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Abstract This article presents a BDI-based agent-oriented programming language, called
2APL (A Practical Agent Programming Language). This programming language facilitates
the implementation of multi-agent systems consisting of individual agents that may share and
access external environments. It realizes an effective integration of declarative and imperative
style programming by introducing and integrating declarative beliefs and goals with events
and plans. It also provides practical programming constructs to allow the generation, repair,
and (different modes of) execution of plans based on beliefs, goals, and events. The formal
syntax and semantics of the programming language are given and its relation with existing
BDI-based agent-oriented programming languages is discussed.

1 Introduction

Multi-agent systems constitute a promising software engineering approach for the develop-
ment of distributed intelligent systems. The agent-oriented software engineering paradigm
provides social and cognitive concepts and abstractions in terms of which software systems
can be specified, designed, and implemented. Examples of such concepts and abstractions
are roles, organisational rules and structures, communication, norms, beliefs, goals, plans,
actions, and events. In order to develop multi-agent systems in an effective and systematic
way, different analysis and design methodologies [4], specification languages (e.g., BDICTL

[7,22] and KARO [19]), and programming languages and development tools [5,6,12–14,17,
18,20,24,25,30] have been proposed. While most agent-oriented analysis and design meth-
odologies assist system developers to specify and design system architectures in terms of
agent concepts and abstractions, the proposed agent-oriented programming languages and
development tools aim at providing programming constructs to facilitate direct and effective
implementation of agent concepts and abstractions.
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Existing BDI-based agent-oriented programming languages differ in detail, despite their
apparent similarities. They differ from each other in the way that they provide programming
constructs for specific, sometimes overlapping, sets of agent concepts and abstractions. The
expressivity of the programming constructs for overlapping agent concepts and abstractions
may differ from one programming language to another. This is partly due to the fact that
they are based on different logics and use different technologies. Moreover, some of these
programming languages have formal semantics, but others provide only an informal expla-
nation of the intended meaning of their programming constructs. Also, some programming
languages capture in their semantics specific rationality principles that underlie agent con-
cepts, while such principles are assumed to be implemented by agent programmers in other
programming languages. Finally, some agent-oriented programming languages are based on
declarative style programming, some are based on imperative style programming, and yet
others combine these programming styles.

The aim of this work is to propose a BDI-based agent-oriented programming language that
(1) provides and integrates programming constructs that are expressive enough to implement
a variety of agent concepts and abstractions used in the existing agent-oriented methodol-
ogies, (2) creates a balance between the expressivity of programming constructs designed
to represent and reason with agent concepts, and the expressivity of constructs designed to
implement the dynamics (update and revision) of those concepts, (3) has formal semantics
such that it is possible to verify whether agent programs satisfy their (formal) specifications,
(4) captures important and intuitive rationality principles underlying agent concepts, and (5)
realizes an effective integration of declarative and imperative programming styles. In our
view, multi-agent systems can be implemented in any existing programming language. How-
ever, we aim at designing an agent-oriented programming language that provides dedicated
and expressive programming constructs to facilitate practical and effective implementation
of agent related concepts and abstractions.

The structure of the article is as follows. In the next section, we present a general descrip-
tion of a BDI-based agent-oriented programming language called 2APL (A Practical Agent
Programming Language) and discuss some of its characterizing features. In Sect. 3, we pro-
vide the complete syntax of 2APL and explain the intuitive meaning of its ingredients. In
Sect. 4 the formal semantics of the programming language is given. We define in Sect. 5
possible executions of 2APL agents. In Sect. 6, we compare 2APL with some existing BDI-
based agent-oriented programming languages and discuss their similarities and differences.
Finally, we conclude the article in Sect. 7 and discuss some future directions to extend this
programming language.

2 2APL: a general description

One of the features of 2APL is the separation between multi-agent and individual agent
concerns. 2APL provides two distinguished sets of programming constructs to implement
multi-agent and individual agent concepts. The multi-agent programming constructs are
designed to create individual agents and external environments, assign unique names to
individual agents, and specify the agents’ access relations to the external environments. In
2APL, individual agents can be situated in one or more environments, which are assumed to
be implemented as Java objects. Each environment (Java object) has a state and can execute
a set of actions (method calls) to change its state. It should be noted that these Java objects
can also function as interfaces to the physical environments or other software. Moreover,
the separation between multi-agent and individual agent concerns allows us to design and
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add a set of programming constructs to implement a wide range of social and organizational
concepts in a principled and modular way.

At the individual agent level, 2APL agents are implemented in terms of beliefs, goals,
actions, plans, events, and three different types of rules. The beliefs and goals of 2APL
agents are implemented in a declarative way, while plans and (interfaces to) external environ-
ments are implemented in an imperative programming style. The declarative programming
part supports the implementation of reasoning and update mechanisms that are needed to
allow individual agents to reason about and update their mental states. The imperative pro-
gramming part facilitates the implementation of plans, flow of control, and mechanisms
such as procedure call, recursion, and interfacing with existing imperative programming
languages.

2APL agents can perform different types of actions such as belief update actions, belief and
goal test actions, external actions (including sense actions), actions to manage the dynamics
of goals, and communication actions. Plans consist of actions that are composed by a con-
ditional choice operator, iteration operator, sequence operator, or non-interleaving operator.
The first type of rule is designed to generate plans for achieving goals, the second type of
rule is designed to process (internal and external) events and received messages, and the third
type of rule is designed to handle and repair failed plans. It should be noted that a 2APL
agent can observe an environment either actively by means of a sense action or passively by
means of events generated by the environment. More sophisticated model of environments
are discussed in [29,23].

A characterizing feature of 2APL is related to the use of variables in general, and their
role in the integration of declarative and imperative programming in particular. In fact, 2APL
allows agents to query their beliefs and goals, and pass the resulting substitutions to actions
and plans in order to modify their external environments. Conversely, 2APL agents can
observe their environments and update their beliefs and goals accordingly.

Another key feature of 2APL is the distinction between declarative goals and events.
In 2APL, an agent’s goal denotes a desirable state for which the agent performs actions
to achieve it, while an event carries information about (environmental) changes that
may trigger an agent to react and execute plans. As argued in [26], the use of declarative
goals in an agent programming language adds flexibility in handling failures. If the execu-
tion of a plan does not achieve its corresponding declarative goal, then the goal persists and
can be used to select a different plan. However, an event is usually used to select and exe-
cute a plan; the event is dropped just before or immediately after its corresponding plan is
executed.

2APL also provides a programming construct to implement so-called atomic plans.
Because an agent can have a set of concurrent plans, an arbitrary interleaving of plans may
be problematic in some cases. A programmer may therefore want to specify that (a certain
part of) a plan should be considered as atomic and executed at once without being interleaved
with the actions of other plans.

Finally, it should be emphasized that 2APL is not designed for specific applications. We
have used 2APL in various academic courses, research projects, and to participate in the
Agent Contest [2]. In particular, we have used 2APL to implement different auction types
(e.g., English and Dutch auctions), negotiation mechanisms (e.g., contract net and monotonic
concession protocol), cooperative problem solving tasks (e.g., multi-agent surveillance sys-
tem), and to control robots such as iCat [28]. Despite these applications, we believe that a real
evaluation of the proposed programming language should be done by the agent community
and by using it for more sophisticated applications.
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3 2APL: syntax

2APL is a multi-agent programming language that provides programming constructs to imple-
ment both multi-agent as well as individual agent concepts. The multi-agent concepts are
implemented by means of a specification language. Using this language, one can specify
which agents should be created to participate in the multi-agent system and to which external
environments each agent has access. The syntax of this specification language is presented
in Fig. 1 using the EBNF notation. In the following, we use 〈ident〉 to denote a string and
〈int〉 to denote an integer.

In this specification, 〈agentname〉 is the name of the individual agent to be created, 〈f ile-
name〉 is the name of the file containing the 2APL program that specifies the agent to be
created, and 〈int〉 is the number of agents that should to be created. When the number of
agents is n > 1, then n identical agents are created. The names of these agents are 〈agent-
name〉 extended with a unique number. Finally, 〈environments〉 is the list of environment
names to which the agent(s) have access. Note that this language allows one to create a multi-
agent system consisting of different number of different agents. The following is an example
of a multi-agent system specification in which one explorer agent and three carrier agents are
created. In this example, the explorer agent does not have access to any environment while
the carrier agents have access to the blockworld and itemdatabase environments.
The specification of a multi-agent system constitutes a multi-agent program, stored in a file
with .mas extension.

explorer : explorer.2apl
carrier : carrier.2apl 3 @blockworld, itemdatebase

Individual 2APL agents are implemented by means of another specification language. The
EBNF syntax of this specification language is illustrated in Fig. 2. In this specification, we
use 〈atom〉 to denote a Prolog like atomic formula starting with lowercase letter, 〈Atom〉 to
denote a Prolog like atomic formula starting with a capital latter, 〈ground_atom〉 to denote
a ground atom and 〈V ar〉 to denote a string starting with a capital letter.

An individual 2APL agent program can be composed of various ingredients that specify
different aspects of an individual agent. In particular, an agent can be programmed in 2APL
by implementing the initial state of these ingredients. The state of some of these ingredients
will change during the agent’s execution while the state of other ingredients remains the same
during the execution of the agent. The program of an individual agent is stored in a file with
.2apl extension. In the following, we will discuss each ingredient and give examples to
illustrate them.

3.1 Beliefs and goals

An agent may have initial beliefs and goals that change during the agent’s execution. In
2APL, the initial beliefs of an agent are implemented by the belief base, which includes
information the agent believes about itself and its surrounding world including other agents.
The implementation of the initial belief base starts with the keyword ‘Beliefs:’ followed

Fig. 1 The EBNF syntax of 2APL multi-agent systems
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Fig. 2 The EBNF syntax of 2APL individual agents

by one or more 〈belief 〉 expressions. Note that a 〈belief 〉 expression is a Prolog fact or rule
such that the belief base of a 2APL agent becomes a Prolog program. All facts are assumed to
be ground. The following example illustrates the implementation of the initial belief base of a
2APL agent. This belief base represents the information of an agent about its blockworld
environment. In particular, the agent believes that its position in this environment is (1,1),
it has no gold item in possession, there are trash at positions (2,5) and (6,8), and that
the blockworld environment is clean if there are no trash.
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Beliefs:
pos(1,1).
hasGold(0).
trash(2,5).
trash(6,8).
clean(blockWorld) :- not trash(_,_).

The goals of a 2APL agent are implemented by its goal base, which is a list of formu-
las each of which denotes a situation the agent wants to realize (not necessary all at once).
The implementation of the initial goal base starts with the keyword ‘Goals:’ followed
by a list of goal expressions of the form 〈goal〉. Each goal expression is a conjunction of
ground atoms. The following example is the implementation of the initial goal base of a
2APL agent. This goal base includes two goals. The first goal indicates that the agent wants
to achieve a situation in which it has five gold items and the blockworld is clean. Note
that this single conjunctive goal is different than having two separate goals ‘hasGold(5)’
and ‘clean(blockworld).’ In the latter case, the agent wants to achieve two situations
independently of each other, i.e., one in which the agent has a clean blockworld, not nec-
essarily with a gold item, and one in which it has five gold items and perhaps ablockworld
which is not clean. The second goal of the agent indicates that the agent desires a state in
which it has 10 gold items, independent of the state of the environment. Note that different
goals in the goal base are separated by a comma.

Goals:
hasGold(5) and clean(blockworld) , hasGold(10)

The beliefs and goals of an agent are governed by a rationality principle. According to this
principle, if an agent believes a certain fact, then the agent does not pursue that fact as a goal.
This means that if an agent modifies its belief base, then its goal base may be modified as
well. An agent’s beliefs and goals change during the agent’s execution.

3.2 Basic actions

Basic actions specify capabilities of agents, i.e., actions that an agent can perform to achieve
its desirable situation. Basic actions constitute an agent’s plan, as we will see in the next
subsection. Six types of basic actions are distinguished in 2APL: actions to update the belief
base, actions to test the belief and goal bases, actions to manage the dynamics of goals,
abstract actions, communication actions and external actions to be performed in an agent’s
environment.

3.2.1 Belief update action

A belief update action updates the belief base of an agent when executed. This action type
can be used to store information received from other agents (through messages) or environ-
ments (through sense actions and events), or to store temporarily data or the results of some
computations. A belief update action 〈belief update〉 is an expression of the form 〈Atom〉
(i.e., a first-order atom in which the predicate starts with a capital letter). Such an action is
specified in terms of pre- and post-conditions. An agent can execute a belief update action if
the pre-condition of the action is entailed by its belief base. The pre-condition is a formula
consisting of literals composed by disjunction and conjunction operators. The execution of
a belief update action modifies the belief base in such a way that the post-condition of the
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action is entailed by the belief base after the execution of the action. The post-condition of a
belief update action is a list of literals. The update of the belief base by such an action removes
the atom of the negative literals from the belief base and adds the positive literals to the belief
base. The specification of the belief update actions starts with the keyword ‘BeliefUp-
dates:’ followed by the specifications of a set of belief update actions 〈BelUpSpec〉.

BeliefUpdates:

{not carry(gold)} PickUp() {carry(gold)}
{trash(X,Y) and pos(X,Y)} RemoveTrash() {not trash(X,Y)}
{pos(X,Y)} ChgPos(X1,Y1) {not pos(X,Y), pos(X1,Y1)}
{hasGold(X)} StoreGold() {not hasGold(X), hasGold(X+1),

not carry(gold)}
Above is an example of the specification of belief update actions. In this example, the

specification of the PickUp() indicates that this belief update action can be performed if
the agent does not already carry gold items and that after performing this action the agent will
carry a gold item. Clearly, the agent is assumed to be able to carry only one gold item at a time.
Note that the agent cannot perform two PickUp() actions consecutively. Note also the use
of variables in the specification of ChgPos(X1,Y1). It requires that an agent can change its
current position to(X1,Y1) if its current position is(X,Y). After the execution of this belief
update action, the agent believes that its position is (X1,Y1) and not (X,Y). Note also that
variables in the post-conditions are bounded since otherwise the facts in the belief base will not
be ground. The specification of belief update actions do not change during agent execution.

3.2.2 Test action

A test action performed by an agent checks whether the agent has certain beliefs and goals. A
test action is an expression of the form 〈test〉 consisting of belief and goal query expressions.
A belief query expression has the form B(φ), where φ consists of literals composed by
conjunction or disjunction operators. A goal query expression has the form G(φ), where φ
consists of atoms composed by conjunction or disjunction operators. A belief query expres-
sion is basically a (Prolog) query to the belief base and generates a substitution for the
variables that are used in the belief query expression. A goal query expression is a query to
an individual goal in the goal base, i.e., it is to check if there is a goal in the goal base that
satisfies the query. Such a query may also generate a substitution for the variables that are
involved in the goal query expression.

A test action can be used in a plan to (1) instantiate variables in the subsequent actions
of the plan (if the test succeeds), or (2) block the execution of the plan (if the test fails).
The instantiation of variables in a test action is determined through belief and goal queries
performed from left to the right. For example, if an agent believes p(a) and has the goal
q(b), then the test action B(p(X)) G(q(X)) fails, while the test action B(p(X))
G(q(Y) or r(X)) succeeds with {X/a , Y/b} as the resulting substitution.

3.2.3 Goal dynamics actions

The adopt goal and drop goal actions are used to adopt and drop a goal to and from an
agent’s goal base, respectively. The adopt goal action 〈adoptgoal〉 can have two different
forms: adopta(φ) and adoptz(φ). These two actions can be used to add the goal φ
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(a conjunction of atoms) to the beginning and to the end of an agent’s goal base, respectively.
Recall that the goal base is a list such that the goals are ordered. Note that the programmer
has to ensure that the variables in φ are instantiated before these actions are executed since
the goal base should contain only ground formula. Finally, the drop goal action 〈dropgoal〉
can have three different forms: dropgoal(φ), dropsubgoals(φ), and dropsuper-
goals(φ). These actions can be used to drop from an agent’s goal base, respectively, the
goal φ, all goals that are a logical subgoal of φ, and all goals that have φ as a logical subgoal.
Note that the action dropsupergoals is also proposed in [16].

3.2.4 Abstract action

The general idea of an abstract action is similar to a procedure call in imperative programming
languages. The procedures should be defined in 2APL by means of the so-called PC-rules,
which stands for procedure call rules (see Sect. 3.4.2 for a description of PC-rules). As we
will see in Sect. 3.4.2, a PC-rule can be used to associate a plan to an abstract action. The
execution of an abstract action in a plan removes the abstract action from the plan and replaces
it with an instantiation of the plan that is associated to the abstract action by a PC-rule. Like
a procedure call in imperative programming languages, an abstract action 〈abstractaction〉
is an expression of the form 〈atom〉 (i.e., a first order expression in which the predicate starts
with a lowercase letter). An abstract action can be used to pass parameters from one plan
to another one. In particular, the execution of an abstract action passes parameters from the
plan in which it occurs to another plan that is associated to it by a PC-rule.

3.2.5 Communication action

A communication action passes a message to another agent. A communication action
〈sendaction〉 can have either three or five parameters. In the first case, the communication
action is the expression send(Receiver, Performative, Language, Ontol-
ogy, Content)where Receiver is the name of the receiving agent, Performative
is a speech act name (e.g., inform, request, etc.), Language is the name of the language
used to express the content of the message, ontology is the name of the ontology used
to give a meaning to the symbols in the content expression, and Content is an expression
representing the content of the message. It is often the case that agents assume a certain
language and ontology such that it is not necessary to pass them as parameters of their
communication actions. The second version of the communication action is therefore the
expression send(Receiver, Performative, Content). It should be noted that
2APL interpreter is built on the FIPA compliant JADE platform. For this reason, the name
of the receiving agent can be a local name or a full JADE name. A full JADE name has
the form localname@host:port/JADE where localname is the name as used by
2APL, host is the name of the host running the agent’s container and port is the port
number where the agent’s container should listen to (see [3] for more information on JADE
standards).

3.2.6 External action

An external action is supposed to change the state of an external environment. The effects of
external actions are assumed to be determined by the environment and might not be known to
the agents beforehand. An agent thus decides to perform an external action and the external
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environment determines the effect of the action. The agent can know the effects of an external
action by performing a sense action (also defined as an external action), by means of events
generated by the environment, or by means of a return parameter. It is up to the programmer
to determine how the effects of actions should be perceived by the agent. An external action
〈externalaction〉 is an expression of the form @env(ActionName,Return), where
env is the name of the agent’s environment (implemented as a Java class), ActionName is
a method call (of the Java class) that specifies the effect of the external action in the environ-
ment, and Return is a list of values, possibly an empty list, returned by the corresponding
method. The environment is assumed to have a state represented by the instance variables of
the class. The execution of an action in an environment is then a read/write operation on the
state of the environment. An example of an external action is @blockworld(east(),L)
(go one step east in the blockworld environment). The effect of this action is that the position
of the agent in the blockworld environment is shifted one slot to the right. The list L is
expected as the return value. The programmer determines the content of this list.

3.3 Plans

In order to reach its goals, a 2APL agent adopts plans. A plan consists of basic actions com-
posed by sequence operator, conditional choice operator, conditional iteration operator, and
a non-interleaving operator.

The sequence operator ; is a binary operator that takes two plans and generates one
〈sequenceplan〉 plan. The sequence operator indicates that the first plan should be per-
formed before the second plan. The conditional choice operator generates 〈if plan〉 plans of
the form if φ then π1 else π1, where π1 and π2 are arbitrary plans. The condition
part of this expression (i.e., φ) is a test that should be evaluated with respect to an agent’s
belief and goal bases. Such a plan can be interpreted as to perform the if-part of the plan
(i.e., π1) when the test φ succeeds, otherwise perform the else-part of the plan (i.e., π2). The
conditional iteration operator generates 〈whileplan〉 plans of the form while φ do π ,
where π is an arbitrary plan. The condition φ is also a test that should be evaluated with
respect to an agent’s belief and goal bases. The iteration expression is then interpreted as to
perform the plan π as long as the test φ succeeds.

The (unary) non-interleaving operator generates 〈atomicplan〉 plans, which are expres-
sions of the form [π], where π is an arbitrary plan. This plan is interpreted as an atomic
plan π , which should be executed at once ensuring that the execution of π is not interleaved
with actions of other plans. Note that an agent can have different plans at the same time
and that plans cannot be composed by an explicit parallel operator. As there is no explicit
parallel composition operator, the nested application of the unary operator has no effect, i.e.,
the executions of plans [π1;π2] and [π1;[π2]] generate identical behaviors.

The plans of a 2APL agent are implemented by its plan base. The implementation of the
initial plan base starts with the keyword ‘Plans:’ followed by a list of plans. The following
example illustrates the initial plan base of a 2APL agent. The first plan is an atomic plan
ensuring that the agent updates its belief base with its initial position (5,5) immediately
after performing the external action enter in the blockworld environment. The second
plan is a single action by which the agent requests the administrator to register him. An
agent’s plans may change during the execution of the agent.

Plans:
[@blockworld(enter(5,5,red),L);ChgPos(5,5)],
send(admin,request,register(me))
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3.4 Practical reasoning rules

The 2APL programming language provides constructs to implement practical reasoning rules
that can be used to implement the generation of plans during an agent’s execution. In par-
ticular, three types of practical reasoning rule are proposed: planning goal rules, procedure
call rules, and plan repair rules. In the following subsections, we explain these three types
of rules.

3.4.1 Planning goal rules (PG-rules)

A planning goal rule can be used to implement an agent that generates a plan when it has
certain goals and beliefs. The specification of a planning goal rule 〈pgrule〉 consists of three
entries: the head of the rule, the condition of the rule, and the body of the rule. The head and
the condition of a planning goal rule are goal and belief query expressions used to check if
the agent has a certain goal and belief, respectively. The body of the rule is a plan in which
variables may occur. These variables may be bound by the goal and belief expressions. A
planning goal rule of an agent can be applied when the goal and belief expressions (in the head
and the condition of the rule) are entailed by the agent’s goal and belief bases, respectively.
The application of a planning goal rule generates a substitution for variables that occur in the
head and condition of the rule because they are queried from the goal and belief bases. The
resulted substitution will be applied to the generated plan to instantiate it. A planning goal
rule is of the form: [ 〈goalquery〉 ] "<-" 〈belquery〉 "|" 〈plan〉.

Note that the head of the rule is optional which means that the agent can generate a plan
only based on its belief condition. The following is an example of a planning goal rule indi-
cating that a plan to go to a position (X2,Y2), departing from a position (X1,Y1), to
remove trash can be generated if the agent has a goal to clean a space R (i.e., clean(R))
and it believes its current position is pos(X1,Y1) and there is trash at position (X2,Y2).

PG-rules:
clean(R) <- pos(X1,Y1) and trash(X2,Y2) |

{[goTo(X1,Y1,X2,Y2);RemoveTrash()]}

The action goTo(X1,Y1,X2,Y2) in the above PG-rule is an abstract action (see next
subsection for how to execute an abstract action). Note that this rule can be applied if (beside
the satisfaction of the belief condition) the agent has a conjunctive goal hadGold(5) and
clean(blockworld) since the head of the rule is entailed by this goal.

3.4.2 Procedure call rules (PC-rules)

The procedure call rule is introduced for various reasons and purposes. Besides their use as
procedure definition (used for executing abstract actions), they can also be used to respond to
messages and to handle external events. In fact, a procedure call rule can be used to generate
plans as a response to (1) the reception of messages sent by other agents, (2) the reception
of events generated by the external environments, and (3) the execution of abstract actions.
Like planning goal rules, the specification of procedure call rules consist of three entries. The
only difference is that the head of the procedure call rules is an atom 〈atom〉, rather than a
goal query expression 〈goalquery〉. The head of a PC-rule can be a message, an event, or an
abstract action. A message and an event are represented by atoms with the special predicates
message/3 (message/5) and event/2, respectively. An abstract action is represented by
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any predicate name starting with a lowercase letter. Note that like planning goal rules, a pro-
cedure call rule has a belief condition indicating when a message (or event or abstract action)
should generate a plan. Thus, a procedure call rule can be applied if the agent has received
a message, an event, or if it executes an abstract action, and moreover, the belief condition
of the rule is entailed by the agent’s belief base. The resulted substitution for variables are
applied in order to instantiate the generated plan. A procedure call rule is of the form: 〈atom〉
"<-" 〈belquery〉 "|" 〈plan〉. The following are examples of procedure call rules.

PC-rules:
message(A,inform,La,On,goldAt(X2,Y2)) <- not carry(gold) |

{ getAndStoreGold(X2,Y2) }

event(gold(X2,Y2),blockworld) <- not carry(gold) |
{ getAndStoreGold(X2,Y2) }

getAndStoreGold(X,Y) <- pos(X1,Y1) |
{ [goTo(X1,Y1,X,Y);@blockworld(pickup(),_);PickUp();

goTo(X,Y,3,3);@blockworld(drop(),_);StoreGold()]
}

The first rule indicates that if an agent A informs that there is some gold at position
(X2,Y2) and the agent believes it does not carry a gold item, then the agent has to get and
store the gold item in the depot. The second rule indicates that if the environment block-
world notifies the agent that there is some gold at position (X2,Y2) and the agent believes
it does not carry a gold item, then the agent has to do the same, i.e., get and store the gold
item in the depot. Finally, the last rule indicates that the abstract action getAndStore-
Gold should be performed as a certain sequence of actions, i.e., go from its current position
(obtained through the condition of the rule) to the gold position, pick up the gold item,
go to the depot position (i.e., position (3,3)), and store the gold item in the depot. The
PickUp() and StoreGold() are belief update actions to administrate the facts that the
agent is carrying gold and has certain amount of stored gold, respectively. The goTo action
is also an abstract action that should be associated with a plan by means of PC-rules. Note
that the plan is implemented as an atomic plan. The reason is that in this plan external actions
and belief update actions are executed consecutively such that an unfortunate interleaving of
other actions can have undesirable effects.

3.4.3 Plan repair rules (PR-rules)

Like other practical reasoning rules, a plan repair rule consists of three entries: two abstract
plan expressions and one belief query expression. We have used the term abstract plan expres-
sion since such plan expressions include variables that can be instantiated with plans. A plan
repair rule indicates that if the execution of an agent’s plan (i.e., any plan that can be unified
with the abstract plan expression in the head of a plan repair rule) fails and the agent has a
certain belief, then the failed plan could be replaced by another plan (i.e., by an instantiation
of the abstract plan in the body of the plan repair rule). A plan repair rule 〈prrule〉 has the
following form: 〈planvar〉 "<-" 〈belquery〉 "|" 〈planvar〉.

A plan repair rule of an agent can thus be applied if (1) the execution of one of its plan fails,
(2) the failed plan can be unified with the abstract plan expression in the head of the rule, and
(3) the belief condition of the rule is entailed by the agent’s belief base. The satisfaction of
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these three conditions results in a substitution for the variables that occur in the abstract plan
expression in the body of the rule. Note that some of these variables will be substituted with
a part of the failed plan through the match between the abstract plan expression in the head
of the rule and the failed plan. For example, if π, π1, π2 are plans and X is a plan variable,
then the abstract plan π1;X;π2 can be unified with the failed plan π1;π;π2 resulting the
substitution X = π . The resulted substitution will be applied to the abstract plan expression
in the body of the rule to generate the new (repaired) plan.

The following is an example of a plan repair rule. This rule indicates that if the execution of
a plan that starts with @blockworld(east(),_);@blockworld(east(),_) fails,
then the plan should be replaced by a plan in which the agent first goes one step to north, then
makes two steps to east, and goes one step back to south. This repair can be done without a
specific belief condition.

PR-rules:
@blockworld(east(),_);@blockworld(east(),_);X <- true |

{ @blockworld(north(),_);@blockworld(east(),_);
@blockworld(east(),_);@blockworld(south(),_);X }

Note the use of the variable X that indicates that any failed plan starting with external actions
@blockworld(east(),_);@blockworld(east(),_) can be repaired by the same
plan in which the external actions are replaced by four external actions.

The question is when the execution of a plan fails. We consider the execution of a plan as
failed if the execution of its first action fails. When the execution of an action fails depends
on the type of action. The execution of a belief update action fails if the pre-condition of the
action is not entailed by the belief base or if the action is not specified, an abstract action if
there is no applicable procedure call rule, an external action if the corresponding environment
throws an ExternalActionFailedException (see next section for more details) or
if the agent has no access to that environment or if the action is not defined in that environ-
ment, a test action if the test expression is not entailed by the belief and goal bases, a goal
adopt action if the goal is already entailed by the belief base or the goal to be adopted is not
ground, and an atomic plan if one of its actions fails. The execution of all other actions are
always successful. When the execution of an action fails, then the execution of the whole
plan is blocked. The failed action will not be removed from the failed plan such that it can
be repaired.

3.5 Programming external environment

An agent can perform actions in different external environments, each implemented as a Java
class. In particular, any Java class that implements the environment interface can be used as
a 2APL environment. The environment interface contains two methods, addAgent(String
name) to add an agent to the environment and removeAgent(String name) to remove an
agent from the environment. The constructor of the environment must require exactly one
parameter of the type ExternalEventListener . This object listens to external events.

The execution of action @env(m(a1, . . . , an),R) calls a method m with arguments
a1, . . . , an in environment env. The first argument a1 is assumed to be the identifier of the
agent that executes the action. The environment needs to have this identifier, for example,
to pass information back to the agent by means of events. The second parameter R of an
external action is meant to pass information back to the plan in which the external action
was executed. Note that the execution of a plan is blocked until the method m is ready and
the return value is accessible to the rest of the plan.
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Methods may throw the special exception ExternalActionFailedException. If
they throw this exception, the corresponding external action is considered as failed. The
following is an example of a method that can be called by executing an external action.

public Term move(String agent, String direction)
throws ExternalActionFailedException

{
if (direction.equals("north") {moveNorth();}
else if (direction.equals("east") {moveEast();}
else if (direction.equals("south") {moveSouth();}
else if (direction.equals("west") {moveWest();}
else throw
new ExternalActionFailedException("Unknown direction");

return getPositionTerm();
}

3.6 Events and exceptions

Information between agents and environments can also be passed through events and excep-
tions. The main use of events is to pass information from environments to agents. When
implementing a 2APL environment, the programmer should decide when and which infor-
mation from the environment should be passed to agents. This can be done in an environ-
ment by calling the methodnotifyEvent(AF event, String... agents) in the
ExternalEventListenerwhich was an argument of the environments constructor. The
first argument of this method may be any valid atomic formula. The rest of the arguments
may be filled with strings that represent local names of agents. The events can be received by
agents whose name is listed in the argument list to trigger one of their procedure call rules.
If the programmer does not specify any agents in the argument list, all agents can receive
the event. Such a mechanism of generating events by the environment and receiving them by
agents can be used to implement the agents’ perceptual mechanism.

The exceptions in 2APL are used to apply plan repair rules. In fact, a plan repair rule is
triggered when a plan execution fails. Exceptions are used to notify that the execution of a
plan was not successful. The exception contains the identifier of the failed plan such that it
can be determined which plan needs to be repaired. 2APL does not provide programming
constructs to implement the generation and throwing of exceptions. In fact, exceptions are
semantical entities that cannot be used by 2APL programmers.

3.7 Including 2APL files

Different agents may share certain initial beliefs, goals, plans, belief updates, and practical
reasoning rules. The 2APL programming language provides an encapsulation mechanism to
include these shared initial ingredients in different 2APL programs. This is done by allowing a
2APL program to be included in other 2APL programs through the Include: filename
construct. The 2APL program that includes other 2APL programs inherits all ingredients of
the included programs. This programming construct makes it possible to specify shared
ingredients as one 2APL program.

4 2APL: semantics

In this section, we present the operational semantics of 2APL in terms of a transition
system. A transition system is a set of transition rules for deriving transitions. A transition
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is a transformation of one configuration into another and it corresponds to a single
computation/execution step. In the following subsections, we first present the configura-
tion of individual 2APL agent programs (henceforth agent configuration) which are defined
in terms of mental attitudes such as beliefs, goals, events, plans and practical reasoning rules.
Then, the configuration of multi-agent system programs (henceforth multi-agent system con-
figuration) is presented, which consists of the configurations of the individual agents, the state
of the external shared environments, and the agents’ access relation to environments. Finally,
we present transition rules from which possible execution steps (i.e., transitions) for both
individual agents as well as multi-agent systems can be derived. The transition rules for indi-
vidual agents capture transitions for plan execution and rule applications, while transition
rules for multi-agent systems capture synchronized communication between agents and the
execution of external actions in the shared environments.

4.1 2APL configuration

The configuration of an individual agent consists of its identifier, beliefs, goals, plans, spec-
ifications of belief update actions, practical reasoning rules, substitutions that are resulted
from queries to the belief and goal bases, and the received events. Since the specification of
practical reasoning rules and belief update actions do not change during an agent’s execu-
tion, we do not include them in the agent’s configuration. Moreover, additional information
is assigned to an agent’s plan. In particular, a unique identifier is assigned to each plan which
can be used to identify and repair failed plans. Also, the practical reasoning rules by means
of which plans are generated are assigned to plans in order to avoid redundant applications of
practical reasoning rules, e.g., to avoid generating multiple plans for one and the same goal.

Definition 1 (individual agent configuration) The configuration of an individual 2APL agent
is defied as Aι = 〈ι, σ, γ,�, θ, ξ 〉 where ι is a string representing the agent’s identifier,
σ is a set of belief expressions 〈belief 〉 representing the agent’s belief base, γ is a list
of goal expressions 〈goal〉 representing the agent’s goal base, � is a set of plan entries
(〈plan〉 , 〈pgrules〉, 〈ident〉) representing the agent’s plan base, θ is a ground substitution1

that binds domain variables to ground terms, and ξ = 〈E, I,M〉 is the agent’s event base,
where

• E is a set of events received from external environments. An event has the form event (A, S),
where A is a ground atom originated from the environment S.

• I is a set of plan identifiers denoting failed plans. Each identifier represents an exception
that is thrown because of a plan execution failure.

• M is the set of messages sent to the agent. Each message is of the form
message(s, p, l, o, φ), where s is the sender identifier,p is a performative, l is the commu-
nication language, o is the communication ontology, and φ is a ground atom representing
the message content.

Each plan entry is a tuple (π, r, p), where π is the executing plan, r is the instantiation of
the PG-rule through which π is generated, and p is the plan identifier. It should be noted that
the belief base and each goal in the goal base are consistent as only positive atoms are used
to represent them. In the following, we use ξE , ξI and ξM to refer to E, I andM component
of the event base ξ , respectively.

The configuration of a multi-agents system is defined in terms of the configuration of indi-
vidual agents, the state of their shared external environments, and the agents’ access relations

1 A substitution is ground if the terms assigned to variables by the substitution do not contain variables.
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to the external environments. Since the agents’ access relations do not change during the exe-
cution of multi-agent systems, we do not include them in the corresponding configurations.
The state of a shared environment is a set of facts that hold in that environment.

Definition 2 (multi-agent system configuration) Let Aι be the configuration of agent ι and
let χ be a set of external shared environments each of which is a consistent set of atoms
〈atom〉. The configuration of a 2APL multi-agents system is defined as 〈A1, . . . , An, χ〉.

The initial configuration of a multi-agent system is determined by its corresponding multi-
agent system program and consists of the initial configuration of its individual agents, the
initial state of the shared external environments, and the agents’ access relation to external
environments. The initial configuration of each individual agent is determined by its corre-
sponding 2APL program, i.e., by beliefs, goals, plans, belief update actions, and practical
reasoning rules that are specified in the 2APL program. The components of the initial event
base as well as the substitution of an 2APL agent are empty sets. These sets will be updated
during the execution of the multi-agent system. The initial state of the shared external envi-
ronment is set by the programmer. For example, the programmer may initially place gold
items or trash at certain positions in a blockworld environment.

Definition 3 (initial configuration) Let i be the identifier of an agent that is implemented by
a 2APL program. Let σ be the set of 〈belief 〉-expressions specified in the 2APL program and
all its included programs, γ be the list of 〈goal〉-expressions from the same programs, and�
be a set of 〈plan〉-entries (π, r, id), where π is a plan-expression from the same programs,
r = (true<-true|skip),2 and id is a new plan identifier. Then, the initial configuration
of agent i is defined as tuple 〈i, σ, γ,�,∅, 〈∅,∅,∅〉〉. Let also χ be a set of sets of facts, each
of which represents the initial state of an environment specified in the multi-agent system
program, andA1, . . . , An be the initial configurations of agents 1, . . . , n that are specified in
the same multi-agent system program. The initial configuration of the multi-agent systems
is defined as tuple 〈A1, . . . , An, χ〉.

The execution of a 2APL multi-agent program modifies its initial configuration by means
of transitions that are derivable from the transition rules presented in the following subsec-
tions. In fact, each transition rule indicates which execution step (i.e., transition) is possible
from a given configuration. It should be noted that for a given configuration there may be
several transition rules applicable. As we will discuss in the Sect. 5, an interpreter is a deter-
ministic choice of applying transition rules in a certain order.

In Sects. 4.2, 4.3, and 4.4, we present the transition rules that capture the execution of
basic actions, plans, and the application of practical reasoning rules of individual agents,
respectively. Then, in Sect. 4.5 we present the transition rules for multi-agent systems. These
rules capture the synchronized transitions of individual agents as well as the interactions
between individual agents and the shared environments.

4.2 Transition rules for basic actions

A basic action can be executed at individual agent level. For some types of basic actions
additional transition rules are given that specify when an action’s execution fails and which
transition an individual agent should make if the execution of the action fails. In general,
when the execution of a basic action fails, an exception (i.e., its corresponding plan identifier)

2 As we will see later on, assigning this rule to an initial plan makes it possible to execute the plan.
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is added to the ξI component of the event base. This exception can later be used to repair
the corresponding plan by means of plan repair rules. It should be noted that the application
conditions of the transition rules that capture the success and the failure of a basic action
exclude each other.

In the rest of this article, we will use |� as a first-order entailment relation (we use Prolog
engine for the implementation of this relation) and use γ |�g κ to indicate that there exists
a goal expression in γ which entails the goal κ , i.e.,

γ |�g κ ⇔def γ = [γ1, . . . , γi , . . . , γn] & γi |� κ for 1 ≤ i ≤ n

We assume γ |�g true for any goal base γ . Moreover, we use γ − {γ1, . . . , γm} to
indicate that the elements of the set {γ1, . . . , γm} are removed from the list γ . Finally, we
will use G(r),B(r), and P(r) to indicate the head κ , the belief condition β, and the plan π
of the rule r = (κ<-β|π).

4.2.1 Skip action

The execution of skip action has no effect on an agent’s configuration. The execution of
this action always succeeds resulting in its removal from the plan base.

γ |�g G(r)
〈ι, σ, γ, {(skip, r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ, {}, θ, ξ 〉 (1)

This transition rule indicates that the execution of the plan entry (skip, r, id) proceeds
resulting in the removal of this entry from the plan base. It is important to note that this
transition rule can be applied only if the goal that is assigned to the skip action (or the plan
in which this action occurs) is entailed by the agent’s goal base. This condition, which is also
the condition of other transition rules in this article, ensures that a plan is not executed if its
purpose (i.e., the goal for which the plan is generated) is not desirable anymore.

4.2.2 Belief update action

A belief update action, which is specified in terms of a pre- and a post-condition, modifies the
belief base when it is executed. In fact, a belief update action can be executed if its pre-condi-
tion is entailed by the belief base. After the execution of the action, its post-condition should
be entailed by the belief base. The modification of the belief base to entail the post-condition
is realized by adding positive literals of the post-condition to the belief base and removing
the atoms of negative literals of the post-condition from the belief base. Let T be the function
that takes a belief update action and a belief base, and returns the modified belief base if the
pre-condition of the action is entailed by the agent’s belief base. This function can be defined
based on the specification of the belief update actions. A successful execution of a belief
update action α is then defined as follows.

T (αθ, σ ) = σ ′ & γ |�g G(r)
〈ι, σ, γ, {(α, r, id)}, θ, ξ 〉 −→ 〈ι, σ ′, γ ′, {}, θ, ξ 〉 (2)

where σ ′ 	= ⊥ and γ ′ = γ − {γi | σ ′ |� γi}. Since the parameters of a belief update action
may be variables that are bound by the substitution θ , the substitution θ is applied to the
belief update action before it is used to modify the belief base.

The execution of a belief update action can fail if its pre-condition is not entailed by the
belief base or if it is not specified at all. In these cases, we assume that the function T returns
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⊥. The consequence of failing to execute a belief update action is that the action remains in
the plan base and an exception is generated to indicate the failure of this plan.

T (αθ, σ ) = ⊥ & γ |�g G(r)
〈ι, σ, γ, {(α, r, id)}, θ, 〈E, I,M〉〉 −→ 〈ι, σ, γ, {(α, r, id)}, θ, 〈E, I ∪ {id},M〉〉 (3)

The beliefs and goals of agents are related to each other. In fact, if an agent believes a
certain fact, then the agent does not pursue that fact as a goal. This means that if an agent
modifies its belief base, then its goal base may be modified as well.

Property 1 The belief update actions preserve the consistency of the belief base. Moreover,
goals will be removed from the goal base as soon as they are believed to be achieved. All
other goals of an agent remain unachieved in the goal base.

4.2.3 Test actions

The idea of a test action is to check if the belief and goal queries within a 〈test〉 expression
are entailed by the agent’s belief and goal bases. Moreover, as some of the variables that
occur in the belief and goal queries may already be bound by the substitution θ , we apply the
substitution to the 〈test〉 expression before testing it against the belief and goal bases. After
applying θ , the test expression can still contain unbound variables (to bind next occurrences
of the variable in the plan in which it occurs). Therefore, the test action results in a substitution
τ which is added to θ .

Definition 4 Let ϕ and ϕ′ be 〈test〉 expressions, φ be a 〈belquery〉 expression, ψ be a
〈goalquery〉 expression, and τ, τ1 and τ2 be substitutions. The entailment relation |�t ,
which evaluates test expressions with respect to an agent’s belief and goal bases (σ, γ ), is
defined as follows:

• (σ, γ ) |�t B(φ)τ ⇔ σ |� φτ

• (σ, γ ) |�t G(ψ)τ ⇔ γ |�g ψτ

• (σ, γ ) |�t (ϕ & ϕ′)τ1τ2 ⇔ (σ, γ ) |�t ϕτ1 and (σ, γ ) |�t ϕ
′τ1τ2

Note that the test action G(ψ1) G(ψ2) succeeds if the agent has either one single goal
that entails (ψ1 and ψ2), or two different goals such that one entails ψ1 and the second
entails ψ2. Note also that the test action G(ψ1 and ψ2) succeeds if the agent has one single
goal that entails ψ1 and ψ2.

A test action ϕ can be executed successfully if ϕ is entailed by the agent’s belief and goal
bases.

(σ, γ ) |�t ϕθτ & γ |�g G(r)
〈ι, σ, γ, {(ϕ, r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ, {}, θ ∪ {τ }, ξ 〉 (4)

A test action can fail if one or more of its involved query expressions are not entailed by
the belief or goal bases. In such a case, the test action remains in the agent’s plan base and
an exception is generated to indicate the failure of this action.

¬∃τ : (σ, γ ) |�t ϕθτ & γ |�g G(r)
〈ι, σ, γ, {(ϕ, r, id)}, θ, 〈E, I,M〉〉 −→ 〈ι, σ, γ, {(ϕ, r, id)}, θ, 〈E, I ∪ {id},M〉〉 (5)
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4.2.4 Goal dynamics actions

Goals can be adopted and added to the agent’s goal base by means of basic actions
adopta(φ) and adoptz(φ). The first action adds the goal φ to the beginning of the
goal base (recall that the goal base is a list) and the second action (adoptz(φ)) adds the
goal φ to the end of the goal base. In the following transition rule, we use adoptX(φ)
which can be either of these two actions and use ground(ϕ) to indicate that ϕ is ground.

σ 	|� φθ & ground(φθ) & γ |�g G(r)
〈ι, σ, γ, {(adoptX(φ), r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ ′, {}, θ, ξ 〉 (6)

where γ ′ = φθ • γ if adoptX is adopta (indicating that the goal φθ is added to the
beginning of the list γ ) and γ ′ = γ • φθ if adoptX is adoptz (indicating that the goal
φθ is added to the end of γ ). The first condition of this transition rule ensures that the added
goal is not already achieved by the agent.

However, if the agent believes that the goal to be adopted is already achieved (i.e., if the
goal is entailed by the agent’s belief base) or if the goal to be adopted is not ground, then the
action is considered as failed. The action remains in the agent’s plan base and an exception
is generated.

(σ |� φθ ∨ ¬ground(φθ)) & γ |�g G(r)
〈ι, σ, γ, {(adoptX(φ), r, id)}, θ, 〈E, I,M〉〉 −→

〈ι, σ, γ, {(adoptX(φ), r, id)}, θ, 〈E, I ∪ {id},M〉〉
(7)

Goals can be dropped and removed from the goal base by means of dropgoal(φ),
dropsubgoals(φ), and dropsupergoals(φ) actions. The first action removes from
the goal base the goal φ, the second removes all goals that are subgoals of φ, and the third
action removes all goals that have φ as a subgoal.

γ |�g G(r)
〈ι, σ, γ, {(dropX(φ), r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ ′, {}, θ, ξ 〉 (8)

where

– γ ′ = γ − {f | f ≡ φθ & ground(φθ)} if dropX(φ) is dropgoal(φ)
– γ ′ = γ − {f | φθ |� f & ground(φθ)} if dropX(φ) is dropsubgoals(φ)
– γ ′ = γ − {f | f |� φθ & ground(φθ)} if dropX(φ) is dropsupergoals(φ)

The three dropping goal actions will always succeed, even if there is no goal to be removed
from the goal base.

Property 2 If a goal is successfully adopted by an adopt goal action, then it is unachieved,
i.e., it is not entailed by the belief base. The goal base remains ground after adopting and
dropping goals. Dropping a goal, which is not ground, does not affect the goal base.

4.2.5 Abstract action

Abstract actions are representations of plans.3 The execution of an abstract action replaces
the action with the plan it represents. The relation between an abstract action and the plan
it represents is specified by means of a procedure call rule (PC-rule) that has a head unifi-
able with the abstract action. Abstract actions and the head of PC-rules are represented by

3 Abstract actions can be used for different purposes. It can be used as a mechanism to reuse plans that occur
in many other plans, or they can be used to implement recursion.
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expressions of the form 〈atom〉. Let α be an abstract action, ϕ<-β|π be a variant (i.e., all
variables in ϕ<-β|π are fresh) of a PC-rule of agent ι and Unify be a function that returns
the most general unifier of α and ϕ if they are unifiable, otherwise it returns ⊥. A successful
execution of an abstract action will replace it with a plan.

Unify(αθ, ϕ) = τ1 & σ |� βτ1τ2 & γ |�g G(r)
〈ι, σ, γ, {(α, r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ, {(πτ1τ2 , r, id)}, θ, ξ 〉 (9)

Since the abstract action may contain variables that are bound by the substitution θ , we
apply θ to it before unifying it with the head of the PC-rule. Note that the resulting substitution
τ1 is applied to the belief condition of the PC-rule before testing it against the agent’s belief
base. This test may result in a second substitution τ2 which together with τ1 are applied to
the plan of the PC-rule before replacing the abstract action with the plan. The applications of
substitutions to the belief condition and the plan of the PC-rule ensures that the value of the
shared variables are passed from the head of the rule to the belief condition, and subsequently
to the plan of the rule.

However, if there is no PC-rule applicable (i.e., a PC-rule is not applicable if either its head
cannot be unified with the abstract action or its belief condition is not entailed by the belief
base), then the execution of the abstract action is considered as failed. As a consequence, the
abstract action remains in the agent’s plan base and an exception is generated. Let α be an
abstract action and PC be the set of PC-rules of agent ι.

∀r ′ ∈ PC : ( Unify(αθ, G(r ′) ) = ⊥ ∨ σ 	|� B(r ′) ) & γ |�g G(r)
〈ι, σ, γ, {(α, r, id)}, θ, 〈E, I,M〉〉 −→ 〈ι, σ, γ, {(α, r, id)}, θ, 〈E, I ∪ {id},M〉〉 (10)

4.2.6 Communication action

Agents can communicate with each other by sending messages to each other. An agent can
send a message to another agent by means of the send(j, p, l, o, φ) action. The execution of
the send action broadcasts a message which will be added to the event base of the receiving
agent. The broadcasted message will include the name of the sending agent.

ϕ = 〈ι, j, p, l, o, φ〉 & γ |�g G(r)
〈ι, σ, γ, {(send(j, p, l, o, φ), r, id)}, θ, ξ 〉 ϕθ !−→ 〈ι, σ, γ, {}, θ, ξ 〉

(11)

where ϕθ = 〈ι, jθ, pθ, lθ, oθ, φθ〉. The broadcasting of the message is indicated by the
exclamation mark in ϕθ ! which means that the transition proceeds by broadcasting the mes-
sage event. Note that the substitution θ is applied to the broadcasted message because the
arguments of the send action can be variables bound by the substitution. The send action will
always succeed.

A 2APL agent is assumed to be able to receive a message that is sent to it at any time. The
received message is added to the event base of the agent.

ϕ = 〈j, ι, p, l, o, φ〉 & ψ = message(j, p, l, o, φ)

〈ι, σ, γ,�, θ, 〈E, I,M〉〉 ϕ?−→ 〈ι, σ, γ,�, θ, 〈E, I,M ∪ {ψ}〉〉
(12)

The reception of a broadcasted message is indicated by the question mark in ϕ? which
means that the transition cannot proceed unless a message ϕ is received. The received mes-
sage is used to create a message event added to the agent’s event base. Note that an agent
can always receive a broadcasted messages because this transition rule has no condition
that fail and thus can be applied at each moment in time. We still need to specify that the
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broadcasted messages by a sending agent are captured and passed to the receiving agents.
This is, however, a transition at the multi-agent level and will be presented in Sect. 4.5.

4.2.7 External action

The execution of an external action by an individual agent affects the external environments
that may be shared by other agents. An environment returns in turn a value back to the agent,
which can be either some result of the successfully performed action (in the form of a list of
terms) or ⊥ indicating that the execution of the action is failed.4 We assume that there is no
time between performing an action in an environment and the reception of the return value,
i.e., no other external action can be executed between performing an external action and the
reception of its corresponding return value.

Although this assumption implies that external actions are blocking actions (i.e., block an
agent’s plan execution), it does not mean that the execution of an agent’s plan should wait
until the actual and intended effect of the action is realized. If it is desirable to continue the
execution of plans and not to wait for the realization of the actual effect of an external action,
a programmer may implement the environment in such a way that it starts a new thread to
realize the actual effect of the action, while immediately gives the control back to the agent
(the returned value can be an empty list). Later on the environment can return values (e.g.,
related to the actual effect of the action) back to the agent by means of events.

In order to manage the exchange of information between an individual agent and an envi-
ronment, and to make sure that no other external action can be executed between performing
an external action and the reception of the return value, the transition for external actions
broadcasts an event env(ι, α(t1θ, . . . , tnθ), t) to the multi-agent system level (indicating that
agent ι performs action α(t1θ, . . . , tnθ) in environment env) and waits for the return value
t from environment env in one transition step. In Sect. 4.5, we will introduce a rule that
synchronizes the transition of external actions and the transition of the environments caused
by the external actions. A successful execution of an external action will receive a return
value which is not falsum. The returned value is assigned to the return variable V .

t 	= ⊥ & γ |�g G(r)
〈ι, σ, γ, {(@env(α(t1, . . . , tn), V ), r, id)}, θ, ξ 〉 env(ι,α(t1θ,...,tnθ),t)−→ 〈ι, σ, γ, {}, θ∪{V/t}, ξ 〉

(13)

If the return value is a failure exception, then the execution of the external action is considered
as failed. As a consequence, the action is not removed from the plan base and its identifier is
added to the agent’s event base.

t = ⊥ & γ |�g G(r)
〈ι, σ, γ, {(@env(α(t1, . . . , tn), V ), r, id)}, θ, 〈E, I,M〉〉 env(ι,α(t1θ,...,tnθ),t)−→

〈ι, σ, γ, {(@env(α(t1, . . . , tn), V ), r, id)}, θ, 〈E, I ∪ {id},M〉〉

(14)

4.3 Transition rules for plans

In this section, we present the transition rules that capture the execution of plans consist-
ing of basic actions composed by sequence, conditional choice, conditional iteration, and
non-interleaving operators.

4 This is the case when the Java environment throws the exceptionExternalActionFailedException.
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4.3.1 Sequence plan

The execution of a sequence plan α;π consists of the execution of the basic action α followed
by the execution of plan π . Thus, an agent with a sequence plan α;π can make a transition
through which the first basic action α is executed. The rest π of the plan remains in the
resulting configuration.

〈ι, σ, γ, {(α, r, id)}, θ, ξ 〉 −→ 〈ι, σ ′, γ ′, {}, θ ′, ξ ′〉
〈ι, σ, γ, {(α;π, r, id)}, θ, ξ 〉 −→ 〈ι, σ ′, γ ′, {(π, r, id)}, θ ′, ξ ′〉 (15)

4.3.2 Conditional plan

The execution of a conditional plan if ϕ then π1 else π2 consists of a choice between
plans π1 and π2. In particular, the condition ϕ is evaluated with respect to the agent’s belief
and goal bases. If the agent’s belief and goal bases entails the condition, then plan π1 will be
selected, otherwise plan π2 is selected. If the conditional plan has no ‘else’ part, the ‘else’
part is considered as a skip plan.

(σ, γ ) |�t ϕθτ & γ |�g G(r)
〈ι, σ, γ, {(if ϕ then π1 else π2, r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ, {(π1τ, r, id)}, θ, ξ 〉 (16)

¬∃τ : (σ, γ ) |�t ϕθτ & γ |�g G(r)
〈ι, σ, γ, {(if ϕ then π1 else π2, r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ, {(π2, r, id)}, θ, ξ 〉 (17)

In the first transition rule, the test of the condition ϕθ against the agent’s belief and goal
bases may result in an additional substitution τ (in the case ϕθ contains unbound variables).
This substitution will only be applied to plan π1 (and not added to the general substitution θ )
as the scope of the condition ϕ is the if-part of the conditional plan. In the second transition
rule, there will be no additional substitution. Note that the execution of conditional plans will
always succeed.

4.3.3 While plan

The execution of a while plan while ϕ do π depends on its condition ϕ. In particular, if
ϕ is entailed by the agent’s belief and goal bases, then the plan π should be executed after
which the while plan should be tried again. However, if the condition ϕ is not entailed by
the agent’s belief and goal bases, then the while plan should be removed from the plan base
entirely.

(σ, γ ) |�t ϕθτ & γ |�g G(r)
〈ι, σ, γ, {(while ϕ do π, r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ, {(πτ ;while ϕ do π, r, id)}, θ, ξ 〉

(18)

¬∃τ : (σ, γ ) |�t ϕθτ & γ |�g G(r)
〈ι, σ, γ, {(While ϕ do π, r, id)}, θ, ξ 〉 −→ 〈ι, σ, γ, {}, θ, ξ 〉 (19)

In the first transition rule where the condition ϕ is entailed by the agent’s belief and goal
bases, the substitution τ resulted from testing the condition ϕ against the agent’s belief and
goal bases will be applied to plan π . This substitution will not be added to the general sub-
stitution θ as its scope is limited to the body of the while plan. The execution of a while loop
always succeed.
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4.3.4 Atomic plan

The execution of an atomic plan is the non-interleaved execution of the maximum number of
actions of the plan. Let [α1; . . . ;αn] be an atomic plan. We need to define a transition rule that
allows the derivation of a transition from a configuration A1 = 〈ι, σ1, γ1, {([α1; . . . ;αn], r,
id)}, θ1, ξ1〉 to a configurationAm = 〈ι, σm, γm,�, θm, ξm〉 such that either� = {([αk; . . . ;
αn], r, id)} and αk is the first action whose execution fails, or � = {}, i.e., all actions
of the atomic plan are successfully executed. Let Ai = 〈ι, σi , γi, {[(π, r, id)]}, θi , ξi〉 and
Ai+1 = 〈ι, σi+1, γi+1, {[(π ′, r, id)]}, θi+1, ξi+1〉. In order to specify the transition rule for
atomic plans, we define transition(Ai, Ai+1) to indicate that the following one-step transi-
tion is derivable (the execution of one step of plan π results in plan π ′):5
Ai = 〈ι, σi, γi , {(α;π, r, id)}, θi , ξi〉 −→ 〈ι, σi+1, γi+1, {(π ′, r, id)}, θi+1, ξi+1〉=Ai+1

The following transition rule specifies the execution of atomic plan [α1; . . . ;αn].
(∀i : 1 ≤ i ≤ m → transition(Ai, Ai+1)) & ∀A : ¬transition(Am+1, A)

〈ι, σ1, γ1, {([α1; . . . ;αn], r, id)}, θ1, ξ1〉 −→ 〈ι, σm+1, γm+1,�, θm+1, ξm+1〉 (20)

where A1 = 〈ι, σ1, γ1, {([α1; . . . ;αn], r, id)}, θ1, ξ1〉 and Am+1 = 〈ι, σm+1, γm+1,�,

θm+1, ξm+1〉. Note that the condition ∀A : ¬transition(Am+1, A) can hold for two rea-
sons: either there is no action to execute or the execution of one of the involved actions has
failed. In the first case the resulting plan base is an empty set (i.e.,� = {}) and in the second
case it contains the unexecuted part of the plan (i.e., � = {([πm+1], r, id)}).
Property 3 The event base of the last configuration Am+1 resulted from performing atomic
plan [α1; . . . ;αn] contains an exception if action αm of the atomic plan was executed and
failed. The failed action αm and all its subsequent actions will remain in the plan base.

4.3.5 Multiple concurrent plans

An agent executes its plans concurrently by interleaving the executions of their constituent
actions. This idea is captured by the following transition rule which states that an agent
executes one of its plans at each computation step.

〈ι, σ, γ, ρ, θ, ξ 〉 −→ 〈ι, σ ′, γ ′, ρ′, θ ′, ξ ′〉
〈ι, σ, γ,�, θ, ξ 〉 −→ 〈ι, σ ′, γ ′,�′, θ ′, ξ ′〉 (21)

where ρ = {(π, r, id)} ⊂ � and �′ = (� \ ρ) ∪ ρ′. Note that the condition ρ ⊂ � ensures
that this transition is used only if the agent’s plan base contains more than one plan. In the
case that the agent’s plan base contains one single plan, then the transition rules 1 to 20,
where the plan base is required to be a singleton set, are used.

4.4 Practical reasoning rules

In this section, we present the transition rules that captures the application of the three types
of practical reasoning rules.

4.4.1 Planning goal rules

A 2APL agent generates plans by applying PG-rules of the form κ<-β|π . There are two
types of PG-rules. The first type of PG-rule, characterized by κ 	= true, indicates that

5 Note that the execution of an abstract action in a plan can extend the plan.
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plan π should be generated to achieve goal κ . The second type of PG-rule, characterized by
κ = true, indicates that plan π should be generated when the agent believes β. However,
as goals and beliefs may persist through time, we need to specify when the rules can be
re-applied in order to avoid generating multiple (identical) plans for the same beliefs and
goals.

In our opinion, a PG-rule of the first type should be re-applied for a specific goal only if
the generated plan for that specific goal is fully executed and removed from the plan base.
In order to illustrate this idea suppose an agent with goals clean(blockworld1) and
clean(blockworld2), and the following PG-rule:
clean(R) <- pos(X1,Y1) and trash(X2,Y2) |
{[goTo(X1,Y1,X2,Y2); RemoveTrash()]}
If this rule is applied for the goal clean(blockworld1), then it can be re-applied for
clean(blockworld1) only if the generated plan for this goal is executed and removed
from the plan base. Note that this PG-rule can be re-applied to goalclean(blockworld2)
even if the plan for the goal clean(blockworld1) is in the plan base. A PG-rule of the
second type (i.e., a PG-rule withtrue as the head) can be re-applied only if the plan generated
by this rule is executed and removed from the plan base, regardless of the specific instantia-
tion of its belief condition. So, if the PG-rule true <- trash(X,Y) and pos(X,Y)
| RemoveTrash() is applied because the agent believes trash(2,3) and pos(2,3),
then it cannot be re-applied if the agent also believes trash(5,1) and pos(5,1).

In general, an agent can apply one of its PG-rules r = κ<-β|π , if κ is entailed by one
of the agent’s goals, β is entailed by the agent’s belief base, and there is no plan in the plan
base that has been generated (and perhaps partially executed) by applying the same PG-rule
to achieve the same goal. Let P be the set of all possible plans, id be a new unique plan
identifier, and r ′ = κ ′<-β ′|π ′ be a variant of r .6 Applying the PG-rule r ′ will add an
instantiation of the plan π ′ to the agent’s plan base.

γ |�g κ
′τ1 & σ |� β ′τ1τ2 & ¬∃π∗ ∈ P : (π∗, (κ ′τ1<-β|π) , id ′ ) ∈ �

〈ι, σ, γ,�, θ, ξ 〉 −→ 〈ι, σ, γ,� ∪ {(π ′τ1τ2 , (κ ′τ1<-β|π), id)}, θ, ξ 〉 (22)

Note that (κ ′τ1<-β|π) is the same as the applied PG-rule r except that its head is instantiated
(its guard and body are not instantiated and are the same as r). This allows the application
of one PG-rule for different instantiations of goals, but blocks the re-application of PG-rules
with the head true. The existential quantification in the condition of the transition rule
guarantees that there is no plan π∗ (which may be either the same as π ′τ1τ2 or a remain-
der/executed part of it) which is already generated for the goal κ ′τ1. Note that once the plan
entry is added to the plan base, the PG-rule r cannot be re-applied to achieve the goal κ ′τ1

until the plan π ′τ1τ2 is fully executed and removed from the plan base. Note also that a
PG-rule with the head true cannot be re-applied if it is already applied and the generated
plan entry is still in the plan base.

4.4.2 Procedure call rules

In Sect. 4.2.5, we presented the transition rule for the execution of abstract actions. This
transition rule was based on application of PC-rules that generate plans to be replaced for the
executed abstract actions. In this subsection, we present the transition rules in which PC-rules
are applied for other purposes, i.e., to generate plans in order to react to either the received

6 The reason to require a variant of r is that the generated plan instantiation can contain variables (as it may
include test actions, conditional choice and iteration statements) that may later be instantiated by θ .
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events from the environments or the received messages from other agents. As we will see in
Sect. 4.5, events are broadcasted when the state of the environments change. These events
are catched and included in the E component of the event base. The messages received from
other agents are included in the M component of the event base.

Let event(φ, env) ∈ E be an event broadcasted by environment env,
message(s, p, l, o, e) ∈ M be a message broadcasted by agent s, and Unify be a function
that returns the most general unifier of two atomic formulas (or returns ⊥ if there is no unifi-
cation possible). Let ϕ<-β|π be a variant of a PC-rule of agent ι and ξ = 〈E, I,M〉 be the
event base of agent ι. The transition rule for applying PC-rules to the events from E or M is
defined as follows:

ψ ∈ E ∪M & Unify(ψ, ϕ) = τ1 & σ |� βτ1τ2

〈ι, σ, γ,�, θ, ξ 〉 −→ 〈ι, σ, γ,�′, θ, ξ ′〉 (23)

where id is a new unique plan identifier, r = (true<-β|π),�′ = �∪{(πτ1τ2, r, id)}, and
ξ ′ = 〈E \ {ψ}, I,M〉 if ψ = event(φ, env) or ξ ′ = 〈E, I,M \ {ψ}〉 if
ψ = message(s, p, l, o, e). Note in the generated plan entry that true is used as the
head of the rule that has been applied to generate plan πτ1τ2. This is because plans can only
be executed if their associated goals (the purpose for their generation) are entailed by the
agent’s goal base. As an event/message is different from a goal and is not entailed by the
agent’s goal base, we use true which is always entailed by the agent’s goal base (see Sect.
4.2).

However, if there is no PC-rule the head of which is unifiable with an event or message
from the agent’s event base (E or M), then the event or message will be removed from E

and M , respectively.

ψ ∈ E ∪M & ∀r ∈ PC : Unify(ψ,G(r)) = ⊥
〈ι, σ, γ,�, θ, ξ 〉 −→ 〈ι, σ, γ,�, θ, ξ ′〉 (24)

where PC is the set of PC-rules of agent ι, ξ ′ = 〈E \ {ψ}, I,M〉 if ψ = event(φ, env) or
ξ ′ = 〈E, I,M \ {ψ}〉 if ψ = message(s, p, l, o, e).

Property 4 An event ψ for which there exists a rule r such that Unify(ψ,G(r)) 	= ⊥
remains in the event base until it is processed.

4.4.3 Plan repair rules

A plan repair rule can be applied to replace a plan if an exception is received indicating that
the execution of the first action of the plan is failed. Suppose the execution (of the first action)
of a plan π of an agent fails. Then, a plan repair rule π1<-β|π2 can be applied to repair π if
the abstract plan expression π1 matches π and β is entailed by the agent’s belief base. The
result of the match will be used to instantiate the abstract plan expression π2 and to generate
a new plan that replaces the failed plan.

We assume a plan unification operator P lanUnify(π, π1) that implements a prefix
matching strategy for unifying plan π with abstract plan expression π1. Roughly speak-
ing, a prefix matching strategy means that the abstract plan expression is matched with the
prefix of the failed plan. The plan unification operator returns a tuple (τd , τp, π∗) where
τd is a substitution that binds domain variables, τp is a substitution that binds plan vari-
ables, and π∗ is the postfix of π that did not play a role in the match with π1 (e.g.,
P lanUnify(α(a);α(b);α(c), X;α(Y )) = ([Y/b], [X/α(a)], α(c))). This result is used
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to generate a new plan by applying both substitutions τd and τp to the abstract plan expres-
sion π2 in the body of the applied PR-rule followed by the rest plan π∗.

Let π1<-β|π2 be a variant of a PR-rule of agent ι. The following transition rule specifies
the application of a PR-rule to a failed plan.

Plan Unify(π, π1) = (τd , τp, π
∗) & σ |� βτdτ & id ∈ I

〈ι, σ, γ, {(π, r, id)}, θ, 〈E, I,M〉〉−→〈ι, σ, γ, {(π2τdττp;π∗, r, id)}, θ, 〈E, I \ {id},M〉〉
(25)

Note that substitutions τd , τp (resulted by the plan unification operator) and τ are applied
to abstract plan expression π2. The resulted instantiated plan π2τdττp followed by the
unmatched rest plan π∗ form a new plan that replaces the failed plan.

Let PR be the set of plan repair rules of agent ι. If there is no rule in PR applicable to
repair a failed plan (i.e., the head of the rule cannot match with the failed plan or its belief
condition is not entailed by the belief base), then the exception is deleted from the event base
and the failed plan remains in the plan base.

id ∈ I & (π, r, id) ∈ � & ∀(π1<-β|π2) ∈ PR : (P lanUnify(π, π1) = ⊥ or σ 	|� β)

〈ι, σ, γ,�, θ, 〈E, I,M〉〉 −→ 〈ι, σ, γ,�, θ, 〈E, I \ {id},M〉〉
(26)

Plan repair rules should be used cautiously. If the repaired part of a failed plan includes an
action through which variables are bound (e.g., test or external actions), then the variables
should not occur in the unrepaired part of the plan (i.e., plan part bound to plan variables or
the plan part π∗).

4.5 Multi-agent transition rules

The execution of a 2APL multi-agent system is the interleaved executions of the involved
individual agents and the environments. Moreover, we assume that the external shared envi-
ronments can change either by the execution of an agent’s external action in one of the
environments or by the internal dynamics of the environments (e.g., clock changes every
second and resources can grow or shrink). Therefore, the configuration of a multi-agent sys-
tem can be modified when either the configuration of one of the involved individual agents
is modified or when the shared environments change.

4.5.1 Interleaved executions of individual agents

The following transition rule indicates that if an individual agent makes a transition step by
executing a basic action (except external and communication actions), then the multi-agent
system that involves the agent can make a transition too. As explained in previous sections, the
transition steps made by individual agents are through either the execution of basic actions,
plans, or the application of practical reasoning rules.

Ai → A′
i

〈A1, . . . , Ai, . . . , An, χ〉 → 〈A1, . . . , A
′
i , . . . , An, χ〉 (27)

4.5.2 Execution of environment by external actions

As explained in Sect. 4.2.7, the execution of external actions will affect the shared external
environments. In particular, the execution of an external action @env(α(t1, . . . , tn), V ) has
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two different effects: (1) the state of the shared environments may be changed, and (2) the
variable V binds to a term. We assume that the effect of an external action on environments is
determined by the designer of the environments. We capture the effect of performing an exter-
nal action by an agent in an environment through a function that takes these ingredients and
returns a tuple consisting of the new state of the environments7 and a return value. The return
value can be a list, which is used to bind variableV , or it can be ⊥ indicating that the execution
of the action is failed, or the agent has no access to the environment (this information is taken
from the .mas file), or the action is not defined in the environment. Let Fenvι,α (t1, . . . , tn, χ)

be the function that determines the effects of external action α with arguments t1, . . . , tn
performed by agent ι in the environment env ∈ χ and returns a tuple (t, χ ′), where t is either
a list of terms that binds output variable V or ⊥, and χ ′ is the updated set of environments.

Fenvι,α (t1, . . . , tn, χ) = (t, χ ′)

χ
env(ι,α(t1,...,tn),t)−→ χ ′

(28)

This transition rule indicates that when an external action is broadcasted, the environment
can make a transition according to the determined effect of the action. Note that an external
action is broadcasted as a consequence of the execution of the external action by an individual
agent (see transition rules 13 and 14).

In order to coordinate the execution of external actions and their corresponding effects
on the shared external environments, we need to synchronize the transition of individual
agent configuration, caused by executing an external action, and the transition of the shared
external environments, caused by the corresponding effect of the external action.

Ai
env(ι,α(t1,...,tn),t)−→ A′

i & χ
env(ι,α(t1,...,tn),t)−→ χ ′

〈A1, . . . , Ai, . . . , An, χ〉 −→ 〈A1, . . . , A
′
i , . . . , An, χ

′〉 (29)

This transition rule indicates that if an individual agent executes an external action and the
environments changes according to the effect of the external action simultaneously, then the
multi-agent system can make a transition through which only the agent that has executed the
external action and the environments are changed.

4.5.3 Execution of environment by internal dynamics

A multi-agent configuration can be modified if a change occurs in one of its environments.
As noted we assume that environments are dynamic and can be changed independent of
any agent action. A change in an environment can broadcast an event which can be used
by agents to generate and execute plans (using PC-rules, see Sect. 4.4.2). A change in an
environment can thus cause a multi-agent transition through which the configuration of the

individual agents can be modified. Let env
(φ,{k,...,l})!�⇒ env′ indicate that environment env is

changed to env′ through which event (φ, {k, . . . , l}) is broadcasted. This event indicates that
the information represented by atom φ is generated for agents {k, . . . , l}. The following tran-
sition defines the multi-agent execution step through which (1) the environments env ∈ χ is
updated resulting in env′, and (2) the event φ is added to the event base of agents {k, . . . , l}.

7 We assume that a change in one environment env ∈ χ may cause changes in other environments in χ as
well.
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env ∈ χ & env
(φ,{k,...,l})!�⇒ env′

〈A1, . . . , An, χ〉 −→ 〈A′
1, . . . , A

′
n, χ

′〉 (30)

where

χ ′ = (χ \ {env}) ∪ {env′}
Aι = 〈ι, σ, γ,�, θ, 〈E, I,M〉〉
A′
ι = 〈ι, σ, γ,�, θ, 〈E ∪ {event(φ, env)}, I,M〉〉 if ι ∈ {k, . . . , l}

A′
ι = Aι otherwise.

It is important to note that an event is directed to a subset of individual agents. Which
agents receives an event is the decision of the environment designer. Also, we will not further
explain the transitions of external environments denoted by the transition relation �⇒ and
assume that these transitions are determined by the implementation of the environments.

4.5.4 Synchronous communication

In Sect. 4.2.6, transition rules 11 and 12 are presented that indicate (1) an agent can send a
message to another agent, and (2) an agent can receive a message. In order to ensure that the
sent message is received by the addressee, we present a transition rule at multi-agent level
which indicates that the sending and receiving agents exchange the message synchronously.
Let ϕ = 〈i, j, p, l, o, φ〉 be a broadcasted massage. The transition rule for synchronized
communication is defined as follows:

Ai
ϕ!−→ A′

i & Aj
ϕ?−→ A′

j

〈A1, . . . , Ai, . . . , Aj , . . . , An, χ〉 −→ 〈A1, . . . , A
′
i , . . . , A

′
j , . . . , An, χ〉 (31)

This transition rule indicates that if one agent can make a transition by sending a message
and another agent can make a transition by receiving the message, then the multi-agent sys-
tem can make a transition through which the message is exchange between the sending and
receiving agents synchronously.

5 Executing multi-agent systems

The execution of a 2APL multi-agent system is determined by the 2APL transition system
that is specified by the transition rules presented in Sect. 4. It consists of a set of so called
computation runs.

Definition 5 (computation run) Given a transition system and an initial configuration s0,
a computation run CR(s0) is a finite or infinite sequence s0, . . . , sn or s0, . . . where si is a
configuration, and ∀i>0 : si−1 → si is a transition in the transition system.

We can now use the concept of a computation run to define the execution of 2APL multi-agent
systems.

Definition 6 (execution of 2APL multi-agent systems) The execution of a 2APL multi-agent
system with initial configuration 〈A1, . . . , An, χ〉 is the set of computation runs
CR(〈A1, . . . , An, χ〉) of the 2APL transition system.

Note that the computation runs of a 2APL multi-agent system consist of multi-agent system
transitions which can be derived by means multi-agent system transition rules. The multi-
agent system transition rules are in turn defined in terms of transitions of individual agents
and the environments, which can be derived by means of transition rules for individual agents
and the environments.
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Fig. 3 The deliberation cycle for individual 2APL agents

The execution of a 2APL multi-agent system is thus the set of all possible computational
runs. An interpreter that executes a 2APL multi-agent system is one of these computational
runs. In particular, the interpreter of 2APL executes individual agents and the environment in
parallel in an interleaving mode. Moreover, the execution of each individual agent is deter-
mined by the so-called deliberation process, which is specified as a cyclic process explained
in the next subsection.

5.1 2APL deliberation process

In order to execute an individual agent, the 2APL interpreter follows a certain order of
deliberation steps repeatedly and indefinitely. Each deliberation step is specified by a set of
transition rules indicating which transitions an individual agent can make at each moment in
time. This repeated and indefinite sequence of the deliberation steps can be generated by the
agent’s deliberation cycle. The 2APL deliberation cycle is illustrated in Fig. 3.

Each cycle starts by applying all applicable PG-rules, each rule only one time. Note that
a PG-rule can be applied more than one time since it can be applied to generate plans for
two different goals. For example, for an agent with two goals g(a) and g(b) and g′(c),
the PG-rule g(X)<-b(Y )|π(X, Y ) can be applied to both g(a) as well as g(b) and g′(c).
However, according to the 2APL deliberation cycle the PG-rule will be applied to the first
goal g(a)8 in one cycle and to the goal g(b) and g′(c) in the next cycle.

The deliberation cycle proceeds by executing only the first actions of all plans. This is
in order to make the deliberation process fair with respect to the execution of all plans, i.e.,
in order to allow all plans to get a chance to be executed. The next deliberation steps are to
process all events received from the external environment, all internal events indicating the
failure of plans, and all messages received from other agents, respectively. An event from
external environment is processed by applying the first applicable PC-rule (with the head
event) to it. An internal event, which identifies a failed plan, is processed by applying the
first applicable PR-rule to the failed plan. A received message is then processed by applying
the first applicable PC-rule (with the head message) to it. Note that the application of rules
to process events generates and add plans to the corresponding agent’s plan base.

8 Note that the goal base is a list of goals.
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After these deliberation steps, it is checked if it makes sense to do a new cycle of delib-
eration steps. In fact, if in a deliberation cycle no rule could be applied, no plan could be
executed, and no event could be processed, then it makes no sense to try again a new cycle
of deliberation steps, except when a new event or message has arrived.

Of course, the order of the deliberation steps in a cycle can be defined in different ways.
For example, at each deliberation cycle one may apply only one applicable PG-rule (instead
of applying all applicable rules), execute one plan (instead of the first action of all plans),
and process one event. It is also possible to process events before applying PG-rules or exe-
cute plans after processing events. We selected the deliberation cycle as presented in Fig. 3
because it has some interesting properties. Some of these properties can be formulated as
follows:

Property 5 If the execution of a plan fails, then the plan will either be repaired in the same
deliberation cycle or get re-executed in the next deliberation cycle.

This is the direct consequence of the fact that in each deliberation cycle plans are executed
before internal events are processed and that internal events are removed if there is no plan
repair rules to modify the failed plans (transition rule 26). It should be noted that a plan fails
if the execution of its first action fails. The failed action remains as the first action of the plan.
See the transition rules 3, 5, 7, 10, and 14 of failed actions.

Property 6 If the first action of a failed plan is a belief update action, a test action, an adopt
goal action, an abstract action, or an external action, and there is no plan repair rule to
repair it, then the failed plan may be successfully executed in the next deliberation cycle.

The reason is that the belief and goal bases can be modified in one deliberation cycle such that
belief and goal test actions can executed successfully in the next deliberation cycle. Also,
the state of the environment can change such that failed external actions can be executed
successfully in the next deliberation steps.

6 2APL and related works

Existing BDI-based agent-oriented programming languages such as Jason [5], Jack [30],
Jadex [20], 3APL [14], KGP [17,6,24], Minerva [18], (Concurrent) MetateM [11,12] and
the family of Golog languages [13,25] are designed to implement agents in terms of BDI
concepts. Except Jack and Jadex, which are based on Java, these agent-oriented programming
languages enjoy explicit formal semantics. Among the programming languages with formal
semantics, KGP and Minerva are mainly based on logic programming and exploit related
techniques. Other languages are based on different theories and techniques such as temporal
logic (e.g., (Concurrent) MetateM), situation calculus (e.g., Golog family of programming
languages), or a mixture of logic programming and rule based systems (e.g., Jason and 3APL).
In this section, we provide a general comparison between 2APL and these BDI-based agent-
oriented programming languages. Although some of these programming languages such as
Jack, Jadex, Jason, and 3APL come with a development environment, the following com-
parison is based on the language part only, ignoring their similarities and differences with
respect to available development tools.

2APL extends and modifies the original version of 3APL [14] in many different ways.
While the original version of 3APL is basically a programming language for single agents,
2APL is designed to implement multi-agent systems. Moreover, a 3APL agent state consists
of beliefs and plans, where plans consist of belief update, test, and abstract actions composed
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by the sequence and choice operator. The original version of 3APL provides only plan revi-
sion rules that can be applied to revise an agent’s plan. 2APL includes these programming
constructs and adds new ones to implement a set of agents, a set of external environments,
the access relation between agents and environments, events, goals, and a variety of action
types such as external actions, goal related actions, and communication action. Moreover, two
additional rule types are introduced to implement an agent’s reactive and proactive behav-
ior. The plan repair rules of 2APL have similar syntax as the plan revision rules of 3APL.
However, while 3APL rules can be applied to revise any arbitrary plan (also plans that are
not failed), 2APL plan repair rules are applied only to repair failed plans. In our view, it does
not make sense to modify a plan if the plan is executable. Finally, 2APL proposes a new plan
constructs to implement a non-interleaving execution of plans. The execution of 2APL and
3APL programs is based on a cyclic process. In 3APL, at each cycle the agent’s plans are
executed and revised, while in 2APL at each cycle goals, (internal and external) events, and
messages are processed as well.

Jack [30] and Jadex [20] are Java-based agent-oriented programming languages. They
extend Java with programming constructs to implement BDI concepts such as beliefs, goals,
plans, and events. In both Jack and Jadex a number of syntactic constructs are added to Java to
allow programmers to declare beliefsets, post events, and to select and execute plans. Jadex
uses XML notation to define and declare the BDI ingredients of an agent. Some of these
ingredients such as beliefs and plans are implemented in Java. The execution of agent pro-
grams in both languages are motivated by the classical sense-reason-act cycle, i.e., processing
events, selecting relevant and applicable plans, and execute them.

Although Jack, Jadex and 2APL share the basic BDI concepts, they give different seman-
tics9 to the BDI concepts and realize different rationality principles for these concepts. For
example, beliefs and goals in Jack and Jadex have no logical semantics such that the agents
cannot reason about their beliefs and goals. A consequence of this is that a Jack or Jadex
agent is not able to generate plans that can contribute to the achievement of its goals, but
not necessarily achieve them. The goals in 2APL are logical formula such that an agent can
generate a plan if it can reason that the plan contributes to the achievement of one of its goals,
i.e., if the goal that can be achieved by the plan is logically entailed by one of the agent’s
goals. Moreover, the consistency of an agent’s state in Jack and Jadex, as far as they are
defined, is left to agent programmers, i.e., the agent programmer is responsible to make sure
that state updates preserve the state consistency. Also, there is no logical relation between
beliefs and goals in Jack and Jadex. In these programming languages, a goal or event are used
to generate a plan, while beliefs and goals in 2APL refer to the same set of states. In 2APL,
a goal state represented by a logical formula is thought to be achieved when the formula
is entailed by the beliefs. A similarity between 2APL and Jadex is that they both provide a
programming construct to implement non-interleaving execution of plans.

Jason [5] is introduced as an interpreter of an extension of AgentSpeak, which is orig-
inally proposed by Rao [21]. Like 2APL, Jason distinguishes multi-agent system concerns
from individual agent concerns, though it does not allow the specification of agents’ access
relation to external environments. An individual agent in Jason is characterized by its beliefs,
plans and the events that are either received from the environment or generated internally. A
plan in Jason is designed for a specific event and belief context. The execution of individual
agents in Jason is controlled by means of a fixed (not programmable) cycle of operations
encoded in its semantics. In each cycle, events from the environment are processed, an event
is selected, a plan is generated for the selected event and added to the intention base, and

9 The semantics of Jack and Jadex are not explicitly presented, but explained informally.
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finally a plan is selected from the intention base and executed (through which new internal
events can be generated).

A plan in Jason is similar to the so-called procedure call rules in 2APL. Such a rule indi-
cates that a plan should be generated by an agent if an event is received/generated and the
agent has certain beliefs. Like 2APL, Jason is based on first-order representation for beliefs,
events, and plans. In contrast to 2APL, Jason has no explicit programming construct to imple-
ment declarative goals, though goals can be indirectly simulated by means of a pattern of
plans. The beliefs of a Jason agent is a set of literals with strong negation, while in 2APL an
agent’s beliefs is a set of Horn clauses. Moreover, the beliefs and plans in Jason can be anno-
tated with additional information that can be used in belief queries and plan selection process,
while such information can be encoded in the beliefs and plans in 2APL. Finally, 2APL has
two additional rule types that generates plans to achieve declarative goals and repair plans
when their executions fail. In Jason, plan failure can be modeled by means of plans that react
to the so-called deletion events. The comparison between 3APL and AgentSpeak provided
in [15] may be useful for comparing 2APL and Jason.

Due to the computational complexity of planning, the family of Golog languages [13,25]
propose high-level program execution as an alternative to control agents and robots that oper-
ate in dynamic and incompletely known environments. In fact, the high-level (agent) program
consists of a set of actions, including the sense action (in IndiGolog [25]), composed by means
of conditionals, iteration, recursion, concurrency and non-deterministic operators. Instead of
finding a sequence of actions to achieve a desired state from an initial state, the problem is to
find a sequence of actions that constitute a legal execution of the high-level program. When
there is no non-determinism in the agent program, then the problem is straight forward. How-
ever, if the agent program consists of actions that are composed only by non-deterministic
operators, then the problem is identical to the planning problem.

In the Golog language family, the state of an agent is a set of fluents, while the state
of a 2APL agents consists of beliefs, goals, events, and plans. While the main focus of the
Golog family of programming languages is planning, 2APL emphasizes on the dynamics of
its internal state by providing a variety of update and revision actions on its belief, goals,
events, and plans. Moreover, in contrast to the Golog family of programming languages,
2APL combines logic programming and imperative programming. Finally, the execution of
an agent program in 2APL is a cyclic execution of transitions through which its internal state
changes, while the execution of Golog programs is on-line planning and plan execution. It
should be noted that in contrast to KGP that uses abductive logic programming for planning,
the Golog language family use situation calculus for planning.

KGP [17,6,24] is based on a model of agency characterized by a set of modules. The
model has an internal state module consisting of a collection of knowledge bases, the current
agent’s goals and plan. The knowledge bases represent different types of knowledge such as
the agent’s knowledge about observed facts, actions, and communication, but also knowl-
edge to be used for planning, goal decision, reactive behavior, and temporal reasoning. The
KGP agent model includes also a module consisting of a set of capabilities such as planning,
reactivity, temporal reasoning, and reasoning about goals. These capabilities are specified
by means of abductive logic programming or logic programming with priorities. Another
KGP module contains a set of transitions to change the agent’s internal state. Each transition
performs one or more capabilities, which in turn use different knowledge bases, in order to
determine the next state of the agent. Finally, the KGP model has a module, called cyclic the-
ory, that determines which transition should be performed at each moment of time. Different
cycle theories can be used to specify different behavior profiles. An agent programmer can
implement only some part of the KGP model, i.e., some of the contents of the knowledge
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bases, the content of the cycle theory, and some selection operators used in the cycle theory.
The rest of the model is fixed and already implemented.

The KGP model is similar to the underlying model of 2APL as it provides constructs to
implement an agent’s belief/knowledge, goals and plans. The model differs from 2APL as it
allows agents to perform capabilities such as planning and goal decision, though the compu-
tational complexity of these capabilities are not discussed in [17,6,24]. Moreover, the KGP
model is based on propositional language, while 2APL use the first-order representation for
beliefs, goals, and plans. Although KGP authors indicate that the choice for propositional
language is for the simplicity reasons, it is not clear whether capabilities such as planning and
goal decisions can be maintained for a more expressive representation of knowledge bases.
Another difference is that a KGP agent’s plan is a partially ordered set of primitive actions,
while 2APL plans consists of actions that are composed by a variety of complex composi-
tion operators such as conditional choice, iteration, and non-interleaving operators. 2APL
provides also a larger variety of actions such as belief and goal update actions, test actions,
and external actions. The actions in KGP plans are similar to the 2APL external actions that
can be performed in external environments. Finally, the KGP cyclic theory is closely related
to the 2APL deliberation cycle, which also can be modified by the agent programmers to
a certain extent. In summary, while KGP model aims at presenting an agent model with a
variety of capabilities such as planning and goal decision, 2APL aims at providing a more
expressive representation for the agent’s internal state.

Like 2APL and KGP, the general idea of Minerva [18] is to specify an agent’s state and
its dynamics. Minerva agents consists of a set of specialized sub-agents manipulating a com-
mon knowledge base, where sub-agents (i.e., planner, scheduler, learner, etc.) evaluate and
manipulate the knowledge base. These subagents are assumed to be implemented in arbi-
trary programming languages. Also, like 2APL and KGP, Minerva gives both declarative and
operational semantics to agents allowing the internal state of the agent, represented by logic
programs, to modify. However, in contrast to KGP, Minerva is based on multidimensional
dynamic logic programming and uses explicit rules for modifying its knowledge bases. The
comparison between KGP and Minerva and the comparison between 3APL and Minerva that
are provided in [17] and [18], respectively, can be useful for the further comparison between
2APL and Minerva.

Finally, the programming language (Concurrent) MetateM [12] is mainly based on the
direct execution of propositional temporal logic specifications. In (Concurrent) MetateM, the
beliefs of agents are propositions extended with modal belief operators (allowing agents to
reason about each others’ beliefs), goals are temporal eventualities, and plans are primitive
actions. In 2APL, we use more expressive representation for beliefs, goals, and plans by
using first-order formula with variables. The variables play an essential role in programming
as they can be used to pass information from beliefs, goals and events to actions and plans.
Moreover, 2APL proposes a varieties of actions and plans with complex structures. Thus,
while (Concurrent) MetateM has decided for the full logic rather than having first-order
representations for beliefs, goals and plans [12], 2APL restricts the logic to enable more
expressive representation of these ingredients. Moreover, 2APL provides facility to handle
plan failures, which is absent in the (Concurrent) MetateM.

7 Conclusion and future works

In this article, we presented a BDI-based multi-agent programming language called 2APL,
which provides practical constructs for the implementation of cognitive agents. The complete

123



246 Auton Agent Multi-Agent Syst (2008) 16:214–248

syntax and semantics of this programming language are presented and discussed. Because of
the space limitation we could not formulate and discuss properties of the presented seman-
tics in formal details, but could only briefly and informally explain them. However, we have
studied and shown some properties of agent programming languages that are closely related
to 2APL in [9]. Moreover, we presented in [1] a logic of agent programs that allows us to
formulate and verify safety and liveness properties of specific 2APL-like agent programs.
The main purpose here was to present 2APL rather than discussing its formal properties.

We have implemented this semantics in the form of an interpreter that executes 2APL
multi-agent programs. The execution of a multi-agent program is the interleaving execution
of individual agent programs and the shared environments. The execution of an individual
agent program is based on the deliberation cycle. Each cycle determines which transitions
in which order should take place. This interpreter is integrated in the 2APL platform that
can be downloaded from http://www.cs.uu.nl/2apl. This platform provides a graphical inter-
face through which an agent programmer can load, edit, run, and debug a 2APL multi-agent
program. Moreover, a state tracer tool is provided through which one can browse through
an agent’s states generated by the execution of its corresponding agent program. For each
state, one can observe the agent’s beliefs, goals, plans, and deliberation actions. Finally, the
platform allows communication among agents that run on several machines connected in
a network. Agents hosted on different 2APL platforms can communicate with each other.
The 2APL platform is built on the top of JADE (jade.tilab.com), which is a software
framework that facilitates the implementation of multi-agent systems through a middleware
that complies with the FIPA specifications.

We are currently working on various extensions of both 2APL programming language
as well as development tools to be integrated in the 2APL platform. Our aim is to intro-
duce programming constructs at multi-agent level to allow the implementation of social and
organisational issues such as norms, obligations, prohibition, permissions, power relation,
delegations of tasks, responsibility, and trust. These constructs should enable a programmer
to implement under which condition individual agent transitions are allowed and what are the
consequences of such transitions. This can be realized by adding an organization component
(specified by the introduced constructs at multi-agent level) to the multi-agent configuration.
The idea is to check this component before an individual agent transition takes place and to
update it after the transition took place.

We are also working on programming constructs at individual agent level to allow the
implementation of various goals types such as perform, achieve, and maintenance goals. We
have studied these goal types and discussed their formal properties elsewhere [8]. Moreover,
as goals can conflict with each other (in the sense that goals can or would not be pursued
simultaneously), we are working on programming constructs that enable the specification of
conflicting goals at individual agent level. These constructs are designed to manage the pursu-
ance of goals, i.e., to determine which goals and in which order they can be pursued/planned
[27]. Finally, the relation between goals and plans should be established through the so-called
intentions in order to allow the implementation of various commitment strategies such as
blindly-minded, single-minded, and open-minded.

We are currently extending the 2APL platform with (visual) debugging tools that allow
an agent programmer to monitor the execution of multi-agent programs, halt their executions
by means of break points, inspect the mental states of individual agents, and analyze the
interactions among individual agents. The monitoring tools are based on temporal expres-
sions that should hold in multi-agent states during the executions of multi-agent programs.
In particular, these tools are triggered and activated as soon as temporal expressions do not
hold in the multi-agent configurations. The execution of multi-agent programs can also be
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halted explicitly by means of break points that are placed in the codes of multi-agent and
individual agent programs.

Acknowledgements Thanks to John-Jules Ch. Meyer for many discussions and comments about the design
of this multi-agent programming language. We published a short version of 2APL in ProMAS’07 [10].
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