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Abstract
The conditioning and spectral properties of themass and stiffnessmatrices for acoustic
wave problems are here investigated when isogeometric analysis (IGA) collocation
methods in space and Newmark methods in time are employed. Theoretical estimates
and extensive numerical results are reported for the eigenvalues and condition num-
bers of the acoustic mass and stiffness matrices in the reference square domain with
Dirichlet, Neumann, and absorbing boundary conditions. This study focuses in partic-
ular on the spectral dependence on the polynomial degree p, mesh size h, regularity k,
of the IGA discretization and on the time step size�t and parameter β of the Newmark
method. Results on the sparsity of the matrices and the eigenvalue distribution with
respect to the number of degrees of freedom d.o.f. and the number of nonzero entries
nz are also reported. The results show that the spectral properties of the IGA colloca-
tion matrices are comparable with the available spectral estimates for IGA Galerkin
matrices associated with the Poisson problem with Dirichlet boundary conditions,
and in some cases, the IGA collocation results are better than the corresponding IGA
Galerkin estimates, in particular for increasing p and maximal regularity k = p − 1.
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1 Introduction

Isogeometric analysis (IGA) has generated a large amount of work since its intro-
duction in Hughes et al. [19], with important results in various fields involving
the numerical solution of partial differential equations. The advantages of the IGA
approach in many problems and applications have been shown in several studies, see,
e.g., Bazilevs et al. [3], Auricchio et al. [1], Cottrell et al. [6], Beirão da Veiga et
al. [4], and the references therein. IGA basis functions associated with B-splines and
non-uniform rational B-splines (NURBS) are employed to discretize both the problem
domain, as in computer-aided design (CAD) systems, and the solution space of the
differential problem. In this way, IGA yields an accurate representation of the problem
geometry and at the same time a high-order method with respect to standard p- and
hp- refinements, where p is the polynomial degree of the IGA basis functions and h
is the mesh size. IGA also affords an additional k-refinement, where k ≤ p − 1 is
the global regularity of the IGA basis functions, providing highly regular numerical
solutions and better accuracy than in the case of classical FEM p-refinement.

While initially IGA studies have been carried out using standard Galerkin
approaches, more recently IGA collocation variants have been investigated, with the
aim of dealing with sparser mass and stiffness matrices than those arising from IGA
Galerkin techniques. IGA collocation has also the additional advantage of reducing
the global computational cost, since collocation matrices require only one function
evaluation per collocation point, independently of p; see Auricchio et al. [2], Cottrell
et al. [7], Dedé et al. [8], Evans et al. [13], Hughes et al. [20], Komatitsch et al. [23],
Kruse et al. [25], Zhu et al. [38].

In our previous work [36], we have considered IGAGalerkin and explicit Newmark
approximations of the acoustic wave equation with absorbing boundary conditions,
whereas in [37], we have extended the study to IGA collocation and implicit Newmark
schemes.Wepresented several numerical results showing the convergence and stability
properties of these schemes, and we have reported also a detailed comparison between
IGA Galerkin and IGA Collocation with respect to the space and time discretization
parameters, CPU time, sparsity of matrices and degrees of freedom. Since both the
IGA Galerkin and collocation mass matrices become denser for increasing p and k,
the main difference between explicit and implicit IGA Newmark schemes is related
to the stability bounds for the time step size, rather than to the cost of the solution of
the linear systems at each temporal instant. The theoretical analysis in [36] is confined
to the stability properties of the IGA Galerkin Newmark method and additionally, it
is only partially based on proven results. In fact, there is still a lack of theoretical
spectral bounds for IGA matrices in the literature, and most of the known estimates
regarding eigenvalues and conditioning of the IGA mass and stiffness matrices are
conjectures. For these reasons, a detailed experimental analysis is of interest in the
framework ofwave propagation problems in order to explore the gaps of the theoretical
analysis and to investigate efficient solution of the linear system at each time step of
the time-advancing scheme, possibly involving preconditioning techniques.
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Among other relevant works, Gervasio et al. [16] presented an extensive numerical
comparison between the Spectral Element Method and NURBS-based IGA Galerkin
when applied to the Poisson problem, analyzing the convergence, computational costs,
and conditioningwith respect to h and p, forminimal (k = 0) andmaximal (k = p−1)
regularity of the IGA basis functions. In [24], Loli et al. have studied the condition
number of IGA Galerkin mass matrices and have proposed efficient preconditioners
for the related linear systems, focusing in particular on k-refinement. In Evans et al.
[13], the spectral properties of a semi-discrete predictor-multicorrector method have
been investigated for the case of a 1D pure Dirichlet IGA problem.

In this paper,we consider the approximationof acousticwaveproblemswith absorb-
ing boundary conditions based on IGA collocation at Greville points in space and
Newmark advancing schemes in time, both explicit and implicit. We observe that
the implementation of absorbing boundary conditions is mathematically equivalent
to the more common Robin boundary conditions, as it involves a linear combination
of the values of the function and of its normal derivative at the collocation points
on the domain boundary. Differently from our previous works [36] and [37], where
we focused on the convergence and stability properties of IGA Galerkin and col-
location methods, in this paper, we focus instead on the spectral properties of the
mass and stiffness matrices for acoustic wave problems discretized with IGA col-
location in space and Newmark methods in time. We present a numerical study of
the behavior of the eigenvalues and condition numbers of the mass and stiffness
matrices in the reference square domain with Dirichlet, Neumann, and absorbing
boundary conditions, varying the polynomial degree p, mesh size h, regularity k,
time step size �t and parameter β of the Newmark method. We also report some
results on the sparsity of the matrices and the eigenvalue distribution with respect
to the degrees of freedom d.o.f. and the number of nonzero entries nz. In order
to provide a simple basis of comparison, we recall some bounds and estimates
that are available for IGA Galerkin matrices associated to the Poisson problem
with Dirichlet boundary conditions, see Gahalaut and Tomar [14], Garoni et al.
[15] and Gervasio et al. [16]. Our results show that the same estimates hold for
the condition numbers of the IGA collocation matrices considered in this paper,
and in some cases, the IGA collocation results are better than the correspond-
ing IGA Galerkin estimates, in particular for increasing p and maximal regularity
k = p − 1.

The rest of the paper is organized as follows. The acoustic wave model problem
and its mathematical analysis are introduced in Section 2, and its approximation by
IGA collocation in space and Newmark methods in time in Section 3. In Section 4,
we give a brief overview of eigenvalue and condition number estimates for the IGA
Galerkin approximation of the Poisson problem. Finally, in Section 5, we present
several numerical tests on the behavior of eigenvalues and condition numbers of IGA
collocation mass and stiffness matrices with different types of boundary conditions,
varying all the discretizationparameters, and compare the resultswith the ones reported
for the IGA Galerkin case.
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2 Themodel problem andmathematical analysis

We consider the two-dimensional acoustic wave problem (see, e.g., Junger and Feit
[22] and Ihlenburg [21]):

∂2u

∂t2
(x, t) − c0�u(x, t) = f (x, t) in � × (0, T ), (1)

where u is the unknown acoustic pressure, c0 is the acousticwave propagation velocity,
f is the source term. Here, � = [0, 1] × [0, 1] is the reference square in the plane,
∂� is its boundary and (0, T ) is the temporal interval, with T real and positive. Any
point of � is denoted by x and t represents the time. The wave equation is subject to
initial conditions:

u(x, 0) = U0(x),
∂u

∂t
(x, 0) = W0(x) in �, (2)

where U0 and W0 are the initial pressure and velocity, respectively.
Standard Dirichlet or Neumann boundary conditions can be prescribed on ∂�:

u(x, t) = �(x, t) on �D × (0, T ),
∂u

∂n
(x, t) = �(x, t) on �N × (0, T ). (3)

where � and � are the prescribed pressure and velocity on �D and �N , respectively,
and n is the outward boundary normal unit vector. We recall that when � = 0 the
homogeneous Neumann condition represents a free surface resulting in full reflection,
whereas the case� �= 0 occurs when a source is located at the portion of the boundary
�N . Nevertheless, Dirichlet conditions are less common in acoustic wave problems,
since the physical solution is rarely known at somepart of the boundary.Other common
boundary conditions in the simulation of wave propagation through an unbounded
domain are the so called absorbing boundary conditions (ABCs for brevity), involving
a truncation of the infinite original domain. On artificial boundaries of the novel
finite domain, suitable boundary conditions are then enforced with the aim to get
rid of spurious wave reflections as much as possible. Since full absorbing boundary
conditions are non-local neither in space nor in time, and consequently not appropriate
for implementation, several ABCs have been introduced in the literature in order to
make the boundary transparent to outgoing and opaque to ingoing waves (see, e.g.,
Clayton and Engquist [5] and Engquist and Majda [12]). Here, we study the most
common first-order ABCs based on first spatial and temporal partial derivatives only
introduced in Mur [27]:

1√
c0

∂u

∂t
(x, t) + ∂u

∂n
(x, t) = 0 on �AB × (0, T ). (4)

Here �AB is the artificial boundary where ABCs are enforced. Thus, in the most
general case, ∂� = �D ∪ �N ∪ �AB , where �D , �N and �AB are disjoint sets.
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The proof of the uniqueness of the solution and stability of the continuous acoustic
wave problem (1)-(4) can be performed following the analogous analysis of elasto-
dynamics linear problems (see Quarteroni et al. [29]).
Higher-order ABCs could be considered involving also derivatives of order greater
than one in space and time, and derivatives in the tangential direction (see, e.g., Givoli
[17]).

3 Approximation of the wave problem by isogeometric collocation
and Newmarkmethods

We now discretize the strong form of the acoustic wave problem (1)-(4) by using the
collocation variant of isogeometric analysis in space and Newmark schemes in time.

3.1 Isogeometric analysis and collocationmethods

Consider a knot vector of non-decreasing real numbers on the reference interval

{ξ1 = 0, ..., ξν+p+1 = 1}. (5)

We assume open knot vectors, i.e., the boundary knots have multiplicity p + 1 with
ξ1 = ξ2 = · · · = ξp+1 and, similarly, ξν+1 = ξν+2 = · · · = ξν+p+1. With this knot
vector, we associate univariate B-spline basis functions N p

i , where the integers p and ν

are thepolynomial degreeof theB-spline, and thenumber of basis functions and control
points, respectively. B-splines functions are built recursively starting from piecewise
constant functions when p = 0, obtaining B-splines with support (ξi , ξi+p+1), i =
1, 2, ..., ν (see, e.g., Schumaker [31]). It is known that B-spline basis functions are
C p−1-continuous if internal nodes are not repeated, whereas they are Ck-continuous
with k = p − α if the associated knot is repeated α times. When α = p, the basis
function is C0-continuous and interpolates the control point at that location where the
knot has multiplicity α = p. We will assume that the maximum knot multiplicity is
p, which ensures the global continuity of our basis functions.
Multi-dimensional B-spline functions are then constructed by tensor products starting
from the one-dimensional spline space

̂Sh = span{N p
i (ξ), i = 1, . . . , ν}. (6)

For simplicity of exposition, we examine here the case of a two-dimensional domain,
and B-spline of same degree p in each direction. The case of higher-dimensional
case and different degrees is analogous. We introduce the two-dimensional paramet-
ric space ̂� := (0, 1) × (0, 1) with a knot vector (5) in each direction, and a net
of ν2 control points Ci, j , i, j = 1, ..., ν. The bi-variate spline basis on ̂� is then
B p
i, j (ξ, η) = N p

i (ξ)N p
j (η). Similarly, the mesh of rectangular elements in the para-

metric space is generated in a natural way by the Cartesian product of two-knot vectors
{ξ1 = 0, ..., ξν+p+1 = 1}. Then, ̂Sh = span{B p

i, j (ξ, η), i, j = 1, . . . , ν}, is the
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bi-variate spline space analogous to (6). We recall that a rational B-spline in R
d is

the projection onto d-dimensional physical space of a polynomial B-spline defined in
(d +1)-dimensional homogeneous coordinate space and all conic sections in physical
space can be obtained exactly: see Rogers [30] and references therein for a discussion
of these space projections. We denote a one-dimensional NURBS basis function of
degree p as

Rp
i (ξ) = N p

i (ξ)ωi
∑ν

î=1
N p

î
(ξ)ωî

= N p
i (ξ)ωi

w(ξ)
, (7)

withw(ξ) = ∑ν

î=1
N p

î
(ξ)ωî ∈ ̂Sh a weight function. Analogously to the construction

of B-splines, NURBS basis functions on the two-dimensional parametric space ̂� are
obtained from the bi-variate spline basis as

Rp
i, j (ξ, η) = B p

i, j (ξ, η)ωi, j
∑ν

î, ĵ=1
B p

î, ĵ
(ξ, η)ωî, ĵ

= B p
i, j (ξ, η)ωi, j

w(ξ, η)
, (8)

where ωi, j ∈ R, and the denominator is the two-dimensional weight function com-
monly denoted by w(ξ, η). NURBS basis functions have the same continuity and
support of B-splines, and NURBS spaces are the span of the basis functions (8). Let
us consider a single-patch domain � as a NURBS region associated with the netCi, j .
We introduce the geometrical map F : ̂� → � defined by

F(ξ, η) =
ν

∑

i, j=1

Rp
i, j (ξ, η)Ci, j . (9)

In the isogeometric paradigm, the space of NURBS scalar fields on the domain � is
defined as the span of the push-forward of the basis functions (8)

Nh := span{Rp
i, j ◦ F−1, with i, j = 1, . . . , ν}. (10)

With these essential elements of IGA spaces and basis functions, we can now intro-
duce the IGA collocation method for the approximation of our acoustic wave problem
in space, see Auricchio et al. [1] and [2], and Schillinger et al. [32]. Several choices
of collocation points have been proposed in the literature, including Cauchy-Galerkin
points in Gomez and De Lorenzis [18], Demko abscissae in Demko [11], Galerkin
superconvergent points in Montardini et al. [26] and Greville abscissae in de Boor
[10]. We will consider the set of Greville collocation points in our numerical exper-
iments since it is one of the most used sets in the IGA collocation literature, and
we refer to our previous work [37] for a numerical study of its stability and conver-
gence properties for the approximation of acoustic wave problems. Given the knot
vector {ξ1 = 0, ..., ξν+p+1 = 1}, the corresponding Greville collocation points are
ξ i

.= (ξi+1 + ξi+2 + ... + ξi+p)/p with ξ1 = 0, ξν = 1, and the remaining points are

in (0, 1). The tensor product τ̂i j = (ξ i , ξ j ) ∈ (

̂�
)

, i, j = 1, ..., ν, provides the grid
of collocation points τi j = F(̂τi j ) ∈ �.
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The theoretical analysis of spectral properties and convergence estimates for IGA
collocation discretizations of elliptic problems in two and three dimensions is still an
open issue. A large number of numerical tests are available in the literature regarding
convergence properties with respect to the main discretization parameters, namely the
degree p, the mesh size h and the regularity k (e.g., Auricchio et al. [1] and [2], Kruse
et al. [25], Montardini et al. [26], Schillinger et al. [32] and our previous work [37]). In
Section 5, we will present several numerical tests investigating the spectral properties
of the matrices arising from IGA collocation methods for acoustic wave problems,
including their eigenvalue distribution in the complex plane.

3.2 Space discretization of acoustic wave problems (1)-(4) by IGA collocation
methods

For simplicity, we enumerate the grid points {τi j ∈ �, i, j = 1, ..., ν} using only
one index. Thus, each collocation point τi j corresponds to one point Pk of the tensor
product grid, with k = 1, ..., ν2. For clarity of exposition, we also introduce the
following disjoint index sets: I� := {k|Pk ∈ �} (internal points), ID := {k|Pk ∈ �D}
(Dirichlet points), IN := {k|Pk ∈ �N } (Neumann points), IAB := {k|Pk ∈ �AB}
(ABCs points), and define I := I� ∪ ID ∪ IN ∪ IAB as the set of ν2 indexes of
the whole mesh of collocation points. We can now write the IGA collocation semi-
discrete continuous-in-time formulation of the acoustic problem (1)-(4) by collocating
the continuous problemwith initial and boundary conditions at theGreville collocation
points:

∂2u

∂t2
(Pk, t) − c0�u(Pk, t) = f (Pk, t), k ∈ I�, t ∈ (0, T ), (11)

u(Pk, 0) = U0(Pk),
∂u

∂t
(Pk, 0) = W0(Pk), k ∈ I, (12)

u(Pk, t)=�(Pk, t), k∈ID, t ∈(0, T ),
∂u

∂n
(Pk, t)=�(Pk, t), k∈IN , t ∈(0, T )

(13)
1√
c0

∂u

∂t
(Pk, t) + ∂u

∂n
(Pk, t) = 0, k ∈ IAB, t ∈ (0, T ). (14)

We observe that the semi-discrete collocation problem is equivalent to the problem of
finding a vector u of elements {uk, k ∈ I}, which are in correspondence with elements
{ui j , i, j = 1, ..., ν}. From (9) and (10), the IGA numerical solution is then given by

u(x, t) =
ν

∑

i, j=1

ui j R
p
i j ◦ F−1(x, t). (15)

In order to assemble the mass and stiffness IGAmatrices, we introduce the IGA collo-
cation matrices [Dr ], with r = 0, 1, 2, accounting for r -th derivative, respectively, at
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the collocation points. Namely, we denote by D0, D1 and D2 the collocation matrices
associated to the identity, ∂

∂n and � operators, respectively. See, e.g., Evans et al.
[13]. We will refer to D0 as the mass matrix and in Section 5, we will denote it by
M. Finally, the matrix form of the set of (11)-(14) can be rewritten as a system of
second-order ordinary differential equations:

∂2

∂t2
[D0u(t)]k − c0[D2u(t)]k = [f(t)]k, k ∈ I� (16)

[D0u(0)]k = [U0]k, ∂

∂t
[D0u(0)]k = [W0]k, k ∈ I, (17)

[D0u(t)]k = [�(t)]k, k ∈ ID, [D1u(t)]k = [�(t)]k, k ∈ IN (18)

1√
c0

∂u

∂t
[D0u(t)]k + [D1u(t)]k = 0, k ∈ IAB (19)

where [w]k is the k-th element of a general vector w and [Dr ]k is the k-th row of the
collocation matrix Dr , r = 0, 1, 2. Moreover, u(t) := {u(Pk, t), k ∈ I}, f(t) :=
{ f (Pk, t), k ∈ I}, �(t) := {�(Pk, t), k ∈ ID}, �(t) := {�(Pk, t), k ∈ IN },
U0 := {U0(Pk), k ∈ I}, W0 := {W0(Pk), k ∈ I}, with all vectors equal to zero
elsewhere.

3.3 Time discretization of acoustic wave problems (1)-(4) by Newmark advancing
schemes

Wediscretize the time derivatives in (16), (17), and (19) by the finite difference scheme
introduced by Newmark [28]. We first partition the interval (0, T ) into N subintervals
[tn, tn+1], with t0 = 0, tN = T , tn+1 = tn + �t , n = 0, ..., N − 1 and �t = T /N .
Given real parameters β ≥ 0 and γ ≥ 0, the general form of Newmark method
reads:

un+1 = un+�t vn+(1−2β)�t2an/2+β�t2an+1, vn+1 = vn+(1−γ )�t an+γ�tan+1, (20)

where un := {u(Pk, tn), k ∈ I}, vn := {v(Pk, tn), k ∈ I}, an := {a(Pk, tn), k ∈ I}
are the vectors of approximate displacement, velocity and acceleration, respectively,
at time tn . It can be shown (see, e.g., Wood [34] and [35]) that we can eliminate
the velocity and acceleration vectors and express the Newmark method as a two-step
scheme in the displacement term un only, whose entries give the corresponding IGA
solution at time step tn , according to (15). The initial vector u1 at the second time
instant t1 = t0 + �t , can be computed, for example, from the first one u0 associated
with initial conditions (2) by means of a second-order explicit one-step method, (e.g.,
an explicit two-stage Runge–Kutta method), in order to preserve the global accuracy
of the scheme. If we apply the Newmark scheme (20) to the numerical solution of
the acoustic wave IGA collocation problem (16)-(19), we obtain the set of recurrence
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relations for the displacement term un at the collocation points:

[D0]k un+1 − 2un + un−1

�t2
−c0[D2]k

[

βun+1+
(1

2
−2β+γ

)

un+
(1

2
+β−γ

)

un−1

]

=
(21)

[

βfn+1 +
(1

2
− 2β + γ

)

fn +
(1

2
+ β − γ

)

fn−1

]

k
, k ∈ I�

[D0]kun+1 = [�(tn+1)]k, k ∈ ID, [D1]kun+1 = [�(tn+1)]k, k ∈ IN (22)

1√
c0

[D0]k γun+1 + (1 − 2γ )un + (γ − 1)un−1

�t
+ [D1]kun+1 = 0, k ∈ IAB .

(23)
At corner points involvingABCs and/or Neumann boundary conditions, we enforce

the average of normal derivatives, whereas Dirichlet conditions override Neumann or
ABC ones. With suitable generalizations of coefficients multiplying the matrices D0
and D1 in (23), we note that the approximation of ABCs is mathematically equivalent
to that of themost commonRobin boundary conditions, involving a linear combination
of the values of a function and of its normal derivative at the collocation points on the
boundary.

The scheme (21) is customarily considered explicit when β = 0, even if the matrix
D0 is not diagonal.More generally, regardless of the parameter β, we observe that each
step of (21)-(23) involves the resolution of a linear systemKun+1 = ϒ(tn+1, tn, tn−1),
where the IGA collocation iteration matrix

K = [D0]k∈ID +[D1]k∈IN∪IAB + γ

�t
√
c0

[D0]k∈IAB −c0β[D2]k∈I�
+ 1

�t2
[D0]k∈I�

,

(24)
is non-symmetric and becomes denser for increasing p and k, both for explicit (β = 0)
and implicit (β �= 0) methods, independently of the boundary conditions consid-
ered. We note that in the explicit case (β = 0), the iteration matrix K is essentially
equal to the mass matrix modified by the boundary conditions. Finally, the right term
ϒ(tn+1, tn, tn−1) accounts for the values of data functions U0, W0, f , � and � at
times tn+1, tn, tn−1.

4 Condition number estimates

We recall the condition number estimates that have been proven inGahalaut and Tomar
[14] in the two-dimensional case for the Galerkin isogeometric mass (M) and stiffness
(A) matrices, regardless of the k-regularity of the spline basis functions:

cond(M) ≤ cp216p, with c independent of h and p, (25)

cond(A) ≤ c(h)p816p. (26)

In addition, somebounds on the smallest and largest eigenvalues are proven inGahalaut
and Tomar [14] in the one-dimensional case, and in Garoni et al. [15] also for the
case of dimension d > 1. A systematic numerical study has been accomplished in

123

Page 9 of 24 16



E. Zampieri and L.F Pavarino

Gervasio et al. [16] in order to investigate experimentally the conditioning of Galerkin
isogeometric mass and stiffness matrices in d dimensions, resulting in the following
more detailed and sharper estimates:

for k = 0 regularity: cond(M) ≈ p−d/24pd , (27)

for k = p − 1 regularity: cond(M) ≈
{ epd if h ≤ 1/p

(e/4)d/h(hp)−d/24pd otherwise,
(28)

for k = 0 regularity: cond(A)≈
{ h−2 p2 if h ≤ (p2+d/2d−dp)1/2

p−d/24pd otherwise,
(29)

for k = p − 1 regularity: cond(A)≈
{ h−2 p if h ≤ e−dp/2

pepd if e−dp/2≤h≤1/p
(e/4)d/h p−d/2h−d/2−14pd otherwise.

(30)

The numerical results reported in the next section show that estimates (27)–(30) hold
also for the condition number of the collocation isogeometric mass and iterationmatri-
ces considered in this work, and, what’s more, in some cases the collocation matrices
satisfy improved bounds. In particular, the term 4pd appearing in these estimates seems

to reduce in the two-dimensional case (d = 2) to at least 4
3
2 p, and in some cases for

sufficiently small h to 4p or even 4
1
2 p.

5 Numerical results

In this section, we present a numerical study of the behavior of the eigenvalues and
condition numbers of the mass matrixM and iteration matrixK for the acoustic wave
problem in the reference square domain � = [0, 1] × [0, 1] with different types of
boundary conditions. We vary the degree p, regularity k, and mesh size h for the IGA
collocationmethod introduced in Section 3.2, and the discretization parameters�t and
β of the Newmark time-advancing scheme introduced in Section 3.3. We denote by
d.o.f. the number of degrees of freedom of the discrete problem and by nz the number
of nonzero entries in the mass and iteration matrices. All tests have been carried out
in 2D with MATLAB R2020b and using the GeoPDEs 3.0 library written by De Falco
et al. [9] and Vázquez [33]. In particular, the construction of the collocation matrices
introduced in Section 3.2 is based on the structure sp_eval, whereas the condition
numbers are computed using the MATLAB condest function (denoted by continu-
ous lines and ◦ symbols in the plot) or computed as the ratio |λmax |/|λmin| (denoted
by dashed lines and � symbols in the plots), where the MATLAB condest function
approximates the 1-norm condition number of a square matrix. In all our tests, the last
ratio is always bounded from above by condest, and since both condition number
estimates show the same qualitative behavior in h, p, k, we report both estimates only
in the plots in h (top rows) in Figs. 1, 6, 9, and 10, while we report only condest in
the other plots in p and k.

123

16 Page 10 of 24



Conditioning and spectral properties...

Eigenvalues and condition number of the mass matrix In Fig. 1, we report the
condition numbers cond(M) of the mass matrix versus: the mesh size h (top), with
five different values of degree p and minimal regularity k = 1 (left), or maximal
regularity k = p − 1 (right); the degree p (center), with five different values of mesh
size h and minimal regularity k = 1 (left), or maximal regularity k = p−1 (right); the
regularity k (bottom), with three different values ofmesh size h, fixed p = 12. In the h-
refinement test (top), the condition numbers cond(M) are independent of h, whereas

Fig. 1 Condition number cond(M) of the mass matrix versus: h (top), for p = 2, 4, 6, 8, 10, k = 1
(left), or k = p−1 (right); p (center), for h = 1/10, 1/20, 1/40, 1/50, 1/100, k = 1 (left), or k = p−1
(right); k (bottom), for h = 1/3, 1/5, 1/9, fixed p = 12. Continuous lines with ◦ symbols denote condition
numbers computed withMatlab condest function, dashed lines with � symbols denote condition numbers
computed as the ratio |λmax |/|λmin |
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they grow slower than the estimates (27)-(28) for p- refinement. In the p-refinement
test (center), and independently of the selected h, the condition numbers cond(M) for
minimal regularity k = 1 (center left) appear to grow like O(p−143p/2), slightly better
than the O(p−142p) predicted by (27). In the case of maximal regularity k = p − 1
(center right), the growth of cond(M) is between O(p−14p) and O(p−143p/2), again
slightly better than the growth predicted by (28).

For increasing k (bottom), fixed p and h, cond(M) seem to decrease exponentially
except when the regularity k approaches the maximum value p − 1 and cond(M)
increase sharply toward the midpoint of cond(M) range.

Figure2 reports themassmatrixM eigenvalue distribution in the complex plane for
three different values of degree p = 4 (left), p = 8 (center), p = 12 (right), for fixed
h = 1/10,minimal regularity k = 1 (top), or h = 1/100,maximal regularity k = p−1
(bottom), whereas in Fig. 3, we report the eigenvalue distribution for three different
values of mesh size h = 1/25 (left), h = 1/40 (center), h = 1/50 (right), minimal
regularity k = 1 (top), or h = 1/40 (left), h = 1/50 (center), h = 1/100 (right),
maximal regularity k = p − 1 (bottom), for fixed p = 4. In all cases, the eigenvalues
are essentially real, since their imaginary parts are of the order of machine precision,
and their real parts are in the interval [0, 1].

Figure4 shows the sparsity pattern of the mass matrixM for three different values
of degree p = 4 (left), p = 8 (center), p = 12 (right), minimal regularity k = 1
(top), or maximal regularity k = p− 1 (bottom), for fixed h = 1/5, whereas in Fig. 5,
we report the sparsity pattern for three different values of mesh size h = 1/3 (left),
h = 1/7 (center), h = 1/11 (right), minimal regularity k = 1 (top), or maximal
regularity k = p − 1 (bottom), for fixed p = 8. The number of d.o.f. and nonzero
elements nz decrease considerably when the regularity is increased from minimal to
maximal, and the difference grows when p or 1/h is increased.

Fig. 2 Mass matrix eigenvalue distribution in the complex plane, for p = 4 (left), p = 8 (center), p = 12
(right), with h = 1/10 and k = 1, (top), or with h = 1/100 and k = p − 1 (bottom)
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Fig. 3 Massmatrix eigenvalue distribution in the complex plane, fixed p = 4, for h = 1/25 (left), 1/h = 40
(center), 1/h = 50 (right), with k = 1 (top), or h = 1/40 (left), 1/h = 50 (center), 1/h = 100 (right), with
k = p − 1 (bottom)

Eigenvalues and condition number of the iteration matrix with Dirichlet and
Neumann boundary conditions

In Fig. 6, we report the condition numbers cond(K) of the iteration matrix for
the acoustic wave problem with Dirichlet boundary conditions, for �t = 0.1, β = 0
(explicitNewmark scheme, left), orβ = 0.5 (implicitNewmark scheme, right), versus,
from the top to the bottom: (1) the mesh size h, with five different values of degree
p and minimal regularity k = 1, (2) the mesh size h, with five different values of

Fig. 4 Mass matrix sparsity pattern, for p = 4 (left), p = 8 (center), p = 12 (right), with k = 1 (top), or
k = p − 1 (bottom), fixed h = 1/5
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Fig. 5 Mass matrix sparsity pattern, for h = 1/3 (left), 1/h = 7 (center), 1/h = 11 (right), with k = 1
(top), or k = p − 1 (bottom), fixed p = 8

degree p and maximal regularity k = p − 1, (3) the degree p, with four different
values of mesh size h and minimal regularity k = 1, (4) the degree p, with four
different values of mesh size h and maximal regularity k = p − 1. We have also run
the same tests as in Fig. 6 but with a smaller time step �t = 0.01 (not shown for
brevity). The numerical results show that if p is fixed, the condition numbers cond(K)
are almost always independent of h for the explicit scheme (left), while they seem to
grow as h−2, for the implicit scheme (right), in agreement with estimates (29)-(30).
For the p- refinement with fixed h, it seems that the numerical results are better than
these estimates. Indeed, the condition number cond(K) growth ranges between p−14p

and p−14
3
2 p in the case of minimal regularity k = 1, whereas for maximal regularity

k = p−1 the growth ranges between p−14
1
2 p and p−14p.We have also run analogous

tests for the acoustic wave problem with Neumann boundary conditions (not shown
for brevity), obtaining analogous results in h and p, for both�t = 0.1 and�t = 0.01.

Figure7 reports the iteration matrixK eigenvalue distribution in the complex plane
for the acoustic wave problem with Dirichlet boundary conditions, �t = 0.01, γ =
0.5, β = 0.5 (implicit Newmark scheme), for three different values of degree p = 4
(left), p = 8 (center), p = 12 (right), for fixed h = 1/10 and minimal regularity
k = 1 (top), or fixed h = 1/100 and maximal regularity k = p− 1 (bottom), whereas
in Fig. 8, we report the eigenvalue distribution for three different values of mesh size
h = 1/25 (left), h = 1/40 (center), h = 1/50 (right), minimal regularity k = 1
(top), or h = 1/40 (left), h = 1/50 (center), h = 1/100 (right), maximal regularity
k = p−1 (bottom), for fixed p = 4 in both cases. The eigenvalues real parts belong to
an interval [0, r ] where r increases with 1/h, fixed p, and with p, fixed 1/h, for both
minimal regularity k = 1 and maximal regularity k = p − 1. We note the presence of
a few complex outliers.
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Fig. 6 Condition number cond(K) of the iteration matrix for the acoustic wave problem with Dirichlet
boundary conditions, �t = 0.1, γ = 0.5, β = 0 (explicit Newmark, left), β = 0.5 (implicit Newmark,
right). From the top to the bottom, vs.: (1) h, for p = 2, 4, 6, 8, 10, k = 1; (2) h, for p = 2, 4, 6, 8, 10,
k = p − 1; (3) p, for h = 1/3, 1/5, 1/7, 1/9, k = 1; (4) p, for h = 1/20, 1/40, 1/50, 1/100, k = p − 1.
Continuous lines with ◦ symbols denote condition numbers computed with Matlab condest function,
dashed lines with � symbols denote condition numbers computed as the ratio |λmax |/|λmin |
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Fig. 7 Iteration matrix eigenvalue distribution in the complex plane for the acoustic wave problem with
Dirichlet boundary conditions: for p = 4 (left), p = 8 (center), p = 12 (right), with h = 1/10 and k = 1
(top), or with h = 1/100 and k = p − 1 (bottom); fixed �t = 0.01, γ = 0.5, β = 0.5 (implicit)

The sparsity pattern of the iteration matrix K are analogous to those for the mass
matrices in Figs. 4 and 5, with block-diagonal matrices for minimal regularity and
almost dense matrices in the case of maximal regularity. Again, both d.o.f. and nz
decrease for increasing regularity.

Eigenvalues and condition number of the iteration matrix with absorbing
boundary conditions In Figs. 9 (�t = 0.1) and 10 (�t = 0.01), we report the

Fig. 8 Iteration matrix eigenvalue distribution in the complex plane for the acoustic wave problem with
Dirichlet boundary conditions: for h = 1/25 (left), 1/h = 40 (center), 1/h = 50 (right), with k = 1 (top),
or h = 1/40 (left), 1/h = 50 (center), 1/h = 100 (right), with k = p−1 (bottom); fixed p = 4,�t = 0.01,
γ = 0.5, β = 0.5 (implicit)
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Fig. 9 Condition number cond(K) of the iteration matrix for the acoustic wave problem with absorbing
boundary conditions (4), �t = 0.1, γ = 0.5, β = 0 (explicit Newmark, left), β = 0.5 (implicit Newmark,
right). From the top to the bottom, vs.: (1) h, for p = 2, 4, 6, 8, 10, k = 1; (2) h, for p = 2, 4, 6, 8, 10,
k = p − 1; (3) p, for h = 1/3, 1/5, 1/7, 1/9, k = 1; (4) p, for h = 1/20, 1/40, 1/50, 1/100, k = p − 1.
Continuous lines with ◦ symbols denote condition numbers computed with Matlab condest function,
dashed lines with � symbols denote condition numbers computed as the ratio |λmax |/|λmin |
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Fig. 10 Condition number cond(K) of the iteration matrix for the acoustic wave problem with absorbing
boundary conditions (4),�t = 0.01, γ = 0.5, β = 0 (explicit Newmark, left), β = 0.5 (implicit Newmark,
right). From the top to the bottom, vs.: (1) h, for p = 2, 4, 6, 8, 10, k = 1; (2) h, for p = 2, 4, 6, 8, 10,
k = p − 1; (3) p, for h = 1/3, 1/5, 1/7, 1/9, k = 1; (4) p, for h = 1/20, 1/40, 1/50, 1/100, k = p − 1.
Continuous lines with ◦ symbols denote condition numbers computed with Matlab condest function,
dashed lines with � symbols denote condition numbers computed as the ratio |λmax |/|λmin |
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condition numbers cond(K) of the iteration matrix for the acoustic wave problem
with absorbing boundary conditions (4), using the same setting of Fig. 6.

The numerical results in Fig. 9 (�t = 0.1) for h-refinement with p fixed, show
that the condition numbers cond(K) for the implicit scheme (right) are constant or
decreasing for larger h, but when h decreases cond(K) seem to grow as h−2, in agree-
ment with estimates (29)-(30). The results for the explicit scheme (left) are analogous
but the growth of cond(K) for decreasing h seems to be O(h−1) instead of O(h−2),
as it can be expected from the presence of first-order term D1 in (24). The situation
is less clear for the analogous h-refinement tests with smaller time step �t = 0.01 in
Fig. 10. Here the condition numbers cond(K) for the explicit scheme (left) are con-
stant or decreasing for all values of h considered, while for the implicit scheme (right)
cond(K) start increasing as O(h−1) only for small values of h. The results in Fig. 9 for
p- refinement with fixed h and�t = 0.1 show that the condition numbers cond(K) are
better than the estimates (29)-(30) since the cond(K) growth ranges between p−14p

and p−14
3
2 p, while the results in Fig. 10 improve for �t = 0.01, as the growth ranges

between p−14
1
2 p and p−14p.

In Fig. 11, we report the condition numbers cond(K) of the iteration matrix as
a function of the regularity k. We consider different types of boundary conditions:
absorbing (top), Dirichlet (center), Neumann (bottom), and choose β = 0 (explicit
Newmark), γ = 0.5, degree p = 12, �t = 0.1 (left), or �t = 0.01 (right), and
three different values of mesh size h. The results are analogous to those for the mass
matrices in Fig. 1 for each type of boundary condition: when k increases, cond(K)
start to decrease exponentially, but when the regularity k approaches the maximum
value p − 1 cond(K) increase sharply toward the midpoint of cond(K) range.

In Figs. 12 and 13, we report the iteration matrixK eigenvalue distribution in com-
plex plane for the acoustic wave problem with absorbing boundary conditions, and
explicit Newmark scheme (β = 0), for �t = 0.01 and γ = 0.5, using the same
setting of Figs. 7 and 8, respectively. We see that the eigenvalues real parts belong
to an interval [0, r ] with r independent of all parameters h, p, and k. The complex
eigenvalues have imaginary parts that belong to an interval [−s, s] where s increases
with 1/h, fixed p, and with p, fixed 1/h. We note the presence of a few complex
outliers close to the imaginary axis.

In Figs. 14 and 15, we report the same data as in Figs. 12, 13, respectively, but for the
implicit Newmark scheme (β = 0.5), all other values of parameters being unchanged.
We observe definitely fewer complex eigenvalues, but some complex outliers are still
present. The eigenvalue distributions remain confined in a complex box [0, r ] ×
[−s, s], with r increasing with 1/h and p, for both minimal regularity k = 1 and
maximal regularity k = p − 1.

6 Conclusions

In this paper, we have investigated the spectral properties of the mass and iteration
matrices related to the approximation of the acoustic wave equation with Dirichlet,
Neumann and absorbing boundary conditions in the reference square domain by IGA
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Fig. 11 Condition numbers cond(K) of the iteration matrix for the acoustic wave problem with different
types of boundary conditions: absorbing (top), Dirichlet (center), Neumann (bottom), as a function of k, β =
0 (explicit Newmark), γ = 0.5, degree p = 12, �t = 0.1 (left) and �t = 0.01 (right), h = 1/3, 1/5, 1/9

collocation methods in space and Newmark advancing schemes in time, both explicit
and implicit. Since no theoretical results are yet available in the literature for the spec-
tral properties of IGA collocation matrices, we have conducted a systematic numerical
study of the eigenvalue distribution, condition numbers, and sparsity of the mass and
iteration matrices varying the parameters p, h, k, for the space discretization and �t ,
β for the time discretization.

This analysis is of interest not only in order to estimate the maximum allowable
time step �t for explicit Newmark schemes, but also for the possible investigation of
efficient preconditioned iterative solutions of the linear systems arising at each step
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Fig. 12 Iteration matrix eigenvalue distribution in the complex plane for the acoustic wave problem with
absorbing boundary conditions and explicit Newmark scheme (β = 0): for p = 4 (left), p = 8 (center),
p = 12 (right), with h = 1/10 and k = 1 (top), or with h = 1/100 and k = p − 1 (bottom); fixed
�t = 0.01, γ = 0.5

of the time-advancing schemes, since the corresponding matrices are non-symmetric
and become denser for increasing p and k, for both explicit and implicit methods.

Despite the lack of proven collocation bounds and estimates, we have compared the
results of our tests with the theory and numerical results available for matrices result-
ing from the IGA Galerkin approximation of the Laplacian with Dirichlet boundary
conditions. Our results show that analogous estimates for the condition numbers of

Fig. 13 Iteration matrix eigenvalue distribution in the complex plane for the acoustic wave problem with
absorbing boundary conditions and explicit Newmark scheme (β = 0): for h = 1/25 (left), 1/h = 40
(center), 1/h = 50 (right), with k = 1 (top), or h = 1/40 (left), 1/h = 50 (center), 1/h = 100 (right), with
k = p − 1 (bottom); fixed p = 4, �t = 0.01, γ = 0.5
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Fig. 14 Iteration matrix eigenvalue distribution in the complex plane for the acoustic wave problem with
absorbing boundary conditions and implicit Newmark scheme (β = 0.5): for p = 4 (left), p = 8 (center),
p = 12 (right), with h = 1/10 and k = 1 (top), or with h = 1/100 and k = p − 1 (bottom); fixed
�t = 0.01, γ = 0.5

mass and iteration matrices hold also for IGA collocation discretizations of acoustic
wave problems, and in some cases, the collocation bounds are better than the Galerkin
ones, in particular for increasing p and maximal regularity k = p − 1.

Limitations and future work This study was confined to acoustic wave problems in
the reference square, but we do not expect different trends and technical complexity in
extending the tests to three-dimensional domains, by using the tensor product structure
of IGA collocation.

Fig. 15 Iteration matrix eigenvalue distribution in the complex plane for the acoustic wave problem with
absorbing boundary conditions and implicit Newmark scheme (β = 0.5): for h = 1/25 (left), 1/h = 40
(center), 1/h = 50 (right), with k = 1 (top), or h = 1/40 (left), 1/h = 50 (center), 1/h = 100 (right), with
k = p − 1 (bottom); fixed p = 4, �t = 0.01, γ = 0.5
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Future work will consider the issue of preconditioning the linear systems arising at
each time step, as well as the extension of this work to elastic wave problems.
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