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Abstract. In multi-agent domains, the generation and coordinated execution of
plans in the presence of adversaries is a significant challenge. In our research, a
special “coach” agent works with a team of distributed agents. The coach has a
global view of the world, but has no actions other than occasionally communicat-
ing with the team over a limited bandwidth channel. Our coach is given a set of
predefined opponent models which predict future states of the world caused by
the opponents’ actions. The coach observes the world state changes resulting from
the execution of its team and opponents and selects the best matched opponent
model based on its observations. The coach uses the recognized opponent model
to predict the behavior of the opponent. Upon opportunities to communicate, the
coach generates a plan for the team, using the predictions of the opponent model.
The centralized coach generates a plan for distributed execution. We introduce: (i)
the probabilistic representation and recognition algorithm for the opponent models;
(ii) a multi-agent plan representation, Multi-Agent Simple Temporal Networks; and
(iii) a plan execution algorithm that allows the robust distributed execution in the
presence of noisy perception and actions. The complete approach is implemented
in a complex simulated robot soccer environment. We present the contributions as
developed in this domain, carefully highlighting their generality along with a series
of experiments validating the effectiveness of our coach approach.

Keywords: planning, distributed execution, opponent modeling, advice, simulated
robot soccer

Abbreviations: STN — Simple Temporal Network; MASTN — Multi-Agent Simple
Temporal Network

1. Introduction

Multi-agent domains can include teammates and adversarial agents.
One of the main challenges of such domains is the coordination and
response of teammates to the adversarial agents. Often, there is no
dominant strategy with respect to opponents, i.e., a team of agents can
not select a strategy that has good performance independent of the
adversary. Rather, the team needs to adapt its behavior by observing
the adversary online.

We consider instances of Periodic Team Synchronization domains
(Stone and Veloso, 1999), where team agents can periodically synchro-
nize their team strategies. In such domains, a team can construct a plan
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of action in a centralized fashion during a synchronization period. The
plan then needs to be sent to the team for fully distributed execution.
Coordinated execution faces the challenges of noisy and incomplete
sensations, noisy actions, and limited and unreliable communication.

This article reports our work on addressing this online team adapta-
tion to an adversary. We use a coach agent that acts as the centralized
planning agent. The coach has a global view of the world, does not
directly act in the world, and has occasional communication with its
teammates. The main steps of our approach are:

— The coach agent is equipped with a number of pre-defined op-
ponent models as probabilistic representations of predicted states
of the opponents. The coach gathers global observations that in-
clude its teammates’ and opponents’ states. The coach selects the
opponent model that best matches the coach’s observations.

— At synchronization opportunities, the coach creates a team plan
that is a function of the selected model of the opponents’ behavior.
The plan is generated by a hill-climbing search in plan space. The
evaluation function embeds the predictions of the opponent model.

— The plan is encoded in a multiagent plan representation, a Multi-
Agent Simple Temporal Network (MASTN), which is a refinement
of a Simple Temporal Network (Dechter et al., 1991). The MASTN
representation effectively captures: (i) the different agents respon-
sible for each plan step; (ii) the temporal dependencies between
the plan steps; and (iii) bounds on the expected execution times
of the actions.

— While the coach is a centralized planning agent, the agents must
execute the plan in a fully distributed manner with noisy, incom-
plete views of the world state. The coach observes the execution
of the plan in order to refine the selection of an opponent model
for future plans.

We use simulated robot soccer as a rich multi-agent environment
including fully distributed agents in two different teams of up to eleven
agents, plus a coach agent for each team (Noda et al., 1998). Agents
can reactively respond to the opponents’ positioning, for example, by
explicitly moving to open field positions (e.g., Veloso et al., Stone et al.,
1999, 2000). Our work aims at modeling the opponent to predict their
behavior, and deliberatively plan in response to the predicted actions.

We specifically focus on situations where the game is stopped. At
these times, a team can coordinate and commit to a plan of action
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to execute once the ball is back in play. These plans are known as
setplays. Several preset setplay plans have been introduced that provide
opportunities to position the teammates strategically and have been
shown to contribute to the performance of a team (Stone et al., 2000,
Stone et al., 1999, Veloso et al., 1998b). We contribute adaptive set-
plays that are created online by the coach agent.

The MASTN representation and execution algorithm are explicitly
put forth in non-soccer specific terms. The plan generation algorithm
uses an evaluation function based on specific soccer knowledge, but the
general hill-climbing strategy should be applicable elsewhere.

A coach using the techniques presented in this article was part of
a team that competed in the RoboCup competitions in 2000, 2001,
2003, and 2004. The coach created a variety of setplay plans, adaptively
responding to completely unknown opponent teams. The design of the
coach competition, inevitably carried out in limited time, did not allow
for the gathering of statistically significant results.! We present con-
trolled empirical results explaining and demonstrating the effectiveness
of our approach.

In summary, the contributions of this work are:

— A coach that plans for a team of agents in a continuous environ-
ment based on online recognition of a model of opponent agent
behavior, given a predefined set of opponent models.

— A plan representation and an execution algorithm for distributed
execution that use temporal constraints to express coordination
and facilitate failure detection. The representation and execution
algorithm are general beyond the robot soccer domain.

— An empirical validation of the fully implemented system in a com-
plex simulated robot soccer domain.

The article is organized as follows. Section 2 briefly describes the
simulated robot soccer environment used as a testbed for this work.
Section 3 describes our novel multi-agent plan representation and the
algorithm used to execute plans. Section 4 describes how our coach
agent generates plans using models of the movements of the opponent
team, which are described in Section 5. Section 6 presents several em-
pirical results and Section 7 presents related work. Finally, Section 8
concludes and gives directions for future work.

! Our coach placed first in 2001 and Riley et al. (2002) provides a systematic and
in-depth set of experiments analyzing and validating this result. Kuhlmann et al.
(2005) provide a similar set of experiments for 2003.
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2. The Environment

All agents described in this article are fully implemented in the Soccer
Server System (Noda et al., 1998) as used in the RoboCup research ini-
tiative (Kitano et al., 1997). The Soccer Server System is a server-client
system that simulates a soccer game between distributed agents. Clients
communicate using a standard network protocol with well-defined ac-
tions. The server keeps track of the current state of the objects in the
world, executes the actions requested by the clients, and periodically
sends each agent noisy, incomplete information about the world. Agents
receive noisy information about the direction and distance of objects on
the field (the ball, players, goals, etc.); information is provided only for
objects in the field of vision of the agent. Figure 1 shows a screenshot.

Figure 1. Screen shot of the Soccer Server System. The agents are represented as
circles, with the light colored portion indicating which direction they are facing.
Agents on the two teams are distinguished by the colors, with the light colored
agents on one team and the dark colored agents on the other. The ball is the white
object above and to the left of center. The coach agents are not depicted.

The agents must communicate with the server at the level of pa-
rameterized actions like turn, dash, and kick. Higher level actions, such
as passing and going to a position on the field, must be implemented
by combining the lower-level actions that the server understands. For
example, moving to a location requires a combination of turning and
dashing actions, and kicking the ball in a direction is usually a combi-
nation of a number of small kicks and player movements to accelerate
the ball in the correct direction. This process, in combination with
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the perception and action noise of the environment, results in noisy
execution of the higher level actions. In particular, there is noise in the
exact result of the action and the time taken to execute it.

There are eleven independent players on each side as well as a coach
agent who has a global view of the world, but whose only action is to
send short messages to the players. The coach does not get information
about the percepts received by the players or the actions that they have
tried to execute.

Actions must be selected in real-time, with each of the agents having
an opportunity to act 10 times a second. Each of these action oppor-
tunities is known as a “cycle.” Visual information is sent 6 or 7 times
per second. Over a standard 10 minute game, this gives 6000 action
opportunities and 4000 receipts of visual information.

The agents can communicate, but the communication is of limited
bandwidth and unreliable. Furthermore, only agents within 50m (ap-
proximately half the length of the field) of the player who is talking will
be able to hear the message. The coach is able to communicate with
all of the players on the field regardless of their location. However,
the coach is allowed only occasional communication with the players,
namely when the play is stopped (due to an out of bounds call, kick-off,
etc.) or every 30 seconds, whichever is sooner. The coach’s utterances
can not be heard by the opponent.

A few additional points should be noted:

— The world can change very quickly. Based on the maximum agent
speeds and size of the field, we calculate that in about 15 seconds,
the world could transition to almost any state.?

— The score and global clock are the only shared state features. For
all other information, the agents must rely on their own local view
and communication from teammates. Because of noise in sensa-
tions, the agents’ beliefs about the locations of objects in the world
can be inconsistent.

— There is an active and intelligent opponent team.

We used server versions 6.07 and 7.10 for the experiments. Technical
details about the Soccer Server System can be found at Chen et al.
(2001).

2 Agents can move at about 10m/second and the field diagonal is about 123m,
plus some time to manipulate the ball if necessary.
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3. Multi-Agent Plans

In this article, we contribute a multi-agent plan representation and
execution algorithm for distributed agents. This section covers these in
detail.

Our coach agent generates movement plans for its teammates and
the ball. The coach is a centralized planner, but the execution must be
done in a fully distributed fashion. Therefore, the coach must encode
sufficient information into the plan to allow the agents to coordinate
and identify failures during execution.

The domain-independent portions of the plan representation and
execution process are described in this section, as well as their use in
the simulated robot soccer environment.

In order to clarify the discussions of simulated robot soccer, we
first illustrate what an execution of a setplay plan looks like. Figure 2
shows the movements of the ball and players over time. Teammate 1
starts with possession of the ball. Teammate 1 passes to teammate 2,
which moves to receive it. Simultaneously, teammate 3 moves forward.
Teammate 2 then passes to teammate 3. Note that agent actions are
going on in parallel and that some actions (like the passes) require
coordinated efforts of more than one agent. The plan in Figure 2 will
be used to illustrate the plan representation and execution algorithm
in the following sections.
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Figure 2. An example plan. The arrows indicate movement of the ball or a player.

The following notation will be used in the remainder of the article.
Sets will be typeset in script, e.g. £, N, X. The notation F* is used
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to denote F x ... x F, the set of sequences of ¢ elements of F. F*
will denote U;enF’. Functions will be typeset in capital letters and in
italics, e.g. F', L. For elements of a set given by Cartesian products, []
will be used to specify components. For example, if © € A x B, then
z[1] is the A component and z[2] is the B component.

3.1. PLAN REPRESENTATION: MASTN

We introduce Multi-Agent Simple Temporal Networks (MASTNs) as
a plan representation for distributed execution. MASTNs are a refine-
ment of Simple Temporal Networks as introduced by Dechter et al.
(1991). The refinements allow us to the define the execution algo-
rithm discussed in Section 3.3. Taken together, the representation and
execution algorithm are a novel scientific contribution.

We will first present Simple Temporal Networks, then introduce
our refinements to make Multi-Agent Simple Temporal Networks. Our
formal presentation is a combination of the notations of Dechter et al.
(1991) and Morris and Muscettola (2000).

A Simple Temporal Network is a tuple (V, £, L) where

V is a set of nodes. Each node represents an event that occurs at a
point in time. Activities with duration must be broken up into
two events, one representing the beginning and one representing
the end of the activity.

ECV xVis a set of directed edges between the nodes. Each edge
represents a temporal constraint between nodes.

L: £ —- (RU—o0) x (RUoo) is the labeling function on the edges. The
label represents a temporal constraint between the events. For ex-
ample, if (a,b) € £ and L(a,b) = (x,y), then event b is constrained
to occur at least x time units after a, but no more than y. Note
that x and y could be negative (indicating that b should occur
before a) or negative or positive infinity respectively.

STNs are a representation of a subclass of temporal constraint sat-
isfaction problems. A user of an STN often wants to answer questions
like “Is there any set of times at which my events can occur such that
no constraints are violated?” or “At what time should each event be
executed so that no constraint is violated?” Unlike more general tem-
poral constraint satisfaction problems, these questions can be answered
in polynomial time for STNs.

We now define Multi-Agent Simple Temporal Networks (MASTNs).
We assume we are given the following:
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A A set of identifiers for the agents.

T A set of node types. Nodes represent events that are brought about
by the agents, so this set is similar to the set of actions available in
traditional planning problems. The nodes can be parameterized.
For example, in the classic blocks world there would be node types
for “PickUp(RedBlock)”, “PickUp(GreenBlock)”, etc. Node types
do not include information on which agent performs the event.
Agents will be associated with nodes in the representation of a
particular plan.

We then define the set of all possible nodes (i.e. events) N as
T x P(A) x N*. The P(A) represents the set of agents responsible for
bringing about this event. The N* element is used to provide pointers
to other nodes (described below). The pointers allow some information
to be specified in only one plan node rather than being duplicated.

An MASTN plan is then a tuple (V, £, L, O). These elements are:

VCN =T xP(A) x N The set of nodes of the plan. Note that each
node contains more information than in a normal STN, which
considers each node as a black box.

E CV x V The set of edges, just as in an STN.

L: £ - (RU ~o0) x (RUoo) The labeling function on the edges, with
the same meaning as in an STN.

0: V = N An ordering function on the nodes. In other words, for vy, vy €
V, O(v1) < O(vy) means that v; comes before vo. This ordering
function is used as the address space of the node pointers and to
allow the agent to break ties when the temporal constraints allow
multiple events to be executed. The details of this tie-breaking are
discussed in Section 3.3. O is not a full temporal ordering of the
nodes.

The authors are not aware of any other work where STNs are used
as a basis for a multi-agent plan representation for distributed execu-
tion. In particular, by “distributed execution” we mean that each agent
maintains its own perception of the current state of plan; there is no as-
sumption of shared global sensations or plan state. Temporal networks
have several properties which are useful in a multi-agent context:

— The network represents the parallelism of agents’ actions. The tem-

poral constraints express some basic needed coordination between
the agents.
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— Temporal constraints can be used to help agents detect failures in
the plan. Constraints can naturally catch violations of limits on
the extent of events or if an agent fails to take appropriate action
at the correct time.

— If an event e is not ready to execute because of temporal con-
straints, the network represents which event(s) are preventing e
from being ready. If an agent is responsible for executing e, the
agent can determine where in the world to look to observe the
future execution of the event which is preventing e from being
ready.

We introduce MASTNSs as a way to take advantage of these properties
for multi-agent plan execution.

3.2. MASTNs IN ROBOT SOCCER

This section demonstrates how the MASTN representation is applied
to simulated robot soccer. We have to instantiate the domain specific
values A and 7. Let £ be the set of locations on the field.

— A is the set of numbers 1 through 11. Each agent is identified with
a unique number.

— T is the set of node types, some of which have parameters. For
example, if a node type ¢ has a parameter of type L, then Vz €
L,(t,z) € T. In particular, this means that all parameters are
bound and fixed for a plan; the values of parameters to nodes do
not change during plan execution.

Initial Position This node represents the event of all agents ar-
riving at their initial position for the player and the play
starting. This node has a parameter which is an element of
the set of partial functions from A — L, mapping agents
to their initial locations. This node is also the root node for
execution, called “the beginning of the world” by Dechter
et al. (1991).

Start Goto This node represents the beginning of the activity of
a given agent going to a location on the field. This node takes
a parameter (which is an element of £) indicating where to
go.

End Goto This node represents the conclusion of the move begun

by the “Start Goto”. The node pointer element is used to
specify the associated Start Goto node.
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Start Pass This node represents the beginning of a pass activity,
where one agent kicks the ball to a location on the field. This
node takes a parameter which is an element of £ indicating
where to pass. While another agent should receive the pass,
that information is not explicitly represented in this node.

End Pass A pass is represented with three nodes: a Start Pass
(for the kicker to start the ball), a Start Goto (for an agent
to start moving to receive the pass), and an End Pass which
represents the conclusion of both of those activities. The node
pointers are used to specify the related nodes.

Clear Ball This node represents an agent kicking the ball to a
location. This node takes a parameter which is an element of
L indicating where to kick the ball. This differs from a “Start
Pass” node because no particular agent is expected to get
the ball. There is no associated end node, because the plan is
always complete after a “Clear Ball” node executes.

An example plan is graphically shown in Figure 3. A successful
execution of this plan is depicted in Figure 2. The top three nodes
represent the first pass from player 1 to player 2. The bottom two
nodes represent the simultaneous movement of player 3. The last three
nodes (in the middle right of the figure) represent the pass from player 2
to player 3.

3.3. PLAN EXECUTION

Plan execution is done in a fully distributed fashion. This means that
each agent maintains its own data structures describing the state of
the plan and independently decides what actions to take. However,
it is assumed that every agent can get some knowledge of the events
in the plan being executed (either by communication or observation),
though it is not required that agents agree exactly on the timing and
sequencing of events. In domains with limited observability or latency
in the communication between agents, exact agreement is difficult to
obtain. Therefore, flexibility in agent agreement is important. In the
simulated soccer environment, the agents do have a shared global clock.
In general, however, the agents do not have to agree on the exact time
as long as each one can measure the progress of time accurately. In
other words, as long as each agent can measure how long a second is
accurately, it does not matter if all their watches agree.

Throughout, we will talk about “executing” a node. This means
that the agent is taking individual actions to accomplish the event
represented by the node. As discussed in Section 2, an agent is not able
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Initial

Position

1->(5,32)
2->(10,10)

Goto
[0,00]\3(15,-24) [0,15]

Figure 8. An example MASTN. The nodes represent events and the edges represent
temporal constraints. The agent responsible for bringing about the occurrence of the
event is shown inside each node. The numbers in parentheses are vectors representing
locations on the field (elements of £). These vectors are the parameters to the various
node types. The node pointers are not explicitly represented in this picture. This
plan corresponds to the execution depicted in Figure 2.

to precisely control when an event will occur, even when the agent is
the one executing the node. Further, we assume that each agent can
only execute one node at a time. That is, all of the parallelism in the
plan takes place by multiple agents performing actions simultaneously.

In addition to executing various behaviors, the agents will be mon-
itoring the execution of actions that other agents are supposed to
perform. If an agent is slow or failing to execute its action, any agents
that are temporally constrained by that undone action will wait for it
to be done. Note that currently the agents do not take over actions if
the currently assigned agent fails to execute it.

Muscettola et al. (1998) have described a “dispatching execution”
algorithm for STN execution. This method allows easy and efficient
propagation of temporal constraints through the network at the cost
of adding edges. The first step is to construct the all-pairs closure of
the STN (i.e. make an edge from every node a to every other node
b whose length is the shortest path from a to b). Muscettola et al.
describe a method to then prune some of those edges to reduce the time
requirements of plan execution, which is important for STNs consisting
of thousands of nodes. However, since we are working with networks of
tens of nodes instead of thousands, we do not prune any edges. We then
use the dispatching execution algorithms as subroutines to propagate
temporal constraints and identify violations.
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Figure 4 shows the full execution algorithm. The algorithm calls
some domain specific functions whose purpose will be discussed as the
algorithm is covered in detail.

1 initialize(p: plan)

2 Vn € p.V

3 exectime(n) = ()

4 window(n) = (—00,00)

) construct all-pairs network for p
6 execute(p: plan, ¢: time, a: agent)

7 if global-monitor() = fail

8 return abort

9 Vn € p.V

10 if (exectime(n) = (Z] and node-completed(n))
11 exectime(n) =

12 propagate-constraints ()

13 Vn € p.V

14 if (constraints-violated)

15 return abort

16 // F is the set of nodes to still execute for this agent
17 F = {n € p.V | exectime(n) = () and a € n.agents}
18  if (F=0)

19 return plan-completed

20 // mynode is the next node for this agent to execute
21 mynode = argmin,,c z p.0O(n)

22 if (not node-precondition(mynode))

23 return abort

24 if (¢ < window(mynode)[1])

25 holdingnodes = {n € V | exectime(n)=0 and

26 (n, mynode) € p.£ and
27 p.L(n, mynode)[1] >0 }
28 if (holdingnodes = ()

29 return in-progress // agent waits for time to pass
30 else

31 look-at(holdingnodes)

32 return in-progress

33 execute-node(mynode)

34 return in-progress

Figure 4. Plan execution algorithm for an individual agent. “exectime” and “win-
dow” are data structures maintained during execution. Functions in italics must be
provided by the user of this algorithm.
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The “initialize” function initializes the data structures for the given
plan. In particular, the temporal constraints are set up for the dispatch-
ing execution algorithm. Then, at each time step, each agent should
run the “execute” function. The execution will result in some action to
take for this time step. At the next time step, the “execute” function is
run again. Over time, an agent will work to execute various nodes (by
taking one of more actions to accomplish each one) in the plan; it may
take more than one action/time step to complete execution of a given
node. During a successful execution, nodes in the plan will be marked
as completed as the plan progresses.

First in the plan execution function is a call to global-monitor.
This domain specific function should implement monitoring conditions
which apply to the whole plan. Returning “fail” indicates that the
plan should be aborted. In the soccer environment, we have global
monitoring conditions to catch situations like the ball going out of
bounds or the opponent intercepting the ball.

Next, in lines 9-11, the nodes in the plan that have not been marked
as executed are checked. The domain specific function node-completed
must be provided to identify when a node has been executed. This
decision can be based on perceptions or communication. In general,
this decision will depend on the type of node 7 and the agents tasked
with executing the node.

The functions propagate-constraints and constraints-violated are pro-
vided by the dispatching execution algorithm (Muscettola et al., 1998).
The function propagate-constraints will update the “window” data
structure with allowable times for the nodes to execute and constraints-
violated will indicate whether any temporal constraints have been vio-
lated.

The next section of the execute function (lines 16-21) identifies the
next node for the agent to execute. The ordering function determines
which node should be executed next, from the set of uncompleted nodes
that this agent is responsible for.

Once the next node to execute is found, preconditions of that node
can be checked (lines 22 23). For example, in the soccer environment,
a Start Pass node requires that the agent believes the teammate in-
tended to receive the ball will be able to get it. This decision is based
on a learned decision tree (Stone, 2000) or other analytic methods
(McAllester and Stone, 2001).

If the temporal constraints do not allow the current node to execute
(line 24), then there are two cases. If there are no unexecuted nodes
which must execute before this one, then the agent just waits for time
to pass (lines 28 29). If there is such a node, the domain specific look-at
function is called to tell the agent to watch for the execution of that
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node (lines 30-32). In the soccer environment, this is done by having the
agent face the point where the execution of that node should occur. In
general, this could be done with a communication request or any other
observational means.

Otherwise, the agent works towards executing the next node (lines
33 34). Note that the execution of a node may take more than one
step and the agent is not required to precisely control when the node
executes. These criteria allow more freedom in how the execution of
nodes is carried out. For the soccer environment, execute-node is written
using the reactive CMUnited99 (Stone et al., 2000) layer to get robust
performance of such commands as “get the ball” or “kick the ball hard
in direction z.”

This algorithm is run by each agent in parallel every step. Each
agent maintains its own perception of the state of the plan; there is no
centralized control instructing agents when to perform actions. While
STNs used in scheduling tasks can provide coordination of agents, the
agents usually have access to shared global state or a shared controller,
neither of which we have here. We allow the agents’ perceptions of
the execution state to differ as long as the difference does not cause a
violation of the temporal constraints.

For example, since the agents in the soccer domain use noisy, limited
observations to determine when a pass has started, the agents will in
general not agree on the exact time that the pass started. Noise can
make the ball appear to move when it hasn’t or the agent may not be
looking at the ball when the pass starts. Even if none of the agents
agree on the exact time, the plan execution may still be successful as
long as the temporal constraints are not violated.

It is difficult to make precise statements about how much the agents’
perceptions of the world are allowed to differ. The difference allowed
will depend on the how much flexibility there is in the plan. Plans could
be constructed such that there is exactly one time at which each event
could execute, giving no flexibility in agents’ perceptions. The plans
generated here do allow for differences in agent perception and it is an
open question how much flexibility is allowed in typical plans for the
soccer domain or for other interesting domains.

3.4. PLAN EXECUTION EXAMPLE

We will now illustrate an execution of the plan shown in Figures 2 and 3.
This section will not attempt to cover all the steps of the algorithm
described in Section 3.3. Rather, some of the important points relating
to distributed execution will be highlighted.
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Figure 5 shows each agent’s perception of when the events in the plan
occur. The shaded events are events for which that agent is responsible.
Each agent is responsible for its position in the Initial Position event.
After that, agent 3 starts going to its next position. Simultaneously,
agent 1 starts the pass to agent 2 (SP1 — 2) and agent 1’s role in the
plan is complete. As shown by the shading, agent 1 no longer tracks
the execution of the plan. Some time later, agent 2 realizes that the
pass has begun and starts to go to the reception point for the pass
(SG2). Meanwhile, agent 3 completes going to the intermediate point
(EG3). Once the first pass is complete (EP1 — 2), agent 2 passes to
agent 3 (SP2 — 3). Agent 2’s role is then complete. Agent 3 then
proceeds to get the ball to complete the pass (SG3 and EP2 — 3).
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Time
Figure 5. Example execution of a plan. This is an execution of the plan in Figure 3
and illustrated in Figures 2. Each agent (shown on the rows) has its own perception
of when events occur; the time an agent perceives an event to occur is shown by the
event’s horizontal location. The shaded events in each row are the events which that
agent is responsible for bringing about. IP stands for Initial Position, SP for Start
Pass, EP for End Pass, SG for Start Goto, and EG for End Goto.

Note that the agents perceive events’ execution times to be different
and that they do not even always agree on the ordering (e.g. SG2 and
EG3). However, each agent’s perception of the order of events must
obey the temporal constraints in the STN (Figure 3). Also, at every
point, each agent will verify global and local constraints and abort
the plan if the verification fails. For example, if an opponent agent
intercepts the first pass, the agents will stop the plan, communicating
their perception of the need for termination.

4. Plan Creation
Given the MASTN plan representation described in Section 3, it is still
a significant challenge to generate these plans, especially accounting

for the predicted behavior of the adversary. We divide the process of
plan creation into four steps. The particular implementations of these
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steps rely on soccer specific knowledge, but this general breakdown
would likely be useful in other domains. The Waypoint Planning stage
is described in Section 4.1 and the Role Making, MASTN Compilation,
and Agent Instantiation steps are described in Section 4.2.

4.1. WAYPOINT PLANNING

In order to plan the waypoints, we use models of opponent movement.
Section 5 fully describes these models, but for the purposes of this
section, just consider waypoint planning as a path planning problem
with straight-line segments and dynamic, probabilistic obstacles (the
obstacles are the opponents). Unlike many path planning problems, the
obstacles are not fixed regions in known locations. Rather, we have a
probability distribution over each obstacle’s locations over time.

The opponent models which describe the movement of the obsta-
cles take into account the current positions of the opponents and the
predicted actions (i.e. the waypoints) to produce the predicted move-
ments of the opponents. The exact positions of our teammates will be
determined from the waypoints, but those positions are not explicitly
part of the opponent model. Further, the waypoint planning ignores the
current positions of the teammates since it is assumed that the team
can move into the starting positions before the plan begins.

The problem addressed here is significantly different from a tradi-
tional shortest-path planning problem. Selecting a path in this envi-
ronment inherently involves tradeoffs. There may be one path that is
extremely long and goes through an obstacle with very low probability,
and another path that is much shorter but has a higher probability of
going through an obstacle. To decide which path is better requires a
tradeoff in the length and safety of the path. Further, we do not have
a single goal position, but rather a ranking of the possible positions.
That is, not every setplay will result in a goal being scored, but some
final positions from the setplay are better than others.

These constraints make it difficult to apply many of the traditional
path planning methods, such as those described in Latombe (1991).
Planning methods that deal with uncertainty do not usually handle
obstacles whose location is only probabilistic. Rather, they are more
focused on dealing with noisy execution when following the path, or
expect replanning to be available. Approaches that deal with moving
obstacles do not address uncertainty in obstacle location.

The D* algorithm, developed by Stentz (1994), was also considered.
However, D* is mostly useful for replanning when obstacles are ob-
served to move, not handling the up-front probabilistic movements we
model here. We wanted our coach to come up with a complete plan, not
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rely on the distributed, executing agents to replan. Replanning would
be difficult in this case both because of the partial observability of the
executing agents and the unreliable communication.

In order to plan in this challenging domain, we decided to directly
specify an evaluation function for paths and use hillclimbing on a set
of paths to find a locally optimal path. The evaluation function for the
paths will include the processing of the probabilistic opponent model.

Our evaluation function meets the basic requirement of hillclimbing
that nearby paths have similar evaluations. Also, our plan space is
about 10'® so we can not cover a large proportion of the space in the
few seconds available for planning.? Note that the coach can not plan
until the ball actually goes out of bounds because the plan evaluation
depends on the current location of the ball and opponents.

We first describe the hillclimbing algorithm and then describe the
evaluation function. Our path planning algorithm is shown in Figure 6.
Note that sometimes (decided by the variable A) we move only a single
point in a hillclimbing step and sometimes we move the entire tail of a
path. By varying the neighborhood considered, the hillclimbing should
be able to escape more local minima.

S := Set of starting paths
while (there is time left)
Uniformly randomly remove a path p from S
Uniformly randomly pick a point z on p
Uniformly randomly set A to true or false
bestp =p
V small displacement vector v
Make path p’ by moving z by v
If (A)
In p', move all points after z by v
If eval(p') > eval(bestp)
bestp = p'
Insert bestp into S
If (time left < half of original time)
Remove all but current best path from S

Figure 6. Hillclimbing algorithm for waypoint planning

Note that the hillclimbing runs for a fixed amount of time. By the
standard simulated soccer rules, the team has 20 seconds from the time

3 The plan space size was estimated as follows. The field was discretized to 1m.
Passes were considered between 8m and 38m and sends between 38m and 55m. A
plan could be up to four segments with the last possibly being a clear.
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play is stopped to begin the setplay. The coach plans for 5 seconds,
almost all of which is used for hillclimbing. Communicating the plan
usually takes 2 to 4 messages, and a message can be sent every 100ms.
Halfway through the 5 seconds of hillclimbing, the set S is reduced to
just the path with the current best evaluation. This allows the second
half of the hillclimbing to focus on improving a single path as much as
possible.

The set of starting paths are preset and depend on the location of
the ball. This dependence is necessary because different types of plans
make sense for different situations such as whether the ball is in the
middle or side of the field, whether the ball is near our goal, whether
this is a corner kick, etc. Since only a small part of the plan space can
be explored by hillclimbing, setting good planning seeds can greatly
help in finding a high-quality plan. Figure 7 gives an example of the
hillclimbing seeds for one setplay situation.

1 ¢ [ b Mo

o (0] ¢ (U] ¢ [

———

Figure 7. Example hillclimbing seeds. These are the seeds for a goal kick from the
bottom side. The longer, darker arrows are clears and the shorter, lighter ones are
passes.

The set of starting paths is a natural point for inserting domain
knowledge into the system. In particular, for the soccer environment we
can give the basic shapes of paths, such as passing to the outside then
clearing from a free kick. If there is no domain expert to provide this
knowledge, random starting paths or paths taken from past executions
could be used.

The crucial part of hillclimbing is the evaluation function (eval in
Figure 6). While the particular evaluation function chosen here is spe-
cific to the soccer domain, the general idea of hillclimbing in plan space
with a domain specific evaluation is applicable to other domains. We
use the following weighted factors:

— Player control at end
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If the last segment of the path is a pass, we are in control of the
ball at the end of the play (this has value 1.0). If the last segment
of the plan is a clear (kicking the ball down field with no specific
agent designated to get the ball), this has value 0.0. That is, it is
better that our team ends up with control of the ball rather than
just kicking it down the field.

Ball’s end location

The value of the ball’s end location also depends on whether we
are in control of the ball at the end of the play. In other words,
the value of a position of the ball varies based on whether we
have a teammate in control of it. Getting the ball near the goal
and the opponent’s baseline has high value, and just getting the
ball further down field is also of high value. The functions are
shown graphically in Figure 8. The functions for a pass and a clear
are almost identical except for two things. First, the clear figure
has less value inside the penalty box (if the ball is kicked into
the penalty box with no one nearby, the goalie will just grab it).
Second, the clear has additional value near the top of the penalty
box because it may induce the goalie to move out of the goal, giving
a good shot if the ball can be retrieved and passed to an agent on
one of the sides. Readers interested in the exact definition of the
evaluation function should see the article’s online appendix.*

D O W L

Figure 8. Evaluation function for the final location of the ball. Darker is a higher
evaluation. The left figure is for a pass (where we control the ball) and the right is
for a clear (where the ball is kicked to no particular agent at the end of the play).

Length of plan

Since every action has some probability of failure, long plans gener-
ally have a lower chance of succeeding than shorter ones. However,
short plans add less to the team behavior simply because they have

* http://www.cs.cmu.edu/ pfr/appendices/2004jaamas.html
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less time to affect the behavior. This factor makes this tradeoff
explicit. Therefore, plans with length 3 (i.e. 3 passes or 2 passes and
a clear) have the highest value and the value degrades from there.
The values here are heuristic and chosen based on experience with
this simulated robot soccer domain. The exact values are shown
in Table 1.

Table 1. Evaluation values for the
”length of path” component

Length 1 2 3 4 5

Value 04 08 10 05 0.2

Average path safety and minimum path safety

These are two different measures of the safety of the path. The
safety of each segment in the path is first evaluated and then the
average and minimum of those values is computed. A high value
here represents greater safety.

We use the means of the distributions of the opponents to estimate
the probability of a pass’s success. This method, introduced by
McAllester and Stone (2001), is used during normal game play to
evaluate many different passing options. It was designed to be run
extremely quickly, improving the speed of the hillclimbing steps.
The average safety is the average pass success probability while
the minimum value is the minimum pass success probability.

The factors are then added together with the weights shown in

Table II. The weights were obtained through hand tuning after the
system was implemented.

Table II. Weights for combining
the factors for the hillclimbing
evaluation function

Factor Weight
Player control at end 0.22
Ball’s end location 0.2
Length of path 0.1
Average path safety 0.33
Minimum path safety 0.33
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Hillclimbing has a good anytime characteristic in that as soon as our
time for planning is up, we have a plan ready to return (namely the
best one so far). It also allows easy application of domain knowledge
by giving intelligent seeds. Unfortunately, hillclimbing is also somewhat
time consuming and likely will not return the optimal answer, either
because of lack of time or a local maximum.

4.2. WAYPOINTS TO COMPLETE PLAN

Given a target path for the ball, the coach constructs an MASTN in
three phases:

Role Making A separate role in the plan is created for executing each
needed pass (i.e. each intersection of straight line segments). A role
consists of all of the locations that the agent will need to move
to and where it will kick the ball. This process creates the set
of nodes V and the ordering function O. In particular, nodes of
the correct types and their associated parameters and pointers are
created. The agent values (members of A) are temporary, to be
replaced by the correct agents later in the process. Some domain
specific requirements for the soccer environment, in particular for
the offsides rule®, are handled here.

MASTN Compilation The step adds the edges (£) and their tem-
poral constraint labels (L). Domain specific knowledge such as the
speed of running and kicking and their normal variations is used
to establish the time bounds for execution between the various
events.

Agent Instantiation This step assigns specific agents to the roles in
the plan. Role allocation is an important problem in multi-agent
systems (e.g., Weiss, 1999). However, for this system, we use a
simple domain specific algorithm. The assignment is done using
the current formation of the team and a greedy matching algo-
rithm between the agents’ home positions and the plan’s starting
positions.

If the coach knows the current formation, the coach can per-
form this step. However, this can also be done by the players, as
long as their formation information is consistent. For the players,
formation information and consistency is obtained through the

® The offsides rule in soccer (and modeled in the Soccer Server) means that a
player on one team can not be closer to the opponent goal than the last defender
when the ball is kicked. For the planning, the offsides rule means that the agents
must be aware of when a pass starts in order to stay onsides correctly.
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Locker Room Agreement (Stone and Veloso, 1999). The Locker
Room Agreement is a set of preset knowledge that allows the
agents to agree on some aspects of play and strategy changes based
on any shared state features (e.g. the game time).

5. Opponent Models

This section describes the opponent model representation and the algo-
rithm used for selecting a model from a given set. In order to perform
the planning described in Section 4, we use a model of the opponents’
movements, specifically to compute the path “safety” (in terms of the
ball being intercepted by the opposing team) in the evaluation function.

Throughout, we will not be reasoning about any modeling that the
opponents do of our team. This choice is primarily for computational
tractability and simplicity; handling recursive agent modeling can be
quite challenging (Gmytrasiewicz and Durfee, 1995) and is outside the
scope of this work. Also, the amount of data we have to work with
about a particular opponent is quite small. If we considered richer
opponent models involving recursive modeling, we may need more data
to correctly recognize the models.

Because of the short time span of a simulated soccer game, we
decided to begin a game with a fixed set of models and choose be-
tween them during the game. Selecting a model should require fewer
observations than trying to create a model from scratch.

The opponent models we present will specifically model opponent
movement and position in a two dimensional plane, though the rep-
resentation and algorithms should easily extend to higher-dimensional
metric spaces. We use the models to evaluate the quality of various
possible planned actions, but the same models would be useful for any
application where prediction of opponent movement would be useful.

These models are not intended to capture the full strategy or move-
ments of the opponents. Rather, the models only need to capture the
way the opponents move in the two to twenty seconds after the game
has stopped, while the setplay is actually going on.

Two assumptions related to the opponents should be noted. First,
for best effectiveness, these models should have good predictive power
with respect to the set of opponents expected. We assume that the
variation in opponents can be approximately expressed in a reasonably
sized set of models from which to choose.

Second, the output of an opponent model does not ezplicitly depend
upon the positions of our players. However, the output does depend on
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the anticipated path of the ball, which the position of our teammates
also depends on. The choice is made for computational simplicity, espe-
cially in the context of the plan generation discussed in Section 4. No
fundamental reason would prevent a model from taking our teammates’
positions into account and this is a direction for future work.

We will present the model representation and selection algorithm in
general form in Sections 5.1 and 5.2 and then discuss their use in robot
soccer in Section 5.3.

5.1. MODEL REPRESENTATION

Opponent models often have the general form of a function from state
to actions (perhaps a probability distribution over actions), which are
intended to predict the actions the opponents will take (e.g., Carmel
and Markovitch, 1998). We will follow this same basic strategy, but
predict the resulting state of the opponents rather than the actions
taken to get there. We also consider predicting the behavior of a team
of agents, rather than a single agent.

Let p be the number of players on a team. For notational simplicity,
we will assume our team and the opponent team have the same number
of players, but this is not essential to our formulation. We assume that
states of the world can be decomposed into three components:

8P This sequence of p elements represents the state of each of our team
members. In other words, each agent’s state can be represented as
an element of St.

S?, The states of the p members of the opponent team.
Sw The states of the world not represented by S or SP.

This state decomposition into world and agents’ states is similar to that
used by Xuan et al. (2001) to model communication between agents.
The decomposition will be used to identify exactly what part of the
total state our agent models will take as input and what part of the
total state the models will predict. For example, if you had a world
described by a sequence of state variables, the decomposition above
would correspond to assigning each of the state variables to a particular
agent or the world in general. In many such state variable descriptions,
this would be a very easy and natural assignment.

Let Ro represent the set of probability distributions over Sp and
let A represents the set of sequences of possible actions (including
durations, if applicable) our team can take. Conditional plans, where
the next action depends on the observed state, are not considered here.
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An opponent model is then a function that probabilistically predicts
the opponents’ future states based on the world state, opponent states,
and planned actions of our team. In other words, we define a model M
as a function:

M: Sw x S x A— R, (1)

Note that our team’s state S is not part of the inputs to the model.
However, the team’s state is constrained by the team’s actions (an
element of A4), so some information about the team state is implicitly
available to the model. The choice to remove the explicit dependence
on &% is made for computational simplicity. On the other hand, each
opponent player’s final state distribution may depend on the starting
states of all the opponent players.

An opponent model of this form can be used to calculate the prob-
ability of an opponent ending in a particular state. In particular, given
a world state w € Sy, opponent states s; € So (Vi € [1,p]), and a
planned team action a € A, an opponent model M says that the
probability for player j being in ending state e; € Sp is

]Dj[6j|’w,5],... 75p’a’M] = M(w,s],...,sp,a)[j}(ej) (2)

We use P; to represent the probability over ending opponent states for
opponent j. Notationally, we also consider probability distributions to
be functions from the input set to the real numbers.

In contrast to opponent models for game tree search (e.g., Carmel
and Markovitch, 1996), our opponent models are predicting not just
one action response of an opponent, but the result of a series of inter-
leaved team and opponent actions. Our model is explicitly operating on
abstract temporal and action levels, making our model more applicable
to environments with continuous or many discrete action opportunities.

5.2. MODEL SELECTION

Given the description of the opponent models, we can now describe the
algorithm for selecting the best matching model. Given the assumption
that the opponent has chosen one of our models at the beginning of
the game and is then independently generating observations from that
model, we can use a naive Bayes classifier.

We maintain a probability distribution over the models. The original
distribution (the prior) is set by hand. Then, whenever a planning
stage is entered, the model with the highest probability is used. When
observing a plan execution, we use observations of that execution to
update our probability distribution over the models.

We start with a probability distribution over the set of models
{M,...,M,,} and then observe. An observation is a tuple of starting
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world state w € Sy, starting states for all the opponent players s € S?),
a planned team action a € A, and ending states for all opponent players
e:= (e1,...,ep) € 8. We want to use that observation to calculate
a new probability distribution, the posterior. That distribution then
becomes the prior for the next observation update.

Consider one updating cycle with an observation o = (w, s, a, e). We
want P[M;|o] for each model M;. Using Bayes’ rule we get

P[M;|o] = PLOIMPIM:] [O'Aﬁﬁ [Mi] (3)

We make the following assumptions in order to simplify equation (3).

1. The players movements are independent. That is, the model may
generate a probability distribution for player x’s ending state based
on everyone’s starting states. However, what the actual observation
is for player = (assumed to be sampled from this probability dis-
tribution) is independent from the actual observations of the other
players.

2. The probabilities of a particular set of starting states and planned
action are independent of the opponent model. This assumption is
questionable since the planned agent actions may depend on the
opponent model determined to be the most likely. However, results
in Section 6.2 demonstrate we still are able to recognize models

correctly.

P[M;|o] = PlosadMIpa;) - (from eq. (3))
— P[“ »9s ,MAP[I,. > ‘MJ
— elw,s,a P[O} w,s,a P[MZ]

= Plelw, s, a, Mi]%P[Mi] (assump. 2)

= Plei|w, s, a, M;]Ples|w, s, a, M;] ... Ple,|w, s, a, M;]

v

~~

what opponent model calculates (eq. (2))
Plw, s, a
Plw, s, a] P[M;] (assump. 1) (4)

}TO] N——~

~———  prior

norm. constant

The term labeled “norm. constant” is a normalization constant.
That is, it does not depend on which model is being updated, so we
don’t have to explicitly calculate those terms. We calculate the remain-
ing terms and then normalize the result to a probability distribution.
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The preceding computation began with the assumption that the
opponent has chosen one of our models and was generating observations
from it. Of course, this is only an approximation. However, if one model
generally makes better predictions than the others, then that model will
be the most likely. Assuming one of the given models is correct is the
same type of assumption that is made in a number of statistical machine
learning problems. The question we are trying to answer is “Which
of the models from this set best explains opponent behavior?” This
parallels the question in most machine learning tasks with generative
models of “Which hypothesis from this set best predicts the data?”

In addition to the update above, we use weight sharing at the end of
each update cycle. A small probability mass (0.1) is added to the prob-
ability value for every model and then the distribution is renormalized.
This means that if there are m models, a probability p becomes:

p+0.1

- 5
1+0.1m (5)

Weight sharing prevents any model’s probability from going arbitrarily
close to 0, while not changing which model is most likely on any one
update. Weight sharing allows the update process to more quickly cap-
ture changes in the opponents behavior (if their behavior switches from
one model to another). For example, if the prior and an observation tell
us that one model has probability of 1, we still put a probability mass
of ﬁ on every other model, meaning that we still believe there is a
chance that the opponent team will, in the future, act as described by
the model.

Weight sharing also means that more recent observations are weighted
more heavily. Each step of weight sharing smooths out the probability
distribution. The perturbation caused by an observation (i.e. mak-
ing one or more models more likely based on what was observed) is
smoothed out by the weight sharing steps of other observation updates.
More recent observations have gone through less smoothing operations
and can therefore have an effect of larger magnitude.

If the opponent is changing or adapting, the coach may be able to
track the changes, depending on the speed of adaptation. Of course,
a team that knew exactly the algorithm we were using could still
conceivably adapt just faster than the coach could keep up with. Ap-
plying regret-minimization techniques such as Auer et al. (2002) is
an interesting future direction, but as far as the authors know, the
complexity of the environment prevents the direct application of any
known techniques.
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5.3. MODELS IN ROBOT SOCCER

Conceptually, we want an opponent model to represent how an oppo-
nent plays defense during setplays. We conjecture that a wide range of
decision making systems of the opponent can be roughly captured by a
small set of models, but we have not empirically verified this conjecture.

Remember that p is the number of players on a team. Let £ be the
set of positions on the field, discretized to 1m. The player state sets Sp
and Sp are both equal to L, representing to location of a player. The
world state Sy will also be equal L, representing the location of the
ball.

The planned ball movement will be the planned actions of our agents.
We represent the ball movement as a sequence of locations on the field
(an element of £*). The expected time for each ball movement, with
bounds for normal execution, can be calculated based on the empirically
determined environment and agent execution parameters, such as time
to kick the ball and speed of the ball when passed.

An opponent model is then trying to predict the future location
of each opponent will given the ball’s current location (w € L), the
opponents’ initial positions s € £LP, and a future path of the ball a € L*.
In other words, the model answers a question like “Given the positions
of the opponents and the ball, if the ball moves like this over the next
2 seconds, where will the opponents be at the end of those 2 seconds?”
Formally, we have:

M: L x L X L* — (Prob. Dist. over £)? (6)
~~ =~ y

~ ~

ball opponent planned predicted
position starting ball opponent
positions ~ movement positions

Equation (6) is an instantiation of Equation (1) for robot soccer. An
example application of a soccer opponent model is shown in Figure 9.
Here, the model predicts that both opponents move towards the final
location of the ball.

Thus far, we have described the format of the opponent model, i.e.
what must be computed, but not how this computation is done. For
the implemented system, all player distributions are represented as
Gaussians. The models are simply functions which manipulate these
distributions in the appropriate way. However, note that the selection
algorithm described in Section 5.2 does not depend on this representa-
tion.

As an example, one of the models we use has all opponent players
moving towards the ball. The function that represents the model ad-
justs the input distributions by moving the means towards the ball and
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Distributions output by nodel

.
Current
Opponent
Position
Current
Opponent
Position Ball Movement

Figure 9. An example application of an opponent model. The fuzzy areas represent
probability distributions for the two ending locations of the opponent players (shown
as dark circles) as the ball moves along a path indicated by the arrows.

increasing all the variances. Section 6.1 discusses the set of models we
use for the empirical validation in more detail.

In addition, a decision must be made about how to generate ob-
servations from the stream of data being received about the opponent
positions. Clearly, if an observation tuple is generated every cycle we
will be violating the independence assumption of the naive Bayes up-
date, as well as giving the models little information (in terms of the
ball movement) with which to work. On the other hand, the more
observations the coach gets, the easier it is to correctly identify the
correct model. To balance these competing factors, we decided to create
an observation every time the agent who is controlling the ball changes.
An agent is considered to be controlling the ball if (i) the agent is the
closest player to the ball and (ii) the agent can kick the ball. A given
observation can cover anywhere from approximately 5 to 50 cycles (one
half to five seconds) of movement.

6. Empirical Results

This section presents experiments exploring the effectiveness of the
planning approach and the use of opponent models.

6.1. GENERAL SETUP

For all empirical experiments, we first needed to create a set of opponent
models. In all of the models, the distribution of each player’s final
position is represented by a 2-dimensional Gaussian with equal variance
in all directions. The standard deviation is an affine function of time
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(since the beginning of the setplay). The mean is computed as discussed
below.

We created five models for the empirical evaluation. This set of
models represent fairly distinct styles of movements by the opponents.
The mean of each player’s final distribution is computed relative to the
initial position as follows:

No Movement At the initial position of the player
All to Ball Moved towards the ball at a constant speed

All Defensive Moved towards the defensive side of the field at a con-
stant speed

All Offensive Moved towards the offensive end of the field at a con-
stant speed

One to Ball This model is slightly different from the others. The ball’s
movement is broken down into cycles. At each cycle, whichever
player is closest to the ball is moved 0.6m closer to the ball.’ Note
that since the ball can move faster than the players, which player
is closest to the ball can change several times during the ball’s
movement. The final positions of the players are the means of the
distributions.

These models are not for the opponent’s behavior throughout an
entire simulated soccer game. The models are only intended to capture
the way the opponents move for the 5-20 seconds in which our team
executes a set play from a dead ball situation. The models do not
capture any actions that the opponents take with the ball, or how they
play defense more generally.

6.2. MODEL RECOGNITION

This experiment looks at the model recognition algorithm. The models
are abstractions over player movements. We want to verify that the
recognition algorithm over these models can be used to correctly recog-
nize a team that acts approximately like a given model. We use several
assumptions during the probability updates, and if those assumptions
are extensively violated, the recognition algorithm will fail to work as
predicted. Further, we want to explore how long it takes for the naive
Bayes based recognition algorithm to identify the correct model. The
coach is the only agent doing the recognition since it has the global
view of the field.

 The players max speed is 1m/cycle.
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Before looking at how well each model can be recognized out of
this set of models, we must first understand how well any recognition
algorithm could expect to do. We call this the separability of a set of
models. If two models make similar predictions in most cases, it will be
difficult to recognize one model over the other and we should not expect
any recognition algorithm to get near perfect accuracy. The concept of
separability will give us a standard to compare how well the models are
being recognized in the real system. While separability seems to be a
basic statistical concept, the author is not aware of standard definitions
or calculations which fit this problem.

Separability will of course be a function of an entire set of models,
not a property of any one model. Also, separability must be a function
of the number of observations; as we get more information, we expect
to be able to identify the correct model more often.

For illustration, consider a simple example where you have two sets
of models of coins. In the first set, one model says that heads comes up
99% of the time and the other says heads comes up 1%. For the second
set, the models say 51% and 49%. Separability asks the question: if
the world is exactly described by one of the models in our set (but
we don’t know which one), how does the number of observations affect
the probability we will identify the correct model? Clearly, we are much
more likely to identify the correct model for the first set than the second
set because the predictions are so different.

We will develop the concept of separability in four stages. First
we will consider the separability of two distributions given one ob-
servation, then the separability of two distributions given multiple
observations, then the separability of a set of distributions, and finally
the separability of a set of models.

Start with two distributions A and B over two dimensions. The
question we are interested in is: if we are seeing an observation prob-
abilistically generated from A, what is the probability that the naive
Bayes update (starting with a uniform prior) will return with A being
the most likely distribution? Equivalently, what is the probability mass
of A in the area where the probability distribution function (i.e. pdf)
of A is greater than the pdf of B? Of course, we are also interested
in the case where B is the distribution generating observations, and in
general these probabilities can be different.

The concept of separability we are interested in here is similar to rel-
ative entropy or Kullback-Leibler distance (Cover and Thomas, 1991).
The relative entropy of distribution A to distribution B is (where f4(z)
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is the pdf of A at z):

D(AB) = [ 410 T g 7)
fB(z)

The important difference is that Kullback-Leibler distance is consid-
ering the ratio of f4 to fg. In our update, we only care whether f4
or fp is larger; that is, if the wrong distribution comes out as more
likely in our update, we don’t care how wrong it is. In other words,
our loss function is binary (correct or incorrect) and Kullback-Leibler
is targeted for a loss function which is not. More precisely, if T4~ () is

an indicator function for whether f4(z) > fp(X), then our separability
of A from B is

[ £4@) Loz p(a)ds (8)

If one considers the models in the context of how they are used, then
the appropriate loss function may not be binary as indicated here. The
loss function should represent how bad it is to use one model when
another one is the true model. As will be shown below, computing the
separability of models is not trivial, nor is computing the true loss func-
tion given the complicated use of the models in Section 4.1. Therefore,
we simplify the separability computation by assuming a binary loss
function.

Now consider seeing multiple observations instead of a single one.
Once again, we are interested in the probability that A will have the
highest posterior after the naive Bayes update on all of the observations.
This probability is challenging to solve for analytically, but Monte Carlo
simulation can estimate it.

Our concept of separability extends naturally to a set of distributions
rather than just two distributions. We still want to measure the chance
that the correct distribution has the highest probability. We can again
use Monte Carlo simulation to estimate the probability that the correct
distribution will be recognized for any given number of observations.

Finally, the opponent models are not simple distributions. The mod-
els are functions from starting world states, starting states of the op-
ponents, and a planned team action to distributions of the opponents’
states. We use an empirical test to estimate separability of models. For
each observation o1, ... o from real game play, we repeatedly generate
a series of artificial observations

(w,s,a,e') ... (w, s, a,e") (9)
where

— w € Sy is the starting world state .
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— SsE€ Sg is the set of opponents’ starting states.
— a € A is the planned team action.
- ée Sg is a set of opponents’ ending states.

— n is the number of observations for which we want to estimate the
separability.

w, s, and a are taken from the real observation o;. Each set of ending
opponents’ states e'...e” is sampled from the distributions output
by the correct model (the model for which we want to estimate the
probability of the naive Bayes being correct). For each sequence of
artificial observations, the update is performed. Averaging over all se-
ries of observations, we can estimate the probability of a model being
correctly recognized, given n observations.

Figure 10 shows, for each model, the probability of that model being
correctly recognized as a function of the number of observations (i.e.
separability). One can see that if the models perfectly capture the
opponents, after only a few updates, the recognition accuracy should
be quite high (more than 85%).
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Figure 10. Separability of the models. The “No Movement” and “One to Ball” lines
are the lower two lines. Error bars of one standard deviation are shown on only those
two lines because the error bars are too small to be visible on the others.

Given the accuracy we would expect if our models were perfect, we
can empirically see how well our recognition algorithm actually does.
For each model, we programmed teams of agents to act as close as we
could manage to the behavior predicted by the model. Note that we can
not make this behavior perfect because of the partial observability and
dynamics of the world. We then ran our team and coach against each
of these programmed teams and recorded all the observations obtained.
For each number of observations n, we examine all contiguous sequences
of m observations. For each sequence of observations, we perform the
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naive Bayes update (starting from a uniform prior). For each model, the
empirical recognition accuracy is the percentage of the time that the
correct model came up as most likely after that series of observations.

Figure 11 summarizes the recognition accuracy of the models. For
most models we achieve 90% recognition after just 4 observations. The
accuracies track the separability from Figure 10 with some exceptions.
First, there is more confusion among all models for the lowest couple
of observations. This suggests that the tails of the distributions are
heavier than what the Gaussian model suggests, or possibly that the
distributions are multi-modal. Second, the One to Ball model is con-
fused with the other models less than the separability indicates, which
probably means that the actual variation for the team is less than
that suggested by the model. Finally, the All Offensive model never
achieves the near 100% performance suggested by the separability. This
result reveals something missing from the model. Namely, during the
actual executions, the players on the team will not position themselves
offsides. The details of the offsides rule in soccer are not important, but
basically it prevents the players from moving too far to the offensive
side. The offsides rule, which is ignored by the model, prevents the
model’s predictions from being completely accurate. Overall, note that
the recognition accuracy is quite high after very few observations.

1
c
£ 095 [
c
D
5] 09
(7]
4
g 0.85 - ,
8 0.8 i
2 075 | ¥ No Movement —A— |
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Figure 11. Given a number of observations and a model that the opponent is approx-
imately executing, this graph shows the percentage of time a contiguous sequence
of real observations results in the correct model being most likely after our naive
Bayes update. This graph can be compared to the separability from Figure 10, but
it should be noted that the axes have different scales.

The exact separability and rate that the accuracy increases will of
course change given the set of models that one chooses. However, the
observed accuracies tracked the theoretical separability quite well, sug-
gesting that the assumptions made in the model recognition algorithm
were good enough. Further, the recognition accuracies increased quite
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quickly, which is at least suggestive that other model sets may have
similarly quick recognition.

6.3. MODELS’ EFFECT ON PLANNING

Given that we have opponent models that can be selected based upon
observations, we now need to examine the effect of those models on the
output of the planning process. If the opponent models are meaningful,
then the resulting plans should be different for the different models. It
is somewhat tricky to isolate just this one effect from the rest of the
system. In order to evaluate the differences in the plans produced using
opponent models, we compare paths by looking at the area between the
paths. For example, in Figure 12, the shaded area is the area between
the solid and dotted paths. We use this area because it expresses in
simple terms how different two paths are, and consequently, how dif-
ferent two plans are. Therefore, the median area difference” between a
set of plans expresses roughly how much variation there is in a set of
plans. The exact numbers are not especially meaningful, but are useful
as comparisons of different sets of plans.

Figure 12. Example of the area between paths. The two paths are the solid line and
the dotted line and the shaded area is the area between them.

First we look at the variation in our planning seeds. The planning
seeds are designed to be far apart in the space of possible plans, so the
variation gives some idea of the maximum range we could expect the
plans generated by the system to vary. As shown in Table III, the me-
dian area difference is 315. Then, we compare the plans generated when
the only variation is which opponent model is used for planning. Using a
different opponent model for planning gives a median area difference of
138. The difference between opponent models is somewhat lower than
the median difference between the planning seeds. This lower difference
is not surprising because the evaluation of a path depends strongly upon

7 We use median rather than mean because the distributions of path areas have
heavy tails.
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the starting positions of the agents. The seeds are designed to roughly
cover all possible starting positions of the opponents, so the variation
of the hillclimbing seeds should be higher.

Table ITI. Median area differences among several sets of plans. The area difference
roughly captures the variation among the plans.

Plan Set Median Area # Comparisons
Difference

Planning seeds 315 138

Across opponent models 138 223

For one opponent model 0 6625

For one opponent model (unique plans) 116 3073

The variation of the plans observed by using two different models for
planning is also higher than the variation observed for using just a single
model. We ran the planner on a set of 25 problems 53 times in order
to understand the variation in the plan returned by the hillclimbing
approach. Not surprisingly, the median area is 0, since the same plan
is returned many times. If we restrict our attention to just the set of
unique plans® returned over these 53 trials, the median area of 116 is
still smaller than the median area between plans returned by different
models. This result suggests that, as expected, the model used causes
more variation in the output of the planner than the random variation
in the hillclimbing.

6.4. ToTAL GAME EFFECT

A team’s overall performance in a simulated soccer game is a product
of many tightly interacting factors. The experiments in this section are
designed to show that adaptive setplays can have a positive impact
on the overall team performance. It is not a thorough evaluation of
when and why the adaptive setplays have an impact. In other words,
these experiments are an existence proof that the representation and
algorithms that we are proposing can have a positive effect on the
performance of the team.

Over the course of a simulation game, setplays are executed for a
fairly small percentage of the total time. Therefore, the absolute effect
of setplays on the final score difference is expected to be small even
if the setplays are significantly better than what was present before.

& At most 2 different plans were returned for a given model and problem.
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Any significant effect of the overall score of a team by improving the
setplays is an achievement.

The plan execution algorithm was fully implemented in the ATT-
CMUnited2000 simulation soccer team (Riley et al., 2001). The team
ATT-CMUnited2000 was based on CMUnited99 (Stone et al., 2000)
which has fixed setplay plans for each type of setplay (goal kick, kick
in, free kick, etc.). We ran ATT-CMUnited2000 using the old fixed
setplays and the new adaptive setplays, playing against CMUnited99
in both cases. For the new adaptive setplays, the opponent model set
described in Section 6.1 was used. The results are shown in Table TV.

Table IV. Comparison of fixed setplays from CMUnited99 to adaptive setplays
using MASTN. With a standard one tailed ¢-test, the difference in goals scored is
not significant, while the difference in goals against is (p < .01). All games were
against CMUnited99.

# Games Mean goals Mean goals

scored against
CMUnited99 fixed setplays 33 2.45 0.30
Planned, MASTN based setplays 56 2.55 0.18

The results show that the new setplays have a small but significant
effect on the overall performance of the team. The effects on goals
against seems to occur for two reasons. First, setplays such as goal
kicks and goalie catches can be dangerous times for the team because
the ball starts so close to the goal. Executing a good play to get the
ball upfield can get out of these dangerous situations. Second, a good
offense can be the best defense. If the team spends more time attacking,
the opponent has less opportunities to score goals. Overall, this result
is good given the small proportion of the time of the game occupied by
setplays.

We wanted to further test the effectiveness of the adaptive setplays.
However, there is considerable effort in linking the plan execution algo-
rithm to the behavior architecture of a player. The standard coaching
language CLang (Chen et al., 2001) was created around the time we
were finishing the previous experiments. We therefore created an algo-
rithm to convert the MASTN into CLang condition-action rules. This
conversion allows the setplays to be used with any team that under-
stands CLang rather than being restricted to ATT-CM United2000.

Translating the MASTN plan into CLang requires that the effects of
actions are encoded into conditions of rules. Since CLang supports rule
conditions dealing with ball and player positions, most action effects in
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MASTNS can be encoded effectively into CLang conditions. However,
some aspects of the execution algorithm can not be encoded because
of limitations in CLang. For example, since CLang has no action rep-
resenting where an agent should be looking, the agent can not be told
to look to where a relevant action should be taking place. Further,
the temporal expressibility is CLang is such that the propagation of
temporal constraints can not be done, though ordering of events can
still be maintained.

The coachable team ChaMeleons (Carpenter et al., 2002), which was
created at Carnegie Mellon, was used as the recipient of our planning
advice. The opponent used was Gemini from the Tokyo Institute of
Technology (Coradeschi and Tadokoro, 2002). We used Gemini for two
reasons. First, Gemini was the opponent in the RoboCup 2001 coach
competition, allowing us to compare performance to what was observed
there. Second, since Gemini was not created by us, nor do we have any
knowledge of its behavior algorithms, this provides a more independent
test of the setplays.

The coach needs to know the formation, or arrangement of players
on the field, in order to assign players to roles. Therefore, our coach also
sends the players a formation, i.e. a spatial assignment. Details about
the structure of the formation and how it is learned can be found in
Riley et al. (2002).

We ran a series of simulation games under different conditions.
In all cases, the set of opponent models described above was used.
Each experimental condition was run for 30 games and the average
score difference (as our score minus their score) is reported. Therefore
a negative score difference represents losing the game and a positive
score difference is winning. All significance values reported are for a
two tailed ¢-test.

Three sets of games were run: a baseline without the coach, the
coach just sending a formation, and the coach sending a formation and
planning setplays. Since there are many interacting factors affecting the
performance of a simulated robot soccer team, we are more interested in
the improvement that the setplays has on the coached team rather than
the absolute win/loss value of the coached team against the opponent.
Table V shows the results.

The use of the setplays significantly (p < 0.01) improves the perfor-
mance of the team, both over just the use of the formation and over

9

% In all of these experiments, we slowed the server down to 3-6 times normal
speed so that all agents could run on one machine. This was done for convenience
for running the experiments. We tried to verify that agents were not missing cycles
and while this setup shouldn’t affect outcomes compared to running on several
machines, the design of the server makes it impossible to say for sure.
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Table V. Mean score difference under various ex-
perimental conditions. The score difference re-
ported is the coached team score minus opponent
score. The interval next to the score is the 95%
confidence interval.

Condition Score Difference

Baseline (without setplays) -6.5 [-7.2, -5.9]
With formation 9.1 [-10.0, -8.2]
With setplays and formation -4.2 [-4.9, -3.5]

not using either a formation or setplays. The effect here is larger than
in the previous experiment which compared fixed vs. adaptive setplays
in ATT-CMUnited2000 since we are comparing no set plays to our
adaptive setplays in this case.

7. Related Work

MASTNS refine Simple Temporal Networks (STNs) to be used in the
multi-agent case. STNs have been used to solve scheduling problems
(e.g., Morris and Muscettola, 2000) and the execution algorithm we
present uses the algorithms presented by Muscettola et al. (1998) as
subroutines.

Multi-agent plan representations have been suggested by a number
of other researchers. Several models of multi-agent systems have been
proposed (Boutilier, 1999, Peshkin et al., 2000, Bernstein et al., 2000,
Xuan et al., 2001, Pynadath and Tambe, 2002). For all of these mod-
els, solving the model yields a joint action policy for the agents. This
policy can be seen as a universal plan for the agents. However, the
dimensionality of the model means that such polices quickly become
difficult to construct or communicate. Therefore, a naive use of the
models would not be an effective way to create and communicate about
team plans. Indeed, one of the motivations for creating the COM-
MTDP model (Pynadath and Tambe, 2002) was to be able to evaluate
algorithms which use more efficient reasoning processes. The MASTNs
that we introduce are one compact way to represent a joint plan.

Bowling et al. (2004) introduce tactics, plays, and play books as
multi-agent plans. In the context of small size robot soccer, they define
tactics as single agent, primarily reactive behaviors. Plays are specifica-
tions of roles by the sequence of tactics they should be performing. The
play book is a collection of plays. This approach addresses a number
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of orthogonal issues to those addressed by the MASTNs. Most impor-
tantly, the strength of MASTNs is in handling agents whose beliefs
about the world may be inconsistent and allowing them to coordinate
successfully. While the play-based approach must consider multi-agent
problems such as role assignment, one central controller makes those
decisions.

Teamwork theories must also consider representing and manipulat-
ing multi-agent plans. SharedPlans (Grosz and Kraus, 1996) and Joint
Intentions (as expressed in GRATE* (Jennings, 1995)) are normative
specifications of mental attitudes of agents in a team. These teamwork
theories are meant to guide the design of agents. Both theories use the
concept of a recipe where agents are committed to performing possi-
bly ordered actions. While both approaches catalog recipe failures and
specify how to deal with them, MASTNs provide a more specific frame-
work for representing and reasoning about coordination and failure
through temporal constraints. In particular, those approaches specify
how the beliefs, desires, and intentions should change in response to
team events, but the approaches leave open how those beliefs, desires,
and intentions are translated into actions. Therefore, while the Shared-
Plans and Joint Intentions frameworks are more general, MASTNs
provide more of a solution if one can represent the needed coordination
and failure modes in the temporal constraints of the network.

STEAM (Tambe, 1997) draws on both SharedPlans and Joint Inten-
tions. The key innovation is the introduction of team operators. Each
agent maintains its own perception of the state of execution of these
team operators. STEAM is then a system for maintaining as much
consistency as needed and possible among these operators. Thus, our
MASTN representation and algorithms can be seen as an application
of these same concepts into a representation with temporal constraints.

Intille and Bobick (1999) also use temporal constraints to express
coordination. However, their temporal constraints are fuzzy and qual-
itative, such as “A around B” meaning that event A should occur
around the same time as B. The other major difference is that the
nodes in their temporal network represent agent goals, not particular
events. They apply their representation to plan recognition in records of
human American football. In other words, similar temporal constraints
and reasoning are used to solve a different problem.

Doyle et al. (1986) have examined inserting perceptual expectations
into plans based on preconditions and post-conditions. These are sim-
ilar to the node precondition monitoring that we do during MASTN
execution.

Currently, we only detect plan failure when preparing to execute a
specific action or when a temporal constraint is violated. Reece and
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Tate (1994) have worked on how to add monitors to plan execution
to allow for earlier detection of execution problems. This would be a
useful addition to the MASTN representation and execution algorithm.

Agent modeling has been an important topic in computer science
and the literature available is correspondingly vast. A number of au-
thors have explored the use of opponent models in playing two per-
son, finite, perfect information games (e.g., lida et al., Carmel and
Markovitch, Donkers, 1993, 1996, 2003). During the search of the game
tree, the models predict (perhaps probabilistically) what action the
opponent will take and the search attempts to find a best response.
This article addresses a significantly different environment, specifically
a multi-agent, continuous state and action, and partial information
game.

Using an agent’s own behavior representation to infer opponent ac-
tions has been used by Tambe and Rosenbloom (1995) in an air combat
domain and by Laird (2001) in Quake, a real-time first person shooter
computer game. We explicitly avoid having our agent models be based
on the agent’s internal execution policy because the coach is not an
agent that executes actions in the environment and we want to provide
as much generality as possible in our models.

Section 5 argues that selecting between opponent models online
rather than trying to learn from scratch is a promising avenue for
dealing with sparsity of data in an online setting. This same idea
is discussed and tested in a predator-prey domain by Denzinger and
Hamdan (2004). Their models, which they call “stereotypes,” have a
very different structure and they use different selection algorithms, but
end goal is the same.

Work on agent modeling has also occurred in the simulated robotic
soccer community. Wiinstel et al. (2001) use self organizing maps to
classify the movements of agents. Miene et al. (2004) use coarsely dis-
cretized state and action descriptions to arrive at a qualitative motion
model which can be used to predict impending offside situations. Also
in RoboCup, but for the small size robots, Han and Veloso (2000) use
Hidden Markov Models (HMM) to recognize behaviors of robots, with
each HMM representing a model of a behavior of a robot. These models
are focused primarily on recognizing the behavior of an agent or team
and not on how to use such a model to improve performance.

Other groups have used coaches to improve performance in the
robot soccer simulator. One of the first teams to use an online coach
was Kasugabito (Takahashi, 2000). Based on the score difference, time
remaining, and ball’s path, the online coach would adjust the team’s
formation.
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Since then, formation learning and switching has been a popular
approach. In addition to our previous work (Riley et al., 2002), sev-
eral other teams have tried various approaches to learning and using
formations (Habibi et al., 2002, Driicker et al., 2001). While there are
differences among these representations and algorithms, all have the
same goals and perform reasonably well.

One of the first systems to analyze a team’s play to provide advice
was ISAAC (Raines et al., 2000). ISAAC used decision tree learning to
identify rules describing the conditions for when goals were and were
not scored for and against a team. ISAAC had no automated way for
the agents to incorporate advice; the output was descriptive natural
language which human developers could use to change their team.

Online coaching with automatically incorporated advice gained im-
portance in RoboCup 2001 with the creation of the online coach compe-
tition. In addition to our work (Riley, 2005), the Dirty Dozen team pub-
lished opponent modeling research (Steffens, 2002). The focus of the
work was Feature-Based Declarative Opponent-Modeling (FBDOM)
where opponent models use features that are associated with actions.
These models are created by hand and can then be matched to observed
behavior similar or used to imitate a team.

In addition to the formation learning and adaptation techniques
mentioned above, we know of two other coaches that make use of
machine learning. The UTAustinVilla coach (Kuhlmann et al., 2005)
learns and uses similar opponent models to ones described in Riley
(2005), though with some important representational differences. The
Sharif Arvand coach (Ahmadi et al., 2003) uses a two-layered case based
reasoning approach to predict the future movements of the player and
the ball, though it is not specified in that article how predictions are
translated into useful advice.

8. Conclusion

We have presented an approach to planning by a coach agent which is
adaptive to the current adversary. The main technical contributions of
this article are:

1. Multi-Agent Simple Temporal Networks as a multi-agent plan rep-
resentation and an associated distributed execution algorithm. The
plan representation expresses temporal coordination and monitor-
ing in a distributed fashion.

2. An algorithm for generating a multi-agent plan for agent move-
ments in the MASTN plan representation.
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3. An opponent model representation which probabilistically predicts
movements of agents.

4. A method for adaptation to adversarial strategies based on a naive
Bayes classifier over opponent models. This method could poten-
tially be applied to any case where a reasonable range of probabilis-
tic models can be determined before interacting with the adversary.

In addition to the empirical results presented here, in the games
at the RoboCup competitions, it was evident that our team benefited
from adaptive setplays. Our system created a variety of setplay plans
in adaptation to completely unknown opponent teams.

We implemented our coaching approach in simulated robot soccer
instead of a simple toy domain, which leads us to infer the applicability
to other domains with the following characteristics:

— The MASTN representation and execution algorithm make several
assumptions about the environment:

e Coordination constraints can be expressed in temporal con-
straints.

e Each agent can get some information about the execution of
all events in the plan, though it is explicitly allowed that the
information across agents is inconsistent. This information
could come from observation or communication.

e All parallelism in the plan is across agents; each agent exe-
cutes one macro-action (i.e. one plan step) at a time.

— The plan generation algorithm requires the user to define an evalu-
ation function over plans which is suitable for hillclimbing. Further,
temporal bounds on the normal execution of the steps of the plan
are required to create the temporal constraints in the MASTN.

— The opponent model representation and recognition algorithm as-
sume that the state of the world can be decomposed into states
for our agents, the opponents, and the rest of the world. Fur-
ther, the models were created for spatial states and are therefore
probably most appropriate in environments with a strong spatial
component.

This work opens several interesting future research directions. Cur-
rently, during execution, the agents follow a single plan. Storing al-
ternate plans and intelligently adding monitors for these plans as done
by Veloso et al. (1998a) could make agents switch between plans during
execution if conditions change.
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MASTNSs showed to be a successful basis for a multi-agent plan
representation. Adding additional information to the representation to
allow the agents to reason about expected perceptions of events and
needed communication is an interesting direction for extending this
work.

While our system learns which model best matches the current
opponent, learning the models from which to select is another inter-
esting challenge. The predictions of the models have clear semantics
and we have already defined how to evaluate how well the models
match observed behavior. These two properties of the models and our
selection algorithms should help in the development of model learning
algorithms.

This article has discussed our planning and opponent modeling ap-
proach and its use in simulated robot soccer. Empirical results show
the effectiveness at several levels. This work is a contribution to the
general problem of how a coach agent can effectively advise a team of
agents to respond and adapt to adversaries.
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