u"=t =) sl v lls@pe | o™ == lx

< (| w ! =0 [ agapell v s 0 = w0+ |V [Eaggpell wt —un |
— 2 L4(Q) L4(Q) X LA(Q)2 X
<ea( [ = [Faqpll v 1Ty + 11wt =0 E 4V a0 —um ),

and by using relation (2.3) both on v and on (u” —u™~!) and the fact that the exact and semi-discrete

velocities are bounded in L?(£2)? (see Theorem 3.2 and Proposition 5.8), we get

- 1
0 = u@) oo |V el u" = w0 < es(1+ ) [ = u ™ o+ v I

286
Thus, T3 is bounded as follows:

1

) [u® —u" %+ (*+*) v % -

€5 €6
To| < 14+ =4+ —
Lol < e+ 5+ %5

2

Let us now bound the term T5. By using u, = u — v and remarking that ((u® —u"™1) . Vv,v) =0 we
get by remarking that Vu € L>(0,T; L*(Q)%*?):

t—tn— _ t— 1t _
| T ‘1/ (0" —u" ") Vu,  v)(z)dx| = ’1/ (" —u™') - Vu- v)(z)dx
Tn Q Tn Q
S || Vu ||L4(Q)2><2H v ||L2(Q)H u” — u”fl ||L4(Q)2
g7 n n— 1
< o lut—w T e v I

267

Thereby, we get

- €4 €5 €6 g7 n n—1 12 1 1 1 1 2
R2(t),v(t)| < ce(1+ — + =2+ =4+ =L - — e —+— . (5.36
RO < ol + 5+ 5+ 5+ T =™ e bt gt gt 5 ) v I (5:36)

7
1

Next, we regroup (5.32), (5.33)—(5.34)—(5.35)—(5.36) and choose £;,4 = 1,...7 such that Z % v %
i=1 71

17
is smaller than 50 | v |% and we integrate between 0 and ¢ to obtain:

t
V() 2202 0 / I vis) % ds
< 07( | fo — m-fo ||%2(0$t;L2(Q)2) + [ C = Ch ||2L2(0,t;L4(Q)) + || mru—m ||2L2(0,t;X) )
t
te, / () ] V() s dr.

We apply the Gronwall Lemma 2.5 with the following functions:
y(6) =1 V(1) 2 10 / I v(s) I ds,

ft) = C7< I fo — 7rfo 1172 (0,502(0)2) + | € — T2 Ch 1220060000y + | T = M (7200, x) >,

g(t) = 1/’
k(t) = c; | u() 1%,
and we get

I a(t) — wr () [2agps +v0 / u(s) — ur(s) % ds

< er| [ fo—mfo ||L2(o,t;L2(Q)2) + || C = m-Ch Hi2(0,t;L4(Q)) + | mru—m H2L2(o,t;x) )

v [ t (fm I alr) I exp e [ ) 1% ds>d7.
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Since 7 < t, we have f(1) < f(t), so
u(t) = e 1) [y +V0/ I u(s) — ur(s) I ds

< el | fo—mrfo ||L2(O,t;L2(Q)2) + [ €= m-Ch H2L2(O,t;L4(Q)) + [ mru—m - u Hsz(O,t;X) )

v 0 | t(n u(r) [ x exp [ ute) % ds)dr.

Based on (3.2), integrals of the type fo || u(s) |% ds are bounded by constants and we get (5.31). O

After obtaining an a posteriori estimate between the exact solution u and the solution u, of problem
(Pyuz), we establish an estimate between u, and the discrete solution uy. For this, we shall prove the
intermediary Lemmas 5.11, 5.13 and 5.14. They lead to Theorem 5.15 which, with Lemma 5.16, prove
Corollary 5.17, the final estimate between u, and uy,.

Lemma 5.11. For alln € {1,..., N}, the solutions of Problem (Puyz) and (Edsl) verify for allv € X
and vy € Xun:

—((u" —u") = (uf —up™),v) + Vo(V(U” —u}), Vv) + 2(ve(C D (" — uj;), Dv)

Tn

V- Vg v) - s(div (g v) — (div vt - pf) = (Rlv - vi), (5.37)

(q7 diV(un - UZ)) = _(Q7 div(uZ)),

where R defined in (5.10) also verifies the following equality

(RA(t), v —vn) = (E"(C; ™) — i(UZ - 1) v = Vi) = (Vg V(v = vi)) = 2(ve(C; 7D (ug), D(v — v))

Tn
—(upt - vup, v —vp) — (dlv (W Yy, v —vy) + (div(v — va), pp).
(5.38)
Proof. We start by subtracting the first equation of problem (Edsl) from the first equation of problem
(Pauz) and we obtain
((C),) — (G ) = (G %) — () v v+
— (=) = () w))w) = (div v~ )+ (o V() TY)
+2(ve(CP DU — up),Dv) + (u" - Vu" —u} - Vup,v)
— 5 (@i () (v i)+ oVl V(v va))
+1<uc<c” B (uR), DY = va)) + (uf - Vg, v = v)
(dlv (up™ hul, v — v) — (div(v — v), pi).

Using (5.38) and (5.39), we get the first equality in (5.37). For the second equality of (5.37), we just need
to insert u}! in the last equation of (Ppysy). [l

(5.39)

Before introducing the second lemma, we will introduce the Stokes operator II defined from X into itself
as follows: For each v in X, IIv denote the velocity w of the unique solution (w,r) in X x M of the
following Stokes problem:

) ) (5.40)
Vg€ M, (divw,q)=(div v, q).

The next lemma states some properties of the operator II ([11], [14] or [28]).

{ Vte X, (Vw,Vt) — (div t,7) =0,

Lemma 5.12. The operator I1 has the following properties:
(1) VveV, Ilv=0
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2) Vv € X, we have the following estimates:
( 9
1 .
v =1V [me<lvix  and [TV | x< i [ div v |2 -

(3) Vvp € Vpn and1 <n < N:
| vy, (|22 < ch/? || div vy, [| 220 -

Now, we state the second and third lemmas that help us prove an a posteriori error estimate between
the solution u, of problem (P,,,) and the solution uy of problem (Edsl).

Lemma 5.13. Let u™ and u} be respectively the solutions of (Pyu,) and (Eds1). We denote by €™ =
u” —up and v =e" —1Ile”. We have the following equality:

5 e B =5 € g +5 | € =" [Zaaye +voma || €" & +27 (v (m.-Ca)B(e"), D(e™))

= (e" —e" L, Tle") + vy, (Ver, V(Ile")) + 27, (ve (m -Cr)D(e™), D(Ile™)) + 7, (R, v — vy,)

—%L(e"_1 -Vu",v) + 7—?n(e “1.Vv,u") = 7, (up 7t - Ve, e") — %(div (up~!Ie", e™).
(5.41)
Proof. First of all, we denote for all n € {1,...,N}, " = u” — u}'. We have
1 n |2 1 n—1 12 1 n n—1 |12 n |2 n n
5 e zaq@)y =5 1" lza (e +5 [ €" =" Zai)e +10m || € [Ix +270(ve(m,-Ch)D(e"), D(e")) =
(e" —e" 1 e") + 17, (Ve", Ver) + 27, (vo(m - Cr)D(e™), D(e™)).
(5.42)

Let v = €™ — Ile" in the first equality in Lemma 5.11. Thereby, knowing that div (e™ — Ile™) = 0, the
pressure term vanishes (this is the reason for the introduction of Ile™) and we get for all vj, € X5,

(e” — e”_l, en) + VOTn(veny Ve ) + QTn(VC(Trl ‘I'Ch)D( ) ( n)) =
(e" —en~1 Ile™) + uoTn(Ve V(Ie™)) + 27, (vo(m, TCih) (e™),D(ITe™)) (5.43)
+1 (R v — ) — 7, (u L VU uZ -Vul,v) + Tn(le (up™ 1)uZ,v).

1
In the last two terms of (5.43), we insert 7,(u} ' - Vu",v), irn(div (up~Hu",v) and we add the

1 , .
vanishing term —§Tn(div (u"~Hu",v), to obtain :

—Tp (Ul Vu —u Vg, v) + (dlv (up™ 1)uZ,v) =
—Tp(e" - Vu, v) — 7, (u) ! -Ve’ﬂv) (dlv (up e, v) — 7-?n(div (e Hu",v).
Tn . n—1 n n n
We insert 7,(u),” " - VIIe™,v) and 5(d1v (uj,”")Ie™,v), then use that v = €™ —Ile"™ and apply Propo-

sition 4.2; we get
—Tp(" vt —up Tt vul, v) + (d1v (up Hup,v) =

—Ta(e" 1 Vun, v) — %"(dw (enfl)u V) = To(up ! ViIe™, e") — %"(div (u~H)TTe™, e™).

(5.44)
By integrating by parts the second term in the right-hand side of (5.44), plugging it into the right-hand
side of (5.43) and using (5.42), we get the desired result. O

Now we bound the very last line of (5.41).
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Lemma 5.14. Let us suppose that hy, < csm,,Vn € {1,..., N}, where cs is a positive constant independent
of n. Let also u™ and uj* be respectively the solutions of (Pauz) and (Eds1). We denote by €" = u™ —u}!
and v =e" —Ile™. We have the following bound:

\%(e"il -Vu",v) 4+ %l(e"*1 - Vv,u") + 7, (up ! VIIe", e") + %(div (u}~"Ile™, e™)|
< (11 v ey + v 0 By + (™ I+ 1wl B+ 0 1) 1™ g )
vy vy _ 3 _
T B R N e R
(5.45)
where ¢ is a positive constant independent of the time and mesh steps.
Proof. Let us denote:
Tn , pn—1 n Tn, n-1 n
= ?(e ~Vu,v)—|—5(e -Vv,u") = A1 + Ag,
B = r,(ul!.Vie"e")+ %"(div (ur~")Ile", e") =: By + By
By using the L? — L* — L* generalized Cauchy-Schwarz inequality, then inequality (2.3) on e”~!, " and
Ile™, Lemma 5.12 and the fact that Ile™ = —IIuj, we have:
Tn n—1 n
(Al < S e psepellu™ lx v e
n-1 1/2 ne1 11/2)| n n1/2 n1/2 n 11/2 n111/2
< esma [l e ATl e I u Ilx (e [ Tape e 12 + Il Tlem |[[4%0. ]l Te™ 1)
n_1 1/2 et 11/2) in n1/2 n1/2
< el [l e e € I u (]l e ||ty e 1Y
ne1 |11/2 ne1 11/2) in 1/2 0 1 m n 11/2
+ et ATy ll € I um [lx (A | div uf [[2g) 2 | e [¥?).
(5.46)

We denote by A; ;1 and A; 5 the terms in the right-hand side of (5.46). Then we have by taking into
consideration that h,, < csTy,:

Ain < e U x (% e ! 2@zl e llx +2%1 | € [l € [Ix )
< eom (g e el u” I +52 e )
bestag (5 e Iaaell 0™ I +52 e ).
and
A < esma(GR2 | e el el e 4o | div u ozl € fx)
< e (S e IR0 o |0 gl 0 )
s || div uf ooy @ llx
< S e Rl g e [l 0

1 . €6
+C6Tn£(g | div ujp ”%2(9) +5 | e" ||§( )

Let us now bound Ay = 7—?n(e”*1 -Ve",u") — —(e’“1 -VIIe™, u") =: Ag 1 + Az .
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We use the L? — L* — L* generalized Cauchy-Schwarz inequality, then (2.3) on u™ and e"~! to get

Azy < erma |l € szl e™ [x Il u™ [|Laq)2
T _ —
< CB(i e [I% +Tn57 e 22l € lx Il u™ (L2 v [Ix )
£
< 09(6771 | e ||I% +7‘n H e" |32 @2/l u” 1% +7neres [ €7 %] u” ||L2 ()2 )-

We use Lemma 5.12 then we follow the same steps as As 1, to get

Ago < cromn || €7 [[pagee |l div ul |2yl 0™ ||paq)
Tn o o _ _
< 611(£ | div u |72y +7neo | €71 22l €7 llxll 0™ lz2 2l u™ fIx )
T . &9 _ _
< Cw(i | div uj (720 T €™M 122l u™ 1% +7mgocio | € I3[l 0™ 17212 )-

Finally, by gathering what precedes and using Proposition 5.8, we get:

1 1 Loan
Al < e (( + —) || div u} ||L2 @) —|—( + —|— ) | e™ 1%
E4EB &9

1

+ (e1e2 +eaesmn | U [k +eres +eoen0) €7 % xto e "L qellu % (5.47)

+ (—+—+*+*+*) | u" ||X||en 1||L252)2)'
8 €10

N
By using the relation 7, || u” ||% < Z 7 || u” ||% and Proposition 5.8, we deduce that
n=1
™ w5 C, (5.48)
where C' is a given positive constant .
. 10001\/Z§ 140 A o Vo
Thus, by choosing 61 = ———, 9 = ————, 3 = VO, e4 = 1, 65 = ~ €6 = ,
» DY mg €1 N y €2 100¢1210, " 3 0, €4 ) €5 100610077 6 100,
100c, 1 ) .
g7 = , €8 = 0, and gg = €19 = , we obtain,
Vo €7 100ci 0,
31 2 1 -1 2
Al < P07 e B +rt e I oo e — e [Baey:

. 2 2 —1 2 (5.49)
+@m(WMuzmmﬂwuﬂxw”mmy)

We will now bound the term B. We use the L? — L* — L* generalized Cauchy-Schwarz inequality, then
Lemma 5.12, the incompressibility condition div u”™ = 0 and Lemma 2.2, we get

1Bil < casmo [l up ™t lpaoell div u [l r2)ll € L)

611

1
< 014%(261 I div g 7o)+ ™" ezl ™ llxll e lzaiz]l e llx )

As || u} ||£2(q)2 is bounded according to (4.5), we obtain

1 €11 €12 1 _
|B1| < 0157'71(2(51 | div u} [[7200) +—5- (7 le™ 1% +E [ 1% e 172 (0)2))
1 €11 €12 1 1 _
< aura g i o [y + 22 e 1 5w I € )

2 2

€11 u e
e Bl e - e e )
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By following the same steps, remarking that ITu™ = 0 and using Lemma 5.12, we get

Bal < B (g v [y + 22 1 T Bl o)
< crTa (513 | div up~* H2L2(Q +hy/%ers || div up [ pzo) || Tup ||x[| € |22l € [|Ix )
< C18Tn L | div up~ H2L2(Q) +513<Eﬁ e [[% +5— h ||2L2(Q)|| up %[ e ||2L2(Q)2 ))
€13 2 2e14
< croma( o v 0 Py +e1s(E e I 45 | Il & e )

Tn€13 n n n—1 2
2e1s [ g Ix]l e" —e" " 22 (a2

Thus, B will be bounded as follows:

1 . 1 . _
Bl < 0™ (51 | div uj} [|72(0 +? | div up =" [|72q) +(e11812 + c13214) || € %

€11 €13

i N e e e =l Il e (17202 (5.50)

€11 — €13 _
=l +=—=m [luf %) [[e" —e"! II%zm)z)
£12 €14

N
By using the relation 7, || uf [|% < Z 7o || uf ||% and Theorem 4.3, we deduce that

n=1
T | up X< C, (5.51)

where C is a given positive constant. We use this to obtain

1 1
|IB| < c20Tn (51 || div uj, HL2(Q) —|— || div up ™! ||2L2(Q) + (11612 + €13614) || €7 %

+&W"Wﬂm“wmmﬁc“ﬂmmmw"wwmﬁ (5.52)
e (O ) &~ o
We choose €11 = Lﬂ €12 = C’Vo, £13 = ﬂ and €14 = C'\/%, and we obtain
100020\/5 100¢ooC'
Bl Do Bt e e oy
+037n< | div u} H%Q(Q) + || div uzfl H%Q(Q) (5.53)
I IR e [+ 1 0 I & e )
Finally, relations (5.49) and (5.53) give the result. O

Now that we have established Lemmas 5.11, 5.13 and 5.14, we use them to get Theorem 5.15 which, with
Lemma 5.16, prove Corollary 5.17, the final estimate between u, and uy,.

Theorem 5.15. Let hy, < ¢s7,,Vn € {1,..., N}, where ¢cs is a positive constant independent of n. The
following a posteriori error holds between u™ and uj’:

™ =y |72 )2 +an o™ —uj (% < C( I 'ao—wj [[72 ()2 +70 | wo—uj 1% +Z Y™ num”f),

n=1 n=1rnE€Tnn

(5.54)
where C' is a positive constant independent of the time and mesh steps.
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1
Proof. First, we bound the right-hand side of (5.41); we shall make a frequent use of ab < 2a + —b?

2e
for all € > 0, in particular for ¢ = % Knowing that ITe" = —ITu} (as IIu” = 0, see Lemma 5.12) and
hyn < ¢sTn, and using Lemma 5.12, the first and the second terms will be bounded as follows:
— n 1 n n— n
(e" —e" 1 Tle") < 1 [e" —e" ! 722 + | TTe™ |20y
5.55
< 1 | " —e™ ! |2 +ccs T, || divul |2 ( :
= g L2(0)2 s Tn h llz2(0)2
and
V0Tn
Mo (Ve", V(Ile™) + 27 (vo (m - C)D(e"), D(Ie™)) - < =" || e” [Ik +4vo 7 || Thuj; |5
VoTn n 2 X 4 X ( 2) n
+g lle % +——————— 7 || Tu} |5
voTn 2 %/0 2
< =g e lx teamn || div uj (|72 (o)

(5.56)
To treat the third term in the right-hand side of (5.41), we set v}, = C,,;,v and we use the definition R”
and Lemma 5.6. Then, since v = e™ — Ile”™ and using lemma 5.12 we get:

1/2
(R i) < ( 3 (nﬁ,n,m) I llx

oy S €Tun vor (5.57)
n
< — E TTL(UZ,n,nn)2 + ” e" ||§( .
1Z0) 8
Kn€Tnn

To bound the last terms of (5.41), we use Lemma 5.14. By Regrouping (5.45), (5.55), (5.56) and (5.57)
summing over n from 1 to m and using 7, < 0,7,—1 we get

m m
h
le™ 72y + D ll e I3 < 05( I’ e +70 € 1%+ > mlilnn)’

n=1 n=1kn€Tnn
) m (R g 5+ e R ) e I17e e )
We apply Gronwall’s lemma 2.6 with the following given functions:
m

ym =l €™ 22y + DT ll €” 1%

n=1
= (u O e 470 1 1% 43 3 malils, ) ,
n=1KnETnn
and
gn = csma( 10" 1% + [ up [ + I up ™ %)
We get
m m
le™ 12 + D> 7 ll € %< Cs( 1€ 7oz +ro € 1% +>. > m@l,n.)’
n=1 n=1 nETnh

m—1 m—
j+1
+ 3 a0 %+ [T ug % + [ up™ %) exp Z (W g 1k ||§())>'
n=0 j=n

Knowing that for all n < m, fn < fm we obtain

m
I e™ [I720)2 +ZTn e < CG( 1€ 12z +0 1€ 1% +D_ D ma(mlnn,)’
= n=1kn, ETnn
m— 1 m—1

. n 1
D (Il [l 5+ Ty ™ 5 ) exp( D 7l o™ 1% + 1w, 5 + 1w, ||§<))>-

n=0 j=n
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Using Theorem 4.3, Proposition 5.8 and the definition of o, we obtain

m m
h
I e™ Baye + 3 [l e ||§<c(|| & ooy A [ B+ 3 T m(nu,nm).

n=1 n=1 Kk, E€Tnn

This ends the proof of Theorem 5.15, which establishes an a posteriori estimation between u™ and u;’. [0

In order to relate the left-hand side of (5.54) to the augmented error norm defined by (5.7), we prove the
following two inequalities

Lemma 5.16. Let u™ and uj" be respectively the solutions of (Pyuz) and (Eds1). It holds that

1 m m tn 1+o, m
3 o ut - &< Z/ Iar(s) = un(s) % ds < — domlut—up k. (5.58)
n=1 n=1"7tn-1 n=0

Proof. Since u, — uy, is affine with respect to time on [t,_1;t,], its square is a second order polynomial
in time and the Simpson formula allows us to compute the following integral exactly

/tnnl | ur(s) —un(s) [k ds = %n( | ur(tn) = un(tn) 15 + | ur(tae1) —un(ta-1) % (5.59)

+ H uT(tn) - uh(tn) ”X” uT(tn—l) - uh(tn—l) HX )7

in which we used the fact that || u, — uy ||x is affine to replace its value in % by the half sum of
its values in t,,_; and in ¢,,. Then we immediately get

tn

Tn

3 llur(tn) —un(tn) %< / | ur(s) —an(s) [[% ds. (5.60)
tn—1

1
On the other hand, using ab < §(a2 + b2) and 7, < 0,7,—1 in the right-hand side of (5.59), we obtain

tn
Tn
/ lur(s) —un(s) 5 ds < (1l ue(tn) = wnltn) I + [ 0r(tna) = wnltna) 1% )
tn—1
Tn 2 Tn—1 2
< 5 lhuelte) —un(ta) Ix +or == | ur(tn-1) = unta-1) [IX(5.61)
Summing (5.60) and (5.61) over n, we get the desired result (5.58). O

Corollary 5.17. Let t €|ty,—1,tm]. Let h, < cs7n,¥n € {1,..., N}, where cs is a positive constant
independent of n. The following a posteriori error holds between u,(t) and up(t):

t
I =)0 B+ [ = [ (s)ds

m
< (1= e 70 h 0w B+ Y 3 )’
n=1 K, E€Tnn

>’ (5.62)

where ¢ is a positive constant independent of the time and mesh steps.

Proof. Let t €]ty _1,tm]. Since t —|| (ur —up)(t) ||L2(0)2 is an affine function of time on [ty _1,tm],
then

I (ur = up)(®) 122 ()2 < sup( u™ ! —u = [[Fagqpe, | 0™ = u [[22(q)2)-
Now both terms in the right-hand side above are bounded by the right-hand side of (5.54) since it is a
growing function of m. Thus

|| (uT - llh)(t) H%Q(Q)ZS C( || up — u% ||%2(Q)2 +7o H up — U.(})L ||§( + Z Z Tn(’I’]Zm’NH)Z). <563)

n=1kn€Tnn
Next, we get from(5.58) that

m

t t
m 1+UT n "
e = e s < [ = e s < 57D

n=0
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With (5.54) we obtain

[ e s <o o= e oo 4D 3 ) G0

n=1kn,E€Tnn

From (5.63) and (5.64) we obtain (5.62). O
Having bounded the error between u and u, in Theorem 5.10 and then the error between u, and uy in
Corollary 5.17, we can combine these two results to bound the error between u and uy,.

Corollary 5.18. Let h, < ¢s7p,Vn € {1,..., N}, where cs is a positive constant independent of n. Under
assumptions of Theorem 5.10, for t €|t,—1,tm], we have the followmg a posteriori estimation between
the velocity u solution of problem (1.1) and uy, corresponding to u} of problem (Eds1):

t
HM@—W@WémpﬂmAHUQ%ﬂm®§%S6<H%—W%H§@mmma+%—U2ﬁmw

m
+70 [Jug —uy [[5 + | € —m;Ch H%Q(O,t,L‘l(Q)) + | mru—m u ||2L2(07t;X) + Z Tn Z (Tlﬁ,n,nn)r‘)),
n=1  KkpE€Tnn

(5.65)
where ¢ is a positive constant.
Proof. We start by applying the triangular inequality

) = [ 400 [ 105) o) I3 s
<2100~ ) [eye 200 [ o) ) 5
t
2 1r0) = 0) B +200 [ [, = () [ s

By using Theorem 5.10 and Corollary 5.17 we obtain (5.65). (]

Till now, the upper bound (5.22) on the concentration error depends on the velocity error and, conversely,
the upper bound (5.65) on the velocity error depends on the concentration error. Thus we have to
combine these two inequalities to get the desired upper bound. This is done in the next Theorem, by
using Corollary 5.18 and Theorem 5.7.

Theorem 5.19. Under assumptions of Theorem 5.7 and Corollary 5.18, we have the following bound for
eachme{l,...,N}:

tm tm
I Cltn) = Cultn) Iy +0 [ 1 C) = Culo) 1§ dsro [ 11 016) = Colo) e s
tm
) = () [y +0 [ ale) = ) [ ds
C( | g—mrg ||2L2(0t,,L;Y’) + 11 Co - Cy ||22(Q + [l o — uj ||2L2(Q)2 +70 [ uo —uj, 1%

+ || fo — m-fo ||L2(0 tmiL2(2)2) T Z Z (Mem,m,) ) + (775,71,%)2 + Tn(ngnm)Q T T"(nﬁ’"’”'”y))

n=1KknETnh

where ¢ is a positive constant.
1 €

Proof. We use Relation (2.3) and the inequality ab < 2—a2 + §b2 to get
€

| C—m-Ch ||L2 (0.6:L4(2) S (* | €= mi,7Ch HLQ(Oth Q) + | € —mi,7Ch ”%Z(O,t;Y) ) (5.66)
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On the one hand, for ¢ €]t,,_1, tm] we consider Inequalities (5.65) and (5.66) to get the following bound

t
I a(t) = wn(t) [Zagqps +20 / I u(s) — un(s) % ds

q(Z > Tn(ﬁﬁ,n,nn)%r | = (2205 + w0 =l 172 ()2 +70 [ wo = [I%
n=1rKn€Tnn

+ || fo — m-fo ||L2(OtL2(Q)2) + H C—m-.Ch ||L2(0tL2(Q)) JF | C—mCh ||%2(o,t;Y) )

(5.67)
On the other hand, for each n € [1, N], and for each s €]t,,_1,t,], we have

106) = mCul) [} < (1 Cs) — Ouls) Iy + 1 Cule) — G [y )?
(166 - cuts) I +(C=2) et - il )

n

2( | C(s) — Culs) 2 + | Cp — Ot |2 )

IN

IN

Let t € [ti—1,tm]; in order to integrate the above inequality from 0 to ¢, we first integrate it between t,,_;
and t,, then sum over n from 1 to m — 1 and we finally add the integration from ¢,,_1 to t. We obtain

/0 | C(t) - m.Cult) I dtSC’( / 1 C(s) = Culs) 12 ds+ 5 S0 (nz,n,m,f), (5.68)

n=1 Kk, E€Tnn

where ¢’ is a positive constant independent of the time and mesh steps. We also have in the same way

m
I C = m12Ch 320,002 < c'( I C = Ch 20mr2) + >, D (nz,n,m)- (5.69)

n=1Kn,E€Tnn

Following the same reasoning we integrate (5.26) between 0 and ¢, we get

t t
I €0 = Chlt) By +oc [ 11€(s) = Culs) I ds+ 210 |11 C(s) = Culs) oy

19 =779 1220,y + | Co = Cp 720y + Il a = wn 1 220,0:x) (5.70)

+ Z Z 77(‘ n KW (n;,n,nn)z + Tn (ngn,ﬁn,)2)> .

n=1KknETnn

To treat the term || m,u — m -u ||% in (5.67) we use the triangle inequality for each n < m, so we get
[l =" < 3( u =y %+ up - R et - ).
We multiply by 7,, we use the error indicator definition (5.16) and the property 7, < o,7,,—1, to get

T 0" =" < 3(m | ut = u %+ D ()t Formae 0T ).

Kn €Tnh

Since t € [tm—1,tm], we get

/ | 7ru— mu||X<ZTn ot —unt % < o <Zm e B+ S Y O, ) (5.71)

n=0 n=1KknETnn
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Summing (5.67) and (5.70) and using (5.68), (5.69), (5.71) and (5.54) we get
o) - axwmm+g/nc axnww+my/nc — Cul®) 3y ds
[ u(t) - <>mmw+w/nu )= wnls) %
< 02( lg—mrg ||2Lz(o,t-,yf) +Co—-Ch ||L2(Q) + [ uo — u ||L2(Q +70 || wo —up 1%
+ |1 fo — mofo [122(0.1:22(0)2) i I C = Ch 122(0.4:02(02)) +§ 1 C = Ch 122067
- Z > (M) + )+ Tl )?) + Tn(nﬁ,n,m,)g))-

n=1kKknE€Tpn

o}
We consider e = — to get
C2

€0 = o) By +5 [ 1€ @(Mwwnm/uc = ) [0 ds
+uw>—mxwygyﬂmfnu )= (o) I ds
lg—mrg ||L2(o’t;yl) + [l Co — C}(Z HLQ(Q) + [l uo — uh ||L2(Q)2 +70 || wo — u?z Hg(

+ [ fo — WTfO ||%2 0,t;L2(£2)2?) +[1C—Chn H%Z(O,t;L2(Q))
+ Z Z 77c n l{,, (nz—z,n,nn)z + Tn (ng,n,nn)2) + Tn (nz,n,nn,)2)> .

n=1KnETnn

Then we apply Gronwall’s Theorem 2.5 by considering:

&)=l g =79 7204y + | Co— Ch 72y + I wo —uf 122(0)2 +70 [ wo —uj 1%

+ H fo - 7T.,_f0 ”L2 0,t;L2(2)2) + Z Z nc n ml 2 + (n;,n,nn)Z + Tn(nZn,nn)z) + Tn(nz,n,nn)Q)’

=1 Kkn€Tnn

W) = €O = Cult) ooy +o [ 1C() = o) F ds-t 10 [ 1101 = Culo) [0 s

t
+HM&—%W§mp+WAHUG%ﬂm@H§%7
g(t) =1 and k(1) = cs.

Since k and g are constants, we have

€0 = Cuit) By + [ 1€ axwyw+m/u = ) 0 ds
110 = 0) Py 40 [ 006) = o) 15 ds

< C( lg—mrg ”LQ 04y T | Co— CI? HL2(Q + [ uo — uh ||L2(Q)2 +70 || wo _u?z H.%(

+ || fo — m-1o ||L2(O t;L2(22)2) + Z Z nc n Nn 2 + (nZ,n,mn)Q + Tn(ngnﬁn)Z) + Tn(nﬁ’n’m)Q))'

n=1KnETnh

For ¢t = t,, we get the result of Theorem 5.19. ]

Theorem 5.19 in itself provides a reliable a posteriori error estimator for the total error in the energy
norm. However, as usual for time-dependent problems, we need to augment this norm by additional
terms which are needed to obtain the efficiency of the error indicators. Additional norms related to the
concentration and to the velocity are dealt with respectively in Theorem 5.20 and Theorem 5.21.



A POSTERIORI ERROR ESTIMATES FOR THE TIME DEPENDENT COUPLED PROBLEM 27

Theorem 5.20. Under assumption of Theorem 5.7, the exact solution C of Problem (1.1) and the
solution Cp, of Problem (Edsl1), for 1 <n <m with m € {1,---, N}, satisfy the following estimation:

0 1 .
|| a(C - Ch) +u-VC -7 uy, -V, .Cp — 5 div (’iT,,-uh)’lTTCh ||L2(0,tm;Y’)

< c(Z S (s O+ (e ?)

n=1KknE€Tnn 1/2

+1g—myg ||%2(0$tm;Y’) + 1 Co = CR ||%2(Q) +lu—u, H%Q(O,tm;X) )

(5.72)

where ¢ is a positive constant independent of the time and mesh steps.

Proof. We consider the second equality of system (5.9) of Lemma 5.4, with (5.11), (5.15):

(%(C —Cp)(t),r) + (u(t) - VC(t) — mrup(t) - Vi Cr(t),r) — %(div (mrup ()7 Ch(t), )
= —a(V(C(t) = 7:Cy), Vr) = ro(C(t) — m;Chy1) + (RE(L), 1 — 1)
HRE®), ) + (9(t) — g(tn), 7).
However,
0

I E(C —Cp)(t) +u(t) - VC(t) — mrup(t) - Va, Cr(t) — %div (mrup ()7 Cr(t) |y

= sup# ((8(0 —Cp)(t),r) + (u(t) - VC(t) — mrup(t) - Va,Cr(t),r)
rev || 7 Iy \" 0t

—%(div (Wz,TUh(t))WTuh(t>’r)>

=sup —— (— a(V(C(t) — 7,Ch), Vr) — ro(C(t) — 7 Ch,7) + (RE(), 7 — 1)

rev |7 lly
HRI(L),r) + (g(t) — g(tn), 7).

All the terms in the right-hand side, except the third and the fourth ones, can be treated with the
Cauchy-Schwarz inequality. For the third term, we take rj, = Cypr and use (5.21) and we obtain

1/2
<Rs<t>,r—m>|Sc1( 3 <n2,n,,%>2) Il -

kn€Tnn

For the fourth term an easy calculation leads to

1/2
[(RE(E),7)] SCz( > ollcr-cpt ||§11<nn>> [y -

Kn€Tnh
Whence

I %(C — Cp)(t) + u(t) - VO(t) — mrup(t) - Vr Cp(t) — %div (mru () Ca(?) [ly

<es (a I C(t) = m-Ch(t) [l5- 470 | C(8) = 77Cu(t) 221y + I 9() = 9(tn) 13-

1/2
I S o e = U o (nﬁ,n,ﬁf) .

Kkn€Tnn Kn€Tnh

We obtain the desired result (5.72) by integrating over ¢ between t,_; and t,, summing over n from 0
to m and by using inequalities similar to (5.68) and (5.69) applied to (C' — 7,C},) and then (5.22). O

To get the final form of the a posteriori bound, we have to bound the following last term:

1
—(u—uy)+u-Vu—m . up - Vrru, — 3 div (m rup)mrup + V(p — pp).

ot
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Theorem 5.21. Let (u,p,C) be the solution of problem (1.1) and (up,pn,Ch) the solution of prob-
lem (Eds1). For 1 <n <m withm € {1,--- , N}, we have the following inequality

1
| *(u —u,)+u-Vu—m u-Vru, — = le (T 7up) T + V(p = pr) 220,60 x7)

m
<Z Z Tn nu n Kn 24 (T]Z.:n,,%)2 + (n;nﬁn) )+ || fo — 7o HL2(0,tm;L2(Q)2) (5.73)

n=1kn,E€Tnn

1/2
+11C=Ch 7204,y Tllu—un %2(0,tm;X>> '

Proof. The first equality of system (5.9) in Lemma 5.4 gives us:

(Bat(u up)(t),v) + (u(t) - Vu(t) — mrup(t) - Vrrup(t), v) — %(div (mrup(t))mrup(t), v)

—(div v, p(t) = pa(t))
= —1p(Vu(t) — Varup(t), Vv) — 2(ve(C(1))D(u(t)) — vo(m,-Cr)D(r us(t)), D(v))
HRG (1), v) + (£t C (1) — £2(C) 1), v).

However,
| *(u —u)(t) +u(t) - Vu(t) — mrun(t) - Vrra(t) — %div (mi-un(t))mrun(t) + V(p = pa)(t) [|x/

1 0
= jggm (((%(u —uy)(t),v) + (u(t) - Vu(t) — mrup(t) - Vrrug(t), v)

5 (07,0 (0, ) = (v v.p(0) = (1) )

( —vo(Vu(t) — Varup(t), Vv) — 2(ve(C(t))D(u(t)) — ve(m,-Ch)D(mrup(t)), D(v))

= sup
vex [ v llx
HRLON) + (E0.C0) - £1(C) ) ).
(5.74)
We start by bounding the first two terms of (5.74). Foremost, we insert 2(ve(m -Cr)D(u(t)), D(v)); we
use (2.5) for the second term of (5.75) below. For the third one, we use that v is lipschitz, then the
L* — L* — L? generalized Cauchy-Schwarz inequality, the fact that V(u) € L>(0,7T; L*(9)%*?) and (2.2)
with p = 4; we get
|—vo(Vu(t) — Vru,(t), Vv) = 2(ve (m,-Cr)D(u(t) — mrus(t)), D(v))
—2((ve(C 1) = ve(m,-Cp))D(u(t)), D(v ))1\ (5.75)
< (o +209) [l u(t) = mrun(d) x| v llx +eo [| C@) = Cp7 Iy [ v llx -
For the other terms of (5.74), by using (5.14) and (5.20) we obtain

[(£(,C(8)) = £(C1 1) + Ri(t), v))|

< Y allft.C) = (0 ez (e

En€Tnh

1/2
v e +cz( ) <m’z,n,ﬁn>2) I lx -

En€Tnn

Whence, by using the definition and the properties of f we have,
1.
| *(u up)(t) +u(t) - Vu(t) — mrup(t) - Varug(t) — Sdiv (mun(t))m-un(t) + Ve — pr)(t) [x0
2

Scs( u(t) —mw®) X+ S o) — £ e,

En€Tnn

1/2
LY jem-atp e Y <nz,n,m>2) .

Kn€Tnh kn€Tnn
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We insert C(t) in the third term of the right-hand side of the above inequality, use (5.6) (the definition
of Ci(t)), integrate over ¢ between ¢,,_1 and t,, and sum over n from 0 to m to get:

0 1 .
I a(u —up)+u-Vu—m up - Vrouy, — 3 div (m-up)m-un + V(0 = pr) [[2200,6.:x7
m
< C( Z Z (Tn(nz,nmn)Q + (nz,n,nn)z)—"_ H fo — 7.1 ||%2(07tm;L2(Q)2) (5 76)
n=1k,E€Tnn ’

1/2
+ 11 C=Ch ||%2(O,tm;Y) + [ u—mruy ||2L2(o,tm;x) ) .
In order to obtain the final result of this theorem, it remains to bound the last term in the right-hand side

mo ot
of equation (5.76). To do so, knowing that : || u — 7w up ||2L2(0 tiX) = Z/ | u(t) — moun(t) ||% dt,
) n=1 tn—1

we follow the same idea that led to (5.68) and we obtain

m m

") - mrn) [ de<e( S0 [ uls) - unls) I ds+ (i) (577
S [ e - mwo (;/tn_lnu ) st Y ) 671

n=1 Kk, €Tnn

By combining (5.76) and (5.77) we get the desired result. O

Having all we need, we can now introduce the following corollary which establishes the upper bound.

Corollary 5.22. Let hy, < cs7n,Vn € {1,..., N}, where ¢y is a positive constant independent of n. For
each m € {1,--- N}, the solutions (u,p,C) of (1.1) and (uy,pp,Ch) of (Edsl) satisfy the following a
posteriori estimation:

o) 1.
[[u—up]?(tm)+ || a(u —uy) +u-Vu—muy - Vrou, — 3 div (m zup)mrun 4+ V(o — pu) 22006, x7)

0 1.
+HC - Ch]]z(tm)+ H a(c - Ch) +u- vC - TrUp V?TTC}L - 5 div (WTuh)ﬂ'TCh ”LQ(O,tm;Y/)

< C( | g—mrg H2L2(o,tm;yf) + | Co - C}) H2L2(Q) + [ uo — uj, ||2Lz(Q) +70 || wo —uj [I%

m
o= 78y ooz + 2 30 (4 (4 7l ) + 7l ) )

n=1Kn,ETnh

(5.78)

Proof. The result is a simple consequence of the definition of [[u — u,]]?(t,) and [[C — CL]*(tm),
Theorem 5.19 and inequalities (5.72) and (5.73), in which the error terms || C' — C}, ||2L2(0 toy) and

| u—up H%Q(O’tm;x) are themselves bounded by Theorem 5.19. O

Thereby, we bounded the error between the exact solution (u,p,C) of problem (1.1) and the numerical
solution (up, pp, Cr) of problem (Edsl) using the indicators. Let us now move on to the last stage of the
a posteriori error estimation, namely the lower bounds, which prove efficiency of the error indicators.

5.3. Lower bounds of the error. To complete the a posteriori estimation, we establish the efficiency
of the error indicators, which consists in bounding each indicator 7y, ,, . , ngﬁnﬁn, Nenr, and né‘wn),{n
locally by the error between the exact and numerical solutions.

To accomplish the desired efficiency proof, we introduce approximations f; of £", v, of v¢ and gj of g"
as follows: for any function £ € LP(k,) and for each element k,, € T,; we set

£(6)], = ﬁ / £ (¢(a)) dx., (5.79)

1
(@l = 1 / vel(@) dx (5.80)
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1
P —— / g"(z) dx. (5.81)
|’€n| Fn

A straightforward consequence of the properties of £ and v¢ is that v is bounded and f}' and v, are
Lipschitz with respect to &.

and

Remark 5.23. We introduce f}}, vy, and g;', which are constant on each k., so we shall be able to apply
Property 5.1 which holds for polynomials only.

Theorem 5.24. For alln € {1,--- , N}, we have the following estimation
(T]Zvna"ﬁn)Z S ¢ ( H O - C’h ||%2(tn—l7tn§Hl(Rn)) + || C - ﬂ-TCh ||%2(tn—17tn§Hl(’€n)) ) ’

where ¢ is a constant independent of the time and mesh steps.

Proof. Based on the definition of C} and C}!, we have for all n € {1,--- , N} and all ¢t € [t,,_1 — t,],

t—1

Ch(t) — WTCh(t) = n (C}? — Cg_l).

n

So, by inserting C'(¢) in the above equality, we get

n

2
t—t, n n—
(555) 1GE = O = 200 €O =€) B + 11 (€O = a0 )

We integrate over t between t,,_; and t, to get the result. O

We will now bound the indicator 77?,717M.
Theorem 5.25. For alln € {1,--- , N}, we have
(n?n ) S

n n 1 : n n n
oI (€ = Ch)0) +u- VO = - VG = Saiv WRICR +70(C = ) [, -rcav)

F 1 C=mCo 32 tnemiamny) o 1 9= 709 3201 tr2(amny Tl 119" = 97 3200 )
(5.82)

where ¢ is a positive constant independent of the mesh and time steps.

Proof. We consider the second equality of system (5.9) in Lemma 5.4 in which we simplify the left and
right hand side by (RZ(t),r), so we have for t =|t,_1,t,]:

/5'15 (C = Cu)( rdx+a/V )-Vrdx—l—/u(t)-VC’(t)rdx
)

1
—/ uZ~VC}frdx+r0/(C’(t)—C’}f)rdx— — [ div (up)Cprdx
Q Q 2 Ja

-y {/M(g(t)—g”)TdX-i-/ﬁ (9" —gp)rdx (5.83)

I{TIGTH}L n
1 1
+/ (95 — 7(0}; Cr ) 4+ aAC] —u} - VOp — idiv (up)Cp —roCp)rdx
. Z / [VCH(o) - n]r(o )da}
en€€,.;ﬂ
We take r = r,,,, where

1 — n n n 1 : n n n
- (gp — —(Cp = C™ 1) + aACE —u - VO — ile (up)Cp = roCi )Y, on n,
' 0 on N\ ky,.
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We remember that v, is the bubble function which is equal to the product of the barycentric coordinates
associated with the vertices of k,,.

So, we obtain

n

1 — n n n 1 : n n n
- / %(c O () e, dx + / V(C(t) = CF) - Ve, dx + / u(t) - VO(t) ry, dx

, ,
_/ uy, -VClr, dx+ ro/ (C(t)—CP)ry, dx — B / div (up)C} ry, dx

-/ (olt) — 9" dx - / " = o) e 5.

Kn

Since r,, € H}(kn), we can apply the definition of the H~1(k,,) norm. We apply the Cauchy-Schwarz
inequality to get

1 n— n n n 1 : n n mn
I (g — 7_*(0}? -Gy 1) +aACy —uj - VO — §d1V (up)Cy — Toch)w;li{? H(Q),Kn

< cl< I 8t(c —Cp)(t)+u-VCO(t) —up - VC} — §d1V (up)Cy

Fro(C() = ) - 7o 13y 0 1| FC) = ) w72 2 o
1 g(t) = 9" lar-ron | e, )

We multiply by h,, , use Property 5.1 and the fact that 0 < v, < 1; then we simplify and we get

0k T 11 9" = 97 ok,

Thp

n

1 n n— mn n mn 1 M n mn mn
he, || (g5 — ?(Ch -G 1) +aACy —up - VO — gdlv (up)CR = 1oCy) o,
a 1 . n mn n
S 62< || a(C — Oh)(t) +u- VC(t) - UZ . VO;Z — idlv (uh)C'h + To(C(t) — Ch) HH*l(nn)
+ [ V(C®) = CF) llow, +he, | 98) = 9" llok,, +hw, | 9™ = g1 llo,x., )

(5.84)
First, we insert ¢g"” and use the triangular inequality.

Then by squaring the previous inequality and
integrating over ¢ between t,_; and ¢,,, we can bound the first term of the indicator 7]2,% 5, as follows:

]' n— n n n 1 : n n n
Tnhin | g" — ?(CZL - Cy 1) +aACy —up - VO — §d1V (up)C —roCy, ||g,nn

n n 1 : n n n
<es(| a(c = Cp)(t) +u-VC —uy - VO — ile (W)CR +10(C = Ci) T2t 1 trir-1(0)

+ || C o C]:'L ||%2(tn71ytn§H1(Kn)) +hin H g B gn ||%2(tn717tn§L2(Kn)) +Tnhin || gn - gZ’ Hgaﬁn )

(5.85)
To obtain a bound for the second term of nl’j’nw,{w we consider an element k, € T,, and e, C 0k, N FZ;
we denote by k!, the other cell of the mesh that shares e, and we consider Equation (5.83) with r = r,
where:

N Le, (a[VC} - n]e, Ye,) on Kk, UK,
o 0 on Q\(k, UKL).
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We get:

1 1
/ [aVC} - n] e, ds = / (" — —(C} — C;Z*l) +aAC}) —uy - VO — idiv (up)CP + roCpre, dx

€en rcnUn Tn

e + ul(t) VC() — - VCF — Laiv (w)Cf + ro(CL0) =€) e, dx

—|—/ (g(t) —g")re, dx + a/ V(C(t) - C}) Vr., dx.
KnUK Kn UK

Since ., € H}(K,UK/,), we can apply the definition of the H~!(K, U K] ) norm; we apply the Cauchy-
Schwarz inequality, we use the properties 5.1 and 5.2, we multiply by hen and simplify by || a[VC] -
nfc, [lo.e, to get

1/2
hel? || a[VCy - 1] . lo.c. 1
< c4< g™ = —(Ch C{j‘l) + aACH —up - VO — 5div (up)C 4+ roCY ||07,%U,dn

nwon - g (amon n 5.86
T ~ 1) +u- VO - VCR — 2div (W) +70(C — OF) -1 e (5.86)

+ 1l g(®) —g" ”LQ(”nU”%) +1C®) - Cy ”Hl(ﬁnUFJn) >

We can bound the first term of the right hand side of (5.86), using (5.84) and the fact that he” and he”

are bounded by 1. By squaring the previous 1nequahty, integrating over t from between t,_1 and tn, we
can bound the second term of the indicator 7!, . as follows:

he, Tn || a[VC,TLL -]
n n 1 : n n n
<es( €= (O +u- VO - uf - VO] = Jaiv (WRICE +70(C = O o puir-+tsscm)

+hzn ” g— gn ||%2(tn—1,tn;L‘z(K/y,‘Uh};")) +Tnhgn gn Uk!, + || ¢ - C}TLL H%Q(tn,l,t”;Hl(anm;l)) )
(5.87)
Regrouping (5.85) and (5.87), we get the desired result. O

We still have to bound the indicators of velocity 7y ,, . ~and nZ,n,nn‘
Theorem 5.26. For alln € {1,---, N}, we have the following estimation:

(77771‘-1’”7571)2 S ¢ ( || u-—up ||i2(tn—l7tn;H1(”€n)2) + H u—7rup ||%2(tnflvtn§Hl(5n)2) ) ’

where ¢ is a positive constant independent of the time and space steps.
For the proof, we just have to follow the proof of theorem 5.24.

Theorem 5.27. Let Vu € L>(0,T; L (Q)?*?), we have for alln € {1,--- ,N}:
T (M nw,)” <
| *(u w,) +u-Vu—up~h Vg - diV (™ + V0 = p0) T2t 1 tnim—(Arn)2)
+ 1 C = C 2t s tusmtany) + | CfF = O I amy Flw=an 1220, o any)
tlluy —u e, i any) T 1va(C) =ve(C) 122, or2(ann)
+h2 || fo — m £y ||%2(tn_1,tn;L2(An,,) +h2 | £7(C) — £7(C) ||%2(tn_1,tn;L2(Ann))2 )

(5.88)
where ¢ is a positive constant independent of the time and mesh steps.
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Proof. Based on the first equality of system (5.9) in Lemma 5.4, we use 5.10 and we insert the terms

(£2(Cp),v), 20 (C(1)D(u), D(v >> and 2(v,(C7~)D(), D(v)) to get:

/ (gt(u up)(t) +u(t) - Vu(t) — d1v (up™ 1)uh — uz_l 'Vu}f) -vdx

—/ div v(t)(p(t) — pn(t)) dx + 1/0/ V(u(t) —up): Vvdx + 2/ vp(CR~H)D(u(t) — uf) : D(v) dx
Q Q Q

+2 / (e (C (1)) — va(C(E)D() : D(v) dx + 2 / (h(C()) = v (C21))D(u) : D(v) dx
Q Q
- [ gecw) - e vax— [ (e - (e -vax

Q

1
= ¥ {/ (G ) = —(u = ™)+ A + V- (20 (G HD(uf)) - wji " - Vi

Rne,rnh
1
5 = ) v 3 [ 0+ 20(C D) i) )] v(o)ae .
eneeﬁn
(5.89)
We take v = v, such that
- 1 n— n n— n
((fr(Cy 1)—;(112—11;1 1)+V0Auh+v'(2yh(ch DD (up))
Vin = —u;” ! -Vu} — dlv( n 1) — Vo) (@), on Kn,
0 on Q\ky,.

Then we get:

n n— 1 n n— n n— n
[ - - ) v+ V- (26 (C D)
" ! —up Tt vup — %div (up~Huy — Vp;f)2w,in dx

= / (g(u —u)(t) +u(t) - Vu(t) —up .Vuy — %div (up =y + V(p(t) — pa(t)) ) - Vi, dx

—I-l/o/ —up): Vv, dx —l—/ 21/h(C}Z*1)]D)(u(t) —up) :D(v,,)dx

Kn

+/ 2we(C(t)) —vp(C(t)))D(u) : D(vy, ) dx +/ 2wn(C1)) — va(CR~1)D(u) : D(v,,) dx

- / (8, C (1) — £°(C1Y)) - v, dx — / (E"(CpY) — £2(CP) - v, dx.

(5.90)
Since vy, € Hi(K,)?, we can apply the definition of the H~!(k,)? norm. We denote by I;,i = 0,...,6

the terms in the right-hand side of equality (5.90). The first three terms can easily be bounded by using
the properties of v, and the Cauchy-Schwarz inequality and we get

9 n— n L. n— n
o+ 1 + L < e (|| 5 (U~ wn)(t) +u(t) - Vu(t) - uy bVuy - div (uy Yupl + V(p(t) — pr(t)) [|7-1(s)2
+lu—u} g2 ) Il Vi,

Let us now bound I3. We apply the Cauchy-Schwarz inequality by considering Vu € L>(0, T; L>°(Q)?*2).
Thus we get:

|13

Hl(,{n)2

< 2 ve(C®) = vn(C@) L2 (x|l DOa(?) Lo 0,1 )272) | Vi, 1E1 (k02
< e | ve(C) —vn(CW) 2ol Vi a1 (k)2 -

As vy, is Lipschitz, and Vu € L>(0,T; L>°(Q)?*?), we apply the Cauchy-Schwarz inequality and we insert
Ch(t) to get :

14l < e | C) = G lragea | D() =, TiL () y222) || Vi, (11 ()2
< e(11CW#) = Cul®) Ny + 11 CF = CR 7 lmigen) ) 1| Vi )2 -
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For the Term I, we insert £(C},(t)), use the definition and the properties of f (assumption 2.4) and apply
the Cauchy-Schwarz inequality to obtain

15| < 07< 1 £0(t) = fo(tn) l2(s,2 + | C(t) = Cu®) lz2(sn) + I Ch = CR ™ L2 (i) ) Vi, l2(r,)2 -

We still have to bound the term Ig. We insert £7(C(¢)) and f}'(C(t)) and we use the Cauchy-Schwarz
inequality to get:

TAR ( |20 — £ (C0) e + | E(CE) — EHCW) 11200y

U (CW) = () ey ) v 2o -

By using the properties of " and f}* and then inserting Cy,(t) in the first and third term in the right-hand
side of the above bound, we obtain:

s < 09< 1O = Ch ™t llz2genye + I ER(C@) = £1(C 1) 2,2

1O = Cul) ey ) 1 Ve, oz -

Thus, we consider Equation (5.90), gather the above bounds corresponding to I;,i = 0,...,6, use the
Cauchy-Schwarz inequality and properties 5.1 and 5.2, multiply by hin and integrate between ¢,,_; and ¢,
to have the following inequality:

1

bz, | EM(CRTY) = —(uf —wp ™)+ voAu + V- (2 (G )D ()

" - 1 : n— n 7

—uy L. Vu} — §d1v (uj 1)uh — Vpp ||37M

3 n— n 1 : n— n
< Clo< I E(u —w,) + (u-Vu—u} "t v} - §d1V (up "y + V(p —pn) ||2L2(tn71,tn;H—1(m,))
11 C = ChlEa, s s sy T 1O = Ci7 e

Hllup = e, nmi ey T 10R(O) =ve(O) L0, inir2(eny

+hin || fo — m-fo Hi?(tn_l,tn;ﬂ(nn)) "‘hin || f,?(C) - fn(C) H%?(tn_l,tn;Lz(nn)) )7

(5.91)
This last inequality constitutes the bound of the first term of the indicator nﬁ’n,,{n. Let us now bound
the second one.
We consider an element x,, € T, and e, C dk, N Fﬁl; we denote by k!, the other cell of the mesh that
shares e,, and we consider Equation (5.89) with v = v, such that

n

v, — Le, ([(roVuy, + QVh(C}TLLil)D(uZ) = ph) nle, Ye,) on ki U Ky,
¢ 0 on Q\(kn UKL).
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We obtain,
~ [ 10V + 20 (D) — s, 6, ds
€n
8 1 . n—1 n n—1 n
= (a(u —up)(t) +u(t) - Vu(t) — §d1v (up"up —up™ " -Vuy +V(p — ph)(t)) Ve, dx
Kn UK/,

+/ " vV(u(t) —uyp) : Vv, dx —I—/ 2(vn (C~HD(u(t) — u})) : D(ve, ) dx

/
nUky

+/ . 2(ve(C(t) —vp(C(t)))D(u) : D(v,, ) dx +/ 2(vp(Cr(t)) — yh(C’,’;_l))]D)(u) :D(v,, ) dx

’
KnUK],

—/ ] /(f(t,C(t))—f”(C,’:_l)) Ve, dx—/ (O —£1(CFh) - v, dx

’
KnURKg,

— 1 n n— n
[ e - ) g
KUK, n

1
+V - 2up(C DY) —uf - Vup — idiv (upHup — Vpp) - v, dx.

(5.92)
We follow the same steps as in the case of the first term of (n,, . )?. Using (5.91) and the fact that ZL
and Zejl are bounded by 1, we get:

N’!1.

Tahe, || [(voVuf, + 20, (C~)D(uf) — pj)nle,

2
0,en

_ 1. _
<enl |l a(u —up)+u-Vu— uZ L. Vuy — §d1V (UZ 1)‘12 +V(p —pn) ”%'L’(tn,l7t,,L;H—1(m,LUm;l))
—1
1€ = Cullzee, it (o) 70 1 O = O3 g,
+ || UZ —u ||%2(tn—lvtn;Hl(KinUH%)) + || Vh(C) - VC(C) ||%2(tn,1,tn;L2(nnUﬁ;L))

+ hgn || fo — fO(tn) ||%2(tn717tn§L2(finUK‘;,,)) + hgn || fn(C) - fi?(c) ||%2(tn71,tn;p(ﬁnu,%)) )

(5.93)
We finish this proof by bounding the last term of (nf, . )2.
By using the impressibility condition div (u) = 0 we get
I div () le2gan < | div (ult) = wi(®) 2o -

We integrate between t,,_; and t¢,, and we use Relation (5.60) with the term (div (up(¢,))) instead of
the term (u,(¢,) — up(t,)) to get:

Tn . n .
3 [ divup o, < [[divuy ||L2(tn,1,tn;L2(M))
< |l div (=) [t stiz20e0)) (5:94)
< lu—un e,y toim (00)) -
Gathering (5.91), (5.93) and (5.94), and the fact that h., < h,, , we obtain the desired result. O

Each indicator is now bounded by the error between the exact and the numerical solutions; the lower
bound of the error is thus obtained done. This establishes the complete equivalence between the a
posteriori error estimators and the error.

6. NUMERICAL RESULTS

In this last section, to validate the results proved in this paper, we use numerical simulations performed
with Freefem++[25]. We treat two different cases. We first study an academic case where the exact
solution is known; in a second step, we move on to a more realistic case.
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6.1. The Academic case. We consider a square domain 2, where each edge is initially divided into N
segments of equal length.

Firstly, we define the following relative total error between the exact and numerical solutions:
N N N
orr — (En—1 Tn|uy — u@ﬂ)ﬁ{l(g)? + 21 TallPh — p<tn)||2L2(Q) + 201 TlCf — C(tn)ﬁ{l(g) > 12
= ~ ,
> n=1 Tn(lu(tn) %11(9)2 + ||p(tn)||2L2(Q) +[C(tn) %11(9))

where (u,p,C) is the solution of Problem (1.1) and (u},p},C}') is the solution of Problem (Edsl).
As far as the velocity and concentration variables are concerned, this is a (relative) discrete version of
the L?(0,T, H}(2)) norms that are involved in definitions 5.7 and 5.8. As far as the pressure error is
concerned, the discrete inf-sup condition 4.4 very classically allows to bound the L? pressure error by the
velocity H} error. So, the denominator of this error is contained in the left-hand side of Corollary 5.22.
We use the a posteriori error estimates given by this corollary to show numerical results based on mesh
adaptation. For this objective, we introduce the relative time indicator, defined by

N T 2 1/2 N T 2 1/2
ETu _ (Zn_o(nu,n) ) and ET _ (Zn_o(nc,n) ) ,

D . D
with
2 2
)= 3 (n) = Y (n)
Kn €Tnn kn€Tnh
and
N
D=3 rl16irs e + IR By + 17 s a):
n=1

We alse introduce the relative space indicators, defined by
N h 2\ 1/2 N h \2\ 1/2
—07Tn u,n n= Tn c,mn
B, — (2n=0Tn{in) and B = [ 2m=oTn(en)™)
" D c D
with

2 2
W)= Y <77h> and () = Y (M)

kn€Tnn kn€Tnh
and we denote
L =FE;, +E;, +E, +Ep,.
We counsider the case where the exact solution of (1.1) is given by (Uez, Pexs Cer) = (rot ¥, pes, Ces ), where
U(x,y,t) = 2% (x — 1)29%(y — 1)? sin(t),
Pex(z,y,t) = (t + 1) cos(mzx) cos(my),
Coo(z,y,t) = —t e—lOO((z—O.S—O.Bt)2+(y—0.3)2)'

Thereby, we can compare the exact and numerical solutions by computing the corresponding error.
We consider 2 = [0,1]2, T=1,a=1,7r9 =1, 1y = 0.5 and v¢(C) = 0.2sin(C) + 0.5. First, we consider
the adaptive algorithm with an initial time step 7 = N and an initial mesh corresponding to N = 20.

Starting by u) = up =0 and CP = Cy = 0, we used the algorithm below.

Algorithm:

optt, pitt and the indicators (17 ,,)2, (n7,,)% ()% (k)2

)

(1) Having u} and C}', we calculate uy
(2) If the error Eyy is less than a fixed tolerance, we move on to the next time step (n — n+1) and
we go to step (1) with a larger time step when FE;,; is lower than 90% of the fixed tolerance.

Otherwise we need to adapt either the mesh or the time step and therefore we move to step (3).

(3) We are in one of these two situations:
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(a) if the error in space Ej, + Ej,_ is less than the error in time E, + E. , we adapt the time
step by replacing 7,, by %n and start over from step (1) without moving to the next time
step.

(b) if the error in time is smaller than the error in space, we adapt the mesh according to the
local error indicators and repeat from step (1) without moving to the next time step.

More precisely, concerning the mesh refinement, we use the "ReMeshIndicator" macro provided by
FreeFem-++ [24, Section 5.1.9]; this typically provides the meshing tool with an indication that, in the
new adapted mesh, the mesh step of the current mesh should be locally (around a given cell k) divided
N Lt .
)

Moreover, when the mesh is modified, FreeFem++ interpolates the previous finite elements functions
uzfl and C’;Z*l on the quadrature points of the new mesh and use these values to evaluate integrals
that are needed on the new mesh, both in the discrete system (Edsl) and in the evaluation of the
error indicators (5.16)—(5.19). In practice, this results in the fact that in the time step that follows a
mesh adaptation, the time estimators (5.16) and (5.17) are twice to three times larger than they usually
are. According to our adaptation algorithm, this leads to a reduction of the time step after each mesh
adaptation, by a factor 2 or 4. Note that solving (Edsl) with a small time step results in the definition
of a new velocity field that is (up to terms of size 7,,) the L? projection on the new mesh of the previous
velocity field, constrained by the weak divergence free condition on the new mesh.

Figures 1 to 4, show the evolution of the mesh during the time steps.

by the ratio , where (") is the mean value of the space error indicators over the mesh.
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FIGURE 1. Initial mesh
FIGURE 2. Mesh at t = 0.241
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FIGURE 3. Mesh at t = 0.496
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FIGURE 4. Mesh at t = 0.897

In figure 5 (respectively in figure 6), we compare the relative total error (respectively the global indicators
E,ot) with respect to the total number of space-time unknowns in logarithmic scale, for both uniform
and adaptive numerical algorithms. Both figures clearly show the advantage of the adaptive method
versus the uniform method, since the errors corresponding to the adaptive method are several times
smaller than those corresponding to the uniform method for a given number of space-time unknowns.
We stress that these graphs can also be read horizontally rather than vertically: for example, in order
to reach a total relative error of 1071, the adaptive strategy requires around 10% space-time unknowns,
while around 3 x 10° are needed on uniform meshes. This factor 30 in the number of unknowns results
in a huge speed-up in the adaptive simulations for a given targeted accuracy.

Totale relative error
3
T

uriform
adaptive

104 10°
Total number of space-time unknowns

Ficure 5. Total relative errors
err.

We define the efficiency index as follows:
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FI1GURE 6. Total indicators Fio.

1/2

(7 )2+ e )2 (e )2+ (0l )?)

El =

N
Z T (|0fy = utn) [y + Pk = p(ta)l172(0) + ICF = Ctn)| 31 ()
n=1

In Table 1, we can see the value of the efficiency index for different values of space-time unknowns (STU)
for the adaptive mesh. We can notice that the efficiency index varies between 7.67 and 9.09.

STU

10 324

18 965

23 913

94 948

241 276

EI

8.80

7.67

9.09

8.74

7.60

TABLE 1. Efficiency index with respect to the total number of space-time unknowns.
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In Table 2, we can also see the value of the efficiency index for different values of STU but for the uniform
mesh. We can notice that the efficiency index varies around 5.

STU || 16 000 | 54 000 | 128 000 | 250 000
El 5.79 5.82 5.83 5.82

TABLE 2. Efficiency index with respect to the total number of space-time unknowns.

6.2. A more realistic case. Let us introduce a more realistic test case. Here the unknown C(t) repre-
sents the variation of the temperature at a time ¢ in the domain assumed to be here the L-shaped vertical
section of a room with two different roof heights. We suppose that the initial temperature is uniformly
equal to Cp = 290K (around 16°C). We also suppose that this room is heated by a heater (BDEF') placed
at the bottom of the domain as shown in Figure 7 where AB = 1.6, BD = 0.4, BF = 0.8, F'G = 1.6,
GH=25,HI=21J=1,JK =2and KA =3.5.

A B F G

FiGure 7. The domain

Therefore, the simulation describes the evolution of the temperature variation and of the velocity of the
air in this room with respect to time. Physical parameters are chosen to represent typical values of air
and are all given in SI units: T = 1200, 7o = 0, @ = 2 x 107?, and v = 10~%. Moreover, the source term
in the momentum equation is given by the buoyancy force f(C) = (0, grav x C/Cy) where grav = 10.
Furthermore, the heat source term is chosen low enough so that the flow remains below a turbulent
regime; it is given by

[ 1073 in the heater BDEF,
10 elsewhere.

Finally, on the boundary 91, we use Robin boundary conditions with a Robin coefficient equal to 1076,
in order to modelize low heat losses.

We start the simulation with a uniform mesh. The adaptive process generates meshes that follow well
the velocity and the temperature variation over time. Figures 8, 9, 10 display the meshes, the velocity
norms and the temperature variations at the different times ¢ = 50, ¢ = 150, ¢t = 200; figures 11 and 12
for t = 600 and ¢t = 1200 do not display the meshes because of the high density of cells.

In figure 13, we compare the global indicators Ei,; with respect to the total number of space-time
unknowns in logarithmic scale, for both uniform and adaptive numerical algorithms. The figures show
the advantage of the adaptive method versus the uniform method, since the errors corresponding to the
adaptive method are smaller than those corresponding to the uniform method. The adaptive strategy
requires around 2 to 3 times fewer space-time unknowns than the uniform strategy in order to reach a
given error indicator, which results in a significant speed-up in the simulations.
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Temperature variation Velocity
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FIGURE 8. Mesh (left), numerical temperature (centre) and numerical velocity (right)
at t = 50.

Temperature variation Velocity
0.0e+00 005 8.9e-02 00e+00 002 004 74602

- | [

FIGURE 9. Mesh (left), numerical temperature (centre) and numerical velocity (right)
at ¢ = 150.
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Temperature variation Velocity
0.0e+00 0.05 9.1e-02 0.0e+00 005 9.56-02
- ' — ' —

FIGURE 10. Mesh (left), numerical temperature (centre) and numerical velocity (right)
at t = 200.

Temperature variation Velocity
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FIGURE 11. Numerical temperature (left) and numerical velocity (right) at ¢ = 600.
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Temperature variation Velocity
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FIGURE 12. Numerical temperature (left) and numerical velocity (right) at ¢ = 1200.
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FiGure 13. Total indicators Eio;.
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7. CONCLUSION

In this work, we have derived a posteriori error estimates for the time dependent Navier-Stokes system
coupled with the convection-diffusion-reaction equation. We started by introducing a variational for-
mulation that we discretized in time using the semi-implicit Euler method and in space using the "P1
bubble / P1 / P1" finite element method. Then we established an a posteriori error estimate between
the exact solution of our problem and the numerical solution, where we introduced an auxiliary problem
to establish the velocity error estimate. In order to show the equivalence between the error and the
indicators, we first bounded the velocity and the concentration errors by a sum, over the mesh and over
the time steps, of indicators that are local in time and in space; then we bounded each of these indicators
using the local error. Finally, based on our theoretical results and using the FreeFem-++ software, we
developed an adaptive algorithm monitors the mesh and time step refinement and leads to more accurate
results than an algorithm based on uniform mesh and time step refinement.

A further step in our work would be to establish the same kind of error estimate for this same prob-
lem when the diffusion coefficient o in the convection diffusion reaction equation also depends on the
concentration.
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