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Abstract

When autonomous agents decide on their bidding strategies
in real world auctions, they have a number of concerns that
go beyond the models that are normally analyzed in tradi-
tional auction theory. Oftentimes, the agents have budget
constraints and the auctions have a reserve price, both of
which restrict the bids the agents can place. In addition, their
attitude need not be risk-neutral and they may have uncer-
tainty about the value of the goods they are buying. Some of
these issues have been examined individually for single-unit
sealed-bid auctions. In this paper, we extend this analysis to
the multi-unit case, and also analyze the multi-unit sealed-bid
auctions in which a combination of these issues are present,
for unit-demand bidders. This analysis constitutes the main
contribution of this paper. We then demonstrate the useful-
ness in practice of this analysis; we show in simulations that
taking into account all these issues allows the bidders to max-
imize their utility. Furthermore, using this analysis allows a
seller to improve her revenue, i.e. by selecting the optimal
reserve price.

Introduction
Auctions have become commonplace; they are used to trade
all kinds of commodity, from flowers and food to indus-
trial commodities and keyword targeted advertisement slots,
from bonds and securities to spectrum rights and gold bul-
lion. Once the preserve of governments and large compa-
nies, the advent of online auctions has opened up auctions to
millions of private individuals and small commercial ven-
tures. Given this, it is desirable to develop autonomous
agents that will let the masses participate effectively in such
settings, even though they do not possess professional ex-
pertise in this area. To achieve this, however, these agents
should account for the features of real-world auctions that
expert bidders take into consideration when determining
their bidding strategies.

While game theory is widely used in multi-agent systems
as a way to model and predict the interactions between ra-
tional agents in auctions, the models that are canonically an-
alyzed are rather limited. As discussed below, some work
has been done towards extending these models to incorpo-
rate features that are important in real auctions, but this work

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

invariably looks at each feature separately; additionally the
cases examined are almost all instances of single-unit auc-
tions. While this is useful for economists and perhaps ex-
pert bidders, who can integrate the lessons learned using hu-
man intuition and imagination, an automated agent cannot
do this. It is therefore necessary to analyze the strategic be-
havior in multi-unit (mth and(m+1)th price) auction mod-
els that incorporate all the relevant features. To this end,
we have looked at a number of auctions, ranging in scope
from the eBay auctions (held mainly between individuals) to
B2B auctions (used by businesses to procure materials and
commodities), with various different rules, ranging from the
traditional English auction to the position auction used by
Google Adwords. Despite their differences, a number of
common features are present. We list the most important
of these below and highlight what is already known about
each of them.

First, budget constraintsare very important, whenever
businesses and individuals place bids, because they limit
the upper range of these bids. Here, we will assume
that the available budget constitutes an absolute spending
limit. Now, this case has been examined for single-unit auc-
tions (Che and Gale 1998), but not for multi-unit ones;1 it
has also been proven that the revenue generated by a1st

price auction is always higher than that of the equivalent2nd

price one.
Second, bidders may adopt differentattitudes towards

risk. Essentially, this indicates whether bidders are conser-
vative or not, and their willingness to take risk in order to
gain additional profit. Normally bidders are assumed to be
“risk-neutral”, meaning their utility equals their profit. How-
ever, they can also be “risk-averse”, “risk-seeking”, or even
have a more complicated risk attitude; for example, the bid-
ding behavior of bidders on eBay suggests a complicated at-
titude towards risk. The equilibrium strategy of a risk-averse
agent participating in a1st price auction has been analyzed
before, e.g. in (Liu, Goodwin, and Koenig 2003).

Third, setting areserve price(i.e. a minimum transaction
price) in the auction is a common way for the seller to in-
crease her profit; auctions taking place in traditional auction

1The “dual” problem of designing a truthful mechanism for
budget constrained bidders has been examined in (Borgs et al.
2005).



houses typically have a reserve price. This case has been
examined for single-unit sealed-bid auctions in (Myerson
1981; Riley and Samuelson 1981).2 In (Maskin and Riley
1984), this problem is examined for risk-averse bidders.

Fourth, there may beuncertainty in the bidders’ valua-
tion of the offered commodity. For example, when busi-
nesses bid in the Google Adwords keyword auction, they
can’t precisely know the additional revenue that advertising
in this way will bring them, and therefore they can’t eval-
uate the actual economic value of the ad. Nevertheless, it
can be assumed that the agent has some idea about his own
value and this can be represented by a probability distribu-
tion. In the literature, this problem has been mostly looked
at from the point of view of having a cost for introspection,
which allows the agent to determine his valuation more pre-
cisely (Larson and Sandholm 2001; Thompson and Leyton-
Brown 2007).3 However, in many practical settings, intro-
spection is simply not possible, because of the lack of further
relevant data, or excessive costs that cannot be justified by
the increased accuracy.4

The last important feature is considering a bidder’s de-
sire topurchase multiple items, with a different valuation for
each. In this case, it is known that bidders should shade their
bids, compared to the case when only one item is desired,
even to the point of bidding for less items than desired, in or-
der to gain more profit (strategic demand reduction) (Weber
1997). To date, however, an optimal strategy is not known
for this feature; it is open problem. This is the reason why
we make the usual assumption that each agent wishes to buy
only one unit (unit-demand bidders), like e.g. in (Vetsikas
and Jennings 2007).

Given this background, in this paper we make the follow-
ing contributions:
• We derive novel equilibria for the multi-unitmth price

sealed-bid auction case, when these features are looked at
separately.

• We combine, for the first time, two of the features that we
look at. Specifically, we derive the dominant strategy for
the case of uncertainty in the valuation that bidders have,
when the bidders are not risk-neutral, in the setting of the
(m + 1)th price auction.5

2In our previous short paper (Vetsikas and Jennings 2008), we
presented some initial stages of this work. More specifically the
equilibrium strategies that exist in the cases when there is a reserve
price and that agents are not risk-neutral (examined separately) are
presented; this is why these cases are only briefly discussed in this
paper.

3There are few notable exceptions where no introspection is as-
sumed, such as (Parkes 1999), which examines how to select the
auction that yields the highest revenue and/or efficiency, when bid-
ders have uncertainty in their valuations.

4In most of the above settings, the dominant strategy in the case
of a 2nd price auction is some variation of truth-telling (Krishna
2002). This result is generalized trivially to the multi-unit variant
(the(m + 1)th price auction).

5We do not analyze the equilibrium, in the presence of valuation
uncertainty, in themth price auction because our model needs to
be enriched in order to be able to analyze this case; we leave this
for future work.

• After doing this, we combine all the features. We first
derive the equilibrium strategies for both themth and
(m + 1)th price auction, in the presence of budget con-
straints, reserve prices and any bidder risk attitude. Then
we also include uncertainty of bidders’ valuation for the
case of the(m + 1)th price auction and derive the domi-
nant strategy.

• Finally, we demonstrate the usefulness in practice of this
analysis; we show, using simulations, that taking into ac-
count all these features allows the bidders to improve their
utility, as opposed to using a strategy which doesn’t ac-
count for all of them. Furthermore, a seller can maximize
her revenue by selecting the optimal reserve price.6

The Multi-Unit Auction Setting
In this section we formally describe the auction setting to
be analyzed and define the objective function that the agents
wish to maximize. We also give the notation that we use.

In particular, we will compute and analyze the symmetric
Bayes-Nash equilibria7 for sealed-bid auctions wherem ≥
1 identical items are being sold; these equilibria are defined
by a strategy, which maps the agents’ valuationsvi to bidsbi.
The two most common settings in this context are themth

and(m + 1)th price auctions, in which the topm bidders
win one item each at a price equal to themth and(m + 1)th

highest bid respectively. We assume that there is a reserve
pricer ≥ 0 in our setting; this means that bidders, who wish
to participate in the auction, must place bidsbi ≥ r.

We assume thatN indistinguishable bidders (whereN ≥
m) participate in the auction and they have a private valu-
ation (utility) vi for acquiring any one of the traded items;
these valuations are assumed to be i.i.d. from a distribution
with cumulative distribution function (cdf)F (v), which is
the same for all bidders. In the case that there is uncertainty
about the valuationvi, the agent knows that it is drawn from
distributionGi(vi), but not the precise value. As the valua-
tionsvi are independent, we can assume that any uncertainty
that a bidder has about his own valuation is independent of
the uncertainty he has about other agents’ valuations.

We also assume that each bidder has a certain budgetci,
which is known only to himself and which limits the max-
imum bid that he can place in the auction. The available
budgets of the agents are i.i.d. drawn from a known distri-
bution with cdfH(c).

According to utility theory, every rational agent has a
strictly monotonically increasing utility functionu() that
maps profit into utility; the alternative with the highest ex-
pected utility is the preferred outcome. This function de-
termines the agent’s risk attitude. Some functionsu(x)

6The use of equilibrium analysis in order to design autonomous,
intelligent agents has been done before, e.g. in (Liu, Goodwin, and
Koenig 2003) and (Vetsikas and Jennings 2007).

7The Bayes-Nash equilibrium is the standard solution used in
game theory to analyze auctions. The equilibria being symmetric
means that all agents use the same bidding strategy. This is a com-
mon assumption made in game theory, in order to restrict the space
of strategies that we examine. It is likely that in addition to the
symmetric equilibria we compute there are also asymmetric ones.



used widely in economics are:u(x) = xα, α ∈ (0, 1)
(CRRA), u(x) = 1 − exp(−αx), α > 0 (CARA), and
u(x) = −γx, γ ∈ [0, 1], all of which indicate risk-averse
bidders.

We also use the following additional notation in the
proofs: Z(x) is the probability distribution of any oppo-
nent’s bidbj . ThusZ(x) = Prob[bj ≤ x], andB(k) is
thekth order statistic of these bids of the opponents. Since
there are(N − 1) opponents for each agent, the distribution
Φk(x) of B(k) can be computed as (Rice 1995):

Φk(x) =

k−1X
i=0

C(N − 1, i)(Z(x))N−1−i(1− Z(x))i (1)

where the notationC(n, k) is the total number of possible
combinations ofk items chosen fromn. As shown in (Vet-
sikas and Jennings 2007),∀N ≥ m the following holds:

Φ′m(x) = (N −m)
�
Φm(x)− Φm−1(x)

�Z′(x)

Z(x)
(2)

Equilibria in the Presence of Reserve Prices
and Varying Risk Attitudes

In this section we present the equilibria that exist in anmth

price auction, in the cases when there is a reserve pricer ≥ 0
and that agents are not risk-neutral. We examine each case
separately in the following theorems. More details on these
two cases are given in (Vetsikas and Jennings 2008).

Theorem 1 In the case of anmth price sealed-bid auction,
with reserve pricer ≥ 0, with N participating risk-neutral
bidders, in which each bidderi is interested in purchasing
one unit of the good for sale with inherent utility (valuation)
for that item equal tovi, wherevi are i.i.d. drawn from
F (v), the following bidding strategy constitutes a symmetric
Bayes-Nash equilibrium:

g(vi) = vi − (F (vi))
−(N−m)

Z vi

r

(F (z))N−mdz (3)

Theorem 2 In the case of anmth price sealed-bid auction
with N participating bidders, in which each bidderi is in-
terested in purchasing one unit of the good for sale with
inherent utility (valuation) for that item equal tovi, where
vi are i.i.d. drawn fromF (v), and a risk attitude which is
described by utility functionu(), the bidding strategyg(v),
which constitutes a symmetric Bayes-Nash equilibrium, is
the solution of the differential equation:

g′(vi) =
u(vi − g(vi))− u(0)

u′(vi − g(vi))
(N −m)

F ′(vi)

F (vi)
(4)

with boundary conditiong(0) = 0.

Equilibria in the Case of Budget Constraints
In this section we examine the equilibria for the case when
agents have budget constraints only. We assume that the
agents are risk-neutral and that the reserve price isr = 0.

Theorem 3 In the case of anmth price sealed-bid auction
with N participating risk-neutral bidders, in which each
bidder i is interested in purchasing one unit of the good for
sale with inherent utility (valuation) for that item equal to

vi, and has a budget constraintci, wherevi andci are i.i.d.
drawn fromF (v) andH(c) respectively, the following bid-
ding strategy constitutes a symmetric Bayes-Nash equilib-
rium:

bi = min{g(vi), ci} (5)

whereg(v) is the solution of the differential equation:

g′(vi) =
(1−H(g(vi)))F

′(vi)
1−(1−H(g(vi)))(1−F (vi))

(N−m)(vi−g(vi))
− (1− F (vi))H ′(g(vi))

(6)

with boundary conditiong(0) = 0.

PROOF.(brief) Consider any bidderi. We assume that each
opponentj (j 6= i) bidsbj = min{g(vj), cj}. The distribu-
tion Z(x) of the opponent’s bidbj is equal to:

Z(x) = 1− (1− F (g−1(x)))(1−H(x))

Thekth order statistic of these bidsB(k) is drawn from dis-
tribution Φk(x), described by equation 1. Using this fact,
we compute the expected utility of bidderi, who places bid
bi:

Eui(bi)=(vi−bi)(Φm(bi)−Φm−1(bi))+

Z bi

0

(vi−ω)
dΦm−1(ω)

dω
dω

The bidbi which maximizes this utility is found by setting:
dEui(bi)

dbi
= 0 ⇔ −(Φm(bi)−Φm−1(bi))+(vi− bi)Φ

′
m(bi) = 0

Since this bid maximizes the agent’s utility, it must be equal
to bi = g(vi). Using this fact and equation 2 we eventually
get differential equation 6. The bidder bidsbi = 0, when his
valuationvi = 0, thus the boundary condition isg(0) = 0.

Now it is time to consider how the available budgetci

changes the bidbi. If g(vi) ≤ ci, then the agent bidsbi =
g(vi), as this maximizes the expected profitEui(bi). When
g(vi) > ci, it is dEui

dbi
> 0, ∀bi < g(vi), and the bid must be

bi ≤ ci < g(vi), therefore the bidbi that maximizesEui is
bi = ci. Thus it isbi = min{g(vi), ci}. ¥

In order to discuss features of the equilibrium strategy, we
examine the special case when both the valuationsvi and the
budget constraintsci are drawn from a uniform distribution
on [0, 1] (i.e. F = H = U [0, 1]). This distribution is the
canonical one used in auction theory for this purpose:

Corollary 1 In the case thatF (v) and H(c) are uniform
distributions U [0, 1], the equilibrium strategy is: bi =
min{g(vi), ci}, whereg(v) is the solution of the d.e.:

g′(vi) =
1− g(vi)

vi+g(vi)−vig(vi)
(N−m)(vi−g(vi))

− (1− vi)
(7)

In figure 1, we present the solution of this equation for
different numbers of bidders,N , and items being sold,m.
Because of the presence of the budget constraints, it is easier
for bidderi to win the auction now; this happens, because an
opponentj, with valuationvj higher than bidderi, might not
be able to outbid him, due to having a low budget constraint
cj . It is therefore expected that strategyg(v) would sug-
gest bidding less than the equilibrium strategyg∞(v), when
there is infinite budget (i.e. no constraints); this strategy is:
g∞(v) = N−m

N−m+1 (see (Krishna 2002)).
It is also interesting to note that functiong() deviates from

g∞() most in the case whenN −m = 4. This is due to two
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Figure 1: Equilibrium strategyg(v) for the case when the
valuationsv and the budget constraintsc are both drawn
from the uniform distributionU [0, 1]; the equilibrium bid is
b = min{g(v), c}. The number of bidders,N , and the num-
ber of items being sold,m, take valuesN − m = 1, 4, 20.
The equilibrium strategyg∞(v) = N−m

N−m+1 , when there are
no budget constraints is also presented.

facts, which would also affect to some degree the bidding
strategy in the case of any other distributions ofF (v) and
H(c). First, whenN − m = 20, there is a large number
of opponents, and therefore a higher probability that one of
them has a large budget. Second, whenN−m = 1, the bids
according to bothg() andg∞() are usually smaller than the
budget constraintsci, which are drawn fromU [0, 1]; as the
bids are less constrained, the deviation is therefore smaller.8

In the case of an(m+1)th price auction, the agents submit
truthful bids, if these are higher than the budget constraintci

(Krishna 2002):

Theorem 4 In an (m + 1)th price auction, where the bid-
ders have valuationsvi and budget constraintsci, it is a
dominant strategy to bid:bi = min{vi, ci}.

Uncertainty in Agents’ Valuations
In this section, we examine the case when the bidders do
not precisely know their own valuations. Specifically, we
assume that each bidderi knows that his own valuationvi

is drawn from some distributionGi(vi). The mean ofG()
is µGi = EGi(vi). Therefore the bidder knows that his
own valuation is centered around valueµGi , but he doesn’t
know it precisely. His uncertainty is thus represented by the
distributionGi(vi). We examine this case for the(m + 1)th

price auction. In the case that bidders are risk-neutral, it is
a dominant strategy to bid as if they had valuevi = µG and

8We would like to point out that, asN−m grows, the deviation
does not approach zero, i.e. the budget constraints always lead to
some reduction of the bids, even if it’s a very small one.

the valuation uncertainty does not matter.9 This is the reason
why we choose to examine this issue when the agents are not
necessarily risk-neutral.

Theorem 5 In an(m+1)th price auction, if a bidder knows
only imprecisely his own valuationvi, in that it is drawn
from distributionGi(vi), and his risk attitude is described
by utility functionui(), it is a dominant strategy to bidbi,
which is the solution of equation:Z ∞

−∞
u(z − bi)G

′
i(z)dz = u(0) (8)

PROOF. From the point of view of each bidderi, it knows
that its opponents are going to be placing bidsbj . Let us
assume that the highest of the opponents bids’b−i is drawn
from distributionΩi(x) (i.e. thatProb[b−i ≤ x] = Ωi(x)).
This distribution depends on the opponents’ bidding strate-
gies, valuations and risk attitudes. We assume that this can
be any function, provided that it is differentiable and in-
creasing. The probability of winning by placing bidbi is
Ωi(bi), and in that case the utility of the bidder isu(vi−b−i),
whereas his utility isu(0), if it doesn’t win, which happens
with probability(1−Ωi(bi)). Therefore the expected utility
of bidderi, when it has a known valuationvi = z and places
bid bi, is:

Eui(z, bi) =

Z bi

−∞
u(z − x)Ω′i(x)dx + (1− Ωi(bi))u(0)

Using Bayes’ rule, we calculate the expected utilityEui(bi)
of bidderi, when his valuation is unknown:

Eui(bi)=

Z bi

−∞

�Z ∞

−∞
u(z−x)G′i(z)dz

�
Ω′i(x)dx+(1−Ωi(bi))u(0)

The bidbi which maximizes the expected revenue is found
by setting: dEui(bi)

dbi
= 0, which leads to equation 8. The

solution of this equation is the bidbi which maximizes the
expected utility of bidderi. ¥

From equation 8, it follows that risk-averse agents bid less
than the meanµGi of their valuation distributionGi(), while
risk-seeking agents do the opposite. Furthermore, risk-
averse bidders will bid even less as the variance of distri-
butionGi() increases, i.e. the more uncertain they get about
their valuation, and the opposite happens to risk-seeking bid-
ders. We can prove that, for any symmetric distribution
Gi(), these statements always hold, in the following propo-
sitions:

Proposition 1 In an (m + 1)th price auction, if a bidder
knows only imprecisely his own valuationsvi, in that it is
drawn from symmetric distributionGi(vi), and his risk at-
titude is described by utility functionui(), it is a dominant
strategy to bid:
bi < µGi , if the bidder is risk-averse (i.e.ui() is concave),
bi = µGi , if the bidder is risk-neutral (i.e.ui() is a linear
function), and
bi > µGi , if the bidder is risk-seeking (i.e.ui() is convex).

9The fact that risk-neutral agents bid the mean valueµG that
they have for their valuation has been observed in some of the re-
lated work, e.g. in (Larson and Sandholm 2001; Thompson and
Leyton-Brown 2007; Parkes 1999).



PROOF. Equation 8 becomesbi − µGi = 0, for linear
functionui(x), which is the case of risk-neutral bidders. For
risk-averse bidders, using the fact thatu() is concave and
thatG() is symmetric, it can be shown that:Z ∞

−∞
u(z − µGi)G

′
i(z)dz < u(0)

This means that if we setbi = µGi
, the left hand side of

equation 8 is less than the right hand side, and cannot be the
solution; the solution must increase the left hand side of the
equation, so it must be smaller:bi < µGi

. For risk-seeking
bidders, a similar argument, as for the case of risk-averse
bidders, yields:bi > µGi

. ¥
Proposition 2 Assume two bidders with valuationsvi and
vj , which are drawn from the symmetric distributionsGi(vi)
andGj(vj); these distributions belong to the same class of
distributions (i.e. they are both uniform) and they have the
same meanµ, but they have different variance:σi < σj .
The bidders have the same risk attitude, which is described
by utility functionu(): if u() is concave (i.e. risk-averse
bidders), then the bidders’ bids are:bi > bj , and if u() is
convex (i.e. risk-seeking bidders), then the bidders’ bids are:
bi < bj .

PROOF. We give a brief proof for concave functionu(); for
convexu() the proof is similar. Let
Fi(x) =

∫∞
−∞ u(z − x)G′i(z)dz ⇔

Fi(x) =
∫ 1

2
0

(
u(G−1

i (p)− x) + u(G−1
i (1− p)− x)

)
dp

and defineFj(x) in the same way. It is then:Fi(bi) =
u(0) = Fj(bj). SinceGi() andGj() are symmetric, be-
long to the same class of distributions, have the same mean
µ, and furthermoreσi < σj , the following formulas hold:

∀p ∈ [0,
1

2
) :G−1

i (p)−G−1
j (p) = G−1

j (1−p)−G−1
i (1−p)

G−1
j (p) < G−1

i (p) < G−1
i (1−p) < G−1

j (1−p)

Subtractingbi from all terms in these equations, and using
the fact thatu() is concave, we get:

u(G−1
i (p)− bi)−u(G−1

j (p)− bi) >

u(G−1
j (1−p)− bi)− u(G−1

i (1−p)− bi)

From this equation it follows that:Fj(bi) < Fi(bi) =
u(0) = Fj(bj) and thus thatbi > bj . ¥

Putting It All Together
In this section we derive the equilibria for the case when
agents have budget constraintsci, their risk attitude is de-
scribed by functionu() (not necessarily risk neutral) and the
auction has a reserve pricer in the setting of anmth price
auction. In the setting of an(m + 1)th price auction, in ad-
dition to these issues, we also consider that the valuationsvi

are not known precisely.

Theorem 6 In the case of anmth price sealed-bid auction,
with reserve pricer ≥ 0, with N participating bidders, in
which each bidderi is interested in purchasing one unit of
the good for sale with inherent utility (valuation) for that
item equal tovi, and has a budget constraintci, wherevi

and ci are i.i.d. drawn fromF (v) and H(c) respectively,
and the bidders have a risk attitude which is described by
utility function u(), the following bidding strategy consti-
tutes a symmetric Bayes-Nash equilibrium:

bi = min{g(vi), ci} (9)

whereg(v) is the solution of the differential equation:

g′(vi) = (10)
(1−H(g(vi)))F

′(vi)
u′(vi−g(vi))(1−(1−F (vi))(1−H(g(vi))))

(N−m)(u(vi−g(vi))−u(0))
− (1−F (vi))H ′(g(vi))

with boundary conditiong(r) = r.

PROOF.(shortened) Using the same reasoning as that pre-
sented in the proof of theorem 3, we assume thatbi =
min{g(vi), ci} are the bids placed by the agents.

Because of the reserve pricer, there is a chance that an
agent will not be able to participate in the auction, either
because its budget isci < r, or because its valuation for the
item is vi < r. We therefore begin by analyzing the case
when exactlyn ≤ N agents can participate in the auction;
these agents haveci ≥ r andvi ≥ r. The probability that a
particular agent participates in the auction is equal to:

π(r) = Prob[ci ≥ r ∧ vi ≥ r] = (1− F (r))(1−H(r))

The probability that exactlyn (out of theN total) agents
participate in this auction is thus:

πn = C(N − 1, n− 1)(π(r))n−1 · (1− π(r))N−n (11)

The distribution of the opponents’ bidsbj is:

Zr(x) = 1− 1− F (g−1(x))

1− F (r)

1−H(x)

1−H(r)
(12)

The distribution of thekth highest opponent bidB(k) is:

Φn,r
k (x) =

k−1X
i=0

C(n− 1, i)(Zr(x))n−1−i(1− Zr(x))i (13)

The expected utility of bidderi, when he places bidbi, is:

Eun,r
i (bi) =u(0)(1− Φn,r

m (bi)) + u(vi − bi)Φ
n,r
m (bi)

+

Z bi

r

u′(vi − ω)Φn,r
m−1(ω)dω (14)

Using Bayes’ rule, we compute the expected utility that bid-
der i gets, by placing bidbi, for any possible numbers of
total participating agents:

Eui(bi) =u(0)(1− Φm(bi)) + u(vi − bi)Φm(bi) (15)

+

Z bi

r

u′(vi − ω)Φm−1(ω)dω

whereΦk(x) =
Pk−1

i=0 C(N − 1, i)(Z(x))N−1−i(1 − Z(x))i

andZ(x) = 1− (1− F (g−1(x)))(1−H(x)).
To find the bid which maximizes the expected utility, we

set dEui

dbi
= 0. Using equation 2, to simplify this equation,

and the fact that the bidbi that maximizes the expected util-
ity is bi = g(vi), we get equation 10.

When the bidder’s valuation isvi = r, he bidsbi = r, no
matter whatci is, hence the boundary condition.¥

To illustrate the optimal bidding function, we again con-
sider the special case when the valuationsvi and budget con-
straintsci are drawn from uniform distributionU [0, 1]:
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r=0 & α=1
r=0.25 & α=1
r=0.5 & α=1
r=0 & α=0.5
r=0.25 & α=0.5
r=0.5 & α=0.5

Figure 2: Equilibrium strategyg(v) for the cases when bid-
ders are risk-neutral (α = 1), and risk-averse (α = 0.5).
The valuationsv and the budget constraintsc are both drawn
from the uniform distributionU [0, 1]. The auction has a re-
serve price, which takes valuesr = 0, 0.25, 0.5. The number
of bidders,N , and the number of items being sold,m, have
valuesN−m = 1. The dotted lines represent the valuations
for which no bids are placed due to the reserve price.

Corollary 2 In the case thatF (v) and H(c) are uniform
distributions U [0, 1], the equilibrium strategy is: bi =
min{g(vi), ci} whereg(v) is the solution of d.e.:

g′(vi) =
1− g(vi)

u′(vi−g(vi))(vi+g(vi)−vig(vi))
(N−m)(u(vi−g(vi))−u(0))

− (1− vi)
(16)

with boundary conditiong(r) = r.

We choose to use the CRRA utility functionu(x) =
xα, α ∈ (0, 1). By substituting it into equation 16, we get:

g′(vi) =
1− g(vi)

α(vi+g(vi)−vig(vi))
(N−m)(vi−g(vi))

− (1− vi)

Comparing this equation with equation 7, we observe that
they are almost identical. Indeed,the fact that the agent is
now risk-averse is strategically equivalent to having more
opponents. In particular, a risk-averse agent using the
CRRA utility function with parameterα, who enters an auc-
tion with N participating bidders in total, will bid in exactly
the same way as a risk-neutral agent, who enters an auction
with N ′ = N+(1−α)m

α participating bidders.
Now that we are aware of the effect that varying risk atti-

tudes produce in relation to the number of participating bid-
ders, we examine the effect that reserve prices have in this
setting. In figure 2, we vary the reserve pricer between val-
ues0, 0.25 and0.5, as well as the parameterα of the utility
function u(x) = xα, which takes valuesα = 0.5 (risk-
averse bidder) andα = 1 (risk-neutral bidder). We fix the
number of participating bidders,N , and items sold,m, so
thatN −m = 1. We observe that for relatively small values

of the reserve price (whenr = 0.25), the effect that it has on
increasing the bids of the agents, is smaller than the effect of
the varying risk attitude. However, asr increases, and it be-
comes equal tor = 0.5, this effect is strengthened; in fact,
for all possible valuations, the risk-neutral bidder will bid
more when the reserve price isr = 0.5, than the risk-averse
bidder when the reserve price isr = 0.25. This can poten-
tially generate much more revenue for the seller, but there is
a higher risk, now, of items not being sold.

In the case of an(m + 1)th price auction, we can prove
the following theorem:

Theorem 7 In an (m + 1)th price auction, with reserve
price r, where the bidders have valuationsvi and bud-
get constraintsci, and they have a risk attitude described
by utility function u(), it is a dominant strategy to bid:
bi = min{vi, ci}, if bi ≥ r, and not to participate other-
wise.

We now extend this theorem to the case when the bidders
do not precisely know their own valuations. The following
theorem is a generalization of theorems 5 and 7:

Theorem 8 In an (m + 1)th price auction, with reserve
price r, if a bidder has budget constraintci, he knows
only imprecisely his own valuationvi, in that it is drawn
from distributionGi(vi), and his risk attitude is described
by utility function ui(), it is a dominant strategy to bid:
bi = min{βi, ci}, if bi ≥ r, and not to participate other-
wise. The variableβi is the solution of equation:Z ∞

−∞
u(z − βi)G

′
i(z)dz = u(0) (17)

PROOF. Using the exact same reasoning as in theorem 5,
the expected utility of an agent biddingβi is:
Eui =

R βi

−∞
� R∞
−∞ u(z−x)G′i(z)dz

�
Ω′i(x)dx+(1−Ωi(bi))u(0)

Note that this formula does not change as a result of the
reserve price, nor the budget constraint, because these two
parameters limit the bidbi that the agent is allowed to place.
The unconstrained bidβi which maximizes the expected
revenue is found by setting:dEui

dβi
= 0, which leads to equa-

tion 17. As dEui(x)
dx > 0, ∀x < βi, the agent should try to

place a bidbi as close as possible toβi from below, as the
budget constraintci will allow, so bi = min{βi, ci}. It also
should never bid aboveβi, because thenEui ≤ u(0); thus
if bi < r, it should not participate.¥

Experimental Evaluation
In this section, we validate experimentally the usefulness in
practice of the theoretical analysis. The strategy computed
for the case when valuation uncertainty exists in an(m+1)th

price auction, is a (weakly) dominant strategy, and therefore
we know for certain, without the need of simulations, that
this is always going to yield the highest utility. However,
the strategy given by equation 10 is an equilibrium strategy
and therefore there are no theoretical guarantees that this one
will always yield the highest revenue, especially if the oppo-
nents don’t bid according to the equilibrium strategy.

We simulated the case whenN = 3 bidders participate in
anmth price auction, wherem = 2 items are sold; this is a
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Figure 3: Experimental comparison of the equilibrium strat-
egySagainst strategiesNB (budget constraints are ignored)
andNR(risk attitudes are ignored). In all experiments some
agents used strategySand all the rest use the same strategy
(eitherNB or RN).

simple, yet representative case of a multi-unit auction. The
bidders are all risk-averse (using the CRRA utility function
with α = 0.5) and they have budget constraintsci and valua-
tionsvi drawn from uniform distributionU [0, 1]. We denote
this standard equilibrium strategy (given by equation 10) as
S and compare it against the following two strategies: (i)
NB is the strategy when the agent does not take the budget
constraint into account, and (ii)RN is the strategy when the
agent does not take the risk attitudes into account (and as-
sumes that everyone is risk neutral).10 We compareSagainst
each of these two strategies by running experiments in which
some agents bid according toS and some according toNB
(according toRN in the second comparison we did), for vari-
ous values of the reserve pricer. The results are presented in
figure 3; they are presented as the ratio of the corresponding
utility divided by the utility of the case when all agents use
strategyS(experiment “3xS”).11 From this figure we can ob-
serve that, in every single instance, an agent using strategy
NB (or RN) would always obtain a higher utility by switch-
ing to strategyS. For example, in the case that all agents use
RN, any one of them would get a higher expected utility by
switching to strategyS, and this is true for all other possi-
ble cases, in which some agent uses a strategy other thanS.

10The reason why these two strategies were selected, is because
they look at less features than strategyS. In this sense, they are
strategies which don’t take advantage of the full analysis presented
in this paper, and yet are reasonable, because they do consider some
of the desired features. It should be pointed that the pre-existing
state-of-the-art equilibrium strategies are less advanced than even
these strategies (NB andRN).

11The notation “2xS + 1xNB” means that two agents using strat-
egySand one using strategyNB participate in the experiment, etc.
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Figure 4: Expected revenue both formth and the(m + 1)th

price auctions, in the presence of varying reserve prices
and bidder risk attitudes.m = 2 items are auctioned to
N = 3 participating bidders with valuationsvi and budget
constraintsci drawn from uniform distributionU [0, 1]. The
utility function used isu(x) = xα.

This means that strategiesNB andRN aredominatedby S,
when we consider agents who play eitherNB/RN or S, and
thereforeusing our novel analysis does lead to higher bid-
der utility compared to cases where some feature is not taken
into account.

Given the fact that bidders will use this new equilib-
rium strategy (as shown by the first experiment), it makes
sense for the seller to also use the theoretical results of
this paper, in order to maximize her revenue, by selecting
the best reserve price and the correct auction type (mth or
(m + 1)th).12 The expected revenue of the sellerERk in
a kth(k = m,m + 1) price auction, when the bidders bid
according to functiong(v), is: ERk = m

R∞
r

ω · dΨk(ω),

where Ψk(x) =
Pk−1

i=0 C(N, i)
�
Z(x)

�N−i�
1 − Z(x)

�i and
Z(x) = 1− (1−F (g−1(x)))(1−H(x)). We assume the same
values as in the previous experiment, i.e.N = 3, m = 2
and the bidders are risk-averse withα = 0.5. In figure 4,
we graph the seller’s revenue, when she sets a reserve price
r ∈ [0, 1]. The correct reserve price isr = 0, for the case
whena = 0.5 (in this case the bidders actually use strat-
egyS). However, if the seller assumes (erroneously) that the
bidders are risk-neutral (α = 1), and thus they use strategy
RN, she would selectr = 0.13 which would lead to a3.95%
loss of revenue; if she assumes (again erroneously) that the
bidders have∞ budget, and thus they use strategyNB, she
would selectr = 0.02 which would lead to a0.02% loss

12Note that the auctions no longer assign the items to the bid-
ders with the topm valuations, due to the budget constraints, and
furthermore, the winner can be different between themth and the
corresponding(m + 1)th price auction. Thus, the revenue equiva-
lence theorem does not apply here.



of revenue.13 Once more we see thatour analysis is neces-
sary to determine the correct reserve price that maximizes
the sellers revenue. In figure 4, we also graph two addi-
tional cases: when the bidders are risk-averse to the extreme
(α → 0), and when an(m + 1)th price auction is used (the
revenue doesn’t depend onα in this case). As was expected,
whenα → 0, the expected revenue is maximized. Here for
risk-neutral and risk-averse bidders, the(m+1)th price auc-
tion yields a lower revenue than themth price one. This is
not the case though for risk-seeking bidders. Our analysis al-
lows to compute the optimal reserve price for both auctions
and then we can select the correct auction type.

Conclusions
We examined the behavior of agents participating in multi-
unit sealed-bid auctions, when budget constraints, reserve
prices, varying risk attitudes and valuation uncertainty exist.
We provided a number of novel equilibria. First, we derived
equilibria for each case separately. Second, we derived the
dominant strategy for the case of uncertainty in the valuation
that bidders have, when the bidders are not risk-neutral, in
the setting of the(m + 1)th price auction. We also showed
the the variance in this uncertainty and the risk attitude of a
bidder determine the deviation of the bid from the expected
value of his valuation. Third, we combined all the features in
our analysis. We derived the equilibrium strategies for both
the mth and the(m + 1)th price auction, in the presence
of budget constraints, reserve prices and any possible bidder
risk attitude. Then we also included the uncertainty of bid-
ders’ valuation for the case of the(m + 1)th price auction
and derived the dominant strategy. Fourth, we used simu-
lations to show that this analysis is useful, in practice, both
for the bidding agents in order to maximize their utility, and
also for the seller in order to select the correct reserve price
and thus maximize her revenue.

There are a number of unresolved issues in this paper. We
plan to enrich our model in order to analyze themth price
auction equilibria, in the presence of valuation uncertainty.
In addition, we would like to examine the case of identical
items being sold inmultiple concurrent auctions(Gerding et
al. 2007); in this case it is necessary to place bids in all the
auctions. Finally, there are settings in which competition be-
tween agents negates the traditional assumption that agents
are self-interested, i.e. maximizing their profit (Vetsikas and
Jennings 2007); this leads to more aggressive bidding.
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13This difference is small in this case, but if a differentα had
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the budget is ignored, and she would selectr = 0.13, for a2.19%
loss of revenue, if the risk attitudes are ignored.
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