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Abstract 
 
This paper discusses the strengths and weaknesses of 

non-monotonic-offers in alternating-offer bargaining 
protocol. It is commonly assumed that bargainers sub-
mit monotonic offers over time, which correspond to 
their belief revisions. However, through formal analysis 
and simulations, we are able to show that non-
monotonic-offers protocols can generate higher aver-
age surplus and lower breakdown rate compared to 
monotonic-offers protocols.  

 
1. Introduction 

 
The area of bargaining mechanisms has been well ex-

plored both in multi-agent systems and economics [1-12]. 
One of the properties, which are commonly agreed in the 
analyses of alternating-offers bargaining, is the (weak) 
monotonic (counter-) offers by bargainers, i.e. buy-
ers/sellers may only insist on their previous offers or 
raise/reduce their offers monotonically until an agreement 
is reached. For instance, time dependent tactics [1, 2], 
behavior dependent tactics [1], and market-driven strategy 
[7], all have this monotonic-offers property. In [11], the 
authors show that the monotonic-offers property in the 
bargaining between two rational and self-interested agents 
is the consequence of the belief revision mechanism of 
those agents. Intuitively, if a buyer asks for $10 to buy an 
item, but the seller insists on $20, then the buyer may re-
duce its belief that the seller is willing to sell for $10, 
which forces the buyer to revise its offer to a higher price 
rather than a lower one. However, this intuition is correct 
if the buyer believes that the seller’s valuation (reservation 
price) will not change until the end of the bargaining. In 
this paper we will show that imposing non-monotonic-
offers protocol (N-protocol, for short) in bargaining may 
be better than imposing monotonic-offers protocol (M-
protocol). Let us first look at an illustrative example be-
low.  
Scenario 1. Suppose that a buyer wants to buy a service 
(e.g. predicting the future price of stocks), which it needs 
most in a specific time (e.g., before the stock market 

opens). However, if it cannot get the service during that 
period, its utility from the service decreases over time, and 
becomes zero after a time deadline (e.g., after the market 
closes). Thus, the buyer’s valuation of the service will be 
high when the market opens, and will decrease until the 
market closes (as shown as a downward line in Figure 1). 
Suppose that seller’s valuation is constant over time (the 
horizontal line in Figure 1). Since both parties hold their 
information (valuations) privately, the initial spread (the 
difference between initial offers by buyer and seller) will 
be relatively big. The spread will decrease as the bargain-
ing progresses (by sending offers and counter-offers). 
However, under M-protocol, the bargaining may be stuck 
even if both parties repeat the bargaining for several times, 
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as illustrated in Figure 1(a). The failures are caused by the 
buyer who cannot resume the negotiation after its offer 
approaches its valuation, because its next offer will be 
higher than its next valuation. However, under N-protocol, 
the failure can be remedied as illustrated in Figure 1(b). ■ 

The illustration above only shows a partial scenario, 
which favors N-protocol. Indeed, some bargainers’ deci-
sion process under N-protocol may suppress the conver-
gence of spread in reaching a concession, which will be 
explained later.  

The paper is organized as follows. In the next section, 
we will show a formal analysis of N-protocol when all 
agents are rational. Then, in section 3 we will provide 
simulation results using bounded rational agents and in-
troducing some irrational agents whose behaviors cannot 
be analyzed formally. In section 4, we will discuss the 
effect of our results and related work.  Finally, we point 
out potential directions for future work in section 5.  
 
2. Formal analysis 
 

Let us assume that all agents are rational, self-
interested and utility maximizers. For simplicity reasons, 
we will only focus on the buyer’s perspective, which can 
be applied symmetrically for the seller.  
 
2.1. Basic model 

 
Let two agents bargain over a single-attribute item us-

ing alternating-offers protocol, in which the buyer shows a 
decreasing valuation over time, until time deadline, Td and 
the seller’s valuation is unknown for the buyer. For sim-
plicity, let each period (labeled by t = 1, 2, 3, etc.) consist 
of a pair of decisions by the buyer and the seller where the 
buyer moves first. Also, suppose the bargaining variable is 
the item’s price only, and both parties do not know any 
information about their opponents (e.g. time deadline, 
valuation, or bargaining strategy). Nonetheless, a buyer 
believes that offering a higher price may have a higher 
chance of being accepted by the seller, as stated in the 
following proposition. 

Proposition 1. The buyer’s belief p(xt) that its offer, xt is 
going to be accepted by a seller, is an increasing function 
of xt, if p(xt) is independent of its preceding offers x1, x2 , 
…, xt-1. 

As a rational agent, a buyer will never offer a value that 
generates negative profit/surplus and it always prefers an 
offer that generates higher expected gain EG, which is 
defined as  
  EGt ≡≡≡≡ (1- qt)[ p(xt)(Bt-xt) + γγγγ(1- p(xt))EG’t+1] + qt Bφ  (1’) 
where qt is the likelihood of failure (breakdown) caused 
by the seller at time t; Bt is the buyer valuation at time t; γγγγ 
is the weight put for the expected gain in the next period; 
EG’t+1 is the prediction of the expected gain made in the 

next period; and Bφ is the buyer valuation if the negotia-
tion breaks down. If the negotiation does not break down, 
which may happen by probability (1- qt), then two possi-
ble states may happen. The first state is that the bargaining 
succeeds immediately (by probability p(xt)), which gives 
the buyer positive surplus (Bt-xt), denoted by Sur(xt). The 
second state is that the bargaining proceeds to the next 
period, which may give the buyer expected gain EG’t+1 in 
the future. Let us assume that no surplus is generated from 
a breakdown, thus equation (1’) becomes  

    EGt = (1- qt)[ p(xt)(Bt-xt) + γγγγ(1- p(xt))EG’t+1]       (1)  

Intuitively, as time goes by, the likelihood of break-
down increases, because both parties approach their time 
deadlines, or qt+1>qt. Assuming that p(xt) does not change 
over time, and since Bt+1<Bt, then the buyer may expect 
that EG’t+1<EGt. It is important here to differentiate be-
tween EG’t+1 and the true value EGt+1, because the latter 
may only be known at time t+1, i.e. after the buyer revises 
its belief. We may also assume that γγγγ < 1, and that the 
buyer will reduce p(xt) if its offer, xt has not been accepted 
by the seller, or increase p(xt) if the seller’s counteroffer, 
yt is very close to xt. Figure 2 shows an example of the 
buyer’s belief at periods t and t+n, i.e., after the seller 
drops its offer from $200 to $190.  

Let us assume that the buyer’s valuation is $180 and its 
previous offer xt = $160, with p($160) = 0.5. If the seller 
reduces its offer from $200 to $190 after insisting for n 
periods, then the buyer may change its belief from p(xt) to 
p(xt+n). The new beliefs are higher for prices above $175, 
and lower for prices below $175 (the intersection of p(xt) 
and p(xt+n)). Thus, the buyer now believes that the chance 
of the seller accepting an offer of $160 is 0.3, which may 
force the buyer to raise its offer.  

Given the definition of expected gain in equation (1), 
we can derive the next proposition regarding agent prefer-
ence over an additional offer to a series of consecutive 
offers that ends up with a breakdown. 

Figure 2. An example of the shifting of a buyer’s 
belief towards seller’s acceptance rate 
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Proposition 2. A series of consecutive offers <x1, x2 , …, 
xt, φ> is preferred than <x1, x2 , …, xt-1, φ > for 0 ≤ xt < Bt. 

Proposition 2 states that an additional opportunity to sub-
mit an offer is always preferred than ending up with a 
breakdown, no matter what the value of additional offer is, 
i.e. xt could be higher, lower or equal to xt-1.  The proof of 
this proposition is trivial because EGt  > 0 = EGφ. 

As shown in Figure 1(a), a buyer’s offer may be stuck 
at its valuation if its opponent does not accept it, which 
results in a breakdown. Thus, under M-protocol, there is 
always a risk of early breakdown if xt > BTd (valuation at 
time deadline). Let us assume that there are two types of 
buyers, risk-seeking buyers, whose offer(s) xt > BTd, and 
risk-averse buyers, whose offers xt ≤ BTd. If we allow 
agents to repeat the bargaining after a breakdown as long 
as it is conducted before a time deadline Td, and there is 
no cost of doing it, then it can easily be shown that risk-
seeking buyers outperform risk-averse buyers in terms of 
the success rate (probability of making a concession). 
However, if the repetition is restricted, e.g., due to a time 
delay on establishing a new bargaining session after a 
breakdown, which is a more realistic situation, then risk-
averse buyers may outperform risk-seeking buyers in 
terms of the success rate. Intuitively, if the time delay 
needed on establishing a new bargaining session is rela-
tively high when compared to Td, then a risk-seeking 
agent (who maximizes expected gain) may be trapped in a 
lower success rate. However, this situation can be avoided 
in N-protocol, which is equivalent to a frictionless and 
repeatable bargaining protocol (without any cost or delay). 

In the next sections, further analysis that considers the 
sellers’ acceptance criteria will be provided. Two types of 
acceptance criteria (evaluation functions) are considered. 

 
2.2. Type-I agent 

 
A type-I agent uses a typical evaluation function in ac-

cepting an offer by its opponent, i.e., accept an offer if it is 
at least as good as the counteroffer that would be sent by 
the agent in the next period. For instance, if a buyer plans 
to offer $5 in the next period, while the seller is currently 
asking for $4, then the buyer will accept the seller’s cur-
rent offer instead of offering $5 in the next period. The 
evaluation criteria of type-I agents can be formulated in 
the following definition. 

Definition 1. A type-I agent uses the following evaluation 
function in making its decision: 

    Withdraw   if t >Td or Sur(xt+1) < 0 for all available xt+1 
It  =     Accept   if Sur(yt) ≥ Sur(xt+1) ≥ 0 

   Counter offer   if Sur(yt) < Sur(xt+1) 
Where It is the agent’s decision at time t; yt is the offer by 
the agent’s opponent at time t, and xt+1 is the agent’s offer 
that will be proposed at time t+1. The evaluation function 
above is also used in automated negotiation literature [1, 

2]. Recently, Sim and Wang [8] have adopted fuzzy rules 
to modify the acceptance criteria of type-I agents. Under 
their criterion, an agent will accept an offer even though it 
is slightly worse than its next counteroffer. Nevertheless, 
if all bargaining agents are type-I agents, then buyers in N-
protocol will monotonically change their offers until they 
get close to their valuation in order to maximize their ex-
pected gain. The following proposition formalizes the 
above statement.  

Proposition 3. Let all agents under N-protocol be type-I 
agents and let this be common knowledge. In order to 
maximize its expected gain, a buyer will monotonically 
increase its offers when Bt - xt >> γγγγEG’t+1, and decrease its 
offers when Bt - xt → γγγγEG’t+1. 

Proof. (sketch) Since all agents are type-I and it is com-
mon knowledge, then all agents know that their offers will 
be accepted only if they are at least as good as their oppo-
nents’ offers. From equation (1), we can derive the ex-
pected gain of a buyer in offering two different prices, xt

1
 

and xt
2, as follow, 

EG1
t = (1– qt )[ p(x1

t) (Bt – x1
t ) + γγγγ(1– p(x1

t))EG1’t+1] 
EG2

t = (1– qt )[ p(x2
t) (Bt – x2

t ) + γγγγ(1– p(x2
t))EG2’t+1] 

Let xt
1 = xt

2
 + ∆x, then from proposition 1, we have p(xt

1) 
> p(xt

2). Since the buyer can offer any price at time t+1, 
which maximizes its expected gain, then EG1’t+1≈EG2’t+1. 
Moreover, since a rational buyer will choose a higher offer 
only if EG1

t > EG2
t, then we only need to compare the part 

inside brackets, i.e., p(x1
t) (Bt – x1

t ) + γγγγ(1– p(x1
t))EG1’t+1 

> p(x2
t) (Bt – x2

t ) + γγγγ(1– p(x2
t))EG2’t+1. By replacing p(x2

t) 
with p(x1

t) - ∆p, and x2
t with x1

t - ∆x, then we can derive 
the precondition for EG1

t > EG2
t as, 
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From the precondition above, we can conclude that x1
t > 

x2
t will be chosen if Bt – x1

t >> γγγγEG’t+1. As the offer in-
creases, then the slope ∆p/∆x decreases (see Figure 2) and 
Bt – x1

t also decreases; therefore, the buyer has less incen-
tive to increase its offer near its valuation.         ■ 

Proposition 3 describes the self-adjustment of the 
buyer’s offer in order to maximize its expected gain. A 
buyer will aggressively increase its offers at the beginning 
of bargaining until they are closer to its valuation, and 
then the buyer may adjust its offer by lowering it (non-
monotonic offer) or stay on it. The convergence of the 
buyer’s offers is guaranteed as stated in proposition 4 be-
low. 

Proposition 4. Under N-protocol, if all agents are type-I 
agents and this is common knowledge, then x∞∞∞∞ → B∞∞∞∞ . 

Proof. (sketch) Since the likelihood of breakdown in-
creases over time, i.e. q∞∞∞∞ → 1, and EGt+1 = (1- qt+1) [ 



p(xt+1)(Bt+1 - xt+1) + γγγγ(1- p(xt+1)) EG’t+2]; thus, EG∞∞∞∞ → 0. 
Moreover, if x’t has not been accepted for a certain time, 
then the buyer’s belief that all offers lower than or equal to 
x’t will be accepted also decreases to 0. Therefore, the 
RHS of equation (2) converges to zero, which forces the 
buyer to increase its offer to be higher than x’t. And if this 
process continues, then x∞∞∞∞ → B∞∞∞∞ .               ■ 

From propositions 3 and 4, we can derive several prop-
erties of type-I buyers as follows: 
− If the pressure from the likelihood of breakdown in-

creases, then the buyer’s offer will converge quickly 
to its valuation; 

− If the buyer’s valuation decreases sharply, then its 
offer may also decrease (due to the decreasing value 
of the denominator of RHS in equation (2)); 

− If the buyer’s belief function has a steep curve near its 
valuation, then its offers will also converge quickly to 
its valuation. 

From our previous analysis, we do not concern failure 
into our analysis. However, in the real situation, users may 
be concerned about the failure more than about the sur-
plus. In such model, agents are required to find concession 
as soon as possible, even with zero surplus. Thus, without 
being concerned the amount of surplus, the best strategy 
for a buyer is to offer its valuation over time. Intuitively, 
agents in N-protocol will outperform agents in M-
protocol, as stated in proposition 5 below. 

Proposition 5. If type-I agents are only concerned about 
the success rate, then N-protocol is preferred over M-
protocol. 

Combining Proposition 2 through 5, we can show that 
N-protocol is better than M-protocol for type-I buyers. 

Theorem 1. N-protocol is at least as good as M-protocol 
for type-I agents. 

Proof. (sketch) Firstly, agents in N-protocol can always 
choose offers that maximize their expected gain (by 
Proposition 3), while agents in M-protocol can only do 
this for increasing offers. Therefore, the expected gain 
made by agents in N-protocol is greater than that in M-
protocol. This is true not only for a decreasing valuation, 
but also for an increasing one, because it is possible that 
Bt+1 – γγγγEG’t+2 > Bt – γγγγEG’t+1 (cf. equation (2)), or the 
buyer has incentive to decrease its offer at time t+1 to 
maximize its expected gain. Secondly, buyers in M-
protocol may get stuck in their valuation (in case of de-
creasing valuation), which incurs some cost in order to 
repeat the bargaining. In contrast, buyers under N-protocol 
will never get stuck, and by Proposition 2, this is pre-
ferred. While this is not applied in the case of increasing 
valuation, allowing N-protocol causes no cost. Finally, for 
agents who are only concerned with success rate, N-
protocol provides higher opportunity than M-protocol 
(Proposition 5)                   ■ 

2.3. Type-II agent 
In addition to the evaluation criterion used by type-I 

agent, a type-II agent uses an additional evaluation func-
tion in accepting an offer by its opponent, accept an offer 
if it is perceived to generate an optimal surplus. For in-
stance, if the buyer’s current valuation and next offer are 
$100 and $80 respectively, while the seller’s current offer 
is $90, then the buyer will accept the seller’s current offer 
if it predicts that the seller will increase the price instead 
of reducing it in the next period. The rationale is that some 
agents may be myopic and risk-averse towards breakdown 
in the future. While they also behave as type-I agents, this 
additional evaluation criterion makes type-II agents more 
‘vulnerable’ to a manipulative strategy in N-protocol. For 
instance, a seller may manipulate its offer frequently by 
increasing and decreasing it in attempt to mislead a buyer 
to accept it. Definition 2 below formalizes the type-II 
agents evaluation criterion. 

Definition 2. A type-II agent uses the following evalua-
tion function in making its decision: 

    Withdraw   if t > Td or Sur(xt+1) < 0 for all available xt+1 
It  =     Accept  if Sur(yt) ≥ Sur(xt+1) or 0≤ Sure(yt+1)≤ Sur(yt) 

    Counter offer   if Sur(yt) < Sur(xt+1) 
Where Sure(yt+1) is the predicted value of Sur(yt+1). 

Under this criterion, the agents’ expected gain is still 
the same as with type I agents as the offer increases, but 
slightly different as the offer decreases. A price reduction 
may increase the probability of acceptance, because it may 
be a signal of a local optimum for the seller. Therefore, the 
analysis of the increasing price is the same as that in the 
proof of proposition 3, but the analysis of the decreasing 
price is slightly different. Let the expected gain of xt is 

EGt = (1- qt)[ p(xt) (Bt - xt ) + γγγγ(1- p(xt)) EG’t+1] 

Then a reduction of the price to xt’ < xt-1, will yield  

EGt = (1- qt )[ (p(x’t) + p(x’t)’) (Bt - x’t )  + 
γγγγ(1 - p(x’t) - p(x’t)’) EG’t+1]        (3) 

Where p(x’t)’ is the belief of the acceptability of current 
offer x’t when it is not better than the seller’s next offer 
(from seller’s perspective). Thus, p(x’t)’ depends on x’t 
and the ratio of sellers who perceived it as the signal of 
local optimal. Using similar analysis in the proof of 
Proposition 3, we can derive that a buyer will reduce its 
offer under the following condition: 
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The second term of the RHS in equation (4), which is 
always a positive value, is an additional feature that incor-
porates p(x’t)’. Similar to the situation in type-I agents, we 
may conclude that that buyers may benefit form N-
protocol, because they can maximize their expected gain 
either by increasing or decreasing their offers. It can also 
be shown that their offers will eventually approach their 



valuations. And if type-II agents are only concerned about 
the success rate, then N-protocol is better than M-protocol. 
The following propositions formalize the above statement. 

Proposition 6. Under N-protocol, if all agents are type-II 
agents and it is common knowledge, then x∞∞∞∞ → B∞∞∞∞ . 

Proof. (Sketch). The proof is similar to the proof of propo-
sition 4, i.e. EG∞∞∞∞ → 0 and p(x’t) → 0 if x’t has not been 
accepted for a certain time. In addition to it, we also need 
to prove that p(x’t)’ → 0 if x’t has not been accepted for a 
certain time. This is true, because if x’t has not been ac-
cepted for a certain time, then either the seller did not per-
ceive a price reduction as the signal of optimal offer or x’t 
is too low to generate surplus for seller. Thus, the RHS of 
equation (4) converges to zero, which forces the buyer to 
increase its offer higher than x’t. Thus, x∞∞∞∞ → B∞∞∞∞ .           ■ 

Proposition 7. If type-II agents are only concerned about 
the success rate, then N-protocol is preferred than M-
protocol. 

The proof is similar to the proof of Proposition 5.  

Theorem 2. N-protocol is at least as good as M-protocol 
for type-II agents. 

The proof is similar to the proof of Theorem 1. 

According to Theorems 1 and 2, we conclude that N-
protocol is better than M-protocol in terms of success rate 
and expected gain for buyers. However, this conclusion 
based on formal analysis can be objected since it relies on 
the strict assumption of agents’ rationality and being util-
ity maximizers, which is not realistic in the real world. For 
example, what is the best belief revision for the buyers in 
our analysis above? Can a buyer really maximize its ex-
pected gain according to equations (2) or (4)? Similar ob-
jection has been addressed widely to a lot of research in 
the areas of distributed AI and economics. If the formal 
analysis method is thus limited, then the only alternative is 
to show the N-protocol superiority through experimenta-
tion with artificial and/or human agents. In the next sec-
tion, we will use a simulation to test the N-protocol from 
the seller’s perspective, in order to prove the validity of 
our formal analysis for sellers in more relaxed conditions, 
where agents are myopic and have bounded rationality. 

 
3. Simulation 
 
3.1. Experimental design 

 
First, 100 pairs of upward valuation (both buyers and 

sellers have non-increasing valuations over time) are gen-
erated randomly under a pre-specified range. Two experi-
ment parts are designed, based on the protocol and the 
strategies used by agents: 
− Agents use random strategies in bargaining (part 1) 

− Agents use reactive (behavior-dependent) strategies in 
bargaining (part 2) [1] 

The part 1 experiment can be divided into four groups 
according to the strategies used by sellers: 
− Risk-averse seller (R-averse): a seller who offers 

monotonic price and will not offer any price below 
the maximum valuation (in this case $100); 

− Risk-seeking seller (R-seeking): a seller who offers 
monotonic price but may offer any price above its 
valuation; 

− Nonmonotonic-offer seller (N-seller): a seller who 
offers any price above its valuation and may increase 
it as its valuation increases, but only when it is stuck 
on its valuation; 

− Nonmonotonic with random change (NR-seller): a 
seller who is similar to N-seller, except that it may in-
crease its price randomly (with probability equals to 
0.1) in order to attract type-II buyers. 

 We subdivide each group of the part 1 experiments 
into four treatments based on the strategies used by sellers 
and buyers shown in Table 1. Thus, a total of 16 groups of 
experiments are conducted in part 1, and each group is 
repeated 300 times for each pair of valuations, resulting in 
480000 trials. In the part 1 experiment, agents only follow 
random strategies, i.e. sellers (buyers) randomly increase 
(decrease) their offers until the valuations are reached. 
Depending on the agents’ characteristics, some may 
raise/drop their offers faster than others, but they never 
take their opponents’ offers/behavior into consideration. 
The realization of a type-I agent is by using the following 
method,  
•  if my opponent’s current offer generates higher posi-

tive surplus than my offer which will be sent in the 
next period, then accept my opponent’s current offer 

The realization of a type-II agent is by adding the follow-
ing method in addition,  
•  if my opponent’s current offer generates higher posi-

tive surplus than the previous one, do nothing 
•  if my opponent’s current offer generate lower positive 

surplus than the previous one, accept it 

Table 1. Four treatments based on agents’ 
evaluation 

Seller  
Type-I Type-II 

Type-I S1B1 S2B1 Buyer Type-II S1B2 S2B2 
 
The experiments in part 2 are almost the same as in 

part 1, except that most agents consider their opponents’ 
offers, and react accordingly. Four reactive strategies are 
considered, which are slightly different from those used in 
[1, 7]: 
•  Tit-for-tat: the proponent’s move is the same as the 

opponent’s previous move 



•  Tit-for-2tat: the proponent’s move is the same as the 
opponent’s previous two moves 

•  Tat-for-tit: the proponent’s move is the reverse of the 
opponent’s previous move 

•  Spread-driven: the proponent’s move tries to reduce 
the spread of negotiation by a constant fraction 

 Each experiment in part 2 consists of agents with the 
four reactive strategies above plus agents with random 
strategies. Eight different treatments are conducted in part 
2: the four different treatments given in Table 1, and two 
different protocols for each of them (N-protocol and M-
protocol). For the statistical analysis, each possible com-
bination will be repeated more than 30 times. Totally, we 
have conducted 720000 trials in part 2. Since two reactive 
agents may stand on their offers (e.g. two tit-for-tat agents 
will always use the same strategies if met), we use a “tie-
breaker” mechanism -- an agent will not stand on its cur-
rent offer for more than n-periods. Moreover, we assume a 
very high cost in repeating a bargaining session. Thus, if 
an agent is stuck in its valuation, then we will consider it 
as a breakdown. Table 2 shows the general parameters 
used in both part 1 and part 2 of our experiments. 

Table 2. Parameters used in the experiment 
Parameters Values 

Maximum bargaining periods 99 
Sellers and buyers’ initial valuation $50 - $85 
Sellers and buyers’ final valuation $100 
Increment of valuation $5 
Range of sellers’ initial offers $100 - $120 
Range of buyers’ initial offers $30 - $50 
Min. increment/decrement of offers $1 
Max. increment/decrement of offer $5 

 
3.1.1. Agents’ valuations. Figure 3 shows four represen-
tative pairs of agents’ valuations, which are generated 
randomly. The vertical axis represents the price, and the 
horizontal axis represents the time line (in periods). The 
thick line represents the buyer’s valuation in each period, 
and the thin line represents the seller’s valuation. The 
transaction may be made within the area where the thick 
line is above the thin line, or when both of them are on the 
same horizontal line. Near the end of the bargaining pe-
riod, both lines always overlap at $100. This gives us a 
higher assurance of a success if the bargaining extends to 
the deadline, which may favor risk-averse sellers in part 1 
or our experiment.  
 
3.1.2. Evaluation criteria. In both part 1 and part 2, two 
main variables are recorded for evaluation purposes: 
− total surplus generated from each group experiment, 

in terms of the sum of surplus for both buyers and 
sellers; 

− number of breakdown/success.  

Based on these two values, three types of information are 
retrieved: average surplus, average surplus per success 
transaction, and success rate. 
 

3.2. Results 
 

Table 3 shows that agents in N-protocol (the two bot-
tom rows) generate higher surplus compared to agents in 
M-protocol (the two upper rows). The success rates of N-
protocol are also higher compared to the setting where 
sellers are risk-taking in M-protocol (2nd row). These re-
sults justify our theoretical analysis that N-protocol favors 
negotiation under sellers’ upward valuations.  

 
Table 3. Result of experiment in part 1 

 Ave. sur-
plus 

Ave. surp./ 
transaction Success rate 

R-averse 6.657 6.967 94.903
R-seeking 7.098 8.773 80.399
N-seller 10.053 10.272 97.901
NR-seller 10.109 10.820 93.323

 
If we compare the results of each group of strategies 

used by buyers and sellers (as shown in Table 1), we find 
out that the effect of the strategy used by sellers and buy-
ers is not significant in N-protocol (Figure 4). Smaller 
average surpluses are only observed in the case when the 
sellers are of type-II and the buyers are of type-I (shown 
as S2B1). In contrast, in M-protocol, much smaller aver-
age surpluses are observed when the sellers are of type-I 
(see Figure 5, in case S1B1 and S1B2). The result sug-
gests that type-II sellers outperform type-I sellers in M-
protocol. 

Introducing NR-sellers in N-protocol reduces the suc-
cess rate, as predicted. The effort to increase the price in 
order to convince the buyer to make concessions earlier 
will prolong the bargaining, thus increasing the risk of 
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Figure 3. Examples of four pairs (out of 100) 
of upward valuation used in the experiments 



breakdown. However, as expected, it generates higher 
total surplus, since more concessions are made and surplus 
is generated for both parties. 

In part 2, the success rate and the average surplus gen-
erated are higher in N-protocol, as shown in Table 4. 
100% success rate is gained under our experiment in N-
protocol, which much higher than 65% in M-protocol. All 
the results shown are statistically significant under t-test 
for confidence level > 95%. This result justifies that N-
protocol is better than M-protocol in terms of average sur-
plus gained by bargainers and their success rate, when 
both parties have increasing valuations. 
 

 
Figure 4. A comparison between N-seller and 

NR-seller in N-protocol (average surplus is nor-
malized) 

 

 
Figure 5. A comparison between R-averse and 

R-seeking in M-protocol (average surplus is 
normalized) 

 

Table 4. Result of experiment in part 2 
 Average surplus Success rate 

M-protocol 8.37 65 
N-protocol 9.62 100 

 
4. Discussion 

 
As mentioned earlier in this paper, an alternative solu-

tion for an agent who has diminishing valuation includes 
re-opening negotiation with the same or a new opponent 
every time a weak deadline has been met. However, this 

situation is not simulated in our experiment here because 
it is less realistic. Intuitively, if two bargainers have met 
before, then they may restart their initial offers closer than 
if they do not know each other in the first place, which 
may speed up the convergence to the concession. How-
ever, there are several weaknesses of this mechanism: 
1. If the opponent is programmed to restart the bargain-

ing session using its initial offer, then the chance of 
breakdown increases, because of the diminishing 
valuation of the proponent. 

2. If there are other party(-ies) queuing for the bargain-
ing, then a termination within two agents may reduce 
the chance for both to encounter each other again, 
which increases the chance of both to start their bar-
gaining by offering their initial offer (to other new 
parties). 

3. There may exist costs to restart the bargaining, as 
indicated previously. 

In addition, if two bargainers can repeat their bargain-
ing frictionless in an M-protocol, then the efficiency (in 
term of expected gain and success rate) gained by them is 
at most as high as the efficiency gained in N-protocol, 
which becomes the upper bound of the efficiency of M-
protocol. 

Finally, in N-protocol, agents who use a simple bar-
gaining strategy, such as random strategy or tit-for-tat, can 
gain higher efficiency (in term of success rate and surplus) 
compared to agents in M-protocol. This suggests that N-
protocol may work better than M-protocol for most types 
of agents, including those able to maximize expected gain, 
as shown in the theoretical analysis. However, this may 
not be true if we have the following agents in the bargain-
ing: 
- Irrational agents, who increase or decrease their offers 

arbitrarily; this can be avoided by the restriction of 
M-protocol. 

- Misinformed agents, who cannot accept a non-
monotonic offer, therefore retreat from the bargaining 
immediately. These agents may perceive a non-
monotonic offer as a sign of a lack of seriousness of 
their opponent, or as a sign of a prolonged bargaining, 
or as a sign of a higher likelihood of breakdown. 
Thus, they will retreat from the bargaining, and try to 
find a new opponent. 

- Nasty agents, who use non-monotonic offers to 
threaten their opponents, delay the bargaining, or mis-
lead their opponents’ beliefs. This can be accom-
plished if agents have less pressure from time dead-
line or breakdown.  

More issues may arise by allowing N-protocol, but as 
shown in both the theoretical analysis and the simulation, 
N-protocol is better than M-protocol under certain condi-
tions. 

 
4.1. Related work 



 
Many works in bargaining have addressed several is-

sues such as the deadline of the bargaining [5], the strate-
gies under incomplete information [1, 7], agents with lim-
ited resources [4], and learning by buyer and seller [12]. 
Most studies of bargaining simplify the model by impos-
ing several assumptions, such as common knowledge of 
deadline, valuation, risk-neutral attitude, etc. [2, 4, 5, 6]. 
Even if the exact value is unknown, many works assume 
that the probability of it is known (incomplete informa-
tion). Thus, most of the bargaining problems are solvable 
using game–theoretic analysis, at the cost of a less appli-
cable domain [3]. In competitive negotiation bargainers 
will withhold their private information, since revealing 
private information will subject them to exploitation by 
their opponents. Consequently, it leads to a more complex 
model, which is not solvable using game theory. The al-
ternative solution is to use heuristic approach in the design 
of negotiating agents [1, 7, 8, 9, 10, 12]. Our work here 
aims to the latter case, where agents are blind to their op-
ponents, and can only observe the offer/counter offer by 
its opponent. However, adopting N-protocol may also alter 
the result of some analysis in game theory. For instance, 
let both the buyer and the seller know that the buyer’s 
deadline is earlier than the seller’s, and both valuations are 
decreasing over time and privately known. Then the best 
strategy for the seller in M-protocol is to wait until the 
buyer’s deadline and accept the buyer’s offer as long as it 
generates positive surplus. This constitutes the sub-game 
perfect equilibrium, because there is no incentive for both 
seller and buyer to offer before the buyer’s deadline, and 
there is no incentive for the seller to accept any offer be-
fore the deadline. However, under N-protocol, the buyer 
may offer a higher price at the beginning of negotiation 
and reduce it along its valuation. Under this strategy, the 
best response of seller is to accept the price that generates 
highest surplus, which depends on the slope of seller’s 
valuation. Thus, the equilibrium points in M-protocol and 
N-protocol will be different. 

 
5. Future work 

 
For our future work, we aim to extend our experiment 

by using more sophisticated agent strategies, such as in-
corporating a learning mechanism to predict the oppo-
nent’s valuation, as in [10]. Since the current simulation is 
conducted for the case of increasing valuation for both 
buyer and seller,  other cases, such as decreasing valuation 
for buyer and increasing valuation for seller, or both with 
decreasing valuations but with different slope and deadline 
need to be studied. Finally, we also plan to extend the 
simulation by introducing various nasty/irrational agents. 
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