
Auton Agent Multi-Agent Syst (2010) 20:308–341
DOI 10.1007/s10458-009-9086-9

Coordination by design and the price of autonomy

Adriaan ter Mors · Chetan Yadati · Cees Witteveen ·
Yingqian Zhang

Published online: 8 April 2009
The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract We consider a multi-agent planning problem as a set of activities that has to be
planned by several autonomous agents. In general, due to the possible dependencies between
the agents’ activities or interactions during execution of those activities, allowing agents to
plan individually may lead to a very inefficient or even infeasible solution to the multi-agent
planning problem. This is exactly where plan coordination methods come into play. In this
paper, we aim at the development of coordination by design techniques that (i) let each agent
construct its plan completely independent of the others while (ii) guaranteeing that the joint
combination of their plans always is coordinated. The contribution of this paper is twofold.
Firstly, instead of focusing only on the feasibility of the resulting plans, we will investigate
the additional costs incurred by the coordination by design method, that means, we propose
to take into account the price of autonomy: the ratio of the costs of a solution obtained by
coordinating selfish agents versus the costs of an optimal solution. Secondly, we will point
out that in general there exist at least two ways to achieve coordination by design: one called
concurrent decomposition and the other sequential decomposition. We will briefly discuss
the applicability of these two methods, and then illustrate them with two specific coordina-
tion problems: coordinating tasks and coordinating resource usage. We also investigate some
aspects of the price of autonomy of these two coordination methods.
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1 Introduction

Multi-agent planning has received a great amount of attention in AI and the agent commu-
nity. Intuitively, a multi-agent planning problem refers to making a plan or schedule (or a
set of plans/schedules) for a set of activities for and by several agents. Usually, due to con-
straint specifications for these activities, it is not possible for these agents to make these plans
completely independently from the other agents.

A well-known everyday example is trip planning (especially in the holiday season): sup-
pose several agents want to drive from their current source to their chosen destinations, using
some common traffic infrastructure. This requires planning suitable routes. If they make
their plans individually, these agents cannot always be guaranteed that their individual plans
are jointly conflict-free: often, the finite capacity of the road infrastructure will prevent them
from using the same route segment at the same time and we need traffic management systems
to remove those conflicts.

A similar problem occurs in patient scheduling in hospitals. Here, the agents might be
doctors that suggest specific sequences of treatments for their patients (using the CT scan,
taking blood samples, examination by colleagues, etc.). If, however, a patient is treated by
two or more doctors, this might easily result in a conflict if one doctor suggests to do X
immediately before Y while another suggests to do first Y , then Z , and finally X . Here,
the autonomous and independent planning activities of the agents could easily result in an
infeasible treatment plan.

In general, due to the possible dependencies between agents’ tasks or interactions during
execution of those tasks, allowing agents to plan individually may lead to a very inefficient or
even infeasible solution of such multi-agent planning problems. To handle these dependen-
cies two different, but related, approaches can be distinguished: plan coordination methods
and plan decomposition methods.

Plan coordination. In general, a plan coordination method should ensure that individually
proposed plans always result in a globally feasible plan. Plan coordination methods have been
studied quite extensively in the multi-agent community [18]. One main approach is the plan
merging or plan fusion (cf. [14,21,57,54]) approach, where coordination is applied after plans
have been developed. Here, it is assumed that agents independently work on their own part
of the planning problem and achieve a solution for it. Then, in an after-planning coordination
phase, possible conflicts between these independently generated individual plans are resolved
and positive interactions between them are exploited by exchanging and revising parts of the
individual plans. Note that such a plan merging process requires either a centralized process-
ing of distributed plans or communication between agents and information-sharing of some
parts of the developed plans. Moreover, the planning agents themselves should be willing to
revise their initial plans after conflicts have been detected.

Another main approach is the coordination during planning approach (cf. [15,19,20,34,
45]). Here, coordination and planning are treated as intertwined processes where the agents
continuously exchange planning information to arrive at a joint solution. From a coordina-
tion perspective, the main difference with the first plan merging approach is that positive
(negative) interactions between partial individual plans are exploited (resolved) before an
agent comes up with a completely developed plan. Viewing the plan merging process as a
kind of (plan) filtering process, this approach can be seen as an application of the well-known
filter promotion1 technique in programming [5]. Note that also in this coordination approach

1 Filter promotion refers to a programming technique to turn a generate-and-test mechanism into an efficient
algorithm by pushing (promoting) the tester into the generator.
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agents have to be cooperative in the sense that they should be willing to exchange planning
information with other agents and change their current plans, if necessary. On an imple-
mentation level, several methods for realizing such concurrent coordination processes with
communication exist. For instance, Marecki [45] in his DEFACTO system uses proxies [44]
where coordination is brought about using a system of tokens.

Whereas the first two coordination approaches use coordination as a filter after (partial)
plans have been generated, in a third approach the filter has been placed before the plan
generation process: in this coordination by design approach we aim at the development of
coordination techniques that (i) let each agent construct its plan completely independently
from the others, thereby (ii) guaranteeing that the joint combination of their plans always is
coordinated. In this coordination process some or all of the dependencies between the agents
are resolved before any planning takes place. The most influential of such pre-planning coor-
dination approaches in the literature are social laws and cooperation protocols. Social laws
(cf. [37,48]) are general rules that govern the agent’s behavior; if a collection of agents abide
by these rules, then their behavior will be coordinated without the need for any problem-
specific information exchange between the agents. In many situations, however, coordination
cannot be achieved (or not efficiently) through general, problem-independent rules alone.
In such cases, cooperation protocols [29] can be applied. Such protocols require simple
forms of problem-specific information exchange before the agents can start planning, and
they guarantee that if the agents adhere to the protocol, then the individual plans can easily
be assembled into a joint plan for the overall task. Examples of such coordination by design
strategies are the Temporal Decoupling Method by Hunsberger [27,28] and the pre-planning
coordination method discussed in [10]. In these methods, additional constraints are imposed
on a set of tasks given to a collection of agents to ensure that they can plan autonomously,
while still ensuring that the plan of every agent will satisfy the original set of constraints.
Especially in [10], the main focus is on the complexity issues associated with finding a
minimal set of additional constraints to implement such a coordination by design approach.
Finally, viewing coordination by design from a broader perspective, two other relevant lines
of research on coordination by design should be mentioned. The first is in organizational
design where constraints are imposed on agents in order to make local decisions that fit
together [50]. The second is in Robocup [52], where constraints are imposed in the form of
role specifications to ensure that agents make local decisions that do not conflict.

Plan decomposition. Instead of viewing coordination as a process induced by the way the
agents are allocated to subproblems, plan decomposition tries to come up with a decompo-
sition of the problem into subproblems. On the basis of a decomposition an allocation of
subproblems to agents can be suggested and a way to coordinate the solutions (plans) of
these subproblems. Decomposition is a well-known approach in mathematics and computer
science to solve a problem into smaller pieces (sub-problems). It solves these smaller parts,
and then obtains the solution to the original problem by combining the solutions to the parts.
In principle, such a decomposition offers the possibility to solve the subproblems by several
agents concurrently. In AI-planning, however, examples like [31] where plan decomposition
results in completely independent subproblems are rather rare. In general, plan decomposition
methods [46] do not necessarily aim at decomposing the planning problem into independent
subproblems: interactions between the different subplans developed are allowed.

For example, in localized planning [32,33], the problem is decomposed into so-called
regions (subproblems) requiring localized interaction during planning. Here, each region
constitutes a subproblem that is solved by an individual agent. The outcome of the decom-
position can be used to specify exactly where subproblems will interact (the local interaction
regions) and the agent has to communicate to other agents to avoid (negative) interactions
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with other planning agents. Therefore, localized planning could also be viewed as a plan
coordination during planning method.

While localized planning can be seen as a horizontal decomposition, other approaches
can be better viewed as vertical decompositions of the problem. In these latter approaches
one decomposes a planning problem into multiple levels of abstraction [11,12,14] in order
to identify interactions between actions. In this way conflicts might be resolved at higher
abstraction levels, ignoring details that only appear at lower levels. Except for single agent
applications, such a decomposition can also be used in a multi-agent planning context to
resolve possible interactions between agents at several levels. This approach can also be
viewed as a coordination during planning approach.

Summarizing, we observe that except for the coordination before planning and complete
plan decomposition methods, in order to find a solution to the complete planning problem
by applying plan coordination or plan decomposition, one needs to assume that the agents
are willing or able to communicate in order to achieve a coordinated result. In this paper
we do not want to assume that the agents are cooperative in the sense that they are willing
to communicate parts of their plans or revise them if such is essential. Therefore, we will
concentrate on a coordination by design approach, where the goal is to design a set of (coor-
dination) rules such that the planning agents (players) will achieve a joint goal no matter
which individual plan they choose.

Remark 1 Although such a plan coordination by design could also be seen as a form of
mechanism design [39], in designing the plan coordination mechanism one does not need to
take into account the effect particular combinations of strategies (plans) have on the quality
of the resulting joint plan. It is because in general, utilities of plans and plan steps will be
unknown to the (other) agents.

In the remainder of this paper, the focus will be on a further analysis of the coordination
by design approach. However, instead of merely concentrating on coordination as a method
to guarantee the joint feasibility of the resulting plans, first of all we will investigate the addi-
tional costs incurred by the coordination by design method. That is, we propose and illustrate
the use of a cost measure (the price of autonomy) that is used to measure the overhead of
using a coordination method to ensure conflict-free planning or scheduling by selfish agents.
This cost measure will be defined as the ratio of the worst case costs of a plan achieved by a
coordination mechanism for selfish agents versus the costs of an optimal plan.

Secondly, we will point out that, in general, there exist at least two ways to achieve coor-
dination by design: one called concurrent decomposition and the other sequential decom-
position. In brief, the first technique achieves coordination by adding a set of additional
constraints for each agent simultaneously before they start to plan. However, in many cases
it is very difficult or even impossible to apply this concurrent decomposition strategy. For
example, if the plan tasks given to the agents require access to a common set of scarce
resources, mutual exclusion requirements might incur conflicts in the execution of a given
set of independently constructed plans. Or, consider the case where the tasks themselves are
shared between the agents. Also in this case, concurrent decomposition would be hard to
achieve unless the planning freedom of the agents is severely restricted. Hence, instead of the
concurrent decomposition, in such cases we might apply an alternative so-called sequential
decomposition approach. Here, the coordination mechanism allows the agents to plan one by
one, ensuring that the plans of all predecessors of a planning agent Ai have been translated
into constraints for agent Ai , ensuring that those plans cannot be invalidated by any plan that
Ai is able to come up with. As a result, like in the concurrent decomposition approach, the
total set of plans developed by the agents is guaranteed to be conflict-free.
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Table 1 Transportation orders
and tasks

Item Locations Tasks

i1 A, C, B t1 = (A, C) ≺ t2 = (C, B)
i2 C, B, A t3 = (C, B) ≺ t4 = (B, A)
i3 B, A, C t5 = (B, A) ≺ t6 = (A, C)

To provide the reader with some intuition about both these plan coordination problems that
we will discuss in the subsequent sections and the concurrent and sequential decomposition
approaches to solve them, first we illustrate our ideas with a simple transportation example.

1.1 A transportation example

Consider a transportation problem where items (packages, goods, etc.) have to be delivered
to a sequence of locations by transportation agents. None of the agents can reach all the loca-
tions in the infrastructure, so the transportation of some packages may involve transferring
a package from one agent to another. Some of the infrastructure resource can have a limited
capacity in terms of the number of agents that can simultaneously make use of the resource.

Table 1 defines a transportation planning problem, where three items are required to be
delivered: item i1 needs to be delivered from location A to location C (defined as task t1)
and then from C to B (task t2); item i2 from location C to location B (task t3) and then
from B to A (task t4); item i3 from B to A (task t5) and then from A to C (task t6). The
infrastructure is shown in Fig. 1a, all the roads (edges) ri (i = 1, . . . , 6) and location D have
capacity c() equal to 1, whereas locations A, B, and C have unbounded capacity. There are
three transportation agents: A1, starting at location A and operating on the left side of the
infrastructure (that is, in Fig. 1a, A1 can reach locations A, C , and D, and roads r1, r4, and
r5); A2 starting in location C and operating in the right side of the infrastructure (it can reach
locations C , B, and D, and roads r2, r6, and r5); and A3 starting in B and operating in the
top part of the infrastructure (it can reach locations B, A, and D, and roads r3, r4, and r6).
The travel durations d() are 1 for locations A, B, C , and D; 2 for roads r4, r5, and r6; 6 for
road r1; 7 for road r2; and 3 for road r3.

Given that the agents can only access a part of the infrastructure, only the following task
allocation is a valid one: agent A1 gets t1 and t6, agent A2 gets t2 and t3, and agent A3

gets t4 and t5. Figure 1b represents the task structure and the allocation to the agents. The
system’s overall performance is measured by the makespan of completing the global plan.
To show how to apply the concurrent and sequential decomposition coordination methods in
this transportation instance, we will consider the following two cases: (1) to ignore resource
constraints, and (2) to ignore task constraints.

Case 1 If we ignore resource constraints but take into account the precedence constraints
between tasks, then the heart of the problem is to coordinate the task planning of the agents.
Figure 1b and Table 1 represent this task coordination problem. Each agent has two tasks,
one corresponding to a first-stage delivery of a package to its intermediate location, the other
corresponding to a second-stage delivery. Note that both tasks have the same trajectory. Since
we ignore resource constraints in this case, all roads and locations can be used by more than
one agent simultaneously. However, we assume that every agent can only deliver one item
from one location to the other location at each time.
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(a) (b)

Fig. 1 Transportation problem where agents have to deliver packages to a sequence of locations. a Infra-
structure of roads (edges) and locations (nodes), where d(·) denotes duration, i.e., travel time, and c(·) defines
capacity. b Task graph: circles represent tasks, arrows are precedence constraints, and rectangles specify the
allocation of tasks to agents; coordination can be achieved if, for example, agent A1 adds local constraint
t1 ≺ t6

The concurrent coordination method works as follows: First, it decomposes the problem into
three sub-problems where each agent needs to plan its own tasks (i.e., which item to deliver
first. See Fig. 1b). Then the coordination method should specify some additional constraints
on some agent in order to ensure that a feasible solution is always guaranteed when three
independently solved plans by three agents are combined. From Fig. 1b, observe that if any
agent would perform its first-stage task before its second-stage, then no deadlocks can occur,
regardless of the order in which the other agents perform their tasks. Thus, a coordination
method can add any of the following constraints to ensure the feasibility of the global solu-
tion: (1) t5 ≺ t4 on agent A3; or (2) t1 ≺ t6 on agent A1, or (3) t3 ≺ t2 on agent A2. If the
coordination method enforces all these three constraints on three agents, an optimal solution
can be achieved. However, as we have stated earlier, we would like to keep such restrictions
on agents as minimal as possible. Hence, the question here is, when the coordination method
chooses a specific agent to impose the additional constraint, what is the impact on the system’s
performance?

(i) Let a coordination method M1 add the constraint t5 ≺ t4 on agent A3. Note that agents
A1 and A2 are free to plan their own tasks as long as their plans satisfy the original
task constraints and the additional constraint imposed by M1. When they both decide to
deliver their first-stage tasks (i.e., t1 and t3) first, then to go back and perform the second-
stage tasks (t6 and t2), then these agents can execute their tasks simultaneously. Notice
that the shortest routes for A1 and A2 are those via location D. When all three agents
plan their own routes optimally, this results in a merged plan that is optimal with minimal
makespan of 7×3 = 21 (i.e., the task completion time of A1 or A2). However, the worst
case on makespan appears if A1 and A2 both plan to do their second-stage tasks, and then
the first-stage tasks. Every agent then needs to wait until the other agent finishes its first-
stage task. This leads to a sequential task execution: t5 → t6 → t1 → t2 → t3 → t4.
Hence the combined plan has a makespan of 5+ 7× 3+ 7× 3+ 5 = 52.

(ii) Now consider another coordination method M2 which adds the constraint t1 ≺ t6 on
agent A1. Same to the situation (i), it will also result in the optimal plan with makespan of
21 when A2 and A3 deliver their first-stage tasks first, i.e., t3 ≺ t2 and t5 ≺ t4. The worst
case, due to the autonomy of agents A2 and A3, is when A2 and A3 plan their second-
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stage tasks first, i.e., t2 ≺ t3 and t4 ≺ t5. If this happens, the makespan of the resulting
global plan is 50, with a task execution sequence t1 → t2 → t3 → t4 → t5 → t6.

Notice that if we impose the constraint t3 ≺ t2 on agent A2, the resulting worst-case make-
span is the same to that of the situation (ii) by M2. Both of the coordination methods M1

and M2 guarantee the feasibility of the global solution. However, in this example, it is not
difficult to see that M2 is preferable to M1, since M2 provides a better worst case makespan
than M1.

Case 2 If we ignore task constraints but not resource constraints, we are effectively assuming
that the second-stage packages are available for the agents from the beginning. For simplicity,
we consider that the task of each agent is to deliver one item from one location to the other,
i.e., agent A1 delivering from A to C ; agent A2 from C to B; and agent A3 from B to A. In
this case, agents only need to drive once from their pickup location to their delivery location.
However, we do need to ensure that only one agent may make use of the capacitated resources
r4, r5, r6, and D at the same time.

In this resource usage coordination case, the concurrent decomposition approach is inap-
plicable, as all agents may (individually) plan to use the location D during same period,
which incurs the conflicts on the resource usage. Therefore, we apply the sequential decom-
position method here. The different sequential coordination methods may ask the agents to
plan sequentially in different orders, i.e., one allows A1 to plan first, then A2 after it receives
the updated plan from A1, and finally A3 after A2 communicates its plan; or another asks
A2 to plan first, followed by A1, and then A3. We show the influence of the agent planning
order as follows.

(i) Assuming agent A1 is chosen by a sequential coordination method M ′1 to be first to plan
its use of resource. It comes up a plan which takes the shortest route to C (i.e., along
r4, D, and r5) as: {(A, [0, 1]), (r4, [1, 3]), (D, [3, 4]), (r5, [4, 6]), (C, [6, 7])}, where
(A, [0, 1]) denotes that A1 traverses at location A from time 0 to time 1; (r4, [1, 3])
specifies it travels along the road r4 during time 1 and 3, etc. This plan induces an addi-
tional constraints on the resource use to agent A2, because if A2 takes the shortest route
to B, then it will have conflict with A1 at location D during time step [3, 4]. Thus, A2

takes the “detour” along r2 which takes travel time of 7, and completes its delivery at
time step 9. Finally, agent A3 comes up a plan to take its shortest route r3 to A, respecting
the constraints introduced by agents A1 and A2. Note the combined plan of three agents
results in a makespan of 9.

(ii) The makespan of the global plan can be improved by coordination method M ′2, which
lets agent A2 plan first. A2 takes the shortest route to its destination B along r5, D, and
r6 and completes its task at time 7. Due to the conflict of using location D, A1 has to
take detour along r1 to location A, which requires travel time of 6. A1 can finish its task
by time 8. A3 travels through its shortest route r3 to A with total time 5. As a result, the
combined plan leads to a makespan of 8, which is optimal.

In this example, although both M ′1 and M ′2 guarantee feasible global plans, we favor M ′2 over
M ′1 because M ′2 results in a better makespan (i.e., 8) than M ′1 (i.e., 9).

The above transportation example shows how the concurrent and sequential coordination
methods can be used in a transportation domain. The example also made clear that feasible
coordination methods might differ in efficiency and hence they could have a different price
of autonomy. We will study the price of autonomy in more detail on two different approaches
to coordination by design: a task coordination framework (using concurrent decomposition
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method) in Sect. 3, and a resource coordination framework (using sequential decomposition
method) in Sect. 4. Before introducing these two specific frameworks, in the next section we
present a general coordination by design framework.

2 Coordination by design: a general framework

As we argued in the introduction, in a (task-based) multi-agent planning problem, a set of
tasks is given to a set of agents. These agents have to complete such tasks by making a joint
plan to complete them. Usually there is also a (common) set of resources needed to complete
such tasks. Both tasks and resources are subject to some sets of constraints.

To model such a multi-agent task-based planning problem, we consider a tuple � =
(A, T , R,C, φ, ψ), where A = {A1, . . . , An} denotes a set of agents, T = {t1, . . . , tm} is a
set of tasks, R = {r1, . . . , rp} is a set of resources and C is a non-empty set of constraints on
tasks and resources. Usually, the set of constraints C is partitioned into C = CT ∪CR where
CT is the set of constraints on the tasks and CR is the set of constraints on the resources.
The functions φ : A→ 2T and ψ : T → 2R are the task-assignment function and the task-
resource function, respectively. Here, the task-assignment function specifies which agent is
assigned to which collection of tasks.2 The task-resource function specifies which collection
of resources is needed to execute which task. In the general framework, we do not make any
further assumptions on task and resource constraints, or task-assignment and task-resource
functions. Instead, they are dependent on specific applications. The following example shows
a detailed specification of a transportation planning problem.

Example 1 Consider the transportation example in Sect. 1.1. Here, there is a set of tasks
T = {t1, t2, t3, t4, t5, t6} allocated to the set of agents A = {A1, A2, A3} by the allocation
function φ specified as φ(A1) = {t1, t6}, φ(A2) = {t2, t3} and φ(A3) = {t4, t5}. The set of
task constraints CT defines a set of precedent relations between tasks: CT = {t1 ≺ t2, t3 ≺
t4, t5 ≺ t6}.

The available resources are a set of locations R = {A, B,C, D, r1, r2, r3, r4, r5, r6}. The
resource constraints CR specify the capacity constraints of each location: CR = {c(r) ≤ v|r
∈ R, v ∈ N∪{∞}}, and we have c(A), c(B), c(C) = ∞ and c(r1), c(r2), c(r3), c(r4), c(r5),

c(r6), c(D) = 1.
Finally, the task-resource function ψ defines the resource usage of each task, ψ(t1) =

ψ(t6) = {A,C}, ψ(t2) = ψ(t3) = {C, B}, ψ(t4) = ψ(t5) = {B, A}.
Here, the task constraints define a partially ordered precedence relation between tasks.

The resources, i.e., the locations, are non-consumable, and mutually exclusive according to
the capacity constraints.

A solution to a multi-agent planning problem � = (A, T , R,C, φ, ψ) is a specification
of a task-resource plan (or plan, for short). Such a plan is a tuple P = (A, T , R,C P , φ, ψ),
where C P is a non-empty set of plan constraints refining C , that is, if all constraints in C P

are satisfied, then C is satisfied too. To preserve the generality of the task planning frame-
work, we will not provide an exact specification of C P . We only have to require that C P is
consistency preserving, i.e., if C can be satisfied then C P can, too.

Example 2 Consider Case 1 (ignoring the resource constraints) in the transportation example
(Fig. 1a, b). The original constraints are a set of task constraints C = CT = {t1 ≺ t2, t3 ≺
2 We do not consider in this paper the problem of task assignment or task allocation, which has been studied
extensively (cf. [47]).
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t4, t5 ≺ t6}. The plan P shown in the example of Case 1, using coordination method M2,
specifies the execution order of the tasks of all the agents, which can be represented by the
following plan constraints: C P = {t1 ≺ t6, t5 ≺ t4, t3 ≺ t2, t1 ≺ t2, t3 ≺ t4, t5 ≺ t6}. Here,
C P induces exactly one plan of executing the tasks, and it is a refinement of the original
constraints C (i.e., C P ⊇ C).

Coordination by design requires that from the specification of a multi-agent planning
problem �, we are able to derive a set {�i }ni=1 of single agent planning problems that
can be solved independently. Using the framework, we say that a multi-agent problem
� = (A, T , R,C, φ, ψ) induces a single agent planning problem �i = (Ti , R,Ci , ψ)

for agent Ai , where Ti = φ(Ai ) is the set of tasks assigned to Ai , and Ci ⊆ C is the set of
constraints restricted to tasks occurring only in Ti . That is, in a single agent plan, only the
constraints exclusively to agent Ai are specified, and any shared constraints between Ai and
other agents are discarded. Like the solution for the overall planning problem, the solution
of the single agent planning problem �i is a single agent plan Pi = (Ti , R,C P

i , ψ) where
C P

i is a set of plan constraints that refine Ci .
We say that the problem� is decomposable if the set of local plans (individual solutions)

{P1, . . . , Pn}, can be combined into a global plan P = 
Pi = (T , R,
⋃n

i=1 C P
i , φ, ψ), and

P is a solution to the original problem �.
In general, however, a multi-agent planning problem� will not be decomposable and we

will need a coordination mechanism to ensure that the local plans can be combined into a
feasible global plan.

Such a coordination (by design) mechanism M is an algorithm that, given as input a
multi-agent planning problem � = (A, T , R,C, φ, ψ), an agent Ai , and a set P−i of plans
of other agents, not including the plan of agent Ai , returns a single agent planning problem
�M

i such that:

1. �M
i = (Ti , R,C M

i , ψ) is an individual planning problem for agent Ai , where Ti =
φ(Ai );

2. Ai is allowed to come up with whatever solution (plan) P M
i for �M

i ;
3. the combination P = P M

i ∪ P−i is always a solution to the original problem �.

In order to avoid circular dependencies, where a coordination mechanism would need the
specification of the plan of agent Ai in order to determine�M

j , but also needs the plan of agent

A j in order to determine�M
i , we call a mechanism M feasible if such circular dependencies

do not occur. That is, M is feasible for � if there exists an enumeration 〈A1, A2, . . . , An〉
of A such that for every i = 1, . . . , n, it holds that M(Ai ,�,P−i ) = �M

i and P−i does not
include any plan for an agent Ak for any k ≥ i .

Clearly, if a mechanism M is feasible, then there exists at least one ordering of agents that
allow them to plan independently from the others.

Example 3 Consider the coordination method M2 proposed for the Case 1 in the transporta-
tion example. M2 introduces only one local constraint to agent A1: C M2

1 = {t1 ≺ t6}, while

C M2
2 = C M2

3 = ∅. Note that here the mechanism M2 is able to produce a local planning

problem �
M2
i without the need to know any of the plans specified by the other agents. As a

result of C M2
1 , the plan of A1 (i.e., P1) executes t1 before t6. One can verify that no matter

what local plans P2 and P3 agents A2 and A3 come up with, the combined plan constraint
P1 ∪ P2 ∪ P3 always implies a feasible solution (a deadlock free joint plan), to the example
in Fig. 1b.
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2.1 Concurrent and sequential decomposition

As we discussed in the introduction, coordination by design is a plan coordination method
that allows agents to plan independently from the other agents. It achieves so by decompos-
ing the original multi-agent planning problem into individual planning problems that can be
solved independently.

We now distinguish two main methods to obtain such a decomposition: concurrent decom-
position and sequential decomposition.

Concurrent decomposition. In concurrent decomposition the coordination mechanism M
is able to specify—given the original problem� and an agent Ai —the set of local problems
�i directly without knowing the plans of the other agents. That is, for every agent Ai , the
set of plans of other agents that M needs in order to determine the local planning problem
for agent Ai is empty and we have M(Ai ,�,P−i ) = M(Ai ,�,∅) = �M

i . It is immediate
that this mechanism is feasible for every enumeration of agents. Hence, each of the agents is
able to make its plan independently from and concurrently with the others.

Concurrent decomposition can be applied if (i) the task allocation φ induces a partitioning
of the tasks, i.e., no task is assigned to more than one agent, and (ii) there is no resource
dependency between tasks assigned to different agents, i.e., if t ∈ Ti and t ′ ∈ Tj then
φ(t) ∩ φ(t ′) = ∅. In such multi-agent planning frameworks, the set of resources does not
play a role in the decomposition process and we obtain a simple plan coordination framework
(A, {Ti }ni=1,CT ) where {Ti }ni=1 is the partitioning of the set of tasks induced by φ and CT
is the set of constraints for the tasks. This framework has been studied in [10,51].

Example 4 Consider again the transportation example. When the resource constraints are
disregarded, we end up with a simple plan coordination framework (A, {Ti }3i=1,CT ), where
CT = {t1 ≺ t2, t3 ≺ t4, t5 ≺ t6}, and the task partitioning is shown in Fig. 1b. The concurrent
decomposition coordination method M2 specifies a local planning problem for agent A1, that
is, M2(A1,�,∅) = �M2

1 = (T1,C M2
1 , ψ), where T1 = {t1, t6}, C M2

1 = {t1 ≺ t6}. It is easy
to see that the only plan that A1 can generate is to execute t1 before t6.

Sequential decomposition. On the other hand, in sequential decomposition, there is an enu-
meration 〈A1, A2, . . . , An〉 of the agents such that for all i,M(Ai ,�,P−i ) = M(Ai ,�,

{A1, . . . , Ai−1}) = �M
i . That is, all plans of the agents A j preceding Ai in the enumer-

ation are needed to guarantee that agent Ai can plan independently. The idea is that for
every i , the results of all the plans Pj of the agent A j ( j < i) are translated, by the coor-
dination mechanism M , into a suitable set of constraints, in such a way that plans of agents
Ai , Ai+1, Ai+2, . . . , An never can invalidate the plans Pj of agent A j ( j < i).

Sequential decomposition can be applied if there is an overlap in the tasks assigned to
different agents or there are some dependencies on the resources that have to be used by two
agents in the system. If we focus on the resource constraints but neglect the task constraints
in the framework, we achieve a resource coordination framework (A, T , R,CR). Here, the
planning of the tasks of the agents is trivial, because there are no restrictions among them.
On the other hand, coordination is needed because of resource dependencies.

Example 5 Consider Case 2 in the transportation example of Sect. 1.1, where if we ignore the
task constraints in the example, there are no precedence relations between any tasks assigned
to different agents. Hence, we end up with a resource coordination framework (A, T , R,CR),
where A, T , R, and CR are explained in the earlier example (see Example 1).

The coordination method M ′1 described in the transportation example demonstrates how

the sequential decomposition works. M ′1 first defines the local planning problem �
M ′1
1 for
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agent A1, i.e., �
M ′1
1 = M ′1(A1,�,P−1) = M ′1(A1,�,∅). Thus, agent A1 freely makes

an optimal local plan P1 for itself that takes the shortest route along with r4, D and r5.
P1 can be represented by the plan constraints: C P

1 = {(A, [0, 1]), (r4, [1, 3]), (D, [3, 4]),
(r5, [4, 6]), (C, [6, 7])}, where (A, [0, 1]) denotes that A1 traverses at location A from time
0 to time 1, etc.

Next, M ′1 specifies the local planning problem �
M ′1
2 for agent A2: �

M ′1
2 = M ′1(A2,�,

{A1}). That is, when A2 makes its plan, it must respect the plan constraints generated by
agent A1. Due to the plan constraint (D, [3, 4]) of A1, A2 has to take a longer route and
comes up with a plan P2 which is represented by the following plan constraints: C P

2 ={(C, [0, 1]), (r2, [1, 8]), (B, [8, 9])}.
Finally, the local planning problem for agent A3 is defined as: �

M ′1
3 = M ′1(A3,�, {A1,

A2}). Agent A3 makes the following local plan, respecting the plans generated by the pre-
ceding agents A1 and A2: C P

3 = {(B, [0, 1]), (r3, [1, 4]), (A, [4, 5])}.
Notice here, the ordering of the agents of making plans is: 〈A1, A2, A3〉.

2.2 Efficiency issues and the price of autonomy

In both sequential and concurrent decomposition, additional constraints are imposed upon
the agents to ensure feasibility of the resulting plans. Besides feasibility, however, coordi-
nation methods should also be evaluated based on the efficiency of the resulting joint plan
produced by the agents. That is, we should be able to indicate how much efficiency we lose,
due to the fact that in our problem we allow selfish agents to come up with their own plans
instead of forcing them to use an optimal plan that could require quite a lot of cooperation
between the agents. To this end, we introduce the notion of the price of autonomy measuring
the costs over the performance loss due to the independent planning of the agents. This price
of autonomy ρM of using coordination method M w.r.t. efficiency is the worst-case ratio
of the efficiency of the joint plan obtained by letting selfish agents make their own plan as
efficient as possible, versus the efficiency of the most efficient plan that could be obtained as
the solution of the multi-agent problem.

Remark 2 The price of autonomy is closely related to the well-known game-theoretical
notion of the price of anarchy used to measure the worst-case loss arising from insufficient
ability or willingness to coordinate the behaviours of selfish agents [40,42,43]. Technically,
the price of anarchy is the ratio of the cost of the worst-case Nash equilibrium in a game
versus the cost of an optimal solution to the game.

Example 6 Consider the transportation example in Sect. 1.1. For Case 1, the optimal plan,
with constraints {t1 ≺ t6, t3 ≺ t2, t5 ≺ t4}, has the makespan of 21. However, the worst-case
makespan is 52 by coordination method M1, and 50 by coordination method M2. Thus, the
price of autonomy of M1 is: ρM1 = 52

21 ≈ 2.48, while the price of autonomy of M2 is slightly
smaller: ρM2 = 50

21 ≈ 2.38.
For Case 2, the sequential coordination method M ′2 lets the agent A2 plan first, which leads

to an optimal plan with makespan of 8. Hence, the price of autonomy of M ′2 in this example
is 1, i.e., ρM ′2 = 1. However, when A1 is chosen to be the first to plan (by coordination
method M ′1), the resulting makespan is 9, which leads to the price of autonomy of using M ′1
of ρM ′1 = 9

8 = 1.125.
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2.3 Problems to solve in the task resource framework

In this paper we study two coordination methods for selfish agents: the concurrent and the
sequential decomposition method and the price of autonomy ρM of these methods using (1)
a task coordination framework (A, {Ti }ni=1,CT ) (Sect. 3), and (2) a resource coordination
mechanism (A, T , R,CR) (Sect. 4), respectively.

In the task coordination framework (A, {Ti }ni=1,CT ), CT may induce some constraints
between two sets of tasks Ti and Tj . We aim to develop a concurrent decomposition based
coordination method (or concurrent coordination) and aim at makespan minimisation as an
efficiency criterion. An immediate question then is: Given a coordination instance, how hard
is the problem of designing an optimal makespan efficient concurrent coordination method?
In other words, does there exist an efficient coordination method that computes for each agent
a set of additional constraints in polynomial time, such that it minimizes the global make
span of the system, i.e., is there a coordination method that realizes ρM = 1?

Section 3 proposes such a concurrent coordination method M for a specific task coordi-
nation problem, where autonomous agents work together for a makespan efficient schedule.
We show that when the agents have unbounded capacity to carry out tasks simultaneously,
the price of providing autonomy to agents by M is minimised, i.e, M always ensures the
optimal global solution.

As we will see, sometimes designing an optimal coordination method turns out to be
intractable. In that case, we prefer a polynomial-time feasible coordination method that gives
a reasonable bound on the price of autonomy. This is the case in our task coordination prob-
lem, when agents are not able to execute an arbitrary number tasks simultaneously. Here,
designing an optimal coordination method is NP-hard. As it turns out, however, there is a
polynomial time mechanism guaranteeing that the price of autonomy is bounded by 2.

Section 4 studies a resource coordination problem, where we coordinate the usage of
resources that the agents need to perform their tasks. The coordination needs to ensure that
the usage of a resource is always less than or equal to its capacity. In this case, concurrent
decomposition can’t work, but sequential coordination is possible. We solve this problem by
letting the agents make their (resource) plans in sequence, and by placing reservations on
resources to reflect their planned usage. The proposed coordination method M can always
ensure the feasibility of the merged local plans. The problem of finding an optimal resource
plan is intractable. We show that our coordination method M is not a fixed-ratio approximation
scheme by giving an example where M leads to the price of autonomy of |A|2 . Furthermore,
we address another interesting question raised in sequential coordination: what is the optimal
agent ordering? More specifically, whether the ordering of the sequential decomposition has
a great impact on the price of autonomy? We will investigate this experimentally.

We now start with a discussion of the design of a concurrent coordination method for task
coordination problem.

3 Concurrent coordination: autonomous task planning

This section considers a plan coordination framework (A, {Ti }ni=1,CT ), where the usage of
resources have been ignored and task constraints exist. We study a coordination by design
method for a multi agent distributed scheduling problem, where the coordination method
should guarantee high flexibility of the autonomous agents, while the system’s optimal per-
formance (minimal makespan) should be preserved as much as possible. In other words, we
aim at minimizing the price of autonomy.
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Distributed scheduling has been an active area of research in the past decade. Roughly
speaking, one can distinguish between approaches that assume that the participating systems,
or agents controlling these systems, are cooperative and approaches that assume that the par-
ticipating agents/systems are non-cooperative. Examples of the former (classical) approaches
are DLS [49], HEFT [55], CPOP [55], ILHA [3] and PCT [36]. All these approaches mainly
focus on optimizing some performance criteria such as makespan and required communica-
tion between processors. Typically, these approaches assume that the participating systems
are (i) fully cooperative in (ii) establishing a single globally feasible schedule for the complete
set of tasks.

In quite a lot of applications, however, we simply cannot assume that the participating
systems are fully cooperative. For example, in grid applications, jobs often have to com-
pete for CPU and network resources, and each agent is mainly interested in maximizing
its own throughput instead of maximizing the global throughput. Thus, several research-
ers have adopted a game-theoretic approach for solving scheduling problems with non-
cooperative agents. For example, Walsh et al. [58] use auction mechanisms to arbitrate
resource conflicts for scheduling network access to programs for various users on the internet.
Another approach to non-cooperative scheduling is based on negotiation. Recently, Li in his
Ph.D. thesis developed both static and learning based dynamic negotiation models for grid
scheduling [35].

In both approaches to non-cooperative scheduling, however, the effort is directed at devel-
oping a single global schedule that meets some criterion. Further, the computation of the final
schedule is centralised. In situations where agents are exploring unknown or hostile territory,
it might be very restrictive or even impossible to enforce rigid schedules on the agents. In
other situations where agents participate in more than one such system, they would require
a minimum set of constraints on their schedules rather than a single rigid schedule.

Recently, Hunsberger [26] has developed a temporal decoupling method for Simple Tem-
poral Networks (STNs) to decompose an STN into a number of independent sub-STNs,
each of which can be scheduled independently from the others. Although the autonomous
scheduling method we will apply is related to his decoupling method, we want to design
such decoupled subnetworks directly from a given set of simple constraints and compute the
minimum makespan from these constraints, whereas Hunsberger starts from a given STN
and does not pay attention to efficiency criteria.

We start by describing the coordination framework. The task constraint function CT spec-
ifies, for each task ti ∈ T , its duration: d(ti ) ∈ Z+. Furthermore, CT also defines a partially
ordered precedence relation ≺ between tasks, i.e., ti ≺ t j indicates that task ti must be
completed before task t j can start. We use the transitive reduction � of ≺ to indicate the
immediate precedence relation between tasks, i.e., ti � t j iff ti ≺ t j and there exists no
tk such that ti ≺ tk and tk ≺ t j . A directed acyclic graph (DAG) G = (T ,�) is used to
represent the task structure of T .

In addition to the task constraints, we also assume that there is a function c : {1, 2, . . . , n}
→ Z+ ∪ {∞} assigning to each agent Ai ∈ A its concurrency bound c(i). This concur-
rency bound is the upper bound on the number of tasks agent Ai is capable of performing
simultaneously. We say that 〈{Ti }ni=1,≺, c(), d()〉 is a scheduling instance.

Given such a scheduling instance, a global schedule for it is a function σ : T → Z+
determining the starting time σ(ti ) for each task ti ∈ T . We define a feasible schedule σ as
follows.

Definition 1 A feasible schedule is a schedule that satisfies the following constraints:

1. for every pair ti , t j ∈ T , if ti ≺ t j , then σ(ti )+ d(ti ) ≤ σ(t j );
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Fig. 2 A set of tasks ti with their
durations d(ti ) to demonstrate the
possibility of developing several
makespan optimal schedules.
Task durations are indicated as
numbers within the circles
representing the tasks

2. for every i = 1, . . . , n and for every τ ∈ Z+, let s = {t j ∈ Ti | τ ∈ [σ(t j ), σ (t j ) +
d(t j )]} we require that |s| ≤ c(i), that is the concurrency bounds for every agent Ai

should be respected.

An optimal schedule is the one that minimizes makespan, i.e., for all feasible schedules σ ′,
the optimal schedule σ satisfies: maxt∈T {σ(t)+ d(t)} ≤ maxt∈T {σ ′(t)+ d(t)}.

As for the measure of flexibility of autonomous agents, a coordination method should
impose upon each agent a minimal set of additional constraints Ci , such that if Ci is specified
for the scheduling instance 〈Ti ,≺i , di (), c(i)〉 of agent Ai , then all locally feasible schedules
σi satisfying their local constraints Ci can be merged into a globally feasible schedule σ for
the original scheduling instance. The set of constraints Ci that we will add to each local sched-
uling instance for each agent Ai , is a set of time intervals [lb(t), ub(t)] for the tasks in Ti .
Each such interval [lb(t), ub(t)] ∈ Ci with lb(t), ub(t) ∈ Z+ specifies that any individual
schedule σi agent Ai might choose has to satisfy the constraint lb(t) ≤ σi (t) ≤ ub(t).

Our goal is to design a minimal set of constraints Ci for each agent Ai , such that the
merging of individual schedules σi that satisfy Ci always is a globally feasible schedule.
Moreover, we would also like the merged plan to be makespan efficient. In the next sections,
we consider two scenarios: the first, where agents can perform an unlimited number of tasks
simultaneously and the second where they can perform only a single task at any given point
in time.

Example 7 Consider a simple example shown in Fig. 2, where there are three agents and 7
tasks with precedence constraints. Here, a direct precedence constraint t � t ′ is represented
as an arrow from t pointing to t ′. The task durations d(t) are indicated within the circles
representing the tasks t . Suppose that each agent can perform two tasks simultaneously, that
is c(1) = c(2) = c(3) = 2. Clearly, the minimal makespan of processing these tasks is
11. To achieve this minimal makespan, the following schedules for the agents are possible:
σ1(t1) = σ1(t2) = 0; σ2(t3) = 2; σ2(t4) = 3 and σ3(t5) = 0; σ3(t6) = 7; σ3(t7) = 9. How-
ever, prescribing these schedules is unnecessarily restrictive to the agents. In fact, several
other schedules also result in the same global makespan. For example, A1 could start task t1
in the interval [0,2] while starting task t2 in the interval [0, 0]. Agent A2 can process tasks
t3 in the interval [4, 7] while starting t4 in [2, 2]. Similarly, agent A3 can process task t5 in
the interval [8,10] with task t6 starting in the interval [7, 7] and task t7 in [9, 9]. Notice here
that any schedule produced by the agents such that these intervals are honored will always
lead to a global makespan of 11. Thus, by introducing the additional constraints in the form
of these intervals, agents have some amount of flexibility on deciding their local schedule
without affecting the minimal makespan.
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3.1 Coordinating agents with unbounded concurrency

In this section, we show that there exists a surprisingly simple makespan efficient autono-
mous scheduling algorithm, provided that the agents are capable of processing as many tasks
concurrently as required, i.e., they have unbounded concurrent capacity. We first present
the proposed coordination algorithm ISA (or, interval-based scheduling algorithm). We then
prove that, it provides maximal flexibility to agents and, in addition the solution is optimal.
Thus, the price of autonomy is 1.

3.1.1 The ISA coordination algorithm

The heart of the ISA algorithm is to specify for every task t , an interval consisting of its
earliest possible starting time and its latest possible starting time (without violating CT ).
Such an interval can be viewed as a constraint on the starting time of a task. Once these
constraints are computed, the agents can autonomously create any local schedule provided
that it satisfies these constraints. Thus, on the one hand, they are offered the flexibility of
creating more than one schedule but on the other they are assured that the global makespan
is optimal.

The CPOP [55] algorithm by Topcuouglu et al. uses a similar line of thought. In CPOP,
a combined value of the depth and the height of a task is used to compute the priority for
every task. This priority is used later to compute an efficient schedule for the tasks. We build
upon this idea and compute intervals instead of priorities, within which each agent is free to
schedule its tasks.

To define the interval [lb(t), ub(t)] for the starting time of a task t in the given partial
order 〈T,≺, d()〉, we first compute, for each task t ∈ T , its depth(t) and its height (t). The
depth and the height of a task in a given partial order can be used to determine the earliest
and the latest possible time at which a task can be started. To aid in our computation of
the depth and height of a task t , we further identify two sets: pred(t) = {t ′| t ′ � t} and
succ(t) = {t ′| t � t ′}.
Definition 2 (Depth of a task t) depth(t) = 0 if pred(t) = ∅ and depth(t) = maxt ′∈pred(t)
{depth(t ′)+ d(t ′)}, otherwise.

Note that the depth of a task t is the maximum duration of any chain of tasks preceding it,
hence it directly determines the earliest time task t might start. The depth depth(T ) of the
set of tasks T is defined as the maximum duration required to complete all tasks taking into
account the precedence relation ≺: depth(T ) = maxt∈T {depth(t) + d(t)}. So depth(T )
defines the minimal makespan of T . The height height (t) of a task t in a partial order
〈T,≺, d()〉 defines the time that has to pass before all tasks occurring after t and including t
have been completed, thus,

Definition 3 (Height of a task t) height (t) = d(t), if succ(t) = ∅ and height (t) =
maxt ′∈succ(t){height (t ′)+ d(t)}, otherwise.

From the specifications of depth(t), height (t) and depth(T ) the earliest (lb(t)) and latest
(ub(t)) possible starting times for a task t can be derived as follows: lb(t) = depth(t) and
ub(t) = depth(T )− height (t).

These intervals [lb(t), ub(t)], however, cannot be used directly for autonomous schedul-
ing. In general because the length of task chains3 differ, it can easily happen that the intervals

3 A task chain is a partial order of tasks, related by the precedence relation ≺.
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lb(t) ub(t)

ub(t’)lb(t’)
Initial overlapping intervals

Final non−overlapping intervals

lb(t)
ub(t)= {ub(t’)+lb(t)−d(t)}/2

ub(t’)
lb(t’)

d(t)

Fig. 3 Overlapping interval splitting procedure in ISA

of some precedence constrained tasks t ≺ t ′ might overlap, that is lb(t ′) < ub(t) + d(t),
while t ≺ t ′. Such an overlap might cause a violation of the first constraint on the joint
schedule, namely that t ≺ t ′ should imply σ(t)+ d(t) < σ(t ′).

Example 8 Consider the set of tasks given in Fig. 2. The depth of T is depth(T ) = 11. Com-
puting the depths and the heights of the tasks t1 and t3, we derive the constraints C(t1) = [0, 8]
and C(t3) = [2, 10]. Now, agent A1 could decide to start t1 at time σ1(t1) = 6, while A2

could choose σ2(t3) = 5. However, if these schedules are merged, we violate the precedence
constraint between t1 and t3 since then σ(t3) < σ(t1)+ 2.

This implies that, because of overlapping intervals, agents might develop schedules that
violate precedence constraints. Therefore, we remove such overlaps as depicted in Fig. 3.
In order to satisfy the schedule constraints we should ensure that whenever t ≺ t ′, the
difference between lb(t ′) and ub(t) should be at least d(t).

Note that, in case of an overlap between two tasks t ≺ t ′ belonging to different agents, it
is always possible to remove the overlap without creating empty intervals. If t ≺ t ′, we have
lb(t) + d(t) ≤ lb(t ′) and ub(t) + d(t) ≤ ub(t ′). The existence of an overlap implies that
lb(t) < lb(t ′) < ub(t) + d(t). Hence, ub(t ′) − lb(t) ≥ ub(t) + d(t) − (lb(t ′) − d(t)) >
−d(t)+ 2d(t) = d(t).

Since we require lb(t ′) − ub(t) ≥ d(t), we set ub(t) = lb(t) +
⌊

ub(t ′)−lb(t)−d(t)
2

⌋
and

thereafter lb(t ′) = lb(t)+
⌊

ub(t ′)−lb(t)−d(t)
2

⌋
+d(t). In both cases, since ub(t ′)−lb(t) > d(t),

the new constraint intervals are non-empty. The complete description of the algorithm is given
in the ISA Algorithm (see Algorithm 1).

Example 9 Consider again the set of tasks given in Fig. 2. The “unrefined” constraints on the
tasks are computed as C(t1) = [0, 8], C(t3) = [2, 10], C(t5) = [0, 10]while C(t2) = [0, 0],
C(t4) = [3, 3], C(t6) = [7, 7] and C(t7) = [9, 9]. Since there is overlap between the con-
straints of task t1, t3 and t3, t5, these constraints have to be adapted. The result is the following
set of constraints: C(t1) = [0, 4], C(t3) = [6, 7] and C(t5) = [0, 10]. It is easily verifiable
that all local schedules that adhere to their constraints are feasible and also that all such local
schedules can be combined to obtain a global schedule that is correct and has a makespan
of 11.
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Algorithm 1 Generalised interval based scheduling (ISA)

Require: Partially ordered set of tasks (T,≺), for every task t ∈ T its depth depth(t) and its height height (t);
Ensure: For every t ∈ T its scheduling interval C(t) = [lb(t), ub(t)];
1: depth(T ) := maxt∈T {depth(t)+ d(t)}
2: for all t ∈ T do
3: lb(t) := depth(t)
4: ub(t) := depth(T )− height (t)
5: for all t, t ′ ∈ T belonging to different agents such that t ≺ t ′ and lb(t ′)− ub(t) < d(t) do

6: ub(t) = lb(t)+
⌊

ub(t ′)−lb(t)−d(t)
2

⌋

7: lb(t ′) = ub(t)+ d(t)
8: for all t ∈ T do
9: return C(t) = [lb(t), ub(t)]

Note that in ISA, the removing overlapping intervals procedure corresponds to a simplified
variant of Hunsberger’s [26] decoupling algorithm for STNs.

3.1.2 The price of autonomy of autonomous scheduling

It is trivial to show that ISA runs in polynomial time. Each interval [lb(t), ub(t)] computed
by ISA is always non-empty and for every t ∈ T , ub(t) ≤ depth(T )− d(t). Moreover, for
every pair t, t ′ of tasks, t ≺ t ′ implies ub(t)+ d(t) < lb(t ′). Hence, it is not difficult to see
that (i) every local schedule σi satisfying the local constraints Ci will be a feasible schedule
for the set of tasks Ti and (ii) the merge of every set {σi }ni=1 of local schedules is a feasible
global schedule, thus ensuring the correctness and makespan optimality of the algorithm.

Proposition 1 The interval-based scheduling algorithm (ISA) ensures a correct global
schedule and it is efficient in terms of makespan.

With respect to flexibility of this autonomous scheduling method, it is not difficult to see
that it satisfies maximal flexibility. Here, we call a set C = {C(t) | t ∈ T } of interval con-
straints for a scheduling instance 〈{Ti }ni=1,≺, c(), d()〉 maximally flexible, if there does not
exist any strict weakening4 C ′ of C such that C ′ also allows for autonomous scheduling of
〈{Ti }ni=1,≺, c(), d()〉 and is makespan efficient.

Proposition 2 Any strict weakening the set C of constraints imposed by ISA either leads to
a infeasible schedule or leads to a non optimal makespan.

Proof See Appendix A. �
Summarising, we have the following property:

Theorem 1 ISA ensures a maximally flexible set of constraints and a makespan efficient
global schedule. It ensures the price of autonomy is 1, provided that the agents have unbounded
concurrency.

Note, however, that the minimal global makespan is ensured by the proposed algorithm
ISA only under the assumption that the participating agents have capabilities to perform a
potentially unbounded number of tasks at the same time. Often, this assumption is not realis-
tic as agents may only have limited capacity to perform tasks. Therefore, in the next section,
we study the case when every agent is capable of performing only a single task at any point
in time (sequential agents).

4 A set C ′ is a strict weakening of C if every schedule σ satisfying C also satisfies C ′ but not vice versa.
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3.2 Coordinating agents with bounded concurrency

In this section, we adapt the method to accommodate for bounded concurrency requirements
of agents. In particular, we consider the case where agents are strictly sequential. We then
prove that in this latter case designing a makespan-efficient autonomous scheduling method
is NP-hard. The good news, however, is that there exist good approximation algorithms for
makespan efficient autonomous sequential scheduling, if we allow the tasks to be processed
preemptively.

A scheduling instance 〈{Ti }ni=1,≺, c(), d()〉 where c(i) = 1 for every Ai is called a
sequential scheduling instance, abbreviated as 〈{Ti }ni=1,≺, 1, d()〉. Like in the unbounded
case, we would like to come up with a set C of constraints C(t) = [lb(t), ub(t)] for each
task t ∈ T such that the agents are able to construct their sequential schedule independently
from the others. Any individual schedule σi for a sequential agent Ai with the set of tasks Ti

assigned to it, has to satisfy the following conditions:

– lb(t) ≤ σi (t) ≤ ub(t) for every t ∈ Ti where C(t) = [lb(t), ub(t)];
– for every t, t ′ ∈ Ti , t �= t ′ implies σi (t)− σi (t ′) ≥ d(t) or σi (t ′)− σi (t) ≥ d(t ′).

The first condition ensures that schedules do not violate precedence constraints and the sec-
ond ensures that at most a single task is scheduled in a given point of time. We design an
additional set of constraints such that each agent can determine a sequential schedule for his
set of tasks. While designing such constraints for autonomous scheduling if the agents are
unbounded it is possible to develop constraints that ensure efficiency whereas, the equivalent
problem for sequential agents turns out to be infeasible. The reason mainly is because we
cannot ensure that, based on a given set of constraints delivered to the individual agents, they
are able to find an efficient sequential schedule satisfying all the constraints. More precisely,
while in the unbounded case we were able to find a minimum makespan M for the total set of
tasks and could guarantee that given a set C of additional task constraints any set {σi }ni=1 of
locally feasible schedules would result in a makespan M complying global schedule, finding
such a makespan complying schedule in the sequential case is an intractable problem.

Proposition 3 Given a sequential scheduling instance 〈{Ti }ni=1,≺, 1, d()〉 and a positive
integer M, the problem to decide whether there exists a set of constraints C such that the
scheduling instance allows for a solution with make-span M by autonomous scheduling is
NP-hard.

Proof See Appendix B. �

Note that the complexity is quite independent upon the number of agents. Already two agents
suffice to render the problem hard and, in particular, the problem derives its hardness from
the difficulty to determine for a single agent the set of constraints that would allow it to
determine its own schedule without violating the global makespan.

3.3 ISAS: ISA for sequential agents

Since a polynomial-time exact algorithm is not possible (unless P = NP) for autonomous
scheduling in the sequential agent case, we have to rely on approximation algorithms. As we
have shown in some recent work [59], there exists a polynomial 2-approximation algorithm
for constructing a set of constraints in the sequential agent scheduling case if all the tasks
t ∈ T have unit durations d(t) = 1. This algorithm constructs a maximally flexible set of
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constraints guaranteeing that the resulting global makespan is never more than twice the opti-
mal makespan that can be realised by sequential scheduling agents. We will briefly discuss
the outline of this algorithm and reuse it (after some adaptations) to the general sequential
agent scheduling case.

The basic idea in this algorithm is to first use the ISA algorithm to determine the set of
constraints C for the unit duration tasks. As we have shown above, if the agents would be
able to handle tasks concurrently, an agent would be able to find a schedule satisfying all the
constraints. In the sequential agent scheduling case, this might not be possible. For example,
if there are three unrelated tasks t1, t2 and t3 of unit duration, where the first two are given
to agent A1 and the third to agent A2, agent A1 is not able to schedule both tasks given the
constraints C(t1) = C(t2) = [0, 0]. There is, however, a simple way to tell whether a given
agent is able to find a sequential schedule for all tasks t ∈ Ti with the constraints C(t) given
to it. Consider the bipartite graph Gi = (Ti ∪ Ni , Ei ) where Ni is the set of all time points
occurring in the intervals C(t) = [lb(t), ub(t)] of tasks t ∈ Ti , and (t, n) ∈ Ei iff n ∈ C(t).5

It is not difficult to see that there exists a sequential schedule for agent Ai iff the graph Gi

has a maximum matching [13] that includes every task t ∈ Ti .
If the (polynomial) maximum matching algorithm is not able to find a complete matching

for Ti , i.e., some of the tasks could not be scheduled, there must be a scheduling conflict
between a task t in the matching and a task t ′ not in the matching. Such a conflict can be
resolved by adding a new precedence constraint t ≺ t ′ between t and t ′ and calling the ISA
algorithm again on the extended scheduling instance. Note that the result of such extensions
of the precedence relation is twofold (i) the conflict between t and t ′ is removed and (ii) the
global makespan d(T ) might be increased.

Continuing our last example mentioned above, consider the two tasks t1 and t2 agent A1

was not able to handle. A maximum matching for G1 contains either t1 or t2. If we add
a precedence constraint t1 ≺ t2 to the set of tasks, agent A1 will receive the constraints
C(t1) = [0, 0] and C(t2) = [1, 1] is able to find a suitable sequential schedule for its set of
tasks.

This matching, extending the precedence relation, and calling the ISA algorithm is repeated
until we are guaranteed that for each agent there exists at least one sequential schedule.6 The
result is a set of constraints C guaranteeing that any schedule resulting from independently
chosen schedules realises a makespan that is at most twice as long as the optimal makespan.

One of the attractive features of the unit-duration sequential scheduling case is the exis-
tence of a polynomial decision procedure (the maximum matching algorithm) for deciding
whether there exists a sequential schedule satisfying the constraints Ci (t) for an agent Ai .
The reduction from PARTITION given above shows that, unless P = NP, we cannot hope to
find a solution for the same problem in the general sequential scheduling case.

There is, however, a possibility to reuse the approximation algorithm sketched above if we
assume that, although the agents are strictly sequential, the tasks can be accomplished using
preemption. This enables an agent to complete a part of task t , then to start some other tasks,
process a next part of t and so on. If this is allowed, we can easily reduce a sequential sched-
uling instance 〈{Ti }ni=1,≺, 1, d()〉 to a sequential scheduling instance with unit durations as
follows.

Each task t ∈ T is split in unit parts t1, . . . , td(t), we add the constraints t j ≺ t j+1 for
j = 1, . . . , d(t)− 1. Finally, every precedence constraint t ≺ t ′ is replaced by the constraint
td(t) ≺ t ′1. See Fig. 4 for an illustration. Note that this assumption implies that the sequential

5 Note that we assume integer values for schedules σ(t).
6 This procedure must halt because conflicts can never reoccur.
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(a) (b)

Fig. 4 A sequential scheduling instance (a) and its reduction to the equivalent unit-duration case (b) if
preemption is allowed

scheduling case with arbitrary task durations can be reduced to the unity duration sequential
case. Hence, we can reuse the approximation algorithm for this case, too, obtaining a 2-
approximation algorithm for autonomous scheduling of tasks with arbitrary durations. There
is of course a catch. The approximation algorithm is only polynomial for those instances
where the durations d(t) are not super-polynomial in the number of tasks |T |. Otherwise,
the splitting of tasks in unit duration tasks would result in a super polynomial number of
unit-duration tasks. The complete algorithm is described in Algorithm 2.

Algorithm 2 The matching based sequential adaptation of ISA for tasks with heterogenous
durations (ISAS)

1: Inputs: constraint intervals [lb(t), ub(t)] for all the tasks t ∈ T as computed by ISA
2: Outputs: Revised lb(t) and ub(t) for each t ∈ T to enable sequential scheduling
3: for each task t such that d(t) > 1 do
4: split t into a partial order t j ≺ t j+1 where j = 1, . . . , d(t − 1)
5: replace every precedence constraint t ≺ t ′ by td(t) ≺ t ′
6: replace every precedence constraint t ′ ≺ t by t ′ ≺ t1

7: while there exists a (Ti ,Ci ) not allowing for a maximal matching Mi containing Ti do
8: take a task t contained in Mi and an overlapping task t ′ not occurring in Mi
9: add t ≺ t ′ or t ′ ≺ t to the partial order (T,≺)
10: run ISA on the updated partial order (T,≺), update the set of constraint intervals C

Example 10 Consider the problem instance in Fig. 4. Here, the tasks are assigned to 4 agents
T1 = {t4}, T2 = {t5, t6}, T3 = {t1, t2} and T4 = {t3}with task durations d(t1) = d(t3) =
d(t6) = 1 and d(t2) = d(t4) = d(t5) = 2. The precedence constraints are t1 ≺ t4, t2 ≺ t5
and t3 ≺ t6. The minimal makespan for the unbounded case is d(T ) = 4. This implies
that after task splitting of task t2, agent A3 will receive the constraints C(t1) = [0, 1] and
C(t1

2 ) = [0, 0] and C(t2
2 ) = [1, 1]. If t1 is included in the maximum matching (and t1

2
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is not), an additional constraint t1 ≺ t1
2 is added to the set of tasks. As a result, the depth

depth(T ) = 5 and the new constraints are C(t1) = [0, 0], C(t1
2 ) = [1, 1] and C(t2

2 ) = [2, 2].
Continuing the procedure with the remaining agents in the same way can result in a joint
schedule with makespan 6, where as the optimal makespan for sequential scheduling is 5.

The ISAS algorithm is a 2-approximation algorithm. Thus the worst-case makespan ratio
of the joint schedule obtained by ISAS, versus the optimal schedule, is bounded by a factor
of 2. Hence, we conclude that the price of autonomy of autonomous scheduling using ISAS
algorithm is less than or equal to 2.

Proposition 4 The price of autonomy of autonomous scheduling using the ISAS algorithm
is at most 2.

In this section we have seen so far that simple algorithms can be used to ensure concurrent
decomposability and also guarantee efficient makespan. We have seen that the ISA which
is based on the depth/height of the task in a task graph, captures the subset of all plans
that ensure makespan efficiency as well as maximal flexibility. We have also seen that when
agents are capable of performing a single task at a given point in time, makespan-efficiency
suffers due to the inherent intractability of the problem. However, an important issue that
features in many planning problems is the one involving shared resources. In this section we
have assumed that all agents have “sufficient” resources to carry out their tasks. However, it
is not necessarily true. In the next section we describe our research regarding the handling
of resource constraints.

4 Sequential planning: coordination of resource usage

In this section, we concentrate on the resource coordination problem (T , R,CR) in which
the task constraints have been disregarded. Instead, we coordinate the usage of resources that
the agents need to perform their tasks. The coordination should ensure that the usage of a
resource is always less than or equal to its capacity. We can accomplish this by letting the
agents make their (resource) plans in sequence, and by placing reservations on resources to
reflect their planned usage.

In sequential planning, the first agent to make a plan is not constrained by any other agent,
whereas the last agent to plan is faced with the reservations from all other agents. This raises
the question of designing the order in which the agents should plan, for reasons of fairness
(cf. [30]) and of global plan quality. With regard to global plan quality, the agent-ordering
problem seems similar to the variable-ordering problem in constraint satisfaction problems
(cf. [4]). A difference, however, is that in sequential planning we do not order single variables,
but entire planning processes (which may update many variables).

Designing the agent ordering is not always relevant, or possible. In online settings, for
example, agents arrive in a particular order, and so it is natural to apply a first come, first
served approach to planning (i.e., the agent that arrives first also plans first). In such a setting,
a relevant research issue is the minimum perturbation problem [2,41]: to find a good quality
plan that makes few changes to existing plans. In this paper, however, we do not allow any
changes to existing plans, and we investigate instead the effect of (arbitrary) agent ordering
on global plan quality for a specific application domain.

The routing application we consider in this section is the transportation example of the
introduction where task constraints are not taken into account. The resulting multi-agent
routing problem has many applications, such as taxiway planning at airports [23,53], routing
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of automated trucks at container terminals [17], and routing of Automated Guided Vehicles
(AGV) in flexible manufacturing systems [9]. In this section, we will assume that each agent
is assigned a single task, and no task is assigned to more than one agent.

We will start this section by presenting a model that describes how to translate agent plans
to constraints for other agents. Next, we will present a single-agent routing algorithm that is
optimal and runs in polynomial time. In Sect. 4.3, we will investigate three important ques-
tions about the sequential use of the optimal single-agent algorithm: (i) whether the price of
autonomy is bounded above by a constant, (ii) whether the optimal agent ordering always
leads to a multi-agent plan that is equal to the optimal plan, and (iii) what is the impact of
the planning order on global plan quality?

4.1 A model for free time windows

In multi-agent route planning, the roads, locations, and intersections of the infrastructure
are defined as a set of resources R. The resource constraint function CR specifies resource
constraints as follows. A resource ri , ri ∈ R, has a capacity c(ri ), denoting the maximum
number of agents that can simultaneously make use of the resource, and a traversal time
d(ri ) > 0 which represents the minimum time it takes for an agent to traverse the resource.
In addition to the capacity and the traversal constraints, we must specify that agents cannot
use resources in any arbitrary order. Travel from resource ri to resource r j is possible if the
pair (ri , r j ) is in the successor relation S ⊆ R × R.

An agent’s plan consists of a sequence of resources, and a corresponding sequence of
intervals in which to visit them.

Definition 4 (Agent Plan) An agent plan is a sequence P = ((r1, τ1), . . . , (rn, τn)) of n
(resource, interval) pairs such that ∀ j ∈ [1, . . . , n − 1]:
1. interval τ j meets interval τ j+1,
2. |τ j | ≥ d(r j ),
3. (r j , r j+1) ∈ S.

The first constraint in the above definition makes use of Allen’s interval algebra [1],7 and
states that the exit time of the j th resource in the plan must be equal to the entry time into
resource j + 1. In other words, an agent must always occupy exactly one resource.

By making reservations on the relevant resources for every step in an agent’s plan, we
obtain a set of constraints for agents that still have to make a plan. From these constraints we
infer the free time windows that are left on the resources.

Definition 5 (Free Time Window) Given resource ri and a set of reservation intervals Res
(ri ) = {τ1, . . . , τm} on resource ri , a free time window on ri is the largest interval f = [σ, φ]
such that:

1. ∀t ∈ f : |{τ j ∈ Res(ri )|t ∈ τ j }| < c(ri ),
2. (φ − σ) ≥ d(ri ).

The above definition states that for an interval to be a free time window, there should not
only be sufficient capacity at any moment during that interval (Condition 1), but it should
also be long enough for an agent to traverse the resource (Condition 2). Note that the set of

7 We make use of the meets predicate, which means that the end of one interval is equal to the start of the
second, and the precedes predicate, which means that the end of one interval is earlier than the start of the
second.
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free time windows Fi on resource ri is a vector ( fi,1, . . . , fi, m) of disjoint intervals such
that for all j ∈ [1, . . . ,m − 1], fi, j precedes fi, j+1.

Because it takes time to traverse a resource, one cannot enter a resource right at the end
of a free time window. Therefore, we can associate an interval with the possible entry times
and exit times of a free time window.

Definition 6 (Free Time Window Entry and Exit Times) Given a resource ri and a free time
window f = [σ, φ], the entry time window of f is given by τentry( f ) = [σ, φ − d(ri )]; the
exit time window of f is given by τexit( f ) = [σ + d(ri ), φ].

To guarantee a feasible solution to the multi-agent routing problem, we need to decide what
happens with an agent once it has reached its destination. If an agent stays at the destination
location indefinitely, and two agents share the same unit-capacity destination resource, then
no multi-agent plan can be found. Research on idle vehicle positioning [8] tries to figure out
what to do with agents who are between jobs. However, a common approach is to make one
of two simplifying assumptions: (i) all start and destination locations have infinite capacity
(as in the work of [60]), or (ii) the agents enter the infrastructure at the start of their plan,
leave it as soon as they have reached their destination (applied in the IPC048 airport planning
domain, where aircraft land and take off [56]). We will make the latter assumption.

Under the assumption that agents are not in the infrastructure before or after executing
their plans, it becomes easy to show that the sequential coordination method always yields a
feasible multi-agent plan: if n agents have made their plans, then agent An+1 can choose as
its start time the latest exit time of all n agents. From that time point onwards, there is a free
time window on every resource, so An+1 will not come into conflict with any other agent.

4.2 Optimal single-agent routing

Our route planning algorithm is based on the idea of going from one free time window on
one resource, to another free time window on a neighbouring resource. We now define when
one free time window can be reached from another.

Definition 7 (Free Time Window Reachability) Given (i) a resource ri , a free time window
fi,v = [σ, φ] on this resource, and a time t ∈ τexit( fi,v); (ii) a resource r j and a free time
window f j,w on resource r j . We say that free time window f j,w is reachable from ri at time t ,
denoted f j,w ∈ ρ(ri , t), if:

1. (ri , r j ) ∈ S,
2. [t, φ] ∩ τentry( f j,w) �= ∅.

The reachability relation defines a graph of free time windows. Algorithm 3 finds the short-
est path through the graph, which corresponds to the shortest-time, conflict-free route in the
infrastructure.

Algorithm 3 works in the following way: in Line 2, we initialize the open list Q of free
time windows to the start resource and the start time. For the simplicity of the specification
of the algorithm, we specify partial plans only with (resource, free window entry time) pairs.
In the actual implementation of the algorithm, an open list element has a backpointer to the
open list element from which it was expanded, which is nil for the initial plan. In Line 4,
we retrieve the open list element (ri , ti ) with the lowest cost ti + d(ri ). Hence, the open list
elements are sorted in order of increasing (minimum) exit times.

8 International Planning Competition 2004.
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Algorithm 3 Reservation-aware routing

Require: start resource rs , destination resource rd , start time ts .
Ensure: shortest-time path from rs to rd .
1: if ∃v [

fs,v ∈ Fs | ts ∈ τentry( fs,v)
]

then
2: Q ← {(rs , ts )}
3: whileQ �= ∅ do
4: (ri , ti )← argmin(r,t)∈Q(r + d(r))
5: Q ← Q \ {(ri , ti )}
6: if ri = rd then
7: return (ri , ti )
8: texit ← ti + d(ri )
9: for all f j,v ∈ ρ(ri , texit) ∩ unmarked( f j,v) do
10: tentry = max(texit, σ j,v)
11: Q ← Q ∪ (r j , tentry)
12: markWindow( f j,v)

To expand the current free time window, we consider, in Line 9, all (resource, free time
window) pairs that are in ρ(ri , texit), and which have not yet been expanded. The entry time
into a reachable free time window f j,v = [σ j,v, φ j,v] is either the entry time into the previous
resource ri plus the time it takes to traverse ri , or, in case f j,v starts after ti + d(ri ), the start
time σ j,v of f j,v .

In Line 11 we simply add the new element to the open list Q, and, in Line 12, we mark the
free time window f j,v as being visited, so it will not be expanded again. This is an important
step, as it guarantees that we do not consider any free time window for expansion more than
once.

Proposition 5 Algorithm 3 returns an optimal solution.

Proof See Appendix C. �

Algorithm 3 has a worst-case run-time that is polynomial in the number of free time win-
dows. The number of free time windows, |F |, is at most |A| · |R| under the assumption that
we do not allow cyclic plans.

Proposition 6 Algorithm 3 runs in O(|F | log(|F |)+ |F ||R|) time.

Proof (Proof sketch) A free time window f ∈ F can be put onto the open list Q at most
once, and in every iteration of the while loop, one free time window is removed from Q
(Line 4), Hence, the while loop is executed at most |F | times, and none of the Lines 4–8
contribute more than O(log(|F |)).

An important observation is that Lines 10–12 (inside the for-loop) are also executed at
most |F | times. In these lines, a free time window will be added to Q, and that can occur at
most |F | times.

Line 9 must determine for every f j,v ∈ ρ( fi,w, x) (such that x ∈ τexit( fi,w)) whether:

1. f j,v is reachable from texit, i.e., f j,v ∈ ρ(ri , texit), and
2. f j,v has not been visited yet, i.e., it is unmarked.

These checks require in an additional O(|R|) computational overhead, which explains the
factor |F ||R| in Algorithm 3’s complexity. �

For a complete proof of the proposition, we refer the reader to [53].
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Fig. 5 An infrastructure with
potential bottleneck resource r5.
Rectangles represent resources,
dashed lines represent the
connectivity relation S

To recap, we have presented a polynomial-time algorithm that an agent can use to find the
shortest-time conflict-free route, given the constraints generated by previous agents. These
constraints are encoded in the free time windows: every time an agent makes a reservation on
a resource, it leaves a smaller free time window (or two free time windows) on that resource
for subsequent agents. For the first agent to plan, all resources will have one free time window
that starts at 0 and reaches to infinity. For agent An , there may be as many as n+ 1 free time
windows on a resource; more if we allow cyclic plans.

4.3 Price of autonomy in sequential routing

In sequential planning, many different planning orders are possible—for n agents, we have
n! possibilities—and which planning order is chosen can have a profound effect on the global
plan (and its cost). If we assume that we make use of a free path routing algorithm that is
optimal for a single agent, given the reservations of the other agents, then three important
questions are:

1. Does there exist a fixed ratio k such that the global plan obtained by sequential, arbitrary
order planning is at most k times the cost of the optimal global plan?

2. Is the best planning order guaranteed to result in the optimal global plan?
3. What is the impact of the planning order on global plan quality?

We will answer the first two questions in this section using examples. In Sect. 4.4, we will
investigate the third question empirically. In answer to the first question, Example 11 shows
(random order) sequential planning is not a fixed-ratio approximation scheme for the multi-
agent routing problem: the worst-case global plan in Example 11 can be almost |A|2 times as
bad as the optimal global plan.

Example 11 Consider the infrastructure of Fig. 5, and suppose that the set of agents is divided
into two groups A1 and A2. All agents in A1 have their start location in r1 and have r3 as their
destination location, whereas all agents in A2 start in r4 and have r2 as destination location. All
resources are assumed to have infinite capacity and are bidirectional, but traffic is only allowed
in one direction at the same time. We finally assume that d(r5) > d(r1)+d(r2)+d(r3)+d(r4).

The optimal solution to the multi-vehicle routing problem is to let one group of agents
plan before the other. In case the group A1 may plan first, then the last agent of A1 will arrive
at resource r3 at time

t1 = d(r1)+ d(r5).

At time t1, agents from A2 will be able to enter r5, and they will arrive at resource r2 at time

t2 = t1 + d(r5).
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Fig. 6 Shaded resources have
travel time 3, the other resources
have travel time 1; the circular
resource has capacity 2, the
others have unit capacity. The
minimum-makespan multi-agent
plan is obtained when both agents
A and B take a small detour

If planning alternates between groups, then every agent has to wait for the previous agent to
clear resource r5. Consequently, the final agent will arrive at its destination at time

t3 > |A| · d(r5).

Since d(r5) is the most significant contribution to the travel times, the alternating solution is
almost |A|2 times as bad as the optimal solution.

Note that Example 11 does not provide a bound on the approximation ratio of sequential
routing in general. However, it is very easy to show that we can always obtain a multi-agent
plan that has a cost of |A| times the optimal cost: we can simply let the start time of agent n
be the end time of agent n − 1. In this way, each agent can always choose the shortest path
to its destination, because it will encounter no reservations of previous agents. Hence, the
cost of the optimal plan will be at most |A| times the cost of the p∗max, the cost of the most
expensive single-agent plan. Since the optimal multi-agent plan must be at least as expensive
as p∗max, the |A|-approximation result follows.

In the next example, we show that (optimal) sequential planning will not result in the opti-
mal global plan, regardless of the planning order of the agents. To find the global plan with
minimum make-span, both agents must choose a plan that is longer than their individually
optimal plan.

Example 12 In Fig. 6, we have two agents A and B; agent A wants to go from r1 to r4, while
agent B wants to go from r5 to r7. Note that in this figure, the shaded resources have travel
time three; one resource, r10, has capacity 2. The idea behind this example is that if either
agent chooses the shortest route, then the other has to wait for it, whether it decides to take
a detour or not. Again, assume that w.l.o.g. that agent A makes a plan first:

A : ((r1, [0, 1]), (r2, [1, 4]), (r3, [4, 5]), (r4, [5, 6])).
Agent B now has two reasonable options: to take the shortest path via r2, or to make a detour
along r8 and r3:

B1 : ((r5, [0, 4]), (r2, [4, 7]), (r6, [7, 8]), (r7, [8, 9]))
B2 : ((r5, [0, 1]), (r8, [1, 5]), (r3, [5, 6]), (r10, [6, 7]), (r6, [7, 8]), (r7, [8, 9])).
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Hence, agent B will have a finish time of 9. However, there exists a multi-agent plan with
makespan 8:

A : ((r1, [0, 1]), (r9, [1, 4]), (r6, [4, 5]), (r10, [5, 6]), (r3, [6, 7]), (r4, [7, 8]))
B : ((r5, [0, 1]), (r8, [1, 4]), (r3, [4, 5]), (r10, [5, 6]), (r6, [6, 7]), (r7, [7, 8])).

For this multi-agent plan, both agents have a reservation on r10 in the interval [5, 6]. As r2 is
resource with capacity 2, this is allowed.

Note that although the above example is quite complicated, it only involves two agents.
Simpler examples can be constructed if we allow resources to have only a single travel
direction.

4.4 Sequential planning experiments

The goal of this section is to investigate the quality of a sequential route planning method,
compared to a centralized solver that could, in theory, find an optimal multi-agent plan. Due to
the intractability of finding an optimal (multi-agent) solution, we investigate instead whether
the order in which agents plan has a big impact on plan quality.

In previous work [53], we tested our routing algorithm in a taxiway routing experiment on
the infrastructure of Amsterdam Airport Schiphol. In those experiments we did not observe a
big difference in global plan cost for different planning orders. In this section, we will extend
our experiments to random graphs, and focus on the worst case difference between the best
and the worst planning order.

4.4.1 Setup

For the experiments, we had 600 agents each with a single pair (rs , rd ) of start location and
destination location. For each type of infrastructure (more on the infrastructures shortly), we
tried 100 different permutations of the agent planning order. We measured the difference
between the order with the minimum makespan and the order with the maximum makespan.
This difference is an indication of the ‘price of sequential planning’: how much more costly
is the worst planning order compared to the optimal plan (or planning order)?

For infrastructures, we generated four sets of random graphs with different node degrees
(we shall see in the figures that this is a relevant characteristic for the performance of a
multi-agent routing algorithm). The edges of these graphs model ‘lane’ resources, and the
nodes model intersection resources. The traversal time of a resource is a linear function of
the length of the edge, in case of a lane resource, or 1 in case of an intersection resource.
The average node degree ranges from around 4, to a little over 2. An average node degree of
four corresponds to having about twice as many edges as there are nodes. Our choice for the
maximum factor of 2 was motivated by the research into random planar networks by Denise
et al. [16], who found that for approximately maximum random planar networks, the number
of edges is around twice the number of nodes. Having planar networks makes sense in a
transportation setting, but unfortunately constructing them is rather involved (cf. [6]), so we
constructed ordinary random networks. An average node degree of around 2 corresponds to
having roughly an equal number of nodes and edges, which constitutes a sparse but connected
graph.
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Fig. 7 Price of autonomy for different types of random graphs

4.4.2 Results

From Fig. 7 we can draw a number of interesting conclusions. The first is that makespan
increases sharply as the average node degree of the infrastructure decreases. We believe
there are at least two reasons for this occurrence. The first reason is exemplified by Exam-
ple 11: if the average node degree is low, the infrastructure will consist of many ‘corridors’
of resources, i.e., sequences of resources from which an agent cannot change course. In
fact, such a corridor could also be modelled as a single long resource, such as r5 in Fig. 5.
Randomly scheduling agents from either end of the corridor can lead to very bad results, as
explained in the example.

A more general reason why infrastructures with low node degrees result in poor perfor-
mance is that the single-agent routing algorithm needs to be able to select an alternative route
if the shortest one is congested. For networks with a high node degree, more alternative routes
are available, and who schedules which resource first becomes less crucial.

A second conclusion is that the difference between the best planning order and the worst
planning order typically varies from around 30% of global plan quality (for networks with
a node degree of around 4) to 70% (for networks with a node degree approaching 2). The
worst-case behaviour varies from 60% to 120%, which corresponds to an approximation ratio
of 2.2. Hence, the order in which the agent plan can have a large impact on the final plan
quality.

5 Conclusion and future work

In this paper we have discussed the coordination by design approach for multi-agent planning
problems. In this paradigm, dependencies between agents are resolved prior to planning, to
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such an extent that the individually developed plans can always be merged into a feasible
global plan. The advantage of this method is that no plan revision is required, and agents do
not need to communicate with each other during planning.

We have presented two ways in which to achieve coordination by design: concurrent
decomposition, in which all agents receive tasks with an additional set of constraints prior to
planning and are allowed to plan concurrently, and sequential decomposition, in which the
agents plan in a sequence, and the plan of one agent enforces additional constraints for all
subsequent agents. We have studied these coordination methods in the context of the price of
autonomy: the ratio between the worst-case (cost of a) global plan developed by coordinated,
selfish agents, and the cost of an optimal global plan.

We have seen that concurrent decomposition can be beneficially applied when we only
take into account constraints between tasks (such as precedence constraints), and do not
concern ourselves with the shared resources the agents might need for task completion. For
example, our ISA (Interval-based Scheduling Algorithm) will coordinate agents in such a
way that the price of autonomy is 1 (that is, there is no loss of performance due to coordina-
tion and selfishness), in case agents have no bound on the number of tasks they can perform
at the same time. If agents can only perform a single task at a time, then our ISAS (ISA for
sequential agents) algorithm can still guarantee a price of autonomy of at most 2.

We have applied sequential decomposition to the case where resource constraints are taken
into account, but constraints between tasks are ignored. For our application domain of multi-
agent routing, we were able to show that random-order sequential agent planning cannot
guarantee that the price of autonomy is bounded by a constant. Additionally, we have shown
that there exist problems where the optimal solution cannot be found by sequential planning
of selfish (in the sense of maximizing personal utility) agents. However, these results should
not necessarily deter us, as some routing problems are simply too complex to allow fixed-ratio
approximation algorithms. For example, if we extend our routing problem with the constraint
that there should be an empty resource between any two agents, then this problem becomes
PSPACE-hard [24,25]. Our experimental results show that the expected price of autonomy
increases as the number of resources in the infrastructure decreases.

This paper focused on the investigation of two decomposition based coordination by
design methods: concurrent coordination and sequential coordination. Unfortunately, these
two methods are not capable of solving every task-based planning problem as defined in
Sect. 2. Consider the transportation example presented in the introduction (Sect. 1.1). If both
task and resource constraints in the example have to be respected, neither of the proposed
coordination methods work: the concurrent decomposition approach fails to solve it because
it cannot arbitrate the resource usage among agents, whereas the sequential decomposition
method might get into a deadlock.

A naive approach to solve this problem would be to use a “mixed” coordination method.
That is, we first apply a “concurrent” coordination algorithm that generates a total ordering
of the tasks; then, we could sequentially plan for each of the tasks in turn. Although this
method would guarantee a feasible global plan, it would not be a very satisfactory solution
to our problem. First of all, it would take away most of the agents’ autonomy that we have
tried to preserve, and secondly, the price of autonomy (if we can still call it that) could be
horrendously high. Therefore, it remains an open problem whether there exists a suitable
decomposition-based coordination method for general multi-agent planning problems. We
leave it as a challenging topic to address in the future.

In this paper, we determine the price of autonomy of using a coordination method by quan-
tifying the efficiency loss due to the independent planning of the agents. Another interesting
way to look at the quality of the coordination method is to establish the price of coordination
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by considering the autonomy loss of the agents, quantifying the effects of imposing additional
constraints enforced by the coordination method. When we take both measures into account
in determining the quality of coordination methods, we will end up studying Pareto-efficient
coordination mechanisms. In this way, for a specific coordination task, we can choose the
best alternative, given a tolerable performance loss and a desired level of autonomy.

Another important issue with respect to autonomy is fairness. For example, in the concur-
rent coordination method, we try to globally add a minimum number of constraints to agents.
However, such a set of constraints are not necessarily locally minimal to each agent. The
fairness can be defined in many ways [7,38]. For instance, we can try to reduce the maximal
number of constraints that agents receive. It will be very interesting to study whether it is
possible to develop a fair coordination mechanism, which is able to impose the constraints
on the agents in a fair way, yet still ensures a good system performance.
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Appendix

A. Proof of Proposition 2

This proposition can easily be proven by noticing that the ISA algorithm generates a set of
constraints C = {C(t) | t ∈ T } such that (i) for every task t such that succ(t) = ∅ we have
ub(t) = depth(T ) − d(t); (ii) for every t such that pred(t) = ∅ it holds that lb(t) = 0;
(iii) for every pair of tasks t, t ′ belonging to different agents, such that t ≺ t ′ it holds that
lb(t ′) = ub(t)+ d(t). (iv) For every pair of tasks t, t ′ belonging to the same agent, such that
t ≺ t ′ we have lb(t)+ d(t) ≤ lb(t ′) and ub(t)+ d(t) ≤ ub(t ′).

This implies that any strict weakening C ′ of C would contain a constraint C ′(t) =
[lb(t), ub(t)] such that either (a) lb(t) < 0 or (b) ub(t) > depth(T ) − d(t) or (c) there
exists some t ′ such that t ≺ t ′ and ub(t)+ d(t) > lb(t ′) or (d) there exists some t ′ such that
t ′ ≺ t and ub(t ′) + d(t) > lb(t) or (e) there exists some t ′ such that lb(t) + d(t) > lb(t ′)
or (f) there exists some t ′ such that ub(t) + d(t) > ub(t ′). Clearly, case (a) and (b) would
imply that some C ′-satisfying schedules are not make span efficient and if case c, d, e or f
holds, some C ′-satisfying schedules violate a precedence constraint. Hence, the proposition.

B. Proof of Proposition 3

We reduce the PARTITIONING problem [22] (Given a set S of integers, is there a subset S′
of S such that

∑
s∈S′ s =

∑
s∈S̄ s, where S̄ = S − S′?) to the autonomous scheduling for

sequential agents problem.
Take an instance S of PARTITIONING and let dS =∑

s∈S s. Without loss of generality,
we can assume dS to be even. Consider the following set of tasks T = {ts |s ∈ S}∪{ta, tb, tc}.
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For every task ts ∈ T , let d(ts) = s, let d(ta) = dS
2 , let d(tb) = 1, d(tc) = dS

2 + 1, and
let≺ = {(ta ≺ tb), (tb ≺ tc)}. Furthermore, there are two agents A1 and A2, where A1 has to
perform the tasks ta and tc and agent A2 has to perform all the remaining tasks (T −{ta, tc}).
Finally, let M = dS + 1.

If the agents are sequential, there exists a set of constraints C allowing for a make-span
(M) efficient autonomous scheduling solution iff the PARTITION instance S has a solution:
exactly in that case, agent A2 is able to process one subset of its set of tasks in the interval
[0, d(ta)], starts tb in the interval [d(ta), d(ta)] and completes the remaining subset of tasks
in the interval [d(ta)+ 1, dS + 1].

C. Proof of Proposition 5

First of all, we prove by induction that for any k ≥ 0 during the k-th execution of the while-
loop algorithm’s execution, each pair (ri , ti ) ∈ Q represents the earliest time to reach the
free time window fi,k such that ti ∈ fi,k , having started from (rs, ts).

Initially, the open list contains only (rs, ts), and the induction hypothesis holds for k = 0.
Suppose now that after k ≥ 0 iterations of the while-loop, the pair (ri , ti ) is retrieved from
the open list in Line 4. Let f j,y ∈ ρ(ri , texit), and let texit = ti + d(ri ). Now there are two
cases to consider:

Case 1: texit ≤ σ j,y . In Line 10, the entry time into f j,y is determined to be σ j,y . Clearly,
the free time window f j,y can be entered no earlier than its start time σ j,y , so the
induction hypothesis also holds for the pair (r j , σ j,y) that is added to the queue.

Case 2: texit > σ j,y . The entry time into f j,y will be texit. To see that no earlier entry time
into f j,y is possible, note that ∀k �= i, (rk, tk) ∈ Q : texit ≤ tk + d(rk). Hence, for
any pair (rk, tk) such that f j,w ∈ ρ(rk, tk), the entry time into f j,y would be larger
than texit.
A second point to note is that there will be no iteration m ≥ k such that a pair (rm, tm)
can be inserted into Q, such that tm + d(rm) < texit. For all (rk, tk) ∈ Q, we have
texit ≤ (tk + d(rk)), according to Line 4. If a new element (rm, tm) is inserted into
the open list Q as a result of expanding (rk, tk), then tm ≥ (tk + d(rk)), and, since
travel times are greater than 0, (tm + d(rm)) > (tk + d(rk)) ≥ texit.
Hence, there is no earlier entry time possible into window f j,y than texit, and the
pair (r j , texit) satisfies the induction hypothesis.

The proposition now follows since in each step of the algorithm, we expand a pair (ri , ti )
to all free time windows reachable from the free time window determined by (ri , ti ). Hence,
we are guaranteed to find the first entry into the first reachable time window on destination
resource rd .
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