
Coach Planning with Opponent Models for DistributedExecutionPatrick Riley (pfr@cs.cmu.edu) and Manuela Veloso(mmv@cs.cmu.edu)Computer Science Department, Carnegie Mellon UniversityAbstract. In multi-agent domains, the generation and coordinated execution ofplans in the presence of adversaries is a signi�cant challenge. In our research, aspecial \coach" agent works with a team of distributed agents. The coach has aglobal view of the world, but has no actions other than occasionally communicat-ing with the team over a limited bandwidth channel. Our coach is given a set ofprede�ned opponent models which predict future states of the world caused bythe opponents' actions. The coach observes the world state changes resulting fromthe execution of its team and opponents and selects the best matched opponentmodel based on its observations. The coach uses the recognized opponent modelto predict the behavior of the opponent. Upon opportunities to communicate, thecoach generates a plan for the team, using the predictions of the opponent model.The centralized coach generates a plan for distributed execution. We introduce: (i)the probabilistic representation and recognition algorithm for the opponent models;(ii) a multi-agent plan representation, Multi-Agent Simple Temporal Networks; and(iii) a plan execution algorithm that allows the robust distributed execution in thepresence of noisy perception and actions. The complete approach is implementedin a complex simulated robot soccer environment. We present the contributions asdeveloped in this domain, carefully highlighting their generality along with a seriesof experiments validating the e�ectiveness of our coach approach.Keywords: planning, distributed execution, opponent modeling, advice, simulatedrobot soccerAbbreviations: STN { Simple Temporal Network; MASTN { Multi-Agent SimpleTemporal Network 1. IntroductionMulti-agent domains can include teammates and adversarial agents.One of the main challenges of such domains is the coordination andresponse of teammates to the adversarial agents. Often, there is nodominant strategy with respect to opponents, i.e., a team of agents cannot select a strategy that has good performance independent of theadversary. Rather, the team needs to adapt its behavior by observingthe adversary online.We consider instances of Periodic Team Synchronization domains(Stone and Veloso, 1999), where team agents can periodically synchro-nize their team strategies. In such domains, a team can construct a planc
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2of action in a centralized fashion during a synchronization period. Theplan then needs to be sent to the team for fully distributed execution.Coordinated execution faces the challenges of noisy and incompletesensations, noisy actions, and limited and unreliable communication.This article reports our work on addressing this online team adapta-tion to an adversary. We use a coach agent that acts as the centralizedplanning agent. The coach has a global view of the world, does notdirectly act in the world, and has occasional communication with itsteammates. The main steps of our approach are:� The coach agent is equipped with a number of pre-de�ned op-ponent models as probabilistic representations of predicted statesof the opponents. The coach gathers global observations that in-clude its teammates' and opponents' states. The coach selects theopponent model that best matches the coach's observations.� At synchronization opportunities, the coach creates a team planthat is a function of the selected model of the opponents' behavior.The plan is generated by a hill-climbing search in plan space. Theevaluation function embeds the predictions of the opponent model.� The plan is encoded in a multiagent plan representation, a Multi-Agent Simple Temporal Network (MASTN), which is a re�nementof a Simple Temporal Network (Dechter et al., 1991). The MASTNrepresentation e�ectively captures: (i) the di�erent agents respon-sible for each plan step; (ii) the temporal dependencies betweenthe plan steps; and (iii) bounds on the expected execution timesof the actions.� While the coach is a centralized planning agent, the agents mustexecute the plan in a fully distributed manner with noisy, incom-plete views of the world state. The coach observes the executionof the plan in order to re�ne the selection of an opponent modelfor future plans.We use simulated robot soccer as a rich multi-agent environmentincluding fully distributed agents in two di�erent teams of up to elevenagents, plus a coach agent for each team (Noda et al., 1998). Agentscan reactively respond to the opponents' positioning, for example, byexplicitly moving to open �eld positions (e.g., Veloso et al., Stone et al.,1999, 2000). Our work aims at modeling the opponent to predict theirbehavior, and deliberatively plan in response to the predicted actions.We speci�cally focus on situations where the game is stopped. Atthese times, a team can coordinate and commit to a plan of action
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3to execute once the ball is back in play. These plans are known assetplays. Several preset setplay plans have been introduced that provideopportunities to position the teammates strategically and have beenshown to contribute to the performance of a team (Stone et al., 2000,Stone et al., 1999, Veloso et al., 1998b). We contribute adaptive set-plays that are created online by the coach agent.The MASTN representation and execution algorithm are explicitlyput forth in non-soccer speci�c terms. The plan generation algorithmuses an evaluation function based on speci�c soccer knowledge, but thegeneral hill-climbing strategy should be applicable elsewhere.A coach using the techniques presented in this article was part ofa team that competed in the RoboCup competitions in 2000, 2001,2003, and 2004. The coach created a variety of setplay plans, adaptivelyresponding to completely unknown opponent teams. The design of thecoach competition, inevitably carried out in limited time, did not allowfor the gathering of statistically signi�cant results.1 We present con-trolled empirical results explaining and demonstrating the e�ectivenessof our approach.In summary, the contributions of this work are:� A coach that plans for a team of agents in a continuous environ-ment based on online recognition of a model of opponent agentbehavior, given a prede�ned set of opponent models.� A plan representation and an execution algorithm for distributedexecution that use temporal constraints to express coordinationand facilitate failure detection. The representation and executionalgorithm are general beyond the robot soccer domain.� An empirical validation of the fully implemented system in a com-plex simulated robot soccer domain.The article is organized as follows. Section 2 brie
y describes thesimulated robot soccer environment used as a testbed for this work.Section 3 describes our novel multi-agent plan representation and thealgorithm used to execute plans. Section 4 describes how our coachagent generates plans using models of the movements of the opponentteam, which are described in Section 5. Section 6 presents several em-pirical results and Section 7 presents related work. Finally, Section 8concludes and gives directions for future work.1 Our coach placed �rst in 2001 and Riley et al. (2002) provides a systematic andin-depth set of experiments analyzing and validating this result. Kuhlmann et al.(2005) provide a similar set of experiments for 2003.
setplay.tex; 16/01/2006; 22:28; p.3



4 2. The EnvironmentAll agents described in this article are fully implemented in the SoccerServer System (Noda et al., 1998) as used in the RoboCup research ini-tiative (Kitano et al., 1997). The Soccer Server System is a server-clientsystem that simulates a soccer game between distributed agents. Clientscommunicate using a standard network protocol with well-de�ned ac-tions. The server keeps track of the current state of the objects in theworld, executes the actions requested by the clients, and periodicallysends each agent noisy, incomplete information about the world. Agentsreceive noisy information about the direction and distance of objects onthe �eld (the ball, players, goals, etc.); information is provided only forobjects in the �eld of vision of the agent. Figure 1 shows a screenshot.

Figure 1. Screen shot of the Soccer Server System. The agents are represented ascircles, with the light colored portion indicating which direction they are facing.Agents on the two teams are distinguished by the colors, with the light coloredagents on one team and the dark colored agents on the other. The ball is the whiteobject above and to the left of center. The coach agents are not depicted.The agents must communicate with the server at the level of pa-rameterized actions like turn, dash, and kick. Higher level actions, suchas passing and going to a position on the �eld, must be implementedby combining the lower-level actions that the server understands. Forexample, moving to a location requires a combination of turning anddashing actions, and kicking the ball in a direction is usually a combi-nation of a number of small kicks and player movements to acceleratethe ball in the correct direction. This process, in combination with
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5the perception and action noise of the environment, results in noisyexecution of the higher level actions. In particular, there is noise in theexact result of the action and the time taken to execute it.There are eleven independent players on each side as well as a coachagent who has a global view of the world, but whose only action is tosend short messages to the players. The coach does not get informationabout the percepts received by the players or the actions that they havetried to execute.Actions must be selected in real-time, with each of the agents havingan opportunity to act 10 times a second. Each of these action oppor-tunities is known as a \cycle." Visual information is sent 6 or 7 timesper second. Over a standard 10 minute game, this gives 6000 actionopportunities and 4000 receipts of visual information.The agents can communicate, but the communication is of limitedbandwidth and unreliable. Furthermore, only agents within 50m (ap-proximately half the length of the �eld) of the player who is talking willbe able to hear the message. The coach is able to communicate withall of the players on the �eld regardless of their location. However,the coach is allowed only occasional communication with the players,namely when the play is stopped (due to an out of bounds call, kick-o�,etc.) or every 30 seconds, whichever is sooner. The coach's utterancescan not be heard by the opponent.A few additional points should be noted:� The world can change very quickly. Based on the maximum agentspeeds and size of the �eld, we calculate that in about 15 seconds,the world could transition to almost any state.2� The score and global clock are the only shared state features. Forall other information, the agents must rely on their own local viewand communication from teammates. Because of noise in sensa-tions, the agents' beliefs about the locations of objects in the worldcan be inconsistent.� There is an active and intelligent opponent team.We used server versions 6.07 and 7.10 for the experiments. Technicaldetails about the Soccer Server System can be found at Chen et al.(2001).2 Agents can move at about 10m/second and the �eld diagonal is about 123m,plus some time to manipulate the ball if necessary.
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6 3. Multi-Agent PlansIn this article, we contribute a multi-agent plan representation andexecution algorithm for distributed agents. This section covers these indetail.Our coach agent generates movement plans for its teammates andthe ball. The coach is a centralized planner, but the execution must bedone in a fully distributed fashion. Therefore, the coach must encodesuÆcient information into the plan to allow the agents to coordinateand identify failures during execution.The domain-independent portions of the plan representation andexecution process are described in this section, as well as their use inthe simulated robot soccer environment.In order to clarify the discussions of simulated robot soccer, we�rst illustrate what an execution of a setplay plan looks like. Figure 2shows the movements of the ball and players over time. Teammate 1starts with possession of the ball. Teammate 1 passes to teammate 2,which moves to receive it. Simultaneously, teammate 3 moves forward.Teammate 2 then passes to teammate 3. Note that agent actions aregoing on in parallel and that some actions (like the passes) requirecoordinated e�orts of more than one agent. The plan in Figure 2 willbe used to illustrate the plan representation and execution algorithmin the following sections.

Teammate OpponentBall

First Pass

Second Pass

2

3

1Figure 2. An example plan. The arrows indicate movement of the ball or a player.The following notation will be used in the remainder of the article.Sets will be typeset in script, e.g. E , N , X . The notation F i is used
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7to denote F � : : : � F , the set of sequences of i elements of F . F�will denote [i2NF i. Functions will be typeset in capital letters and initalics, e.g. F , L. For elements of a set given by Cartesian products, [ ]will be used to specify components. For example, if x 2 A � B, thenx[1] is the A component and x[2] is the B component.3.1. Plan Representation: MASTNWe introduce Multi-Agent Simple Temporal Networks (MASTNs) asa plan representation for distributed execution. MASTNs are a re�ne-ment of Simple Temporal Networks as introduced by Dechter et al.(1991). The re�nements allow us to the de�ne the execution algo-rithm discussed in Section 3.3. Taken together, the representation andexecution algorithm are a novel scienti�c contribution.We will �rst present Simple Temporal Networks, then introduceour re�nements to make Multi-Agent Simple Temporal Networks. Ourformal presentation is a combination of the notations of Dechter et al.(1991) and Morris and Muscettola (2000).A Simple Temporal Network is a tuple hV, E , Li whereV is a set of nodes. Each node represents an event that occurs at apoint in time. Activities with duration must be broken up intotwo events, one representing the beginning and one representingthe end of the activity.E � V � V is a set of directed edges between the nodes. Each edgerepresents a temporal constraint between nodes.L: E ! (R [ �1)� (R [1) is the labeling function on the edges. Thelabel represents a temporal constraint between the events. For ex-ample, if ha; bi 2 E and L(a; b) = hx; yi, then event b is constrainedto occur at least x time units after a, but no more than y. Notethat x and y could be negative (indicating that b should occurbefore a) or negative or positive in�nity respectively.STNs are a representation of a subclass of temporal constraint sat-isfaction problems. A user of an STN often wants to answer questionslike \Is there any set of times at which my events can occur such thatno constraints are violated?" or \At what time should each event beexecuted so that no constraint is violated?" Unlike more general tem-poral constraint satisfaction problems, these questions can be answeredin polynomial time for STNs.We now de�ne Multi-Agent Simple Temporal Networks (MASTNs).We assume we are given the following:
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8A A set of identi�ers for the agents.T A set of node types. Nodes represent events that are brought aboutby the agents, so this set is similar to the set of actions available intraditional planning problems. The nodes can be parameterized.For example, in the classic blocks world there would be node typesfor \PickUp(RedBlock)", \PickUp(GreenBlock)", etc. Node typesdo not include information on which agent performs the event.Agents will be associated with nodes in the representation of aparticular plan.We then de�ne the set of all possible nodes (i.e. events) N asT � P(A) � N� . The P(A) represents the set of agents responsible forbringing about this event. The N� element is used to provide pointersto other nodes (described below). The pointers allow some informationto be speci�ed in only one plan node rather than being duplicated.An MASTN plan is then a tuple hV, E , L, Oi. These elements are:V � N = T � P(A)� N� The set of nodes of the plan. Note that eachnode contains more information than in a normal STN, whichconsiders each node as a black box.E � V � V The set of edges, just as in an STN.L: E ! (R [ �1)� (R [1) The labeling function on the edges, withthe same meaning as in an STN.O: V ! N An ordering function on the nodes. In other words, for v1; v2 2V, O(v1) < O(v2) means that v1 comes before v2. This orderingfunction is used as the address space of the node pointers and toallow the agent to break ties when the temporal constraints allowmultiple events to be executed. The details of this tie-breaking arediscussed in Section 3.3. O is not a full temporal ordering of thenodes.The authors are not aware of any other work where STNs are usedas a basis for a multi-agent plan representation for distributed execu-tion. In particular, by \distributed execution" we mean that each agentmaintains its own perception of the current state of plan; there is no as-sumption of shared global sensations or plan state. Temporal networkshave several properties which are useful in a multi-agent context:� The network represents the parallelism of agents' actions. The tem-poral constraints express some basic needed coordination betweenthe agents.
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9� Temporal constraints can be used to help agents detect failures inthe plan. Constraints can naturally catch violations of limits onthe extent of events or if an agent fails to take appropriate actionat the correct time.� If an event e is not ready to execute because of temporal con-straints, the network represents which event(s) are preventing efrom being ready. If an agent is responsible for executing e, theagent can determine where in the world to look to observe thefuture execution of the event which is preventing e from beingready.We introduce MASTNs as a way to take advantage of these propertiesfor multi-agent plan execution.3.2. MASTNs in Robot SoccerThis section demonstrates how the MASTN representation is appliedto simulated robot soccer. We have to instantiate the domain speci�cvalues A and T . Let L be the set of locations on the �eld.� A is the set of numbers 1 through 11. Each agent is identi�ed witha unique number.� T is the set of node types, some of which have parameters. Forexample, if a node type t has a parameter of type L, then 8x 2L; ht; xi 2 T . In particular, this means that all parameters arebound and �xed for a plan; the values of parameters to nodes donot change during plan execution.Initial Position This node represents the event of all agents ar-riving at their initial position for the player and the playstarting. This node has a parameter which is an element ofthe set of partial functions from A ! L, mapping agentsto their initial locations. This node is also the root node forexecution, called \the beginning of the world" by Dechteret al. (1991).Start Goto This node represents the beginning of the activity ofa given agent going to a location on the �eld. This node takesa parameter (which is an element of L) indicating where togo.End Goto This node represents the conclusion of the move begunby the \Start Goto". The node pointer element is used tospecify the associated Start Goto node.
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10 Start Pass This node represents the beginning of a pass activity,where one agent kicks the ball to a location on the �eld. Thisnode takes a parameter which is an element of L indicatingwhere to pass. While another agent should receive the pass,that information is not explicitly represented in this node.End Pass A pass is represented with three nodes: a Start Pass(for the kicker to start the ball), a Start Goto (for an agentto start moving to receive the pass), and an End Pass whichrepresents the conclusion of both of those activities. The nodepointers are used to specify the related nodes.Clear Ball This node represents an agent kicking the ball to alocation. This node takes a parameter which is an element ofL indicating where to kick the ball. This di�ers from a \StartPass" node because no particular agent is expected to getthe ball. There is no associated end node, because the plan isalways complete after a \Clear Ball" node executes.An example plan is graphically shown in Figure 3. A successfulexecution of this plan is depicted in Figure 2. The top three nodesrepresent the �rst pass from player 1 to player 2. The bottom twonodes represent the simultaneous movement of player 3. The last threenodes (in the middle right of the �gure) represent the pass from player 2to player 3.3.3. Plan ExecutionPlan execution is done in a fully distributed fashion. This means thateach agent maintains its own data structures describing the state ofthe plan and independently decides what actions to take. However,it is assumed that every agent can get some knowledge of the eventsin the plan being executed (either by communication or observation),though it is not required that agents agree exactly on the timing andsequencing of events. In domains with limited observability or latencyin the communication between agents, exact agreement is diÆcult toobtain. Therefore, 
exibility in agent agreement is important. In thesimulated soccer environment, the agents do have a shared global clock.In general, however, the agents do not have to agree on the exact timeas long as each one can measure the progress of time accurately. Inother words, as long as each agent can measure how long a second isaccurately, it does not matter if all their watches agree.Throughout, we will talk about \executing" a node. This meansthat the agent is taking individual actions to accomplish the eventrepresented by the node. As discussed in Section 2, an agent is not able
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Figure 3. An example MASTN. The nodes represent events and the edges representtemporal constraints. The agent responsible for bringing about the occurrence of theevent is shown inside each node. The numbers in parentheses are vectors representinglocations on the �eld (elements of L). These vectors are the parameters to the variousnode types. The node pointers are not explicitly represented in this picture. Thisplan corresponds to the execution depicted in Figure 2.to precisely control when an event will occur, even when the agent isthe one executing the node. Further, we assume that each agent canonly execute one node at a time. That is, all of the parallelism in theplan takes place by multiple agents performing actions simultaneously.In addition to executing various behaviors, the agents will be mon-itoring the execution of actions that other agents are supposed toperform. If an agent is slow or failing to execute its action, any agentsthat are temporally constrained by that undone action will wait for itto be done. Note that currently the agents do not take over actions ifthe currently assigned agent fails to execute it.Muscettola et al. (1998) have described a \dispatching execution"algorithm for STN execution. This method allows easy and eÆcientpropagation of temporal constraints through the network at the costof adding edges. The �rst step is to construct the all-pairs closure ofthe STN (i.e. make an edge from every node a to every other nodeb whose length is the shortest path from a to b). Muscettola et al.describe a method to then prune some of those edges to reduce the timerequirements of plan execution, which is important for STNs consistingof thousands of nodes. However, since we are working with networks oftens of nodes instead of thousands, we do not prune any edges. We thenuse the dispatching execution algorithms as subroutines to propagatetemporal constraints and identify violations.
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12 Figure 4 shows the full execution algorithm. The algorithm callssome domain speci�c functions whose purpose will be discussed as thealgorithm is covered in detail.1 initialize(p: plan)2 8n 2 p:V3 exectime(n) = ;4 window(n) = h�1,1i5 construct all-pairs network for p6 execute(p: plan, t: time, a: agent)7 if global-monitor() = fail8 return abort9 8n 2 p:V10 if (exectime(n) = ; and node-completed(n))11 exectime(n) = t12 propagate-constraints()13 8n 2 p:V14 if (constraints-violated)15 return abort16 // F is the set of nodes to still execute for this agent17 F = fn 2 p:V j exectime(n) = ; and a 2 n:agentsg18 if (F = ;)19 return plan-completed20 // mynode is the next node for this agent to execute21 mynode = argminn2F p:O(n)22 if (not node-precondition(mynode))23 return abort24 if (t < window(mynode)[1])25 holdingnodes = fn 2 V j exectime(n)=; and26 hn, mynodei 2 p:E and27 p.L(n, mynode)[1] � 0 g28 if (holdingnodes = ;)29 return in-progress // agent waits for time to pass30 else31 look-at(holdingnodes)32 return in-progress33 execute-node(mynode)34 return in-progressFigure 4. Plan execution algorithm for an individual agent. \exectime" and \win-dow" are data structures maintained during execution. Functions in italics must beprovided by the user of this algorithm.
setplay.tex; 16/01/2006; 22:28; p.12



13The \initialize" function initializes the data structures for the givenplan. In particular, the temporal constraints are set up for the dispatch-ing execution algorithm. Then, at each time step, each agent shouldrun the \execute" function. The execution will result in some action totake for this time step. At the next time step, the \execute" function isrun again. Over time, an agent will work to execute various nodes (bytaking one of more actions to accomplish each one) in the plan; it maytake more than one action/time step to complete execution of a givennode. During a successful execution, nodes in the plan will be markedas completed as the plan progresses.First in the plan execution function is a call to global-monitor.This domain speci�c function should implement monitoring conditionswhich apply to the whole plan. Returning \fail" indicates that theplan should be aborted. In the soccer environment, we have globalmonitoring conditions to catch situations like the ball going out ofbounds or the opponent intercepting the ball.Next, in lines 9{11, the nodes in the plan that have not been markedas executed are checked. The domain speci�c function node-completedmust be provided to identify when a node has been executed. Thisdecision can be based on perceptions or communication. In general,this decision will depend on the type of node T and the agents taskedwith executing the node.The functions propagate-constraints and constraints-violated are pro-vided by the dispatching execution algorithm (Muscettola et al., 1998).The function propagate-constraints will update the \window" datastructure with allowable times for the nodes to execute and constraints-violated will indicate whether any temporal constraints have been vio-lated.The next section of the execute function (lines 16{21) identi�es thenext node for the agent to execute. The ordering function determineswhich node should be executed next, from the set of uncompleted nodesthat this agent is responsible for.Once the next node to execute is found, preconditions of that nodecan be checked (lines 22{23). For example, in the soccer environment,a Start Pass node requires that the agent believes the teammate in-tended to receive the ball will be able to get it. This decision is basedon a learned decision tree (Stone, 2000) or other analytic methods(McAllester and Stone, 2001).If the temporal constraints do not allow the current node to execute(line 24), then there are two cases. If there are no unexecuted nodeswhich must execute before this one, then the agent just waits for timeto pass (lines 28{29). If there is such a node, the domain speci�c look-atfunction is called to tell the agent to watch for the execution of that
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14node (lines 30{32). In the soccer environment, this is done by having theagent face the point where the execution of that node should occur. Ingeneral, this could be done with a communication request or any otherobservational means.Otherwise, the agent works towards executing the next node (lines33{34). Note that the execution of a node may take more than onestep and the agent is not required to precisely control when the nodeexecutes. These criteria allow more freedom in how the execution ofnodes is carried out. For the soccer environment, execute-node is writtenusing the reactive CMUnited99 (Stone et al., 2000) layer to get robustperformance of such commands as \get the ball" or \kick the ball hardin direction x."This algorithm is run by each agent in parallel every step. Eachagent maintains its own perception of the state of the plan; there is nocentralized control instructing agents when to perform actions. WhileSTNs used in scheduling tasks can provide coordination of agents, theagents usually have access to shared global state or a shared controller,neither of which we have here. We allow the agents' perceptions ofthe execution state to di�er as long as the di�erence does not cause aviolation of the temporal constraints.For example, since the agents in the soccer domain use noisy, limitedobservations to determine when a pass has started, the agents will ingeneral not agree on the exact time that the pass started. Noise canmake the ball appear to move when it hasn't or the agent may not belooking at the ball when the pass starts. Even if none of the agentsagree on the exact time, the plan execution may still be successful aslong as the temporal constraints are not violated.It is diÆcult to make precise statements about how much the agents'perceptions of the world are allowed to di�er. The di�erence allowedwill depend on the how much 
exibility there is in the plan. Plans couldbe constructed such that there is exactly one time at which each eventcould execute, giving no 
exibility in agents' perceptions. The plansgenerated here do allow for di�erences in agent perception and it is anopen question how much 
exibility is allowed in typical plans for thesoccer domain or for other interesting domains.3.4. Plan Execution ExampleWe will now illustrate an execution of the plan shown in Figures 2 and 3.This section will not attempt to cover all the steps of the algorithmdescribed in Section 3.3. Rather, some of the important points relatingto distributed execution will be highlighted.
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15Figure 5 shows each agent's perception of when the events in the planoccur. The shaded events are events for which that agent is responsible.Each agent is responsible for its position in the Initial Position event.After that, agent 3 starts going to its next position. Simultaneously,agent 1 starts the pass to agent 2 (SP1! 2) and agent 1's role in theplan is complete. As shown by the shading, agent 1 no longer tracksthe execution of the plan. Some time later, agent 2 realizes that thepass has begun and starts to go to the reception point for the pass(SG2). Meanwhile, agent 3 completes going to the intermediate point(EG3). Once the �rst pass is complete (EP1 ! 2), agent 2 passes toagent 3 (SP2 ! 3). Agent 2's role is then complete. Agent 3 thenproceeds to get the ball to complete the pass (SG3 and EP2! 3).
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EPFigure 5. Example execution of a plan. This is an execution of the plan in Figure 3and illustrated in Figures 2. Each agent (shown on the rows) has its own perceptionof when events occur; the time an agent perceives an event to occur is shown by theevent's horizontal location. The shaded events in each row are the events which thatagent is responsible for bringing about. IP stands for Initial Position, SP for StartPass, EP for End Pass, SG for Start Goto, and EG for End Goto.Note that the agents perceive events' execution times to be di�erentand that they do not even always agree on the ordering (e.g. SG2 andEG3). However, each agent's perception of the order of events mustobey the temporal constraints in the STN (Figure 3). Also, at everypoint, each agent will verify global and local constraints and abortthe plan if the veri�cation fails. For example, if an opponent agentintercepts the �rst pass, the agents will stop the plan, communicatingtheir perception of the need for termination.4. Plan CreationGiven the MASTN plan representation described in Section 3, it is stilla signi�cant challenge to generate these plans, especially accountingfor the predicted behavior of the adversary. We divide the process ofplan creation into four steps. The particular implementations of these
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16steps rely on soccer speci�c knowledge, but this general breakdownwould likely be useful in other domains. The Waypoint Planning stageis described in Section 4.1 and the Role Making, MASTN Compilation,and Agent Instantiation steps are described in Section 4.2.4.1. Waypoint PlanningIn order to plan the waypoints, we use models of opponent movement.Section 5 fully describes these models, but for the purposes of thissection, just consider waypoint planning as a path planning problemwith straight-line segments and dynamic, probabilistic obstacles (theobstacles are the opponents). Unlike many path planning problems, theobstacles are not �xed regions in known locations. Rather, we have aprobability distribution over each obstacle's locations over time.The opponent models which describe the movement of the obsta-cles take into account the current positions of the opponents and thepredicted actions (i.e. the waypoints) to produce the predicted move-ments of the opponents. The exact positions of our teammates will bedetermined from the waypoints, but those positions are not explicitlypart of the opponent model. Further, the waypoint planning ignores thecurrent positions of the teammates since it is assumed that the teamcan move into the starting positions before the plan begins.The problem addressed here is signi�cantly di�erent from a tradi-tional shortest-path planning problem. Selecting a path in this envi-ronment inherently involves tradeo�s. There may be one path that isextremely long and goes through an obstacle with very low probability,and another path that is much shorter but has a higher probability ofgoing through an obstacle. To decide which path is better requires atradeo� in the length and safety of the path. Further, we do not havea single goal position, but rather a ranking of the possible positions.That is, not every setplay will result in a goal being scored, but some�nal positions from the setplay are better than others.These constraints make it diÆcult to apply many of the traditionalpath planning methods, such as those described in Latombe (1991).Planning methods that deal with uncertainty do not usually handleobstacles whose location is only probabilistic. Rather, they are morefocused on dealing with noisy execution when following the path, orexpect replanning to be available. Approaches that deal with movingobstacles do not address uncertainty in obstacle location.The D� algorithm, developed by Stentz (1994), was also considered.However, D� is mostly useful for replanning when obstacles are ob-served to move, not handling the up-front probabilistic movements wemodel here. We wanted our coach to come up with a complete plan, not
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17rely on the distributed, executing agents to replan. Replanning wouldbe diÆcult in this case both because of the partial observability of theexecuting agents and the unreliable communication.In order to plan in this challenging domain, we decided to directlyspecify an evaluation function for paths and use hillclimbing on a setof paths to �nd a locally optimal path. The evaluation function for thepaths will include the processing of the probabilistic opponent model.Our evaluation function meets the basic requirement of hillclimbingthat nearby paths have similar evaluations. Also, our plan space isabout 1018 so we can not cover a large proportion of the space in thefew seconds available for planning.3 Note that the coach can not planuntil the ball actually goes out of bounds because the plan evaluationdepends on the current location of the ball and opponents.We �rst describe the hillclimbing algorithm and then describe theevaluation function. Our path planning algorithm is shown in Figure 6.Note that sometimes (decided by the variable A) we move only a singlepoint in a hillclimbing step and sometimes we move the entire tail of apath. By varying the neighborhood considered, the hillclimbing shouldbe able to escape more local minima.S := Set of starting pathswhile (there is time left)Uniformly randomly remove a path p from SUniformly randomly pick a point x on pUniformly randomly set A to true or falsebestp = p8 small displacement vector vMake path p0 by moving x by vIf (A)In p0, move all points after x by vIf eval(p0) > eval(bestp)bestp = p0Insert bestp into SIf (time left < half of original time)Remove all but current best path from SFigure 6. Hillclimbing algorithm for waypoint planningNote that the hillclimbing runs for a �xed amount of time. By thestandard simulated soccer rules, the team has 20 seconds from the time3 The plan space size was estimated as follows. The �eld was discretized to 1m.Passes were considered between 8m and 38m and sends between 38m and 55m. Aplan could be up to four segments with the last possibly being a clear.
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18play is stopped to begin the setplay. The coach plans for 5 seconds,almost all of which is used for hillclimbing. Communicating the planusually takes 2 to 4 messages, and a message can be sent every 100ms.Halfway through the 5 seconds of hillclimbing, the set S is reduced tojust the path with the current best evaluation. This allows the secondhalf of the hillclimbing to focus on improving a single path as much aspossible.The set of starting paths are preset and depend on the location ofthe ball. This dependence is necessary because di�erent types of plansmake sense for di�erent situations such as whether the ball is in themiddle or side of the �eld, whether the ball is near our goal, whetherthis is a corner kick, etc. Since only a small part of the plan space canbe explored by hillclimbing, setting good planning seeds can greatlyhelp in �nding a high-quality plan. Figure 7 gives an example of thehillclimbing seeds for one setplay situation.

Figure 7. Example hillclimbing seeds. These are the seeds for a goal kick from thebottom side. The longer, darker arrows are clears and the shorter, lighter ones arepasses.The set of starting paths is a natural point for inserting domainknowledge into the system. In particular, for the soccer environment wecan give the basic shapes of paths, such as passing to the outside thenclearing from a free kick. If there is no domain expert to provide thisknowledge, random starting paths or paths taken from past executionscould be used.The crucial part of hillclimbing is the evaluation function (eval inFigure 6). While the particular evaluation function chosen here is spe-ci�c to the soccer domain, the general idea of hillclimbing in plan spacewith a domain speci�c evaluation is applicable to other domains. Weuse the following weighted factors:� Player control at end
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19If the last segment of the path is a pass, we are in control of theball at the end of the play (this has value 1.0). If the last segmentof the plan is a clear (kicking the ball down �eld with no speci�cagent designated to get the ball), this has value 0.0. That is, it isbetter that our team ends up with control of the ball rather thanjust kicking it down the �eld.� Ball's end locationThe value of the ball's end location also depends on whether weare in control of the ball at the end of the play. In other words,the value of a position of the ball varies based on whether wehave a teammate in control of it. Getting the ball near the goaland the opponent's baseline has high value, and just getting theball further down �eld is also of high value. The functions areshown graphically in Figure 8. The functions for a pass and a clearare almost identical except for two things. First, the clear �gurehas less value inside the penalty box (if the ball is kicked intothe penalty box with no one nearby, the goalie will just grab it).Second, the clear has additional value near the top of the penaltybox because it may induce the goalie to move out of the goal, givinga good shot if the ball can be retrieved and passed to an agent onone of the sides. Readers interested in the exact de�nition of theevaluation function should see the article's online appendix.4

Figure 8. Evaluation function for the �nal location of the ball. Darker is a higherevaluation. The left �gure is for a pass (where we control the ball) and the right isfor a clear (where the ball is kicked to no particular agent at the end of the play).� Length of planSince every action has some probability of failure, long plans gener-ally have a lower chance of succeeding than shorter ones. However,short plans add less to the team behavior simply because they have4 http://www.cs.cmu.edu/~pfr/appendices/2004jaamas.html
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20 less time to a�ect the behavior. This factor makes this tradeo�explicit. Therefore, plans with length 3 (i.e. 3 passes or 2 passes anda clear) have the highest value and the value degrades from there.The values here are heuristic and chosen based on experience withthis simulated robot soccer domain. The exact values are shownin Table I. Table I. Evaluation values for the"length of path" componentLength 1 2 3 4 5Value 0.4 0.8 1.0 0.5 0.2� Average path safety and minimum path safetyThese are two di�erent measures of the safety of the path. Thesafety of each segment in the path is �rst evaluated and then theaverage and minimum of those values is computed. A high valuehere represents greater safety.We use the means of the distributions of the opponents to estimatethe probability of a pass's success. This method, introduced byMcAllester and Stone (2001), is used during normal game play toevaluate many di�erent passing options. It was designed to be runextremely quickly, improving the speed of the hillclimbing steps.The average safety is the average pass success probability whilethe minimum value is the minimum pass success probability.The factors are then added together with the weights shown inTable II. The weights were obtained through hand tuning after thesystem was implemented.Table II. Weights for combiningthe factors for the hillclimbingevaluation functionFactor WeightPlayer control at end 0.22Ball's end location 0.2Length of path 0.1Average path safety 0.33Minimum path safety 0.33
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21Hillclimbing has a good anytime characteristic in that as soon as ourtime for planning is up, we have a plan ready to return (namely thebest one so far). It also allows easy application of domain knowledgeby giving intelligent seeds. Unfortunately, hillclimbing is also somewhattime consuming and likely will not return the optimal answer, eitherbecause of lack of time or a local maximum.4.2. Waypoints to Complete PlanGiven a target path for the ball, the coach constructs an MASTN inthree phases:Role Making A separate role in the plan is created for executing eachneeded pass (i.e. each intersection of straight line segments). A roleconsists of all of the locations that the agent will need to moveto and where it will kick the ball. This process creates the setof nodes V and the ordering function O. In particular, nodes ofthe correct types and their associated parameters and pointers arecreated. The agent values (members of A) are temporary, to bereplaced by the correct agents later in the process. Some domainspeci�c requirements for the soccer environment, in particular forthe o�sides rule5, are handled here.MASTN Compilation The step adds the edges (E) and their tem-poral constraint labels (L). Domain speci�c knowledge such as thespeed of running and kicking and their normal variations is usedto establish the time bounds for execution between the variousevents.Agent Instantiation This step assigns speci�c agents to the roles inthe plan. Role allocation is an important problem in multi-agentsystems (e.g., Weiss, 1999). However, for this system, we use asimple domain speci�c algorithm. The assignment is done usingthe current formation of the team and a greedy matching algo-rithm between the agents' home positions and the plan's startingpositions.If the coach knows the current formation, the coach can per-form this step. However, this can also be done by the players, aslong as their formation information is consistent. For the players,formation information and consistency is obtained through the5 The o�sides rule in soccer (and modeled in the Soccer Server) means that aplayer on one team can not be closer to the opponent goal than the last defenderwhen the ball is kicked. For the planning, the o�sides rule means that the agentsmust be aware of when a pass starts in order to stay onsides correctly.
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22 Locker Room Agreement (Stone and Veloso, 1999). The LockerRoom Agreement is a set of preset knowledge that allows theagents to agree on some aspects of play and strategy changes basedon any shared state features (e.g. the game time).5. Opponent ModelsThis section describes the opponent model representation and the algo-rithm used for selecting a model from a given set. In order to performthe planning described in Section 4, we use a model of the opponents'movements, speci�cally to compute the path \safety" (in terms of theball being intercepted by the opposing team) in the evaluation function.Throughout, we will not be reasoning about any modeling that theopponents do of our team. This choice is primarily for computationaltractability and simplicity; handling recursive agent modeling can bequite challenging (Gmytrasiewicz and Durfee, 1995) and is outside thescope of this work. Also, the amount of data we have to work withabout a particular opponent is quite small. If we considered richeropponent models involving recursive modeling, we may need more datato correctly recognize the models.Because of the short time span of a simulated soccer game, wedecided to begin a game with a �xed set of models and choose be-tween them during the game. Selecting a model should require fewerobservations than trying to create a model from scratch.The opponent models we present will speci�cally model opponentmovement and position in a two dimensional plane, though the rep-resentation and algorithms should easily extend to higher-dimensionalmetric spaces. We use the models to evaluate the quality of variouspossible planned actions, but the same models would be useful for anyapplication where prediction of opponent movement would be useful.These models are not intended to capture the full strategy or move-ments of the opponents. Rather, the models only need to capture theway the opponents move in the two to twenty seconds after the gamehas stopped, while the setplay is actually going on.Two assumptions related to the opponents should be noted. First,for best e�ectiveness, these models should have good predictive powerwith respect to the set of opponents expected. We assume that thevariation in opponents can be approximately expressed in a reasonablysized set of models from which to choose.Second, the output of an opponent model does not explicitly dependupon the positions of our players. However, the output does depend on
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23the anticipated path of the ball, which the position of our teammatesalso depends on. The choice is made for computational simplicity, espe-cially in the context of the plan generation discussed in Section 4. Nofundamental reason would prevent a model from taking our teammates'positions into account and this is a direction for future work.We will present the model representation and selection algorithm ingeneral form in Sections 5.1 and 5.2 and then discuss their use in robotsoccer in Section 5.3.5.1. Model RepresentationOpponent models often have the general form of a function from stateto actions (perhaps a probability distribution over actions), which areintended to predict the actions the opponents will take (e.g., Carmeland Markovitch, 1998). We will follow this same basic strategy, butpredict the resulting state of the opponents rather than the actionstaken to get there. We also consider predicting the behavior of a teamof agents, rather than a single agent.Let p be the number of players on a team. For notational simplicity,we will assume our team and the opponent team have the same numberof players, but this is not essential to our formulation. We assume thatstates of the world can be decomposed into three components:SpT This sequence of p elements represents the state of each of our teammembers. In other words, each agent's state can be represented asan element of ST .SpO The states of the p members of the opponent team.SW The states of the world not represented by SPT or SpO.This state decomposition into world and agents' states is similar to thatused by Xuan et al. (2001) to model communication between agents.The decomposition will be used to identify exactly what part of thetotal state our agent models will take as input and what part of thetotal state the models will predict. For example, if you had a worlddescribed by a sequence of state variables, the decomposition abovewould correspond to assigning each of the state variables to a particularagent or the world in general. In many such state variable descriptions,this would be a very easy and natural assignment.Let RO represent the set of probability distributions over SO andlet A represents the set of sequences of possible actions (includingdurations, if applicable) our team can take. Conditional plans, wherethe next action depends on the observed state, are not considered here.
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24 An opponent model is then a function that probabilistically predictsthe opponents' future states based on the world state, opponent states,and planned actions of our team. In other words, we de�ne a model Mas a function: M : SW � SpO �A ! RpO (1)Note that our team's state SpT is not part of the inputs to the model.However, the team's state is constrained by the team's actions (anelement of A), so some information about the team state is implicitlyavailable to the model. The choice to remove the explicit dependenceon SpT is made for computational simplicity. On the other hand, eachopponent player's �nal state distribution may depend on the startingstates of all the opponent players.An opponent model of this form can be used to calculate the prob-ability of an opponent ending in a particular state. In particular, givena world state w 2 SW , opponent states si 2 SO (8i 2 [1; p]), and aplanned team action a 2 A, an opponent model M says that theprobability for player j being in ending state ej 2 SO isPj[ej jw; s1; : : : ; sp; a;M ] :=M(w; s1; : : : ; sp; a)[j](ej) (2)We use Pj to represent the probability over ending opponent states foropponent j. Notationally, we also consider probability distributions tobe functions from the input set to the real numbers.In contrast to opponent models for game tree search (e.g., Carmeland Markovitch, 1996), our opponent models are predicting not justone action response of an opponent, but the result of a series of inter-leaved team and opponent actions. Our model is explicitly operating onabstract temporal and action levels, making our model more applicableto environments with continuous or many discrete action opportunities.5.2. Model SelectionGiven the description of the opponent models, we can now describe thealgorithm for selecting the best matching model. Given the assumptionthat the opponent has chosen one of our models at the beginning ofthe game and is then independently generating observations from thatmodel, we can use a naive Bayes classi�er.We maintain a probability distribution over the models. The originaldistribution (the prior) is set by hand. Then, whenever a planningstage is entered, the model with the highest probability is used. Whenobserving a plan execution, we use observations of that execution toupdate our probability distribution over the models.We start with a probability distribution over the set of modelsfM1; : : : ;Mmg and then observe. An observation is a tuple of starting
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25world state w 2 SW , starting states for all the opponent players s 2 SpO,a planned team action a 2 A, and ending states for all opponent playerse := he1; : : : ; epi 2 SpO. We want to use that observation to calculatea new probability distribution, the posterior. That distribution thenbecomes the prior for the next observation update.Consider one updating cycle with an observation o = hw; s; a; ei. Wewant P [Mijo] for each model Mi. Using Bayes' rule we getP [Mijo] = P [ojMi]P [Mi]P [o] (3)We make the following assumptions in order to simplify equation (3).1. The players movements are independent. That is, the model maygenerate a probability distribution for player x's ending state basedon everyone's starting states. However, what the actual observationis for player x (assumed to be sampled from this probability dis-tribution) is independent from the actual observations of the otherplayers.2. The probabilities of a particular set of starting states and plannedaction are independent of the opponent model. This assumption isquestionable since the planned agent actions may depend on theopponent model determined to be the most likely. However, resultsin Section 6.2 demonstrate we still are able to recognize modelscorrectly.P [Mijo] = P [w;s;a;ejMi]P [o] P [Mi] (from eq. (3))= P [ejw;s;a;Mi]P [w;s;ajMi]P [o] P [Mi]= P [ejw; s; a;Mi]P [w;s;a]P [o] P [Mi] (assump. 2)= P [e1jw; s; a;Mi]P [e2jw; s; a;Mi] : : : P [epjw; s; a;Mi]| {z }what opponent model calculates (eq. (2))P [w; s; a]P [o]| {z }norm. constantP [Mi]| {z }prior (assump. 1) (4)The term labeled \norm. constant" is a normalization constant.That is, it does not depend on which model is being updated, so wedon't have to explicitly calculate those terms. We calculate the remain-ing terms and then normalize the result to a probability distribution.
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26 The preceding computation began with the assumption that theopponent has chosen one of our models and was generating observationsfrom it. Of course, this is only an approximation. However, if one modelgenerally makes better predictions than the others, then that model willbe the most likely. Assuming one of the given models is correct is thesame type of assumption that is made in a number of statistical machinelearning problems. The question we are trying to answer is \Whichof the models from this set best explains opponent behavior?" Thisparallels the question in most machine learning tasks with generativemodels of \Which hypothesis from this set best predicts the data?"In addition to the update above, we use weight sharing at the end ofeach update cycle. A small probability mass (0.1) is added to the prob-ability value for every model and then the distribution is renormalized.This means that if there are m models, a probability p becomes:p+ 0:11 + 0:1m (5)Weight sharing prevents any model's probability from going arbitrarilyclose to 0, while not changing which model is most likely on any oneupdate. Weight sharing allows the update process to more quickly cap-ture changes in the opponents behavior (if their behavior switches fromone model to another). For example, if the prior and an observation tellus that one model has probability of 1, we still put a probability massof 110+m on every other model, meaning that we still believe there is achance that the opponent team will, in the future, act as described bythe model.Weight sharing also means that more recent observations are weightedmore heavily. Each step of weight sharing smooths out the probabilitydistribution. The perturbation caused by an observation (i.e. mak-ing one or more models more likely based on what was observed) issmoothed out by the weight sharing steps of other observation updates.More recent observations have gone through less smoothing operationsand can therefore have an e�ect of larger magnitude.If the opponent is changing or adapting, the coach may be able totrack the changes, depending on the speed of adaptation. Of course,a team that knew exactly the algorithm we were using could stillconceivably adapt just faster than the coach could keep up with. Ap-plying regret-minimization techniques such as Auer et al. (2002) isan interesting future direction, but as far as the authors know, thecomplexity of the environment prevents the direct application of anyknown techniques.
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275.3. Models in Robot SoccerConceptually, we want an opponent model to represent how an oppo-nent plays defense during setplays. We conjecture that a wide range ofdecision making systems of the opponent can be roughly captured by asmall set of models, but we have not empirically veri�ed this conjecture.Remember that p is the number of players on a team. Let L be theset of positions on the �eld, discretized to 1m. The player state sets STand SO are both equal to L, representing to location of a player. Theworld state SW will also be equal L, representing the location of theball.The planned ball movement will be the planned actions of our agents.We represent the ball movement as a sequence of locations on the �eld(an element of L�). The expected time for each ball movement, withbounds for normal execution, can be calculated based on the empiricallydetermined environment and agent execution parameters, such as timeto kick the ball and speed of the ball when passed.An opponent model is then trying to predict the future locationof each opponent will given the ball's current location (w 2 L), theopponents' initial positions s 2 Lp, and a future path of the ball a 2 L�.In other words, the model answers a question like \Given the positionsof the opponents and the ball, if the ball moves like this over the next2 seconds, where will the opponents be at the end of those 2 seconds?"Formally, we have:M : L|{z}ballposition � LpO|{z}opponentstartingpositions � L�|{z}plannedballmovement ! (Prob. Dist. over L)p| {z }predictedopponentpositions (6)
Equation (6) is an instantiation of Equation (1) for robot soccer. Anexample application of a soccer opponent model is shown in Figure 9.Here, the model predicts that both opponents move towards the �nallocation of the ball.Thus far, we have described the format of the opponent model, i.e.what must be computed, but not how this computation is done. Forthe implemented system, all player distributions are represented asGaussians. The models are simply functions which manipulate thesedistributions in the appropriate way. However, note that the selectionalgorithm described in Section 5.2 does not depend on this representa-tion.As an example, one of the models we use has all opponent playersmoving towards the ball. The function that represents the model ad-justs the input distributions by moving the means towards the ball and
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Figure 9. An example application of an opponent model. The fuzzy areas representprobability distributions for the two ending locations of the opponent players (shownas dark circles) as the ball moves along a path indicated by the arrows.increasing all the variances. Section 6.1 discusses the set of models weuse for the empirical validation in more detail.In addition, a decision must be made about how to generate ob-servations from the stream of data being received about the opponentpositions. Clearly, if an observation tuple is generated every cycle wewill be violating the independence assumption of the naive Bayes up-date, as well as giving the models little information (in terms of theball movement) with which to work. On the other hand, the moreobservations the coach gets, the easier it is to correctly identify thecorrect model. To balance these competing factors, we decided to createan observation every time the agent who is controlling the ball changes.An agent is considered to be controlling the ball if (i) the agent is theclosest player to the ball and (ii) the agent can kick the ball. A givenobservation can cover anywhere from approximately 5 to 50 cycles (onehalf to �ve seconds) of movement.6. Empirical ResultsThis section presents experiments exploring the e�ectiveness of theplanning approach and the use of opponent models.6.1. General SetupFor all empirical experiments, we �rst needed to create a set of opponentmodels. In all of the models, the distribution of each player's �nalposition is represented by a 2-dimensional Gaussian with equal variancein all directions. The standard deviation is an aÆne function of time
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29(since the beginning of the setplay). The mean is computed as discussedbelow.We created �ve models for the empirical evaluation. This set ofmodels represent fairly distinct styles of movements by the opponents.The mean of each player's �nal distribution is computed relative to theinitial position as follows:No Movement At the initial position of the playerAll to Ball Moved towards the ball at a constant speedAll Defensive Moved towards the defensive side of the �eld at a con-stant speedAll O�ensive Moved towards the o�ensive end of the �eld at a con-stant speedOne to Ball This model is slightly di�erent from the others. The ball'smovement is broken down into cycles. At each cycle, whicheverplayer is closest to the ball is moved 0.6m closer to the ball.6 Notethat since the ball can move faster than the players, which playeris closest to the ball can change several times during the ball'smovement. The �nal positions of the players are the means of thedistributions.These models are not for the opponent's behavior throughout anentire simulated soccer game. The models are only intended to capturethe way the opponents move for the 5{20 seconds in which our teamexecutes a set play from a dead ball situation. The models do notcapture any actions that the opponents take with the ball, or how theyplay defense more generally.6.2. Model RecognitionThis experiment looks at the model recognition algorithm. The modelsare abstractions over player movements. We want to verify that therecognition algorithm over these models can be used to correctly recog-nize a team that acts approximately like a given model. We use severalassumptions during the probability updates, and if those assumptionsare extensively violated, the recognition algorithm will fail to work aspredicted. Further, we want to explore how long it takes for the naiveBayes based recognition algorithm to identify the correct model. Thecoach is the only agent doing the recognition since it has the globalview of the �eld.6 The players max speed is 1m/cycle.
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30 Before looking at how well each model can be recognized out ofthis set of models, we must �rst understand how well any recognitionalgorithm could expect to do. We call this the separability of a set ofmodels. If two models make similar predictions in most cases, it will bediÆcult to recognize one model over the other and we should not expectany recognition algorithm to get near perfect accuracy. The concept ofseparability will give us a standard to compare how well the models arebeing recognized in the real system. While separability seems to be abasic statistical concept, the author is not aware of standard de�nitionsor calculations which �t this problem.Separability will of course be a function of an entire set of models,not a property of any one model. Also, separability must be a functionof the number of observations; as we get more information, we expectto be able to identify the correct model more often.For illustration, consider a simple example where you have two setsof models of coins. In the �rst set, one model says that heads comes up99% of the time and the other says heads comes up 1%. For the secondset, the models say 51% and 49%. Separability asks the question: ifthe world is exactly described by one of the models in our set (butwe don't know which one), how does the number of observations a�ectthe probability we will identify the correct model? Clearly, we are muchmore likely to identify the correct model for the �rst set than the secondset because the predictions are so di�erent.We will develop the concept of separability in four stages. Firstwe will consider the separability of two distributions given one ob-servation, then the separability of two distributions given multipleobservations, then the separability of a set of distributions, and �nallythe separability of a set of models.Start with two distributions A and B over two dimensions. Thequestion we are interested in is: if we are seeing an observation prob-abilistically generated from A, what is the probability that the naiveBayes update (starting with a uniform prior) will return with A beingthe most likely distribution? Equivalently, what is the probability massof A in the area where the probability distribution function (i.e. pdf)of A is greater than the pdf of B? Of course, we are also interestedin the case where B is the distribution generating observations, and ingeneral these probabilities can be di�erent.The concept of separability we are interested in here is similar to rel-ative entropy or Kullback-Leibler distance (Cover and Thomas, 1991).The relative entropy of distributionA to distributionB is (where fA(x)
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31is the pdf of A at x):D(AjjB) := Z fA(x) log fA(x)fB(x)dx (7)The important di�erence is that Kullback-Leibler distance is consid-ering the ratio of fA to fB. In our update, we only care whether fAor fB is larger; that is, if the wrong distribution comes out as morelikely in our update, we don't care how wrong it is. In other words,our loss function is binary (correct or incorrect) and Kullback-Leibleris targeted for a loss function which is not. More precisely, if IA>B(x) isan indicator function for whether fA(x) > fB(X), then our separabilityof A from B is Z fA(x)IA>B(x)dx (8)If one considers the models in the context of how they are used, thenthe appropriate loss function may not be binary as indicated here. Theloss function should represent how bad it is to use one model whenanother one is the true model. As will be shown below, computing theseparability of models is not trivial, nor is computing the true loss func-tion given the complicated use of the models in Section 4.1. Therefore,we simplify the separability computation by assuming a binary lossfunction.Now consider seeing multiple observations instead of a single one.Once again, we are interested in the probability that A will have thehighest posterior after the naive Bayes update on all of the observations.This probability is challenging to solve for analytically, but Monte Carlosimulation can estimate it.Our concept of separability extends naturally to a set of distributionsrather than just two distributions. We still want to measure the chancethat the correct distribution has the highest probability. We can againuse Monte Carlo simulation to estimate the probability that the correctdistribution will be recognized for any given number of observations.Finally, the opponent models are not simple distributions. The mod-els are functions from starting world states, starting states of the op-ponents, and a planned team action to distributions of the opponents'states. We use an empirical test to estimate separability of models. Foreach observation o1; : : : ok from real game play, we repeatedly generatea series of arti�cial observationshw; s; a; e1i : : : hw; s; a; eni (9)where� w 2 SW is the starting world state .
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32� s 2 SpO is the set of opponents' starting states.� a 2 A is the planned team action.� ei 2 SpO is a set of opponents' ending states.� n is the number of observations for which we want to estimate theseparability.w, s, and a are taken from the real observation oi. Each set of endingopponents' states e1 : : : en is sampled from the distributions outputby the correct model (the model for which we want to estimate theprobability of the naive Bayes being correct). For each sequence ofarti�cial observations, the update is performed. Averaging over all se-ries of observations, we can estimate the probability of a model beingcorrectly recognized, given n observations.Figure 10 shows, for each model, the probability of that model beingcorrectly recognized as a function of the number of observations (i.e.separability). One can see that if the models perfectly capture theopponents, after only a few updates, the recognition accuracy shouldbe quite high (more than 85%).
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33naive Bayes update (starting from a uniform prior). For each model, theempirical recognition accuracy is the percentage of the time that thecorrect model came up as most likely after that series of observations.Figure 11 summarizes the recognition accuracy of the models. Formost models we achieve 90% recognition after just 4 observations. Theaccuracies track the separability from Figure 10 with some exceptions.First, there is more confusion among all models for the lowest coupleof observations. This suggests that the tails of the distributions areheavier than what the Gaussian model suggests, or possibly that thedistributions are multi-modal. Second, the One to Ball model is con-fused with the other models less than the separability indicates, whichprobably means that the actual variation for the team is less thanthat suggested by the model. Finally, the All O�ensive model neverachieves the near 100% performance suggested by the separability. Thisresult reveals something missing from the model. Namely, during theactual executions, the players on the team will not position themselveso�sides. The details of the o�sides rule in soccer are not important, butbasically it prevents the players from moving too far to the o�ensiveside. The o�sides rule, which is ignored by the model, prevents themodel's predictions from being completely accurate. Overall, note thatthe recognition accuracy is quite high after very few observations.
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

P
ro

ba
bi

lit
y 

C
or

re
ct

 R
ec

og
ni

tio
n

Number of Observations

No Movement
All to Ball

All Defensive
All Offensive

One to BallFigure 11. Given a number of observations and a model that the opponent is approx-imately executing, this graph shows the percentage of time a contiguous sequenceof real observations results in the correct model being most likely after our naiveBayes update. This graph can be compared to the separability from Figure 10, butit should be noted that the axes have di�erent scales.The exact separability and rate that the accuracy increases will ofcourse change given the set of models that one chooses. However, theobserved accuracies tracked the theoretical separability quite well, sug-gesting that the assumptions made in the model recognition algorithmwere good enough. Further, the recognition accuracies increased quite
setplay.tex; 16/01/2006; 22:28; p.33



34quickly, which is at least suggestive that other model sets may havesimilarly quick recognition.6.3. Models' Effect on PlanningGiven that we have opponent models that can be selected based uponobservations, we now need to examine the e�ect of those models on theoutput of the planning process. If the opponent models are meaningful,then the resulting plans should be di�erent for the di�erent models. Itis somewhat tricky to isolate just this one e�ect from the rest of thesystem. In order to evaluate the di�erences in the plans produced usingopponent models, we compare paths by looking at the area between thepaths. For example, in Figure 12, the shaded area is the area betweenthe solid and dotted paths. We use this area because it expresses insimple terms how di�erent two paths are, and consequently, how dif-ferent two plans are. Therefore, the median area di�erence7 between aset of plans expresses roughly how much variation there is in a set ofplans. The exact numbers are not especially meaningful, but are usefulas comparisons of di�erent sets of plans.
Figure 12. Example of the area between paths. The two paths are the solid line andthe dotted line and the shaded area is the area between them.First we look at the variation in our planning seeds. The planningseeds are designed to be far apart in the space of possible plans, so thevariation gives some idea of the maximum range we could expect theplans generated by the system to vary. As shown in Table III, the me-dian area di�erence is 315. Then, we compare the plans generated whenthe only variation is which opponent model is used for planning. Using adi�erent opponent model for planning gives a median area di�erence of138. The di�erence between opponent models is somewhat lower thanthe median di�erence between the planning seeds. This lower di�erenceis not surprising because the evaluation of a path depends strongly upon7 We use median rather than mean because the distributions of path areas haveheavy tails.

setplay.tex; 16/01/2006; 22:28; p.34



35the starting positions of the agents. The seeds are designed to roughlycover all possible starting positions of the opponents, so the variationof the hillclimbing seeds should be higher.Table III. Median area di�erences among several sets of plans. The area di�erenceroughly captures the variation among the plans.Plan Set Median AreaDi�erence # ComparisonsPlanning seeds 315 138Across opponent models 138 223For one opponent model 0 6625For one opponent model (unique plans) 116 3073The variation of the plans observed by using two di�erent models forplanning is also higher than the variation observed for using just a singlemodel. We ran the planner on a set of 25 problems 53 times in orderto understand the variation in the plan returned by the hillclimbingapproach. Not surprisingly, the median area is 0, since the same planis returned many times. If we restrict our attention to just the set ofunique plans8 returned over these 53 trials, the median area of 116 isstill smaller than the median area between plans returned by di�erentmodels. This result suggests that, as expected, the model used causesmore variation in the output of the planner than the random variationin the hillclimbing.6.4. Total Game EffectA team's overall performance in a simulated soccer game is a productof many tightly interacting factors. The experiments in this section aredesigned to show that adaptive setplays can have a positive impacton the overall team performance. It is not a thorough evaluation ofwhen and why the adaptive setplays have an impact. In other words,these experiments are an existence proof that the representation andalgorithms that we are proposing can have a positive e�ect on theperformance of the team.Over the course of a simulation game, setplays are executed for afairly small percentage of the total time. Therefore, the absolute e�ectof setplays on the �nal score di�erence is expected to be small evenif the setplays are signi�cantly better than what was present before.8 At most 2 di�erent plans were returned for a given model and problem.
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36Any signi�cant e�ect of the overall score of a team by improving thesetplays is an achievement.The plan execution algorithm was fully implemented in the ATT-CMUnited2000 simulation soccer team (Riley et al., 2001). The teamATT-CMUnited2000 was based on CMUnited99 (Stone et al., 2000)which has �xed setplay plans for each type of setplay (goal kick, kickin, free kick, etc.). We ran ATT-CMUnited2000 using the old �xedsetplays and the new adaptive setplays, playing against CMUnited99in both cases. For the new adaptive setplays, the opponent model setdescribed in Section 6.1 was used. The results are shown in Table IV.Table IV. Comparison of �xed setplays from CMUnited99 to adaptive setplaysusing MASTN. With a standard one tailed t-test, the di�erence in goals scored isnot signi�cant, while the di�erence in goals against is (p < :01). All games wereagainst CMUnited99. # Games Mean goalsscored Mean goalsagainstCMUnited99 �xed setplays 33 2.45 0.30Planned, MASTN based setplays 56 2.55 0.18The results show that the new setplays have a small but signi�cante�ect on the overall performance of the team. The e�ects on goalsagainst seems to occur for two reasons. First, setplays such as goalkicks and goalie catches can be dangerous times for the team becausethe ball starts so close to the goal. Executing a good play to get theball up�eld can get out of these dangerous situations. Second, a goodo�ense can be the best defense. If the team spends more time attacking,the opponent has less opportunities to score goals. Overall, this resultis good given the small proportion of the time of the game occupied bysetplays.We wanted to further test the e�ectiveness of the adaptive setplays.However, there is considerable e�ort in linking the plan execution algo-rithm to the behavior architecture of a player. The standard coachinglanguage CLang (Chen et al., 2001) was created around the time wewere �nishing the previous experiments. We therefore created an algo-rithm to convert the MASTN into CLang condition-action rules. Thisconversion allows the setplays to be used with any team that under-stands CLang rather than being restricted to ATT-CMUnited2000.Translating the MASTN plan into CLang requires that the e�ects ofactions are encoded into conditions of rules. Since CLang supports ruleconditions dealing with ball and player positions, most action e�ects in
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37MASTNs can be encoded e�ectively into CLang conditions. However,some aspects of the execution algorithm can not be encoded becauseof limitations in CLang. For example, since CLang has no action rep-resenting where an agent should be looking, the agent can not be toldto look to where a relevant action should be taking place. Further,the temporal expressibility is CLang is such that the propagation oftemporal constraints can not be done, though ordering of events canstill be maintained.The coachable team ChaMeleons (Carpenter et al., 2002), which wascreated at Carnegie Mellon, was used as the recipient of our planningadvice. The opponent used was Gemini from the Tokyo Institute ofTechnology (Coradeschi and Tadokoro, 2002). We used Gemini for tworeasons. First, Gemini was the opponent in the RoboCup 2001 coachcompetition, allowing us to compare performance to what was observedthere. Second, since Gemini was not created by us, nor do we have anyknowledge of its behavior algorithms, this provides a more independenttest of the setplays.The coach needs to know the formation, or arrangement of playerson the �eld, in order to assign players to roles. Therefore, our coach alsosends the players a formation, i.e. a spatial assignment. Details aboutthe structure of the formation and how it is learned can be found inRiley et al. (2002).We ran a series of simulation games under di�erent conditions.9In all cases, the set of opponent models described above was used.Each experimental condition was run for 30 games and the averagescore di�erence (as our score minus their score) is reported. Thereforea negative score di�erence represents losing the game and a positivescore di�erence is winning. All signi�cance values reported are for atwo tailed t-test.Three sets of games were run: a baseline without the coach, thecoach just sending a formation, and the coach sending a formation andplanning setplays. Since there are many interacting factors a�ecting theperformance of a simulated robot soccer team, we are more interested inthe improvement that the setplays has on the coached team rather thanthe absolute win/loss value of the coached team against the opponent.Table V shows the results.The use of the setplays signi�cantly (p < 0:01) improves the perfor-mance of the team, both over just the use of the formation and over9 In all of these experiments, we slowed the server down to 3-6 times normalspeed so that all agents could run on one machine. This was done for conveniencefor running the experiments. We tried to verify that agents were not missing cyclesand while this setup shouldn't a�ect outcomes compared to running on severalmachines, the design of the server makes it impossible to say for sure.
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38 Table V. Mean score di�erence under various ex-perimental conditions. The score di�erence re-ported is the coached team score minus opponentscore. The interval next to the score is the 95%con�dence interval.Condition Score Di�erenceBaseline (without setplays) -6.5 [-7.2, -5.9]With formation -9.1 [-10.0, -8.2]With setplays and formation -4.2 [-4.9, -3.5]not using either a formation or setplays. The e�ect here is larger thanin the previous experiment which compared �xed vs. adaptive setplaysin ATT-CMUnited2000 since we are comparing no set plays to ouradaptive setplays in this case.7. Related WorkMASTNs re�ne Simple Temporal Networks (STNs) to be used in themulti-agent case. STNs have been used to solve scheduling problems(e.g., Morris and Muscettola, 2000) and the execution algorithm wepresent uses the algorithms presented by Muscettola et al. (1998) assubroutines.Multi-agent plan representations have been suggested by a numberof other researchers. Several models of multi-agent systems have beenproposed (Boutilier, 1999, Peshkin et al., 2000, Bernstein et al., 2000,Xuan et al., 2001, Pynadath and Tambe, 2002). For all of these mod-els, solving the model yields a joint action policy for the agents. Thispolicy can be seen as a universal plan for the agents. However, thedimensionality of the model means that such polices quickly becomediÆcult to construct or communicate. Therefore, a naive use of themodels would not be an e�ective way to create and communicate aboutteam plans. Indeed, one of the motivations for creating the COM-MTDP model (Pynadath and Tambe, 2002) was to be able to evaluatealgorithms which use more eÆcient reasoning processes. The MASTNsthat we introduce are one compact way to represent a joint plan.Bowling et al. (2004) introduce tactics, plays, and play books asmulti-agent plans. In the context of small size robot soccer, they de�netactics as single agent, primarily reactive behaviors. Plays are speci�ca-tions of roles by the sequence of tactics they should be performing. Theplay book is a collection of plays. This approach addresses a number
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39of orthogonal issues to those addressed by the MASTNs. Most impor-tantly, the strength of MASTNs is in handling agents whose beliefsabout the world may be inconsistent and allowing them to coordinatesuccessfully. While the play-based approach must consider multi-agentproblems such as role assignment, one central controller makes thosedecisions.Teamwork theories must also consider representing and manipulat-ing multi-agent plans. SharedPlans (Grosz and Kraus, 1996) and JointIntentions (as expressed in GRATE� (Jennings, 1995)) are normativespeci�cations of mental attitudes of agents in a team. These teamworktheories are meant to guide the design of agents. Both theories use theconcept of a recipe where agents are committed to performing possi-bly ordered actions. While both approaches catalog recipe failures andspecify how to deal with them, MASTNs provide a more speci�c frame-work for representing and reasoning about coordination and failurethrough temporal constraints. In particular, those approaches specifyhow the beliefs, desires, and intentions should change in response toteam events, but the approaches leave open how those beliefs, desires,and intentions are translated into actions. Therefore, while the Shared-Plans and Joint Intentions frameworks are more general, MASTNsprovide more of a solution if one can represent the needed coordinationand failure modes in the temporal constraints of the network.STEAM (Tambe, 1997) draws on both SharedPlans and Joint Inten-tions. The key innovation is the introduction of team operators. Eachagent maintains its own perception of the state of execution of theseteam operators. STEAM is then a system for maintaining as muchconsistency as needed and possible among these operators. Thus, ourMASTN representation and algorithms can be seen as an applicationof these same concepts into a representation with temporal constraints.Intille and Bobick (1999) also use temporal constraints to expresscoordination. However, their temporal constraints are fuzzy and qual-itative, such as \A around B" meaning that event A should occuraround the same time as B. The other major di�erence is that thenodes in their temporal network represent agent goals, not particularevents. They apply their representation to plan recognition in records ofhuman American football. In other words, similar temporal constraintsand reasoning are used to solve a di�erent problem.Doyle et al. (1986) have examined inserting perceptual expectationsinto plans based on preconditions and post-conditions. These are sim-ilar to the node precondition monitoring that we do during MASTNexecution.Currently, we only detect plan failure when preparing to execute aspeci�c action or when a temporal constraint is violated. Reece and
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40Tate (1994) have worked on how to add monitors to plan executionto allow for earlier detection of execution problems. This would be auseful addition to the MASTN representation and execution algorithm.Agent modeling has been an important topic in computer scienceand the literature available is correspondingly vast. A number of au-thors have explored the use of opponent models in playing two per-son, �nite, perfect information games (e.g., Iida et al., Carmel andMarkovitch, Donkers, 1993, 1996, 2003). During the search of the gametree, the models predict (perhaps probabilistically) what action theopponent will take and the search attempts to �nd a best response.This article addresses a signi�cantly di�erent environment, speci�callya multi-agent, continuous state and action, and partial informationgame.Using an agent's own behavior representation to infer opponent ac-tions has been used by Tambe and Rosenbloom (1995) in an air combatdomain and by Laird (2001) in Quake, a real-time �rst person shootercomputer game. We explicitly avoid having our agent models be basedon the agent's internal execution policy because the coach is not anagent that executes actions in the environment and we want to provideas much generality as possible in our models.Section 5 argues that selecting between opponent models onlinerather than trying to learn from scratch is a promising avenue fordealing with sparsity of data in an online setting. This same ideais discussed and tested in a predator-prey domain by Denzinger andHamdan (2004). Their models, which they call \stereotypes," have avery di�erent structure and they use di�erent selection algorithms, butend goal is the same.Work on agent modeling has also occurred in the simulated roboticsoccer community. W�unstel et al. (2001) use self organizing maps toclassify the movements of agents. Miene et al. (2004) use coarsely dis-cretized state and action descriptions to arrive at a qualitative motionmodel which can be used to predict impending o�side situations. Alsoin RoboCup, but for the small size robots, Han and Veloso (2000) useHidden Markov Models (HMM) to recognize behaviors of robots, witheach HMM representing a model of a behavior of a robot. These modelsare focused primarily on recognizing the behavior of an agent or teamand not on how to use such a model to improve performance.Other groups have used coaches to improve performance in therobot soccer simulator. One of the �rst teams to use an online coachwas Kasugabito (Takahashi, 2000). Based on the score di�erence, timeremaining, and ball's path, the online coach would adjust the team'sformation.
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41Since then, formation learning and switching has been a popularapproach. In addition to our previous work (Riley et al., 2002), sev-eral other teams have tried various approaches to learning and usingformations (Habibi et al., 2002, Dr�ucker et al., 2001). While there aredi�erences among these representations and algorithms, all have thesame goals and perform reasonably well.One of the �rst systems to analyze a team's play to provide advicewas ISAAC (Raines et al., 2000). ISAAC used decision tree learning toidentify rules describing the conditions for when goals were and werenot scored for and against a team. ISAAC had no automated way forthe agents to incorporate advice; the output was descriptive naturallanguage which human developers could use to change their team.Online coaching with automatically incorporated advice gained im-portance in RoboCup 2001 with the creation of the online coach compe-tition. In addition to our work (Riley, 2005), the Dirty Dozen team pub-lished opponent modeling research (Ste�ens, 2002). The focus of thework was Feature-Based Declarative Opponent-Modeling (FBDOM)where opponent models use features that are associated with actions.These models are created by hand and can then be matched to observedbehavior similar or used to imitate a team.In addition to the formation learning and adaptation techniquesmentioned above, we know of two other coaches that make use ofmachine learning. The UTAustinVilla coach (Kuhlmann et al., 2005)learns and uses similar opponent models to ones described in Riley(2005), though with some important representational di�erences. TheSharif Arvand coach (Ahmadi et al., 2003) uses a two-layered case basedreasoning approach to predict the future movements of the player andthe ball, though it is not speci�ed in that article how predictions aretranslated into useful advice.8. ConclusionWe have presented an approach to planning by a coach agent which isadaptive to the current adversary. The main technical contributions ofthis article are:1. Multi-Agent Simple Temporal Networks as a multi-agent plan rep-resentation and an associated distributed execution algorithm. Theplan representation expresses temporal coordination and monitor-ing in a distributed fashion.2. An algorithm for generating a multi-agent plan for agent move-ments in the MASTN plan representation.
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423. An opponent model representation which probabilistically predictsmovements of agents.4. A method for adaptation to adversarial strategies based on a naiveBayes classi�er over opponent models. This method could poten-tially be applied to any case where a reasonable range of probabilis-tic models can be determined before interacting with the adversary.In addition to the empirical results presented here, in the gamesat the RoboCup competitions, it was evident that our team bene�tedfrom adaptive setplays. Our system created a variety of setplay plansin adaptation to completely unknown opponent teams.We implemented our coaching approach in simulated robot soccerinstead of a simple toy domain, which leads us to infer the applicabilityto other domains with the following characteristics:� The MASTN representation and execution algorithm make severalassumptions about the environment:� Coordination constraints can be expressed in temporal con-straints.� Each agent can get some information about the execution ofall events in the plan, though it is explicitly allowed that theinformation across agents is inconsistent. This informationcould come from observation or communication.� All parallelism in the plan is across agents; each agent exe-cutes one macro-action (i.e. one plan step) at a time.� The plan generation algorithm requires the user to de�ne an evalu-ation function over plans which is suitable for hillclimbing. Further,temporal bounds on the normal execution of the steps of the planare required to create the temporal constraints in the MASTN.� The opponent model representation and recognition algorithm as-sume that the state of the world can be decomposed into statesfor our agents, the opponents, and the rest of the world. Fur-ther, the models were created for spatial states and are thereforeprobably most appropriate in environments with a strong spatialcomponent.This work opens several interesting future research directions. Cur-rently, during execution, the agents follow a single plan. Storing al-ternate plans and intelligently adding monitors for these plans as doneby Veloso et al. (1998a) could make agents switch between plans duringexecution if conditions change.
setplay.tex; 16/01/2006; 22:28; p.42
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