
Auton Agent Multi-Agent Syst (2009) 19:248–271
DOI 10.1007/s10458-009-9076-y

Intelligence Dynamics: a concept and preliminary
experiments for open-ended learning agents

Masahiro Fujita

Published online: 12 February 2009
The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract We propose a novel approach that aims to realize autonomous developmental
intelligence called Intelligence Dynamics. We emphasize two technical features of dynamics
and embodiment in comparison with the symbolic approach of the conventional Artificial
Intelligence. The essential conceptual idea of this approach is that an embodied agent inter-
acts with the real world to learn and develop its intelligence as attractors of the dynamic
interaction. We develop two computational models, one is for self-organizing multi-
attractors, and the other provides a motivational system for open-ended learning agents.
The former model is realized by recurrent neural networks with a small humanoid body in
the real world, and the later is realized by hierarchical support vector machines with inverted
pendulum agents in a virtual world. Although they are preliminary experiments, they take
important first steps towards demonstrating the feasibility and value of open-ended learning
agents with the concept of Intelligence Dynamics.

Keywords Open-ended · Dynamics · Embodiment · Prediction · Intelligence Dynamics ·
Recurrent neural networks · Intrinsic motivation · Flow theory

1 Introduction

Intelligence Dynamics is a research field for understanding and realization of “intelligence”,
as opposed to symbolism, which is the hallmark feature of conventional Artificial Intel-
ligence (AI) [23]. Recently many researchers in various fields have pointed out problems
of traditional AI. New research approaches have been proposed to address “Intelligence”.
These have been independently developed in Brain Science [14], Cognitive Science [25],
Psychology [26], Robotics and AI [2,34]. Our aim in proposing “Intelligence Dynamics” is
to make breakthroughs in the study of “intelligence” by further integrating these activities

M. Fujita (B)
System Technologies Laboratories, Sony Corporation, Shinagawa-ku, Tokyo, Japan
e-mail: masahirof@jp.sony.com

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 249

across the various research fields. The common features of these approaches are summarized
as (1) embodiment, (2) dynamics, and (3) constructive approach.

• Embodiment: Recently many researchers have pointed out that it is necessary for “intel-
ligence” to have a body interacting with an environment [2,20,34]. This approach insists
that the cognitive process should be described within both the neural/brain system and the
environment. In contrast, traditional AI usually insists that the cognitive process resides
only in the brain.

• Dynamics: The Dynamics systems approach emphasizes that the cognitive process should
be described by both bottom-up sensory-motor dynamics and top-down abstracted pattern
dynamics [34]. The competition and cooperation of bottom-up and top-down dynamics nat-
urally lead to the global dynamics for cognitive process. In contrast, traditional AI usually
describes the top-down cognitive process by symbols and logic, which make competition
and cooperation of sensory-motor signals difficult to handle.

• Constructive approach: The constructive approach asserts that in order to understand a
function of the brain and its cognitive processes, we should build a body to evaluate the
resulting hypotheses, theories, and models. In contrast, conventional brain science is only
anatomical and analytical. Conventional cognitive science is also analytical, but recently
cognitive researchers begun to explore and adopt a constructive approach [25].

Let us briefly compare Intelligence Dynamics and conventional AI. What kind of intelli-
gence is studied in conventional AI? Originally the goal of conventional AI was to realize
human-level thought and human behavior [8]. However, the main approach focused on logical
reasoning and logical behavior. Therefore, symbolic representations and their manipulations
by logic formula were largely employed. Based on an idea of building knowledge using
symbolic representations and logical formulation, researchers tackled the problem by mak-
ing symbol representations of the problem based on logical formula and manipulating the
resulting symbols based on logical formula. Natural language is also addressed in a similar
way. A word sequence is represented as symbols and is analyzed based on a representation
of grammar rules. The system then generates the correspondence between the words and
categories such as subject, predicate, and so on. The meaning of the symbols is given by a
set of the frame representations.

However, there are well discussed concerns in the use of the conventional AI approach as
described above, some of which include the frame problem [29] and the symbol grounding
problem [13]. The frame problem indicates that it is difficult or impossible to describe the
real world with logic based symbol representations, because the representational complexity
becomes overwhelming when a dynamically changing real world is considered. However,
symbolic representation is very powerful in well defined static worlds such as chess even
when the number of possible world states in huge. The fact that a computer chess program
using conventional AI beat the human world chess champion in 1997 shows the usefulness
and power of the conventional AI.

Intelligence Dynamics emphasizes relations among observed, predicted, and recalled time
sequences in sensory-motor space, which are the results of interactions between a body and
its environment. “Intelligence” must be described by these relations in order to be grounded.
Regarding dialogue using natural language, Intelligence Dynamics emphasizes the levels
where various kinds of intentions such as “drawing attention” and “shared attention” are car-
ried out in a non-symbolic manner. These levels are acquired or self-organized through inter-
actions between a body and its environment, which can include the presence of other agents
such as humans. From self-organization of these levels, we believe that verbal interaction,

123

250 Auton Agent Multi-Agent Syst (2009) 19:248–271

which was considered as a symbolic process in the conventional AI approach could emerge
under certain social constraints, where physical and emotional grounding are achieved. How-
ever, we also recognize that this remains an important open challenge.

Another important factor in Intelligence Dynamics is imitation based on embodiment.
The importance of imitation is also emphasized in brain science with “mirror neurons” [27]
and in cognitive science as “mimesis” [10]. The existence of mirror neurons implies that a
human interprets another human’s actions as actions by himself, providing an understanding
of their meaning. Based on the interpretation of the mirror neurons, embodiment plays an
important role in understanding the meaning of behaviors. Mimesis is defined as the activi-
ties that action patterns acquired by imitation are reused in the rehearsal of motions and in
communication with others. Thus, mimesis emphasizes the importance of imitation, which
is a basic function of communication.

In summary, Intelligence Dynamics constitutes a research field for AI by emphasizing
the importance of embodiment and dynamics. In Intelligence Dynamics the intelligence is
not symbolic representation provided by a system designer or programmer, but it is acquired
through interactions between a body and the environment which can include other agents.

The rest of this article will introduce some of our preliminary experiments based on the
Intelligence Dynamics approach. First, we review some pioneering work related to the Intel-
ligence Dynamics approach. Then, we introduce a generic common model by abstracting
and integrating these models. We emphasize that the prediction function is a key component
of the generic model. Using the generic model, we briefly describe the entire architecture
of our Intelligence Dynamics Model. Then, we describe two implementation experiments.
In the first one we examine properties of dynamics attractors, and in the second we propose
a key idea for open-ended systems that can autonomously learn by selecting tasks that are
significantly challenging for the system itself.

2 Reviews and generalization

There are many works related to Intelligence Dynamics. Almost all of them point out the
importance of some capabilities in the developmental process such as imitation and joint
attention. Of course these functions are very important for intelligence. However, we would
like to focus more on the system architectural view point for developmental intelligence.
There are some pioneering works that deal with this issue. Let us consider the following
three works and identify their essentials properties: (1) MOSAIC [14] (Fig. 1a), Mimesis
Model [15] (Fig. 1b), and Recurrent Neural Networks with Parametric Bias (RNNPB) [34]
(Fig. 1c).

MOSAIC as shown in Fig. 1a is composed of many prediction and control pairs for sen-
sory-motor signals such as the locally weighted projection regression (LWPR) [35] as a
prediction function. Using MOSAIC the authors succeed to develop the humanoid named
DB, which learns performances of juggling, devil stick handling, and so on [14]. We are not
going into the details of MOSAIC, but would like to consider its essential functions and prop-
erties. The important difficulty of MOSAIC is how to select a controller that properly works
in each situation. It selects a controller based on the goodness of the corresponding prediction
function. In a more advanced version of MOSAIC [11], the control signal is generated by
adding the controllers’ output weighted by the goodness of the corresponding predictors. The
weighted values based on the predictors’ “goodness” function are used as inputs to the next
layer, which is again composed of many prediction and control pairs for the weighted values.

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 251

Predictor

Controller

Upper Layer

Responsible
signals

slangis rotoMslangis rosneS

(a) Mosaic

Upper Layer

Sensor Inputs=
Motor Outputs Motor Commands

Reduce dimension
By MDS

Sequences in
The reduced
Dimensional
Space

HMM
HMM

HMM
HMM

(b) Mimesis model with Hidden Markov Models

Upper Layer

rotom-yrosneSrotom-yrosneS

…

PBs

Sensory-
Motor
signals

Sensory-
Motor
signals

Context loop

(c) Recurrent Neural Networks with Parametric Bias (RNN-PB)

Fig. 1 Some examples of the prediction functions used in a Mosaic, b Mimesis with HMMs, and c RNNPB

123

252 Auton Agent Multi-Agent Syst (2009) 19:248–271

In summary the prediction function and a layered architecture are the important points of
MOSAIC.

The Mimesis Model as shown in Fig. 1b is composed of many hidden Markov models
(HMMs), which are trained with motion data of human actions such as walking, kicking,
jumping and so on [5,4,15]. Then, distance metrics are introduced among the HMMs. Based
on the metrics the HMMs are set in a low dimensional space named Proto-Symbol space
with multi-dimensional scaling (MDS) algorithm [7]. Then, a point in Proto-Symbol space
represents a motion sequence. When a new motion sequence is input, a Mimesis system can
recognize the sequence as a point in Proto-Symbol space. Multiple motion sequences such
as walking and then kicking can be recognized as a sequence in Proto-Symbol space. If we
can consider that the sequence in Proto-Symbol space is input to the upper layer, then the
Mimesis system can be considered as the layered architecture.

RNNPB as shown in Fig. 1c is trained by a sequence of sensory-motor signals [35]. The
input of RNNPB is a sample of the sensory-motor signals at time t and the output is a sample
at time t + 1. Thus, it can be considered as a learnable predictor. Actually RNNPB can learn
multiple attractors of dynamics, which can be selected by parametric bias (PB) signals. Then,
we can consider that PB signals are input to the upper layer, which is again composed of
RNNPB. Thus, the RNNPB system can also be considered to be a predictor with layered
architecture.

All these models can be considered as encoding dynamics attractors using predictors and
in some cases controllers. The implementations of the predictors are done using models such
as LWPR, HMMs, or RNNPB. Furthermore, all these models have a hierarchical architecture.
The upper layer is organized to encode the attractors in the lower layer. In order to achieve a
generalization property the dimension of the output signals from lower layer is compressed.

We generalize all the models in Fig. 1a–c to separate the computational model of intel-
ligence from its implementation. Figure 2 shows the generalized model for a hierarchical
architecture of prediction and control functions, where embodied interactions are memo-
rized and stored as attractors. The attractors are embedded into a low dimensional space,
which provides an input to an upper layer. In the upper layer, time sequences in the input

Higher layer

Sensory-Motor
Signal Input

Motor signal
output

Sensory-Motor
Signal
(at time t)

Sensory-Motor
Signal
(at time t+1)

Predictor
Controller

(Or mapping)

Reduce Dimension

Addition with
Ratio a ; (1-a)

Fig. 2 Generic prediction function model for Intelligence Dynamics

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 253

space again can be considered as attractors, which are again embedded into a lower dimension
space.

Regarding the learnable prediction or control functions, many models are proposed such
as RNNPB, LWPR SVR [32], HMM, and so on. Regarding the method to encode the attrac-
tors into a low dimensional space, there are a range of method that can be used such as
self-organizing map (SOM) [19] and MDS [7]. In RNNPB, errors are also back propagated
not only through weights but also through PBs, so that attractors are encoded into a low
dimensional PB space.

Thus, there are many ways to implement the concept model of Fig. 2. Further studies have
to be done to investigate convergence speed, scalability, and stability/plasticity,

3 Entire architecture for Intelligence Dynamics

As we described in the previous section, in the literature of Intelligence Dynamics references,
many researchers pursue a range of different goals such as behavior emergence and imita-
tion learning. The generic architecture described in the previous section is a core component
of an intelligent system, it can be considered as a part of an open-ended system, which is
our ultimate objective. In order to achieve this objective, we should not over-focus on any
individual part of the system, but instead consider the entire autonomous system so that
various key behaviors emerge as a continuous evolving system. In this section, keeping in
mind the suggestions in the previous section let us speculate about the entire architecture for
Intelligence Dynamics.

In order to build a fully autonomous agent from scratch the emergence of functions need
to simulate the evolution of intelligence life which is a major challenge yet to be realized.
Therefore, it is better to breakdown the problem into two phases as a means to reduce the
complexity of the problem, and we consider two kinds of functions, first those acquired by
evolution and second those which are developed through experience.

3.1 Functions associated with evolution

The following two aspects are addressed for the functions associated with evolution.

1. Functions associated with evolution, such as reflex, instinct behaviors, and behavior
motivations

2. Development scenario acquired by evolution

The first item is necessary for living things to survive in the real world. Without reflex and
instinct behaviors, many individuals would die with much higher probability. In addition,
the reflex and instinct behaviors help spontaneous learning. In reinforcement learning [33],
spontaneous search in its action-space is necessary. However, in general, the dimension of the
action-space is huge for searching appropriate actions. Reflex and instinct behaviors provide
important and relevant constraints to behavior generation, and thus reduces the size of the
action-space. Imitation can be considered as a kind of reflex and instinct behaviors.

In addition, basic behavior motivations, which have strong relations to instinct behaviors,
are very important. Especially, intrinsic motivations such as curiosity, manipulation, and
achievement motivations which are necessary for the development of open-ended systems.
Later we will introduce our system with intrinsic motivations, which is also related to Flow
theory [9].

123

254 Auton Agent Multi-Agent Syst (2009) 19:248–271

In the development process, a living thing grows physically. The muscle power, weight,
and the length of arms and feet change, and in parallel the living thing acquires skills to
control its body while growth continues. Similarly, sensors increase in their sensitivities
and resolution over time as well. Moreover, targets of interest change according to growth.
Namely, development scenarios such as the growth of the body, the performance of motors
and sensors, and related behavior tendencies are encoded in the genes. The development sce-
nario helps the efficiency and convergence of learning. In particular the development scenario
helps to specify the complexity of tasks in terms of proper ordering and timing. According
to this scenario, after the system achieves a goal, it then has an interest in a new target, and
moves on. This is similar to the idea of controlling the complexity of the environment [2].
The development scenario is considered a result of evolution. In our system we allow the
setting of the development scenario to be done manually.

According to the development scenario, while changing its targets of interest, freezing
and defreezing the degrees of freedom [6] and other factors, the system implicitly learns the
models of its body and the environment in a self-development fashion through its interactions
with the environment. If learning is based on evaluation functions set by the development
scenario, some primitive motions and motion sequences that satisfy the evaluation function
will develop over time. It should be noted that the motivation of the learning is essential for
an open-ended system to continue developing. Thus, how to design a mechanism by which
proper motivations emerge is one of the main topics of this line of research.

As addressed in the studies of reinforcement learning, a simple probabilistic behavior
selection algorithm such as Softmax tends to fail in the real world because the size of the state
and action spaces becomes too large for appropriate solution to be found. To help direct the
convergence of learning, reflexive and instinct behaviors play an important role, because they
limit the possible actions in a particular situation, and usually leading to a good selection
yielding a reward. In addition, the existence of a caregiver and the use of imitation as an
instinct behavior are also important for the convergence of learning. Imitating a caregiver’s
behaviors helps in organizing the behavioral primitives that are used in social interactions.
Imitation and teaching by a caregiver assist in the learning of the implicit models of its body
and environment as well.

Thus, the functions associated with evolution such as reflex and instinct behaviors, behav-
ior motivations, the development scenario, and imitation are important for efficient develop-
ment, and in our approach these functions are allowed to be set manually.

3.2 Functions associated with development

Then, the embodied general prediction model with a proper developmental scenario and
intrinsic motivations enables a robot to learn the body, objects, and environment model. The
general prediction model described in the previous section can handle relations between
observed and predicted states of sensory-motor signals. In order to learn the relations, intrin-
sic motivation tries to select appropriate actions for the predictor or the controller, so that
its learning progresses well. In this model, top-down signal flows try to give a target state,
and bottom-up signal flows try to give a current state in the real world. The target states are
memorized by reward signals as innate functions. Thus, in a particular situation, a target state
is associatively recalled and top-down signals are generated.

Then, if the target state is set, the system can search the action sequence derived directly
from the real world. If the prediction and control functions are well trained in the situation,
the system can easily reach the target state. However, if it is not well trained the system has

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 255

to explore the action sequence by trying some actions and deciding which action will allow
it to reach the target.

Once the system finds the action-sensor sequence via exploration, it is important to mem-
orize the sequence for reuse in the future. In the reinforcement learning framework it is
memorized by learning the value function, which gives the value of the action to be selected.
A table look-up memory is often used to memorize the action with maximum value at each
state. In our framework, it is memorized by learning the dynamics attractors, which are map-
ping functions on continuous action-sensor state spaces. In order to do this, it is necessary to
record the action sequence and the corresponding sensor sequence from the outcome of the
exploration.

There are two main ways of getting the sequence as training data for the controller and
the predictor to form the dynamics attractor. The first one is done using the exploration
results, and the second through human teaching. Here we focus on the use of the exploration
result. Again, there are two key ways to do the exploration. One is to explore in the real
world, which is a typical reinforcement learning strategy. Another is exploring in a simulated
world, which can be done using a planning and a rehearsing function. The planning function
explores the proper actions to get close to the target state by using the predictor, which can
predict the state in the next time step. The rehearsing function simulates the sensory-motor
signal sequence to get close to the target by using the predictor and the controller. The action
sequence to reach the target state can be used as teaching signal pairs for the controller.
This trained controller is more accurate than the previous controller used for the rehears-
ing function. We consider that it could be considered as cortical–cerebellum collaboration
[1].

The curiosity and the manipulation motives can be considered as the learning motivations
of the prediction and the control function. In addition to these intrinsic motivations, achieve-
ment motive, which is one of other intrinsic motivations, can be considered as the learning
motivation for planning and rehearse functions.

Considering the features described above, now we can describe our approach which real-
izes a continuously developing open-ended system hat has been implemented on a real
state-of-the-art robot which we describe in later sections. Adding some other features, we
describe the entire architecture of autonomous agent for an open-ended system as shown in
Fig. 3. The main features of the system are as follows:

(1) Prediction and control functions for not only external sensory-motor signals but also
internal state signals for intrinsic and external motivations. The generic architecture as
shown in Fig. 2 can be used here.

(2) Planner and rehearse functions using the predictor and controller.
(3) Intrinsic motivations of curiosity, manipulation, and achievement, which enable the pre-

dictor, the controller, and planner to develop continuously.
(4) The target state associated with evaluation functions.
(5) Model of cortical–cerebellum collaboration. The controllers can learn suitable action

sequences in a supervised fashion by sensor-action sequences of exploration results by
the Planning/Rehearse Function.

It should be noted here that the architecture is still under development. The complete Intel-
ligent Dynamics design is still somewhat speculative, and we illustrate the components of
the design in subsequent sections. In particular, Sect. 4 features and describes (1) above, and
Sect. 5 focuses on (1), (2) and (3).

123

256 Auton Agent Multi-Agent Syst (2009) 19:248–271

Fig. 3 The entire architecture for open-ended system

Fig. 4 Ball handling behavior task. a Ball rolling behavior. b Ball picking up behavior

4 Dynamical systems approach with RNNPB

Based on the entire architecture described in the previous section, in this section let us report
the examination and evaluation of the prediction and control functions, which were addressed
in Sect. 2. We thoroughly examined RNNPB using a small state-of-the-art humanoid robot
named QRIO [12] designed and built at Sony. We examined two different tasks, which are
ball handling (Fig. 4) and block handling behavior task (Fig. 5). For details of the experiments
and the analysis, please refer to [16,24]. In this article, we would like to provide a summary
of the experiments as a means to describe and illustrate the Intelligence Dynamics design.

The main points are (1) we demonstrate that multiple attractors can be encoded in RNNPB,
(2) inter-attractor dynamics emerges and generates natural transition behavior patterns, and

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 257

Fig. 5 Block handling behavior task

(3) human guidance can be used to assist the generation of inter-attractor dynamics that even-
tually transform into the learned attractor dynamics. In Fig. 4a QRIO passes the ball across
the table from one hand to another, in Fig. 4b QRIO picks up the ball, and in Fig. 5, a human
assistant holds QRIO’s hand and “shows” him how to stack blocks in a specific order.

4.1 Model description

The RNNPB model that QRIO uses to complete his tasks has the same architecture as the
conventional Jordan-type RNN model [17] except for the PB nodes in the input layer. Figure 6
shows the configuration of the RNNPB model in the learning phase (a) where the RNNPB
is trained with sensory-motor flow sequences, and in the interaction phase (b) where the
trained RNNPB generates situated motor outputs according to incoming sensory inputs. For
the normal input and output nodes, two types of operations are performed at the same time:
open-loop and closed-loop operations. In an open-loop operation outputs of the network
(ŝt+1, m̂t+1) are calculated as a result of a prediction from the current inputs (st , mt). In a
closed-loop operation the previous prediction outputs are copied to the current inputs, and
outputs are calculated using the feedback information. This feedback enables look-ahead
prediction (rehearsal process) for an arbitrary number of future steps without perceiving the
actual inputs.

There are context nodes (ct , ct+1) in both the input and output layers. The output of the
context nodes is copied to the context nodes in the input layer. The internal state is recursively
computed for future steps utilizing the recurrent feedback loop for the context nodes. There
are PB nodes pt in the input layer. These PB nodes are the additional network variables that
can be manipulated to learn and generate diverse behavioral patterns.

The common structural properties of the training data sequences are acquired as connec-
tion weights by using the backpropagation through time (BPTT) algorithm [28]. On the other
hand, the specific properties of each individual time sequence are simultaneously encoded
as PB values. Therefore, the modulation of the PB values shifts the modes of the behavior
pattern. In the processes of learning and recognition, the PB values are iteratively computed
utilizing the error between the target sensory-motor sequence and the predicted sequence.

In this ball handling task, the sensor values are joint angles (θ1, θ2, . . . , θ8) and ball
position (x, y, z), and the motor command values are joint angle commands.

123

258 Auton Agent Multi-Agent Syst (2009) 19:248–271

(a)

(b)

Fig. 6 RNNPB architecture and its input and output signals in a learning phase and b interaction phase

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 259

Fig. 7 Snapshots of a Ball rolling behavior and b Ball picking up behavior

4.2 Ball handling behavior experiment

In the first experiment, the robot learns two different types of ball handling behaviors, as
shown in Fig. 7. One (a) is “rolling a ball” in which the robot swings both arms alternately to
roll a ball on a table from left to right and vice versa. The other (b) is “lift up a ball”, which
is to put the robot’s hands together to lift up a ball on a table vertically and then release its
hands to drop the ball.

In the learning phase, the robot learns two different ball handling behaviors directly from
human teaching. In the teaching process, a human user grabs the robot’s arms and guides
them to perform the target ball handling behaviors using an actual ball while the servo gain of
the robot arms is almost set to zero. In this study, the reference trajectory is simply obtained as
a copy of the measured arm movement in the direct teaching by human users. It is important
to note that during the teaching process these two behaviors are given as separate sequences.
Thus the robot never learns the transition between them.

After the learning, we examined how the robot with the trained RNNPB could generate the
two different learned ball handling behaviors. We also observed how the ongoing behavior
could alternate between them depending on the situational differences between the robot and
the ball.

Figure 7a shows a sequence of snapshots for the ball rolling behavior generated by the
robot. When the ball was rolling from the front to the left side, the robot hit it by the right hand.
Then the ball rolled to the opposite side and the robot hit it with its left hand. This rolling a
ball behavior was stably repeated several times. Figure 7b shows the sequence of snapshots
for the ball lifting up behavior generated by the robot after the ball rolling behavior. When
the human user stopped the ball in front of the robot, after a short while the robot started to
hold it with both arms without any irregular movements and then lifted it up to a specified
height. After this, the robot released the ball and then the ball was dropped in front of the
robot. The robot started to hold it again. This ball lifting up behavior was also autonomously
repeated for several times.

Figure 8 shows the time course of the whole interaction and the parametric bias values of
the RNNPB. In Fig. 8, the plot at the top and the second row show the actual ball positions
and the ones predicted by the RNNPB respectively. The plot at the third row shows the robot
joint angles generated by the RNNPB (only 2 DOF are plotted among a total of 8 DOF). The
plot at the bottom shows the parametric bias of the RNNPB.

We observed a transient status where two different behaviors were switched between (from
rolling to lifting up) as a result of PB online adaptation according to change in the sensory
sequence pattern. In this case, the ball position was changed by the human intentionally.
Then, the ball’s motion was stopped in front of the robot body. This resulted in one of the

123

260 Auton Agent Multi-Agent Syst (2009) 19:248–271

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600Pa
ra

m
et

ri
c

B
ia

s

Step

PB1
PB2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500 600

G
en

er
at

ed
 J

oi
nt

 A
ng

le
 C

om
m

an
d

Step

R
L

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500 600

Pr
ed

ic
te

d
 B

al
l P

os
iti

on

Step

X
Y
Z

 0
 0.2
 0.4
 0.6
 0.8

1

 0 100 200 300 400 500 600

T
ar

ge
t

 B
al

l P
os

iti
on

Step

X
Y
Z

Fig. 8 Dynamic generation and switching of two learned behaviors in the ball handling task. The top row
represents the measured position of the ball. The second and the third row represent the ball position predicted
and the robot joint angles generated by the RNNPB. The bottom row represents the parametric bias of the
RNNPB

PB values being decreased. After a while, ball lifting up behavior was generated according
to the PB values.

In this experiment, we observed that the learned ball handling behaviors were well gen-
erated through interaction between the dynamics in RNNPB and the dynamics of the ball
movement. Remember that the actual ball movement does not necessarily repeat exactly the
same as the learned one; it is nondeterministic. Even under such noisy conditions, the learned
behaviors were stably generated. The system seems to maintain certain robustness against
unknown irregularities. We speculate that such robustness originates from the characteristics
of attractor dynamics that emerges in the coupling, indeed grounding, between the RNNPB
dynamics and the ball movement dynamics. It was also observed that the behavior switching
could be performed smoothly despite the fact that the robot had not learned it explicitly;
instead it learned it all by itself. (Recall that in the learning process, these two behaviors were
just trained as separate patterns.) What is important is that genuinely novel behavior in terms
of behavior transitions was generated spontaneously and autonomously utilizing emergent
dynamical structures self-organized in the system.

4.3 Block handling behavior task

In the second experiment, the robot learned to put one block on top of another one from
among three color blocks, using the right hand arm. The teaching process was the same as

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 261

that of the first experiment except for the additional hand action for grabbing and releasing
a block. The action of grabbing a block is activated with the tactile sensor on the palm of
the robot’s hand. Then, when the palm make compact with a block, the grabbing action is
reflexively generated. On the other hand, the action of releasing a block is activated by a
touch sensor on the robot’s shoulder. When human users want the robot to release a block,
they touch the robot’s shoulder and then the robot releases it.

In this task, the robot perceives its arm movement and the movement of each of the three
colored blocks and generates the arm movement including the hand action. In the current
experiment, the tactile sensor on the palm and touch sensor on the shoulder were only used
in the teaching phase and not used in the interaction phase. The sensory input vector consists
of the current step encode values for joint angles of the robot arms and the center of 3D
positions of the three color blocks. The motor output is the next step reference values of the
joint angles of the robot arms and the binary hand action such as grabbing or releasing. In
this experiment the robot learns two alternative behaviors to be selected in the same block
layout situation where the yellow, the blue and the red block are located on the left-hand side,
in the center and on the right-hand side respectively, in front of the robot. One behavior is to
put the yellow block onto the blue one (B1). The other behavior is to put the red block on
top of the blue one (B2).

After the robot learns these behaviors, we examined if the robot’s behavior could be
switched alternatively by means of partial human guidance. In this experiment, the control
gains of the robot’s arm were set to relatively low values where the robot can be moved by
the motor command and by a human assistant. Figure 9 shows the snapshots of behavior
switching guided by the human user. In this case, at first the robot autonomously tried to grab
the yellow block for B1 due to the initial PB values and succeeded it. After the human user
restored the yellow block to the initial position, when the robot tried to generate B1 again, the
human user guided the robot by grabbing its arm to switch to B2. The human user continued
the guidance to switch it while she or he senses the robot’s “resistance-force” (resistance)
back to her or his hand. After a while the robot starts to follow the user’s guidance and the
user feels “collaborative force” instead of the resistance-force by their hand.

Although the human user stopped providing guidance when the robot’s hand was approach-
ing the red block for B2, the robot’s arm kept on moving to it instead of moving back to the
yellow block for B1.

This robot experiment showed that human users can convey their intention to the robot
through the force-based bodily interactions while the internal neuronal dynamics and the
body dynamics of the robot continue without stopping.

4.4 Discussion

We demonstrated that the RNNPB can learn multiple dynamics attractors. Moreover, its intra-
and inter-dynamics generate robust interactive behaviors with the environment and humans.
One of the unsolved problems is scalability of memory capacity. How many attractors can
be learnt in RNNPB in practice? Based on our experiments and personal communication

Fig. 9 Snapshot of block handling behavior

123

262 Auton Agent Multi-Agent Syst (2009) 19:248–271

[35], it is difficult for RNNPB to learn more than 10 attractors, even if we use a large size
of the RNNPB network. We need a layered architecture or other mechanism to make a large
number of attractors or a meaningful way to organize and ground them.

There are two major types of memories in neural networks, which are the distributed type
and the module type of memory. For example, RNNPB is distributed type of memory because
the weights of RNNPB are shared for multiple attractors. In such neural networks learning
a new attractor causes modification to the memories of other attractors. Thus, the learning
becomes as difficult as the number of learnt attractors increase.

On the other hand, in modular types of memories the learning of each module doesn’t
cause the modification of memories of other attractors. This means it is possible to increase
the number of attractors by increasing the modules and in this sense modular memories are
naturally scalable.

We examined the module architecture using RNNs. Each module is implemented by a
simple RNN, and by a self-organizing map (SOM) learning. We trained QRIO to have over
20 behavior patterns. As we described in the previous section, this accomplishment can be
considered to be an implementation of the generic predictor-controller architecture described
in Fig. 4, where a learnable predictor-controller is implemented by RNN, and the reduction
of the dimensions is achieved using SOM. Consequently, it is named the RNN–SOM archi-
tecture.

The RNN–SOM can learn about 20 behaviors with 144 RNN modules. Thus, we can
increase the memory capacity by using module type architecture. Please refer to [22] for
more details. However, it is still difficult to increase further. A layered architecture or a net-
worked architecture of modular networks is needed to increase the memory capacity. This is
one of future challenges for Intelligence Dynamics.

5 MINDY: toward an open-ended system

In the previous experiments of RNNPB and RNN–SOM, we have to teach the basic or atomic
behavioral patterns directly to the robot. The robot doesn’t spontaneously learn all by itself.
As we described in Sect. 3, one of the key issues in Intelligence Dynamics is to build an open-
ended agent, which continues to learn spontaneously. Then, in the Sect. 3 we introduced the
intrinsic motivations as shown in Fig. 3. In this section, inspired by Flow theory [9], we
propose a computational model for an open-ended system named MINDY, which includes
not only the intrinsic motivations but also the important features described in Sect. 3, such as
the prediction and control function, and the planner and rehearse function. In this article, we
provide a general summary of MINDY for the purpose of developing a model of Intelligence
Dynamics, MINDY. Please refer to [31,30] for more details.

Flow theory insists that a human is highly motivated when he/she tries to learn a task of
suitable difficulty for his/her capabilities and skills (Fig. 10). The balance between skills and
difficulty for a challenging task is very important for machine learning. This balance can
be evaluated by the progress of learning. For example, if the task is too easy, the robot can
predict states correctly and achieve a goal easily. On the other hand, if the task is too difficult,
the robot can not predict states correctly neither can it achieve the goal even if it tries many
times. However, if the task is a suitably challenging one, at the beginning of the learning,
the robot can not predict states correctly and cannot achieve the goal. However, after some
attempts, the robot can often predict the states correctly and can achieve the goal eventually.

MINDY employs the concept of Flow theory. Namely, the system evaluates the progress
of the learning by assessing the error of both prediction and control functions. In this section,

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 263

Fig. 10 A concept of Flow
theory

we describe MINDY with a simple implementation example; a pendulum agent experiment.
In this experiment, we implemented the predictor, the controller, and the planner using spe-
cific algorithms. However, it is easy to modify and extend the implementation based on the
MINDY concept.

5.1 Pendulum agent simulation experiment

Figure 11 describes the appearance of a simulation environment of the pendulum agent. It
has one joint that can be controlled by torque commands τ . The joint angle θ and its angle
velocity ω are observable. The maximum value of the torque is limited so that it is neces-
sary for the pendulum to accelerate by swinging several times to reach the top position. The
energy variable is observable; it decreases as the torque command is applied and increases
as the pendulum touches an energy charging station whose position can not be sensed. The
lactic acid variable is also observable; it increases as the torque command is generated, and
decreases as the torque command is not generated.

In order to continue actions, it is necessary for the pendulum to reach the charge station
before the energy goes zero. However, at the beginning, the pendulum can not control itself
to reach the charging station. Therefore it is necessary to learn to control its position to reach
target positions, and then it can control itself so that it can touch the charge station when the
energy variable becomes lower than the threshold.

Thus, selecting the target variable and its value, the pendulum system continues to learn
as an open-ended system.

5.2 Prediction and control functions

The key question is what kind of learnable predictors and controllers should be used to build
this open-ended system? Whatever learning algorithms are used for the purpose, in general,
to learn the prediction function, it is necessary to neglect irrelevant variables, or to select
only relevant variables. Otherwise the irrelevant variables will interfere with the learning
of the prediction function. Therefore, if the system could identify the cause of the target
variable, then it should be the only relevant variables selected as the inputs of the prediction
function. However, in general it is difficult to analyze the cause and the effect relations for

123

264 Auton Agent Multi-Agent Syst (2009) 19:248–271

Energy charging station

E
nergy

L
actic-A

cid

θ

ω

τ

g

Fig. 11 Pendulum agent simulation setup

this purpose. Therefore, in this experiment, the system constructs a number of predictors for
a selected target variable that has different inputs variables of possible combinations. While
training each of the predictors, the system evaluates and selects the one that performs the best
prediction result at the time. The inputs to the best predictors are assumed to be the causal
variables of the selected target. From this analysis, the input to the corresponding controller
is determined.

The controller has two kinds of inputs. One is the target variable with a target value and
another is the causal variable with a current value. The controller is trained to generate an
appropriate motor command given these two inputs: minima or maxima respectively.

Figure 12 shows the basic module with the predictor and the controller. We use accu-
rate online support vector regression (AOSVR) [21] for the predictors and the controllers.
AOSVR is an incremental learning algorithm for support vector regression (SVR). The learn-
ing algorithm of SVR is based on quadratic programming, which guarantees a global minima
or maxima.

5.3 Planning function

Figure 13 shows the entire architecture of MINDY for the pendulum agent experiment. There
is a planner on top of the network of the basic modules. The planner explores actions towards
the target value of the target variable with predictors. We use a simple A* planner for the
experiment, but other modern planners can be used as well. The planner searches the action
sequence which can reach the target value. If it failed to find a perfect solution within the
limited amount of time, it selects the plan that achieved the closest distance to the target.
Then, the actions in the plan are applied as motor commands. The predictor and the controller
are both trained using the motor and the sensor signals. Note that the final state is not the
same as the target state used by the planner. In such a case the final state should be used as the

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 265

Predictor

Control
Target variable

Selection of
C

ausal variables inputs

A
ll variables

Controller

Target

Motor command
Or causal variable

inputs

-relation
the cause effect

Copy

Fig. 12 Basic module of MINDY with predictor and controller

St+1

St At+1At

St Sd

Predictor

Evaluator

Controller

states

actions

target

Planning
and Rehearsing

All modules
Basic Module

Fig. 13 Entire architecture of MINDY for the pendulum agent experiment

target state for the controller. The target variable and value selection, planning and training
of the predictor and the controller are executed several times to evaluate the progress of the
learning.

If the learning is in progress successfully, the system continues to learn the same target
variable and value. If the task has been learnt and the learning progress stops, the system
changes the target variable and value. However, if the task is too difficult and the learning
doesn’t progress, the system changes the target variable and value too.

5.4 Evaluation of the progress of learning

Figure 14 shows examples of the state (value) sequence of variables of the simulation. There
are three sequences, which are a sequence to a target explored by the planner (Xplan),

123

266 Auton Agent Multi-Agent Syst (2009) 19:248–271

St
at

e
(v

al
ue

)
of

 th
e

ta
rg

et
 v

ar
ia

bl
e

time t

Fig. 14 State sequence of the pendulum agent simulation. Here Xgoal is a goal state of a target variable, Xplan
is a state sequence generated by the planner, Xctrl is a state sequence generated by rehearsal with the predictor
and the controller, and Xreal is a state sequence generated by the real motor commands by the planner or the
controller

rehearsed by the predictor and the controller (Xcntl), and observed by the real execution
(Xreal). Here, the rehearsal by the predictor and the controller means that to generate the
motor command sequence and the prediction variables by the internal loop that is made up
by connecting the output of the predictor to the input of the controller, and the output of the
controller to the input of the predictor.

The system evaluates the progresses of the learning of the predictor, the controller, the
planner, and, with the following functions.

• Epred =
∑

t |Xplan(t)−Xreal(t)|
�t

• Ecntl =
∑

t |Xplan(t)−Xcntl(t)|
�t

• Dplan = min(|Xreal(t) − Xgoal|)
Because Xplan and Xreal use the same motor commands, Epred represents the performance
of the predictor. Similarly, because Xplan is explored by using only the predictor, Ecntl is a
measure of the difference in the sensor domain between the motor commands selected by
the planner and the one generated by the controller. Thus, Ecntl represents the performance
of the controller, if we can assume that the predictor’s performance is almost good. Finally,
Dplan can be considered as representation of the achievement degree to the goal. The smaller
the better for the three evaluation functions.

5.5 Intrinsic and extrinsic motivations

Basically the behavior of the pendulum is determined by the selection of the target variable.
We use the softmax strategy for the selection. Namely, the system selects the target variable
based on the probability defined by

P(i) = exp(v(i)/τ)
∑

k exp(v(k)/τ)

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 267

Evaluator

Intrinsic
motivation

Extrinsic
motivation

Internal sensors with
target values for survive.

Eg) Huger, pain, fatigue, etc

Target error

Control error

Prediction error

Predictor Controller Planner

module

Fig. 15 Interpretation of errors and target values as the intrinsic motivation and the extrinsic motivation

where i is the index of the target variables, τ is a temperature, v(i) is the priority of the i th
variable. For example, we define the priority of the energy variable as v(i) = 1 − Energy,
so that the smaller the Energy value the higher the selection probability. For the Lactic acid,
we use v(i) = Lactic acid , so that the larger Lactic acid value the higher the selection pri-
ority. Energy and Lactic acid can therefore be considered to create the extrinsic motivations
because the system tries to keep their value within a certain range for survival. For the other
variables that give rise to the intrinsic motivations, we set v(i) = 0.5. This setting of v(i)s
can realize the appropriate selection of the variables.

As shown in Fig. 15, both of the extrinsic and the intrinsic motivations are suitably com-
bined to continue the development of the pendulum. It should be noted that the motivation for
the learning of the predictor, the controller, and the planner can be considered as generating
human-like motives for curiosity, manipulation and achievement respectively.

5.6 Summary of the algorithm

We summarize the algorithm into the following key steps.

1. Select a target variable and value according to the probability defined in the previous
section. If the variable is for the extrinsic motives, the value is set as a defined value. If
the variable is for the intrinsic motives, the value is set randomly.

2. Select the best predictor among the predictor modules. Set the input and target variables
of the predictor as the inputs of the controller.

3. Make a plan towards the target value with the predictor. If the planner can not reach the
target value, the action sequence that results in the closest to the target is selected, and
the closest value is considered as the target value instead.

4. Execute the action sequence. Then, teach the controller with the actions and the observed
sensor variables. Note that the final value of the execution should be used for the training
of the controller as the real target value.

5. Evaluate the progress of the predictor, the planner, and the controller in this order. If the
learning progress is proper, continue learning using the same target variable and value.
Usually the learning of the predictor becomes in progress first. Then, the learning of the
planner and the controller become in progress in this order.

6. If the learning doesn’t progress, go to step 1. If it progresses, go to step 2.

123

268 Auton Agent Multi-Agent Syst (2009) 19:248–271

5.7 Summary of the results

The pendulum simulation can be summarised as follows:

1. At the beginning of the learning, the joint angle and the angle velocity are often selected
as the target variables. In the pendulum agent the dynamics of the joint angle and the angle
velocity are nonlinear and complex. So, it is difficult for the system to learn the predictors
and controllers. However, after some trials, the progress of the learning improves, and
it often selects the angle and the angle velocity variable to learn based on the intrinsic
motivations.

2. When Lactic acid increases, the system tries to decrease its value based on the corre-
sponding extrinsic motivation. It is relatively easy to learn the dynamics of Lactic acid,
the system can decrease the lactic acid when it is necessary from the beginning of the
learning.

3. When Energy decreases, the system tries to increase its value based on the corresponding
extrinsic motivation. However, in order to increase its value, it is necessary to swing up to
the top position. This means that it is necessary to use the controller of the angle variable
with the top position value. In the early phase of the learning, the causal estimation of
Energy to angle is not well trained. Moreover, the angle controller is immature to reach
the target angle value. Therefore, the learning is terminated with a small number of trials,
because the learning doesn’t progress suitably. After the angle controller becomes well
trained to reach the target position, the progress of learning to control the energy variable
using angle controller becomes better. Finally, the system can change for more energy
when it is necessary.

Figure 16 shows the self-organized network structure of the basic modules. It exactly
represents the relations used in the simulation model. The lactic acid variable is caused by
only the torque and the lactic acid itself. The angle variable is caused by the torque, the
angle velocity, and the angle itself. The angle velocity variable is cause by the torque, the
angle, and the angle velocity itself. The energy variable is caused by the angle and the energy
itself. Note that the energy is not directly caused by torque, but indirectly caused through the
angle.

Angle
Velocity

Lactic
-Acid

Energy

Torque

Joint
Angle

Fig. 16 Self-organized network of the basic modules

123

Auton Agent Multi-Agent Syst (2009) 19:248–271 269

5.8 Discussion

There are some related works that emphasize the intrinsic motivation for developmental
autonomous agents. Kaplan and Oudeyer [18] introduce curiosity drives for developmental
robots, which insists that the progress of learning is important rather than decreasing the error
measure. Our idea for the intrinsic motivation is also the progress of learning not only for
the predictor but also for the controller and the planner. Barto et al. [3] proposes to integrate
the idea with reinforcement learning to extend the computational model of reinforcement
learning. They introduce an internal environment that gives internal reward, which can be
considered as intrinsic motivation. They have not pointed out or used the importance of the
progress of learning.

One of our key ideas to realize the open-ended system described in this section using
the intrinsic motivation for learning based on Flow theory. However, in order to realize an
open-ended system, we have to solve the variable selection problem or the cause-effect prob-
lem for machine learning. Because we conducted a small experiment using a single joint
pendulum agent, we were able to solve the selection problem by making a large number of
predictors with a limited number of combinations of the inputs. However, for a task with a
larger number of variables, this approach becomes unrealistic and robust heuristics need to
be developed. In fact we may need alternative approaches to solve such problems.

Regarding the self-organized network of modules, our approach is novel and highly effec-
tive for open-ended system. However, we considered only observable variables in this exper-
iment. It is important to extend the idea to hidden variables. The simple example of a hidden
variable is a variable for context information; if there are two different situations which gen-
erate the same observation vectors, the hidden variable plays an important role distinguishing
the two situations. The hidden variable usually represents the history of the sensors, or in
general the context. This hidden variable has to be generated in a self-organized manner.
Handling self-organization with the hidden variables is one of the future challenges.

6 Summary and conclusion

In this paper we introduced and described Intelligence Dynamics as a new approach to
machine intelligence. Intelligence Dynamics has three key elements embodiment, dynami-
cal system properties and a constructive modeling approach.

We provided the entire architecture for an open-ended autonomous agent, which is able
to develop and learn all by itself. We illustrated the architecture using our state-of-the-art
robot QRIO and a simulation. We reported two examples of our implementations based on
the entire architecture which provides a proof of concept and also highlights the next steps
that need to be taken in order to design and build truly intelligent agents that can develop and
learn all by themselves.

The first example examined the dynamical systems approach using RNNPB where the
dynamics attractors play an important role in developing memory of behaviors, and the
intra-inter-dynamics of the attractors give rise to novel and interesting characteristics such
as smooth transitions from one behavior to another. The second example demonstrated how
to build an open-ended system that continues learning throughout its development. Inspired
by Flow theory we defined intrinsic motivations for learning as the predictor, the controller,
and the target setting. In order to realize cognitive development, we proposed a novel lay-
ered architecture that is self-organized using a causal-effect analysis to guide the learning
progress.

123

270 Auton Agent Multi-Agent Syst (2009) 19:248–271

As we discussed in each section, there are many outstanding problems that need to be
addressed which we highlighted using the Intelligence Dynamics approach. We argue that
the Intelligence Dynamics approach is a new and powerful way to take machine intelligence
to a new level. There are many related multi-disciplinary approaches in biology, psychology
and philosophy and computer science which are beyond the scope of this article. Even after
50 years of AI research, we need to continue seeking novel holistic approaches that may take
new strides in studying intelligence and build truly intelligent autonomous agents.

Acknowledgements The author would like thank the former members of Sony Intelligence Dynamics Inc.
(SIDL) for their research efforts on the concept and experiments described here. Especially the author would
like to thank Dr. Toshi. T. Doi, the former president of SIDL, for directing Intelligence Dynamics research,
and to Hideki Shimomura, Kohtaro Sabe, and Masato Ito for their discussions on this article. The author would
also like to thank Akira Iga, the former president of Information Technologies laboratories, Sony, for his assist
to continue research on Intelligence Dynamics.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Allen, G. I., & Tsukahara, N. (1974). Cerebrocerebellar communication system. Physical Review, 54,
957–1006.

2. Asada, M., MacDorman, K. F., Ishiguro, H., & Kuniyoshi, Y. (2001). Cognitive developmental robotics as
a new paradigm for designing humanoid robots. Robotics and Autonomous Systems, 37, 185–193. doi:10.
1016/S0921-8890(01)00157-9.

3. Barto, A. G., Singh, S., & Chentanez, N. (2004). Intrinsically motivated learning of hierarchical collec-
tion of skills. In Proceedings of the 3rd international conference on developmental learning (ICDL), San
Diego, CA (pp. 112–119).

4. Bentivegna, D. C., Atkeson, C. G., & Cheng, G. (2004). Learning tasks from observation and practice.
Robotics and Autonomous Systems, 47(2–3), 163–169.

5. Bentivegna, D. C., Ude, A., Atkeson, C. G., & Cheng, G. (2002). Humanoid robot learning and game
playing using PC-based vision. In Proceedings of the IEEE/RSJ international conference on intelligent
robots and systems, Lausanne, Switzerland (pp. 2449–2454).

6. Bernstein, N. (1967). The coordination and regulation of movements. Oxford: Pergamon Press.
7. Borg, I., & Groenen, P. (1997). Modern multidimensional scaling. Theory and applications. New York:

Springer.
8. Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison

Wesley.
9. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper and Row.

10. Donald, M. (1991). Origin of the modern mind. Cambridge, MA: Harvard University Press.
11. Doya, K., Samejima, K., Katagiri, K., & Kawato, M. (2002). Multiple model-based reinforcement learn-

ing. Neural Computation, 14(6), 1347–1369. doi:10.1162/089976602753712972.
12. Fujita, M., Kuroki, Y., Ishida, T., & Doi, T. T. (2003). Autonomous behavior control architecture of

entertainment humanoid robot SDR-4X. In Proceedings of the IEEE/RSJ international conference on
intelligent robots and systems, Las Vegas, NV (pp. 960–967).

13. Harnad, S. (1990). The symbol grounding problem. Physica D. Nonlinear Phenomena, 42, 335–346.
doi:10.1016/0167-2789(90)90087-6.

14. Haruno, M., Wolpert, D. M., & Kawato, M. (2001). MOSAIC model for sensorimotor learning and
control. Neural Computation, 13, 2201–2220. doi:10.1162/089976601750541778.

15. Inamura, T., Nakamura, F., & Toshima, I. (2004). Embodied symbol emergence based on mimesis theory.
The International Journal of Robotics Research, 23(4), 363–377. doi:10.1177/0278364904042199.

16. Ito, M., Noda, K., Hoshino, Y., & Tani, J. (2006). Dynamic and interactive generation of object handling
behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks, 19(3),
323–337.

123

http://dx.doi.org/10.1016/S0921-8890(01)00157-9
http://dx.doi.org/10.1016/S0921-8890(01)00157-9
http://dx.doi.org/10.1162/089976602753712972
http://dx.doi.org/10.1016/0167-2789(90)90087-6
http://dx.doi.org/10.1162/089976601750541778
http://dx.doi.org/10.1177/0278364904042199

Auton Agent Multi-Agent Syst (2009) 19:248–271 271

17. Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal teacher.
Cognitive Science, 16, 307–354.

18. Kaplan, F., & Oudeyer, P.-Y. (2003). Motivational principles for visual know-how development. In Pro-
ceedings of the 3rd international workshop on epigenetic robotics, Edinburgh, Scotland (pp. 73–80).

19. Kohonen, T. (1997). Self-organizing maps. New York: Springer-Verlag.
20. Kuniyoshi, Y., Ohmura, Y., Terada, K., Nagakubo, A., Eitoku, S., & Yamamoto, T. (2004). Embodied basis

of invariant features in execution and perception of whole body dynamic actions—knacks and focuses of
roll-and-rise motion. Robotics and Autonomous Systems, 48(4), 189–201. doi:10.1016/j.robot.2004.07.
004.

21. Ma, J., Theiler, J., & Perkins, S. (2003). Accurate on-line support vector regression. Neural Computation,
15(11), 2683–2703. doi:10.1162/089976603322385117.

22. Minamino, K. (2008). Intelligence model organized by rich experience (in Japanese). In Intelligence
dynamics (Vol. 3). Japan: Springer.

23. Newell, A., & Simon, H. A. (1976). Computer science as empirical enquiry: Symbols and search. Com-
munications of the ACM, 19(3), 113–126. doi:10.1145/360018.360022.

24. Noda, K., Ito, M., Hoshino, Y., & Tani, J. (2006). Dynamic generation and switching of object handling
behaviors by a humanoid robot using a recurrent neural network model. In Proceedings of simulation of
adaptive behavior (SAB’06), Rome, Italy. Lecture Notes in Artificial Intelligence (Vol. 4095, pp. 185–
196).

25. Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.
26. Reed, E. S. (1997). From soul to mind: The emergence of psychology, from Erasmus Darwin to William

James. New Haven, CT: Yale University Press.
27. Rizzolattie, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor

actions. Brain Research. Cognitive Brain Research, 3, 131–141. doi:10.1016/0926-6410(95)00038-0.
28. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error

propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing. Cambridge,
MA: MIT Press.

29. Russell, R., & Norvig, P. (2002). Artificial intelligence: A modern approach. Englewood Cliffs, NJ:
Prentice Hall.

30. Sabe, K. (2005). A proposal of intelligence model: MINDY (in Japanese). In Intelligence dynamics (Vol.
2). Japan: Springer.

31. Sabe, K., Hidai, K., Kawamoto, K., & Suzuki, H. (2006). A proposal for intelligence model, MINDY for
open ended learning system. In Proceedings of the international workshop on intelligence dynamics at
IEEE/RSJ Humanoids, Geneva, Italy.

32. Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization,
optimization and beyond. Cambridge, MA: MIT Press.

33. Sutton, R. S., & Bart, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.
34. Tani, J. (2001). Learning to generate articulated behavior through the bottom-up and the top-down inter-

action process. Neural Networks, 16(1), 11–23. doi:10.1016/S0893-6080(02)00214-9.
35. Vijayakumar, S., & Schaal, S. (2000). LWPR: An O(n) algorithm for incremental real time learning in

high dimensional space. In Proceedings of the seventeenth international conference on machine learning
(ICML2000), Stanford, CA (pp. 1079–1086).

123

http://dx.doi.org/10.1016/j.robot.2004.07.004
http://dx.doi.org/10.1016/j.robot.2004.07.004
http://dx.doi.org/10.1162/089976603322385117
http://dx.doi.org/10.1145/360018.360022
http://dx.doi.org/10.1016/0926-6410(95)00038-0
http://dx.doi.org/10.1016/S0893-6080(02)00214-9

	Intelligence Dynamics: a concept and preliminary experiments for open-ended learning agents
	Abstract
	1 Introduction
	2 Reviews and generalization
	3 Entire architecture for Intelligence Dynamics
	3.1 Functions associated with evolution
	3.2 Functions associated with development

	4 Dynamical systems approach with RNNPB
	4.1 Model description
	4.2 Ball handling behavior experiment
	4.3 Block handling behavior task
	4.4 Discussion

	5 MINDY: toward an open-ended system
	5.1 Pendulum agent simulation experiment
	5.2 Prediction and control functions
	5.3 Planning function
	5.4 Evaluation of the progress of learning
	5.5 Intrinsic and extrinsic motivations
	5.6 Summary of the algorithm
	5.7 Summary of the results
	5.8 Discussion

	6 Summary and conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

