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Abstract. In the multiagent meeting scheduling problem, agents nego-
tiate with each other on behalf of their users to schedule meetings. While
a number of negotiation approaches have been proposed for scheduling
meetings, it is not well understood how agents can negotiate strategi-
cally in order to maximize their users’ utility. To negotiate strategically,
agents need to learn to pick good strategies for negotiating with other
agents.
In this paper, we show how agents can learn online to negotiate strate-
gically in order to better satisfy their users’ preferences. We outline the
applicability of experts algorithms to the problem of learning to select
negotiation strategies. In particular, we show how two different experts
approaches, plays [1] and Exploration-Exploitation Experts (EEE) [2],
can be adapted to the task. We show experimentally the effectiveness of
our approach for learning to negotiation strategically.

1 Introduction

Meeting scheduling can be a very time consuming task for computer users. It
often requires the exchange of many email messages and the rescheduling of
existing meetings, in order to accommodate new ones. Personalized meeting
scheduling agents, with the ability to make decisions on behalf of their users,
have been proposed as a way to automate meeting scheduling, e.g., [3, 4].

In this work, we consider each agent to be in control of its own calendar and
of the information it reveals about its calendar and preferences. This differs to
the set up in Microsoft Outlook where each user in the organization is required to
make his/her calendar public. The main disadvantage of public calendars is that
they violate users’ privacy.1 Negotiation is one way in which multiple agents can
reach agreements about meeting times without having to make their calendars
public. As such, a number of researchers have proposed negotiation protocols for
multiagent meeting scheduling, e.g., [3, 4, 6].

In typical protocols, each meeting has an initiator. The initiator agent pro-
poses meeting times, and collects all replies and counter proposals from the other
agents. Consider the simplified protocol in Figure 1. In this context, we say that
a negotiation strategy is an arbitrary function that decides what times to propose
at each point in the process.

1 For a more in depth discussion of the approach used in Microsoft Outlook see[5].



Simple Negotiation Protocol

while there is no intersection in proposals:

– the initiator proposes x ≥ 0 times to the attendee agents

– each attendee agent proposes y ≥ 0 times to the initiator

Fig. 1. A simplification of typical meeting negotiation protocols

While the use of negotiation approaches assumes that agents strive to reach
agreements, users nonetheless have private preferences that their agents should
try to maximize. Different strategies are likely to work well in different situations.
For instance, when an agent negotiates with an agent that has similar preferences
and offers a lot of times, it may be best to also offer a lot of times and/or
to quickly agree to the other agent’s proposals by proposing the same times.
However, not all agents have the same preferences, and not all agents are very
cooperative. For example, some agents may only offer their favorite times initially
and be slow to compromise their preferences in order to find an intersection.
When negotiating with such an agent it is likely to be best to offer less times
and agree to the agent’s proposals more slowly, in order to ensure the time
eventually chosen satisfies the user’s preferences.

In this article, we propose an approach to negotiation where agents learn what
strategies to use in different situations. We show that an agent can learn to choose
good negotiation strategies online using experts approaches. By observing how
well each of the strategies performs, the agent can learn to select good strategies
for different situations.

There are a number of existing algorithms for the experts problem and its
variants (e.g., the k-armed bandits problem)[7, 8]. In an experts problem, an
agent must make sequential decisions, by choosing which of a set of experts it
should take advice from at each decision point. After each decision, the agent
receives some reward. The aim is for the agent to make choices that lead to
good rewards. Algorithms for experts problems must trade-off exploration and
exploitation. By viewing a set of diverse negotiation strategies as a set experts,
an agent can use experts algorithms to learn how to select strategies. In Section
2, we discuss experts algorithms in more detail, and in Section 3, we describe
their applicability to strategy selection in multiagent meeting scheduling.

In Section 4, we look at the static environment case, where an agent needs
to learn how to negotiate in the presence of fixed strategy agents. We show how
we can adapt the playbook approach for team plan selection in robot soccer [1],
to the problem of learning to select negotiation strategies. In Section 5, we look
at the more difficult case, where the environment is reactive. We show how the
Exploration-Exploitation Experts (EEE) Algorithm [2], can be used to learn
effectively when other agents are also adapting. In Section 6, we present an
experimental evaluation of the different approaches.



In Section 7, we describe related work on negotiation for multiagent meet-
ing scheduling. There is a substantial body of work on the multiagent meeting
scheduling problem, however the issue of learning to negotiate strategically has
not been addressed.

2 Experts Algorithms

2.1 Outline

In an experts problem an agent must make a series of decisions about what action
to take. For each action it takes, it receives some reward. Each time the agent
needs to make a decision, it receives advice from a pool of experts. An expert

is simply a strategy that recommends actions, possibly based on the previous
actions taken and their rewards . Experts algorithms are methods for deciding
what action to take based on the advice received from multiple experts.

One standard formulation of the experts problem is as follows. An agent is
faced with a sequential decision problem where, at each decision point, it must
choose an expert and take the action recommended by that expert. The agent
then receives some reward from the environment based on the action it took,
and on the environment. The environment can depend on the history of actions
taken and/or on factors independent of the agent. In some settings (and in the
setting we are concerned with in this article) the environment is viewed as taking
an action at the same time as the agent. This action might be a move by Nature
or by one or more other agents. The experts algorithm tells the agent at each
decision point which expert’s advice to follow. In the simplest settings, the agent
can compute the reward it would have received had it followed the advice of each
of the different experts.

2.2 Regret

Regret is one performance criterion for an experts algorithm. We can compute for
some history what expert would have yielded the highest reward overall. Regret

is then the difference between how well the agent could have done, by always
following the advice of this expert (against the sequence of actions chosen by
the environment), versus how well it actually did. More formally, let the reward
received from following the advice of expert i at choice point t be rt

i . The regret
of the agent after T choices have been made is given by the following formula:

regretT = max
over experts i

T−1
∑

t=0

rt
i −

T−1
∑

t=0

rt
xt

where xt denotes the expert the agent chose at choice point t.
A common goal for an expert’s algorithm is to minimize regret. We say that

an algorithm minimizes regret if its average reward is as great as the reward of
any one expert against any fixed sequence of opponent actions. An algorithm is
said to be a no-regret algorithm if,



limT−>∞

regretT
T

≤ 0

There exist algorithms that have provable regret bounds (and are no-regret),
e.g., the randomized weighted majority algorithm [7], Hedge [8] and Exp32 [8].
These algorithms typically work by selecting strategies probabilistically. They
start by having a uniform probability distribution over the strategies. As strate-
gies are used, and reward received, the probability of choosing the higher reward
strategies is increased, and the probability selecting the lower reward strategies
is decreased.

2.3 Problems with the Regret Criterion

For the case where the opponent (or Nature) makes its moves simply on the basis
of the current choice point, i.e., with no reference to the past behavior of the
agent, regret is a very appealing performance metric. However, if the opponent
bases its choice at each decision point t on the past behavior of the agent, then
regret is not a very good criterion. Regret simply looks at the difference between
how well the algorithm’s choices performed against the sequence of actions taken
by the opponent, versus how well a fixed expert could have done against the same

sequence of actions. However, if the opponent is basing its choices on the past
behavior of the agent, then a different sequence of agent actions could have
yielded a different sequence of opponent actions. For instance, the opponent
would take a different sequence of actions if it were also learning. There exist
algorithms that minimize regret against opponents whose choices can depend on
the history (e.g., [8, 10]), however, regret is not the best performance criteria in
this case. Moreover since regret is not the best performance criterion, algorithms
that aim at minimizing regret may not be the best choice.

In response to the problems with the minimum regret criterion, the Strate-
gic Experts Algorithm (SEA) [9] and the Exploration Exploitation Experts al-
gorithm (EEE) [2] have been developed. These algorithms aim at maximizing
long-term average reward by taking into account the long-term effects an agent’s
choices have on the opponent. For certain settings these algorithms have a worst
case guarantee that the average reward is asymptotically as large as that of
the “expert that did best in the rounds of the game when it was played” [9].
More formally if we let avgA be the average reward of the algorithm and avge

be the average reward obtained from expert e when it was chosen by the algo-
rithm, then (under certain conditions) avgA ≥ avge in the limit. This differs a
bit from a regret guarantee, because it compares the algorithm’s average reward
with the average reward each expert gave when it was used. The regret criterion
compared the algorithm’s average reward with the average reward each fixed
strategy might have achieved at each choice point, assuming a fixed sequence of

2 Exp3 gives bounds on regret even for the partially observable case, where the algo-
rithm can only see the reward of the expert it actually chooses.



opponent actions. Stronger guarantees for SEA and EEE are given when some
assumptions are made about the opponent [9].

3 Learning to Negotiate with Different Agents using

Experts Approaches

3.1 Setting

In this article we focus on the problem of learning to negotiate with different
agents. A meeting scheduling agent is faced with a number of different nego-
tiation situations or environments. For instance, consider the problem of nego-
tiating a two person meeting. One strategy may work well when negotiating a
meeting with Agent B, and another with Agent C. We would like our meeting
scheduling agent to be able to learn which strategy to use with Agent B and
which to use with Agent C. There are other factors in the meeting scheduling
problem that can differently affect the success of negotiation strategies, but who
an agent negotiates with is likely the most important factor. It is largely the
other agent’s strategy, preferences, and calendar, that will determine the success
of our learning agent’s negotiation strategies.

3.2 Motivation for our Experts-Based Approach

There are three main factors that make learning to negotiate with other agents
very challenging. Firstly, the space of possible negotiation strategies is very large.
Secondly, choosing the right strategy for scheduling a particular meeting, given
an agent’s limited knowledge of the situation (e.g., its limited knowledge of the
calendars, preferences and strategies of other agents) is not trivial. Thirdly, the
learning needs to occur online, so we face an exploration/exploitation trade-off.

Instead of having the agent learn in the entire space of negotiation strategies,
we propose that the agent’s attention should be restricted to a diverse set of use-
ful strategies. These strategies could be learned, or chosen by a human. Given a
set of diverse strategies, an agent then needs to learn to choose the best strategies

for negotiating with different agents. Unfortunately, there are a huge variety of
factors that can influence the effectiveness of a negotiation strategy. These fac-
tors include the strategies of other agents, their calendars and preferences, and
even the type of meeting being scheduled.

One approach, would be to try and model the relevant factors. An agent
could try and identify different aspects, including, the strategy, preferences, and
calendar of each other agent. However, given that agents may only rarely inter-
act with each other, learning a model of another agent is clearly very difficult.
Furthermore, even if an agent does have a lot of accurate information about the
situation it currently needs to negotiate in, it may be very hard to work out what
strategy would match the situation best. As such, we propose that agents learn
what strategies to select by observing their own rewards, as opposed to trying
to model other agents and the state of the system. Setting up the learning prob-
lem in this way allows us to use experts algorithms. Experts algorithms have a



strong theoretical motivation, and in Section 6 we experimentally demonstrate
their usefulness in this domain.

3.3 An Experts Approach for Learning to Negotiate with Different

Agents

We propose that in order to learn which strategy to use with a particular agent,
say Agent B, the learning agent can use an experts algorithm. In order to do this,
we simply think of each of the negotiation strategies available to the learning
agent as one expert. The experts algorithm is then used to instruct the learning
agent on what strategy to use each time it negotiates a meeting with Agent
B. This gives the learning agent a principled way to trade-off exploration and
exploitation to find the best strategy for negotiation with Agent B. So for every
agent the learning agent schedules meetings with, we are going to use an experts
algorithm to select the negotiation strategy. This allows the learning agent to
learn over time what strategy to select for negotiating with each other agent.

So far we have only mentioned two person meetings. Suppose that our learn-
ing agent is initiating a large meeting. To do this, the learning agent negotiates
separately with each agent involved in the meeting, i.e., it exchanges time pro-
posals with each other agent. In this case, the learning agent will select a possibly
different strategy for negotiation with each of the attendee agents according to
the experts algorithm running for that agent. When the learning agent is an
attendee of a large meeting, it has to negotiate with the meeting’s initiator. In
this case, the learning agent will select the negotiation strategy according to
the experts algorithm it is running for the meeting initiator. We summarize our
learning algorithm in Figure 2.

In the two sections that follow we describe in detail how we applied two
different experts approaches to the problem of learning to negotiate with different
agents. We then demonstrate the effectiveness of our approach experimentally
for the case of two-person meetings.

4 Playbook Approach to Strategy Selection

4.1 Introduction to Plays

In this section we show how an experts-based playbook approach [1] can be
adapted to the problem of selecting strategies in multiagent meeting schedul-
ing [11]. The playbook approach is based on a regret minimization algorithm so
it is of most interest when the other agents are not also learning.

The playbook approach was introduced within the small-size robot soccer

league, in which two teams of five small, wheeled, and fast robots compete against
each other. An overhead camera above the playing field provides a complete
view of all the robots to an external off-board computer that can then centrally
perform coordinated team planning. A play is defined as a team plan, with
applicability and termination conditions, roles, and actions for each robot in a



Learning Algorithm Overview

Let the agent’s name be A.

when a new meeting M arises:

– if A is the initiator of M:

• for each agent x ∈ attendees(M)− {A}:
∗ if A has not not negotiated with x before, initialize an

experts algorithm for x
∗ negotiate with x according to the experts algorithm for x

until M is scheduled

• for each agent x ∈ attendees(M)− {A}:
∗ update the experts algorithm for x according to the reward

received from scheduling M
– else:

• if A has not negotiated with the initiator, i, of M before,

initialize an experts algorithm for i
• negotiate with i according to experts algorithm for i until M

is scheduled

• update the experts algorithm for i according to the reward

received from scheduling M

Fig. 2. An overview of our learning algorithm.

team. An offensive play, for example, might be applicable whenever the ball is
in the opponent’s half of the field, and terminate either when a goal is scored,
or the applicability condition is violated. A playbook, captures all the plays that
are available to the team. A play is described in a simple language to ease its
definition [1].

The playbook represents a set of strategies to potentially respond to different
types of opponents. Each play has a specific weight that determines its prob-
ability of being selected. The playbook with its multiple weighted plays serves
two main research goals: (i) the clear identification of a set of available team
coordination strategies, and (ii) the ability to adapt the weights of the plays as
a function of the achieved reward. Appropriate online adaptation of the weights
of the plays provides a method to learn to respond to fixed opponents [1].

4.2 Outline: Plays for Strategy Selection

The meeting negotiation problem has a number of important features in common
with small-size robot soccer. In both domains, the space of available strategies is
huge. It is not possible for agents to adapt online if they must consider the entire
space. Furthermore, the environment in both domains is dynamic, the models
of the ‘opponents’ are unknown, and online learning is required. In this section,
we discuss how we adapt the plays formulation to the problem of learning how
to negotiate with different agents.



We can map the plays terminology, from robot soccer, to the meeting schedul-
ing problem.

– Plays correspond to complete negotiation strategies.
– The opponent corresponds to the agent the learning agent is negotiating

with.
– The playbook corresponds to the set of negotiation strategies available to

the learning agent.

The playbook approach to robot soccer considered all the opponent agents as
an opponent team and adapted play selection to the team, as opposed to indi-
vidual opponent agents. In the meeting scheduling problem, we consider each
agent a separate ‘opponent’. At any one time a meeting scheduling agent may
be negotiating with multiple ‘opponent’ agents, whereas in robot soccer only
one opponent team is played at a time. In the meeting scheduling problem the
learning agent must adapt strategy selection for each of the different agents it
negotiates with simultaneously.

In robot soccer, a team only plays against one team at a time. In this do-
main, it is fairly reasonable to assume that each game is independent, i.e., that a
team’s behavior in one game does not affect future games.3 In meeting schedul-
ing however, an agent’s calendar changes as meetings are scheduled. As such,
scheduling a meeting with one agent can affect how a meeting is scheduled with
another agent. As we show in Section 6, this does not stop the plays approach
from being effective in the meeting scheduling domain when the other agents are
fixed.

We let a negotiation strategy consist of 3 elements:

1. an applicability condition
2. a method for deciding at each negotiation round what times (if any) to offer
3. a method for deciding when to give up

This is a very flexible outline for a negotiation strategy. It makes no restrictions
on the number of times (if any) an agent offers in each round. Furthermore, there
is no restriction placed on what times the agent chooses, or how it makes the
choice. Figure 3, shows an example strategy, Offer-k-b, that offers k new available
times each round, and after b rounds starts trying to compromise according to
the proposals it has received. If necessary, Offer-k-b will offer times that would
require an already scheduled meeting to be bumped (moved to another time).
Depending on the values of k and b, this strategy can be very selfish and cause
the negotiation to take a long time. As such, if the ‘opponent’ agent is very
important the strategy is only applicable if the value of k is large and the value
of b is small.

The learning agent runs a different instance of the playbook algorithm (de-
scribed in more detail in the next section) for each agent it negotiates with.
When the learning agent needs to negotiate with a particular agent, e.g., agent

3 Dependencies are possible in the robot soccer domain, e.g., if the human designers
of teams hand tune their robot teams according to the past play of their opponents.



Offer-k-b Negotiation Algorithm

1. APPLICABILITY: if the other agent is very-important and (k < 20 and
b > 5) return false; else return true.

2. OFFER-METHOD: In any negotiation round offer a’s k most preferred,
available (not yet occupied by a meeting), un-offered times. If negotiation round
> b (i.e., b rounds have passed without an intersection in proposed times).
Apply the simple compromiser sub-strategy which works as follows:
– If a is an attendee of the meeting, but not the initiator, a searches for any

times proposed by the initiator that a is available for, but has not offered.
If one or more such times exist offer a offers its most preferred such time.
Else, a offers the time proposed by the initiator that contains the meeting
with the fewest participants.

– If a is the initiator, a ranks all the times proposed by other agents according
to the number of agents that have proposed that time. Out of all the times
with the highest number of proposals if any of these times are available
(for a), a offers its most preferred such time, otherwise a offers the time it
has unavailable that contains the meeting with the fewest participants.

3. ABANDON-METHOD: if negotiation round > 50 return true.

Fig. 3. Description of the Offer-k-b negotiation algorithm.

A, the learning agent uses the playbook algorithm for agent A to select the
strategy to use.

The learning agent considers the execution of a strategy to be complete when:

– the meeting it was selected to schedule has been added to the agent’s calen-
dar, and

– any meetings that the learning agent is involved in that have been bumped
have been rescheduled for new times.

A strategy is also considered to have been completely executed if the learning
agent has given up on scheduling the new meeting, or on rescheduling a bumped
meeting. Each time a strategy terminates, the playbook weights are updated
according to the success of the strategy.

4.3 Weight Adaptation and Strategy Selection for Negotiating with

Different Agents

For each ‘opponent’ agent, the learning agent must learn which strategies to
select. The learning algorithm [1] has two key components:

1. a rule for updating the weights on strategies in the playbook, and
2. a rule for selecting the strategy to apply based on these weights.

In this section, we briefly describe the approach and its basis in the experts
literature.4

4 For a more complete treatment we refer to the reader to [1].



Algorithms for selecting experts with no regret can be used to select plays [1].
Similarly to [1] we consider a formulation of regret that takes into account the
fact that not all plays (or strategies) are applicable at each choice point by using
the notion of Sleeping Experts [12]. An expert is awake when it is applicable at a
particular choice time, and asleep otherwise. Following the notation used in [1],
we let at

i = 1 if expert i is awake at time t, and at
i = 0 otherwise. Then if ∆(n)

is the set of probability distributions over all n experts, the sleeping regret (SR)
after T choices is:

SRT =

(

max
x∈∆(n)

T−1
∑

t=0

n
∑

i=1

at
i

(

x(i)
∑n

j=1 x(j)at
j

)

rt
i

)

−
T−1
∑

t=0

rt
xt

where xt is the expert selected at time t, and rt
i is the reward associated with

expert i at time t. The formula gives the reward the agent could have received
if the best possible distribution over awake experts had been selected at each
choice point, minus the reward the agent actually achieved.

In the context of plays, unlike in the traditional experts problem, agents only
find out the reward of the action they actually take. In order to account for this,
the playbook approach [1] combines elements of the Exp3 algorithm [8] (which
handles the problem of unknown rewards) with the sleeping regret approach [12].
We describe the approach here, and use it to adapt playbook weights for each
‘opponent’ agent, and select the strategy to use according to these weights.

To handle the problem of unknown rewards we let rt
i be r̂t

i where, r̂t
i is 0 if

i is not selected at point t, and
rt

i

Pr(xt=i) otherwise. Let the weight for strategy i

at decision point t, be wt
i . The value ert

i is denoted as mt
i, and we refer to this

value as the multiplier and use it to adjust the weights according to the reward
received from carrying out the negotiation strategy (or play). The probability
that the strategy chosen at point t, denoted xt, is strategy i is given by the
following equation:

Pr(xt = i) =
at

iw
t
i

∑

j at
jw

t
j

(1)

Once strategy xt has been executed, and the reward rt
xt received, we update

the weights as follows:

wt+1
i = ŵt

i .N
t
i (2)

where ŵt
i = wt

i for i not selected, but for i selected:

ŵt
i = wt

i(m
t
i)

1
P r(xt=i) (3)

The N t
i term is used to ensure that sleeping does not affect a strategy’s

probability of being chosen. N t
i = 1 if at

i = 0 and otherwise:

N t
i =

∑

j at
jw

t−1
j

∑

j at
jŵ

t
j

(4)



Plays Algorithm

– weights are initialized to 1 for all experts
– for each time step t:

1. play/strategy is selected according to the probability distribution in
equation 1

2. weights are updated using equations 2, 3, and 4

Fig. 4. Plays Algorithm from [1]

The algorithm is summarized in Figure 4.
Instead of directly dealing with rewards the playbook approach assigns the

multiplier a value according to the success or failure of the play. To apply the
approach to negotiation we need to decide how we are going to set the multiplier.
The multiplier specifies the degree to which the success or failure of a strategy
affects the weight. We base the multiplier on a model of user utility. We let
the utility a user derives from a negotiation strategy take into account three
elements:

1. the user’s preference for the time-of-day (tod) the new meeting is scheduled
for: val(tod).

2. the increase (or decrease) in utility from moving other meetings, i.e., for all
meetings that were moved, the agent’s utility is increased by

∑

moved

val(todnew) −
∑

moved

val(todold)

3. the number of negotiation rounds r required to schedule the new meeting
and move any old meetings.

The user’s utility function is parametrized by two constants α and β which
specify the relative importance of time-of-day valuations and negotiation cost.
Formally a user’s utility for the outcome of a negotiation strategy is modeled as:

U(i) = α(val(tod) +
∑

moved

val(todnew) −
∑

moved

val(todold)) − βr

We use the user’s utility function and highest time-of-day value to estimate
the maximum possible utility a negotiation strategy can achieve. We then set
the multiplier according to how the reward actually achieved relates to this
maximum. The multiplier is set according to the first row of Table 1 that applies.
Also note that if the negotiation strategy fails to schedule the new meeting, or
to reschedule any bumped meetings, a failure has occurred. We use a multiplier
of 0.25 for this case. There are many ways in which numbers for the multipliers
could be chosen. The motivation behind the particular choices in the table is
twofold. Firstly, we wanted the numbers to be from a small range so that the



weights on strategies would not oscillate too much with each meeting scheduled.
Secondly, we wanted the number to evenly balance gains and losses.

The playbook approach is likely to perform best if the ‘opponent’ agent is
using a fixed strategy and if changes to the environment (i.e., the calendars)
are not affecting the rewards. If the other agent is also learning, then in the
terminology of [8], we are dealing with a non-oblivious adversary. As such, since
the playbook approach builds on Exp3, the theoretical bounds are weaker.

Utility Multiplier

U(i) > 0.75 ∗ maxU 1.75
U(i) > 0.5 ∗ maxU 1.5
U(i) > 0.25 ∗ maxU 1.25
U(i) > 0 1
U(i) > 0 − 0.25 ∗ maxU 0.75
U(i) > 0 − 0.5 ∗ maxU 0.5
U(i) > 0 − 0.75 ∗ maxU 0.25

Table 1. The multiplier is given by the first row for which the entry in the first column
evaluates to true

5 Exploration-Exploitation Experts Approach to

Strategy Selection

5.1 Setting Definition

The Strategic Experts Algorithm (SEA) [9], as well as a generalized version,
Exploration-Exploitation Experts (EEE) [2] are designed for the following set-
ting. Let a be our learning agent. At each time stage t (same as time in our
previous discussions), a must choose an action ωt from some set Ω. Simul-
taneously the environment, in which a is acting, chooses some state βt ∈ B.
The action and the state combine to determine the reward a receives according
to some function R(ωt, βt). The choice the environment makes can depend on
many factors (e.g., stochastic variables), but in particular it can depend on a’s
past actions. The agent has a finite set of experts (or strategies) available to
it. Each expert/strategy recommends one of the actions at each time stage t.
An expert/strategy is a function, mapping possible histories up to time stage t,
ht ∈ Ht, to an action in Ω. Each possible history up to stage t is of the form
ht = (ω1, β1, ..., ωt−1, βt−1). In other words, the experts/strategies can take into
account the history.

5.2 Relation to Repeated Games

Note, that if we consider the state choice of the environment to be simply an
action choice, then each stage is a two player matrix game, and the whole process



can be thought of as playing this game repeatedly. If we want to think about
a n-player repeated game, we can consider the environment’s state choice to be
the joint-action of the other (n − 1) players.

5.3 EEE for Selecting Negotiation Strategies

The key idea behind SEA and EEE is that when actions affect the environment
and other agents, each expert/strategy needs to be used multiple times in succes-
sion to gauge its effect. Our approach to learning to select meeting negotiation
strategies, for the case where the other agents are also adapting, involves run-
ning the EEE algorithm for each agent the learning agent schedules meetings
with. This allows an agent a to learn online what strategies work best with each
other agent. In this section, we describe SEA and EEE in terms of our meeting
negotiation problem.

Let a stage denote the scheduling of one new meeting. A phase, is a sequence
of stages, for which the same expert/strategy is used. Let a be the learning
agent and let Sa be the set of all strategies available to a. Using this notation
we can define the exploration and exploitation components of the SEA and EEE
algorithms.

– Exploration : At the beginning of a new phase, a needs to select a strategy.
With some probability a explores, by choosing a strategy s ∈ Sa uniformly
at random. a then uses this strategy in every stage of the new phase.

– Exploitation : When a is not exploring it instead exploits its learned knowl-
edge. When exploiting, a identifies the agent it is negotiating with, lets call
the agent x, and picks the strategy with the highest past average reward
for this agent (ties are broken randomly). As in the exploration step, a then
uses this strategy in every stage of the new phase.

Figure 5 shows the details of the algorithms in terms of our negotiation
problem. Bounds, of various kinds, on the performance difference between the
best fixed strategy and the learning strategy in the limit, exist for EEE [2].

6 Evaluation

In this section, we evaluate our approach to learning to select negotiation strate-
gies. We study in simulation how well the two experts approaches we have dis-
cussed perform. We start by describing the experimental set up, including the
communication protocol, the negotiation strategies and the preference model.
We then discuss the experiments and the results.

6.1 Communication Protocol

We have created a simulation environment consisting of a set of agents equipped
with a common protocol for communicating about meetings. The protocol has
three basic stages: a negotiation phase, in which agents exchange proposals,



EEE Algorithm

– Rx

s is the average reward a has achieved by using strategy s when nego-
tiating with agent x.

– Nx

s is the number of phases in which a has followed s when negotiating
with agent x.

– Sx

s is the number of times a has negotiated using s with agent x.
– ix is a’s phase count for agent x.

1. Initialization: ∀x, s, Rx

s = Nx

s = Sx

s = 0 and ix = 1
2. Explore/Exploit Decision: Explore with probability px

i . If using the SEA
restriction px

i = 1/ix. With probability 1−px

i exploit. Let s be the strategy
chosen.

3. Use and Update: Use s for the next n negotiations with agent x. If using
the SEA variant, n = Nx

s . Then set Nx

s = Nx

s + 1, Sx

s = Sx

s + n. If we let
R̂ be the average payoff received over the n stages, then the update for
Rx

s is given by the following formula:

Rx

s = Rx

s +
n

Sx
s

(R̂ − Rx

s )

4. ix = ix + 1, go to 2.

Fig. 5. EEE Algorithm, adapted from [2]

a pending stage, in which a time proposed by all the agents is agreed upon,
and a confirmation stage, after which the meeting is entered into the agents’
calendars. Support is also provided for bumping (canceling and rescheduling)
meetings. There are a number of different types of messages that the agents
exchange:

– meeting time proposals
– requests to bump meetings
– cancellation notices for meetings
– pending requests for times – when a meeting initiator finds an intersection in

proposals, it sends a pending request for one of the times in the intersection
to each of the participants.

– pending responses – when an attendee receives a pending request it responds
with either:
• a pending acceptance and marks the meeting as pending, or
• a pending rejection (if the time is pending for another meeting, we require

that the agent rejects the request).
– confirmation notices – sent out by the initiator when all attendees reply to

a pending request with a pending acceptance.

Handling Bumping In the protocol outlined meetings can be bumped. Some-
times in order to schedule a new meeting, a meeting the learning agent is in-
volved in gets bumped. When this happens, the learning agent must negotiate



Availability Declarer Negotiation Algorithm

1. APPLICABILITY: if importance(other-agent) >= moderately-important
return true.

2. OFFER-RULE:
– In the first round a offers all its available times for the current week, in

second round offers all its available times for the following week and so on,
until all available times, up until the last possible time for the meeting,
have been offered.

– If negotiation round > 5, a applies the simple compromiser sub-strategy
described in Figure 3.

ABANDON: if negotiation round > 50 return true.

Fig. 6. Description of the Availability Declarer negotiation algorithm.

a new time for the bumped meeting. We have setup the learning agents such
that they do not learn from rescheduling bumped meetings, i.e., in the context
of the playbook approach, the weights are not updated when a bumped meeting
is rescheduled. However, the number of rounds it takes to schedule the bumped
meeting is added to the number of rounds to schedule the new meeting, and thus
it affects the utility of the strategy being used to schedule the new meeting.

6.2 Negotiation Strategies

We have implemented a number of negotiation strategies that comply with the
protocol outlined. We use two of these strategies in our experiments in this
article. The first strategy – Offer-k-b was previously described (see Figure 3.).
This strategy is parametrized, and hence it covers a large number of distinct
strategies. The second strategy we use is called Availability-Declarer (Figure
6.). This strategy can be very useful in practice, particularly in situations where
the agents are very busy. The key feature of this strategy is that it offers all the
available times in the first week straight away. In subsequent negotiation rounds
it does the same for later weeks.

6.3 Preferences

We use a simple model of time-of-day preferences. Each agent has a preference or-
dering over morning times, middle of the day times and afternoon times. Within
these time ranges the agent’s time-of-day preferences are equal. The agent’s util-
ity from scheduling a new meeting is defined by the equation given in Section 4,
i.e,

U(i) = α(val(tod) +
∑

moved

val(todnew) −
∑

moved

val(todold)) − βr

There exist more complicated models of user preferences. For instance, in [13]
we discuss a model where the user’s preferences over times can depend on the



state of the user’s calendar. We chose to use a simpler model of user preferences
for these experiments because it makes the interactions between different agents
more understandable, enabling a clearer discussion of the results.

6.4 Experiments and Results: Plays-based Approach

We have empirically evaluated the effectiveness of using a plays approach to se-
lect negotiation strategies. The experiments we describe consist of one learning
agent, which we are evaluating, and three fixed strategy agents of varying prefer-
ences and busyness. The learning agents have three strategies in their playbooks
– Availability-Declarer, Offer-10-5 and Offer-3-5. In the experiments discussed,
these strategies are always applicable.

Convergence In each experiment, the agents schedule approximately 80 new
two person meetings (we restrict our attention to two-person meetings to simplify
the discussion). The learning agent is an attendee (not an initiator) of each of
these 80 meetings. We show how the learning agent’s playbook weights converge
to sensible strategies for each of the fixed strategy agents.

In our first experiment, the learning agent’s time preference is morning, then
midday and then afternoon. The α and β values of the learning agent’s utility
function are 4 and 0.1 respectively. The agent’s calendar is approximately 25%
full when the experiment is started. Unlike the meetings we schedule in the
testing phase, the initial meetings in the calendar can involve any number of the
agents.

Figure 7 shows how the learning agent’s playbook weights adapt for Agent2.
Agent2 starts out with a similar number of initial meetings to the learning agent,
uses the Availability-Declarer strategy, and has the same time preferences as the
learning agent. Figure 7 shows how the playbook weights quickly converge to the
Availability-Declarer strategy. While the other two strategies are also likely to
work well in this instance, the Availability Declarer strategy offers the possibility
of resolving the negotiation faster. Since the learning agent and Agent2 have the
same preferences, there is no strategic advantage to the learning agent only
releasing its availability slowly.

Figure 8 shows the weight adaptation for Agent3. Agent3 uses the
Availability-Declarer strategy and starts out with a similar calendar density to
the learning agent, but with opposite preferences. Agent3 most prefers after-
noons, then the middle of the day, and then the morning. Figure 8 shows that
the learning agent quickly establishes that the Availability-Declarer strategy is
less useful for negotiating with Agent3 than the Offer-10-5 and Offer-3-5 strate-
gies. After about 25 meetings have been scheduled the weights converge on the
the Offer-3-5 strategy. Note that the Availability-Declarer strategy is a poor
choice for use with Agent3. When both agents negotiate with this strategy, the
initiator (always Agent3 in these experiments) is likely to quickly find a large
intersection of available times. The initiator can choose its most preferred time
in this intersection and since Agent3’s and the learning agent’s preferences clash,
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Fig. 7. Weights adaptation for Agent2

the time chosen will likely be bad for the learning agent. The learning agent has a
clear strategic incentive to declare its available times more slowly and in order of
preference. Since the learning agent’s utility function rates achieving good times
much higher than minimizing the number of negotiation rounds, it converges on
the Offer-3-5 strategy rather than the Offer-10-5. This is despite the learning
agent’s calendar being quite full (93%), and hence mutally available slots fairly
rare, by the time the experiment concludes.

Figure 9 shows the weight adaptation for Agent4. Agent4 has similar prefer-
ences (midday, morning, then afternoon) to the learning agent. Agent4 uses the
Offer-10-5 negotiator and starts with a dense calendar (about 80% full). Figure 9.
shows that the learning Agent quickly determines that the Offer-3-5 strategy is
not very effective when dealing with a very busy agent that has similar prefer-
ences. After approximately 15 meetings have been scheduled, the learning agent
converges on the Availability-Declarer strategy.

We ran the same experiment described above but with a different utility func-
tion for the learning agent and different initial calendars. The utility function had
α as 4, and β as 1. This change caused the weights to converge on Availability-
Declarer for each of the agents, since the negative effect of negotiation length
was greatly increased.

The figures show some oscillation in the weights, particularly initially. This
oscillation is due to the way the algorithm works. Lower probability strategies
(i.e., strategies with lower weights) have their weight boosted more when they
perform well than higher probability strategies. However, as we have discussed
the process converges over time in these experiments.
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Performance No regret algorithms bound the average difference between the
performance of the learning algorithm, and the best fixed strategy in the limit.
However, since a learning agent does not schedule an infinite number of meetings
with each other agent, it is important to examine how well the learning algorithm
performs in practice.

We used one agent designated as the learning agent and the three fixed
strategy agents previously described and ran 10 trials. In each trial we had the
designated agent schedule all the test meetings using the playbook approach,
an approach that randomly selects one of the playbook strategies, and each
of the fixed playbook strategies (clearing the calendars to their original state
for each different setting). In each trial, the agents’ calendars were randomly
initialized with 160 meetings. The number of test meetings that the agents had
to schedules was 200, but the calendars were cleared to their initial state after
every 20 meetings. This reflects the common scenario where people have a set
of meetings that occur weekly and new meetings that arise over time. Figure 10
shows the results.

The performance of each algorithm is measured in terms of the total utility
it achieves averaged over each of the trials. This utility is calculated for an
individual trial as follows. Each time the calendar needs to be cleared to its
initial state (in this case it is cleared every 20 meetings) the calendar’s utility is
evaluated. The utility evaluation of a calendar, cal is defined as:

eval(cal) =
∑

meeting times t∈cal

val(t)
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The utility of scheduling a series of meetings is then:

α ∗ (eval(finalCal)− eval(initialCal))− β ∗ r (5)

where r is the number of rounds it took to schedule all the meetings. When
running each trial a record is kept of utility achieved so far. Each time the cal-
endar is to be cleared, the utility from scheduling the new meetings is calculated
according to Equation 5 and added to the current utility sum for the trial.

Figure 10 shows the play learning algorithm achieving higher average utility
than playing a random strategy or using any fixed strategy. The learning algo-
rithm used gives the strongest regret guarantees when the other agents are fixed.
Figure 11 shows that the performance of the learning algorithm drops when we
add a learning agent (that uses the same algorithm), to the three fixed agents.
These results are typical of a variety of experimental configurations.

The performance of the playbook approach is greatly affected by the number
of strategies in the playbook. Intuitively, we can see that it is harder to select
the best strategy when faced with more possibilities. Analytically, we can also
see this from the bounds given for Exp3 [8] (recall that the playbook approach
is partially based on Exp3). These bounds include a

√
K factor, where K corre-

sponds to the number of negotiation strategies in our terminology. In the next
section, we will show a case with a larger playbook where the plays algorithm is
unable to perform better than the best fixed strategy when negotiating with fixed
strategy agents. Given enough time the performance of the playbook approach
would improve, but in meeting scheduling we need to see good performance very
quickly.
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Fig. 10. Performance of the plays-based approach and other algorithms against only
fixed agents.

6.5 Experiments and Results: EEE Approach

6.6 EEE Algorithm Setting

The two key parameters of EEE are the exploration probability and the phase
length. We use the SEA exploration probability setting, i.e., px

i = 1/ix. This
causes exploration to decrease as the number of phases increases. In [14] three
different exploration probability settings are discussed — explore-then-exploit,
polynomially decreasing exploration, and constant-rate exploration. The SEA
setting is version of polynomially decreasing exploration for which strong asymp-
totic results are provided [9]. The drawback of explore-then-exploit for the meet-
ing scheduling domain is that if some aspect of another agent changes and the
explore phase is over then the algorithm cannot adapt. In contrast, constant rate
exploration can adapt quickly to changes, but in an environment like meeting
scheduling, where there is likely to be a lot of consistency, it fails to take advan-
tage of opportunities to exploit. The polynomially decreasing exploration takes
advantage of consistency in the environment while still being able to adapt to
changes. We have not attempted to tweak the polynomially decreasing explo-
ration to achieve better performance in our experiments. Instead we have used
the SEA exploration policy, for which performance bounds are given in [9].

6.7 Evaluation Procedure

The experimental procedure is similar to that described in the previous section.
In all the experiments we describe, the meetings have two participants (the
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Fig. 11. Performance of the plays-based learner and other algorithms when another
learning agent is added.

learning agent can initiate meetings). The initial calendars of the agents are
populated with randomly generated meetings. The agents are then given a set of
meetings to schedule. In each experiment one agent is designated as the agent to
be evaluated. This agent uses the SEA/EEE learning approach to negotiate the
set of meetings with the other agents. Before the agent schedules these meetings
however, we record the initial state of all the agents’ calendars. This allows us
to reset all the calendars and then have the agent we are evaluating schedule
the meetings again with other strategies. In particular, we have the designated
agent schedule the meetings using a random approach. Each time a meeting
needs to be negotiated, the random approach simply selects from amongst the
agent’s strategy pool Sa uniformly at random. We also have the agent schedule
the meetings using the plays-based approach and each fixed strategy from Sa.
This allows us to compare the performance of our learning approach against the
random approach and against each of the fixed strategies.

In Figure 12 we show that our EEE approach to strategy selection performs
very effectively in self-play. We evaluated an agent learning with the SEA/EEE
approach against 4 other agents also using the learning algorithm. The evaluation
was done over 300 trials and in each trial 704 meetings were scheduled. The
agents had the following strategies available to them: Offer-1-20, Offer-3-20,
Offer-5-20, Offer-10-10, Offer-15-10, and AvailabilityDeclarer. We used a version
of EEE with a fixed phase length of 5. The agents had a variety of preferences,
favoring different times of the day and having different α and β values. This
meant that different strategies generally performed differently against each of
the agents.



Figure 12 shows the performance of our approach while it was learning. The
Figure shows the utility each of the algorithms achieved averaged over the 300
trials. The error bars indicate 90% confidence intervals. The random approach
does not appear on the graph. It achieved an average utility of 19720, signifi-
gantly lower than any other approach. As the graph demonstrates, the EEE
approach performed much better than the playbook approach. The playbook
approach performed worse than most of the fixed strategies, but not signifi-
gantly so. Given that the EEE algorithm is explicitly designed to learn in the
presence of adaptive opponents it is not surprising that EEE outperforms the
playbook approach. Significantly, EEE also performed better than using a single
fixed strategy for all the agents. This demonstrates, that it is better to equip an
agent with a pool of strategies and have it learn which to use, rather than to
just give it the strategy that is best on average (supposing we even knew what
this strategy was).

 23000

 23500

 24000

 24500

 25000

AvailabilityOffer-15-10Offer-10-10Offer-5-20Offer-3-20Offer-1-20PlaysEEE

U
til

ity
 A

ch
ie

ve
d

Strategy

Algorithm Performance When Other Agents use EEE

Fig. 12. Graph showing the performance of the different algorithms against 4 agents
each using the EEE approach over 300 trials.

We found that the SEA/EEE approach was able to fairly quickly identify
a good strategy for a given agent. However, since the other agents were also
learning we did not generally see the algorithm fix on a very clear winner like
the plays approach did against fixed strategy agents. One of the reasons the
algorithm did not very clearly fix on a strategy, is that we used a fixed phase

length. We found that when we used phases of length n = N
Ca

i

s (i.e, phases that
increased in length over time) that the algorithm did not get enough chance to
explore, even if 100 meetings were scheduled with each agent. This lead to agents
sometimes not identifying good strategies. By using a fixed phase length, we gave
the algorithm a good chance of exploring all the strategies early on. However it
was still sometimes the case that a particular strategy was never selected by the
algorithm with a given agent. This could hurt the performance of the algorithm
in the short term if it was unlucky.



There was some variation between trials, as shown by the confidence intervals.
In most trials the SEA/EEE approach outperformed each of the fixed strategies.
In some cases however its performance was lower than the best fixed strategy in
the trial. The best fixed strategy in each trial varied. This further enforces the
idea that it is better to equip an agent with a pool of strategies than a single
fixed strategy.

Figure 13 shows that the SEA/EEE approach performs very well against
agents using a no-regret approach. In this experiment we looked at performance
against 4 agents that were each using the plays-based algorithm. The SEA/EEE
approach significantly outperformed the plays-based approach, the random ap-
proach and each fixed strategy. It is interesting to note that the plays-based ap-
proach performed comparatively worse in self-play than against the SEA/EEE
approach. This is mostly likely because the plays-based approach is more effec-
tive against fixed strategy opponents and our agents running SEA/EEE changed
strategy less often (at least initially) than agents using a plays-based approach.
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Fig. 13. Graph showing the performance of the different algorithms against 4 agents
each using the plays-based approach over 300 trials.

In the previous section we showed that the plays approach is quite effective
against agents using fixed strategies. In Figure14 we show an example of how
the EEE algorithm performs against fixed strategy agents. For this experiment
we chose a diverse set of fixed strategy agents. The agents are described in
Table 6.7. The EEE approach significantly outperformed the playbook approach
and all the fixed strategies. The playbook approach had a slightly lower average
utility than each of the fixed strategies, but as the error bars indicate there was
no significant difference. All the approaches greatly outperformed the random
approach (not shown on the graph).

The playbook approach did not perform as well in this experiment as in the
experiment in the previous section. The main reason for this is the difference in
the size of the playbooks. In this experiment, both the EEE and the playbook



approach had 6 different strategies to choose from. In the previous experiment
there was only 3 strategies in the playbook. We found that the playbook approach
did not cope well with the increase in the number of strategies. In general the
weight became heavily concentrated on one strategy very quickly, causing the
algorithm to not explore the different strategies enough early on (this is more
of a problem when the playbook is larger). When another strategy was selected
the weight of the new strategy tended to jump up very high if the strategy
was successful (due to the probability term in the weight update formula). This
sometimes caused the weight to converge too quickly on the new strategy. EEE
was much more likely to explore all the strategies early on. In contrast, the
playbook approach was sometimes able to outperform EEE when the strategy
space was small. In this instance, particularly if there was a poor strategy, EEE’s
tendency to explore more could hurt average utility. The fast convergence of the
playbook approach was an advantage in this instance.

Agent Type α β Initial Calendar Density

Availability Declarer 5 0.1 0.5
Offer-3-20 5 0.01 0.5
Offer-5-20 5 0.05 0.5
Offer-10-20 3 0.01 0.5

Table 2. Fixed strategy agents.
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Fig. 14. Graph showing the performance of the different algorithms against 4 agents
each using fixed strategies over 300 trials.



7 Related Work

A variety of methods for reaching agreements on meeting times have been pro-
posed in the last ten years, including negotiation based approaches, e.g. [15, 3],
Distributed Constraint Reasoning (DCR) approaches [16], and market based ap-
proaches [17]. In this section, we describe work on the first two methods, looking
in particular at how user preferences are dealt with.

Sen and Durfee [3] conducted a probabilistic and simulation based analysis
of negotiation strategies. The basic framework they considered was:

1. Host announces meeting
2. Host offers some times
3. Agents send host some availability information
4. Repeat 2 and 3 until an intersection is found.

Similar protocols have been looked at by other researchers, for example,
[15], and [4], while [6] looked at a more complex protocol. These negotiation ap-
proaches have handled user preferences for meeting times in quite different ways.
Shintani et al. [6] propose a persuasion based approach. The persuasion mecha-
nism involves compromising agents adjusting their preferences so that their most
preferred times are the persuading agent’s most preferred times. This method
relies strongly on the agents complying with the protocol.

Garrido and Sycara [4] and Jennings and Jackson [15] take the approach of
allowing agents to not only propose meeting times, but also to quantify their
preferences for proposals. The agent that is collecting the proposals, then makes
decisions based on the reported utilities of all the meeting participants. This
style of approach involves a lot of trust, since for the procedure to work well all
the agents must report their preferences truthfully.

While the approaches outlined are all concerned with user preferences they
differ from the work described here in that we are interested in how an agent

can negotiate strategically in order to satisfy its user’s preferences.
Distributed Constraint Reasoning (DCR) approaches have also been applied

to multi-agent meeting scheduling. For example Modi and Veloso [16] model
the meeting scheduling problem according to the DCR paradigm and evaluate
strategies for making bumping decisions. The way in which agents decide when to
bump (i.e., move an existing meeting to accommodate a new meeting) can have
implications for the efficiency of the meeting scheduling process. Intuitively, if
the agents want the scheduling process to finish quickly, they should try to bump
meetings that will be easy to reschedule. Similarly to the negotiation approaches,
the work on DCR has not focused on how agents can act strategically, rather
the agents have been assumed to be cooperative.

8 Conclusion

Previous work on negotiation for multiagent meeting scheduling has not looked
at how agents can negotiate strategically in order to better satisfy their users’



preferences. In this article, we have shown how an agent can learn to negotiate
strategically. The first key step in our approach is to equip an agent with a small
diverse set of useful negotiation strategies. The space of all possible negotiation
strategies is very large. As such, restricting the agent’s attention to a set of di-
verse and effective strategies cuts down the space the agent needs to learn in
considerably. Given this set, we show how the problem of learning to negotiate
strategically with other agents can be framed as an experts problem. By consid-
ering each strategy to be an expert, a learning agent can use an experts algorithm
to adapt strategy selection for each of the different agents it negotiates with. We
show how two experts algorithms, the playbook approach [1] and EEE [2], can
be used to select negotiation strategies. We demonstrate experimentally that by
using EEE in particular, our approach leads to effective online adaptation of
strategy selection.
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