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Abstract. Intelligent air traffic flow management is one of the fundamental chal-
lenges facing the Federal Aviation Administration (FAA) today. FAA estimates put
weather, routing decisions and airport condition induced delays at 1,682,700 hours
in 2007 [18], resulting in a staggering economic loss of over $41 Billion [42]. New
solutions to the flow management are needed to accommodate the threefold increase
in air traffic anticipated over the next two decades. Indeed, this is a complex problem
where the interactions of changing conditions (e.g., weather), conflicting priorities
(e.g., different airlines), limited resources (e.g., air traffic controllers) and heavy
volume (e.g., over 40,000 flights over the US airspace) demand an adaptive and
robust solution.

In this paper we explore a multiagent algorithm where agents use reinforcement
learning to reduce congestion through local actions. Each agent is associated with a
fix (a specific location in 2D space) and has one of three actions: setting separation
between airplanes, ordering ground delays or performing reroutes. We simulate air
traffic using FACET which is an air traffic flow simulator developed at NASA and
used extensively by the FAA and industry. Our FACET simulations on both artificial
and real historical data from the Chicago and New York airspaces show that agents
receiving personalized rewards reduce congestion by up to 80% over agents receiving
a global reward and by up to 90% over a current industry approach (Monte Carlo
estimation).

1. Introduction

The efficient, safe and reliable management of the ever increasing air
traffic is one of the fundamental challenges facing the aerospace in-
dustry today. On a typical day, more than 40,000 commercial flights
operate within the US airspace [40], and the scheduling allows for very
little room to accommodate deviations from the expected behavior of
the system. As a consequence, the system is slow to respond to de-
veloping weather or airport conditions leading potentially minor local
delays to cascade into large regional congestions. The Federal Aviation
Administration (FAA) data shows that weather, routing decisions and
airport conditions caused 1,682,700 hours of delays in 2007 [18]. These
delays cost a staggering $41 Billion (in terms of airline operating costs
and cost to passengers/businesses), and resulted in 740 million gallons
of fuel being wasted [42].
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Current air traffic management relies on a centralized, hierarchical
routing strategy that performs flow projections ranging from one to six
hours. Therefore, the system is not only slow to respond to changes,
but is also at the limit of its capacity. As the traffic flow increases,
the current procedures increase the load on the system, the airports,
and the air traffic controllers (more aircraft per region) without pro-
viding any of them with means to shape the traffic patterns beyond
minor reroutes. Indeed it is difficult to see how the current systems
and algorithms can accommodate the expected threefold increase in air
traffic, anticipated over the next two decates [15]. Unlike many other
flow problems where the increasing traffic is to some extent absorbed
by improved hardware (e.g., more servers with larger memories and
faster CPUs for internet routing) the air traffic domain needs to find
mainly algorithmic solutions, as the infrastructure (e.g., number of the
airports) will not change significantly to impact the flow problem. There
is therefore a strong need to explore new, distributed and adaptive
solutions to the air flow control problem.

1.1. Motivating a Multiagent Approach

An adaptive, multiagent approach is an ideal fit to this naturally dis-
tributed problem where the complex interaction among the aircraft,
airports and traffic controllers renders a pre-determined centralized
solution severely suboptimal at the first deviation from the expected
plan. Though a truly distributed and adaptive solution (e.g., free flight
where aircraft can choose almost any path) offers the most potential
in terms of optimizing flow, it also provides the most radical departure
from the current system. As a consequence, a shift to such a system
presents tremendous difficulties both in terms of implementation (e.g.,
scheduling and airport capacity) and political fallout (e.g., impact on
air traffic controllers). In this paper, we focus on agent based system
that can be implemented readily. In this approach, we assign an agent to
a “fix,” a specific location in 2D. Because aircraft flight plans consist of
a sequence of fixes, this representation allows localized fixes (or agents)
to have direct impact on the flow of air traffic.

Controlling air traffic flow is a complex task that involves multiple
controls, of various degree of granularity [46, 47]. In this work we
explore three specific types of actions for actions at fixes: (i) agents
set the separation that aircraft that particular fix are required to keep;
(ii) agents set ground delays that keep aircraft whose flight plan takes
them through that fix on the ground; and (iii) agents set rerouting
decisions, altering the routes of the aircraft whose flight plan takes
them through that fix. The first action is the simplest one, and lets
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the agents to slow down or speed up local traffic which allows agents
to a have significant impact on the overall air traffic flow. the second
action lets the agents ground particular aircraft whose flight plan is
most likely to cause delays as estimated by that agent. Finally, the
third action is the most intricate and allows the agent to alter the
routes of the aircraft, resulting in more direct congestion management.
In all cases, the agents learn the most appropriate separation for their
location using a reinforcement learning (RL) algorithm [44].

In a reinforcement learning approach, the selection of the agent re-
ward has a large impact on the performance of the system. In this work,
we explore four different agent reward functions, and compare them to
simulating various changes to the system and selecting the best solution
(e.g, equivalent to a Monte-Carlo search). The first explored reward
consisted of the system reward. The second reward was a difference
reward which aimed to quantify the impact an agent has on the full
system [4, 49, 53]. The last reward was a difference rewards based
on estimates aimed to lower the computational burden. Both these
difference rewards aim to align agent rewards with the system reward
and ensure that the rewards remain sensitive to the agents’ actions.

1.2. Related Work

1.2.1. Traditional Air Traffic Management Approaches
The problem of air traffic flow management has been approached from
numerous first-principles modeling perspectives. These methods tend
to be divided into Lagrangian models where the dynamics of individ-
ual aircraft are taken into account and Eulerian (along with Aggre-
gate) models where only the aggregate flow patterns are modeled. In
both cases creating optimization from the resulting model is a complex
process and numerous complexity reduction steps need to be taken.

Lagrangian models for air traffic flow management involve comput-
ing the trajectories of individual aircraft [6, 28]. These models can
be used for a range of problems, from collision avoidance to conges-
tion reduction. Using simplified trajectory models, field based con-
gestion reduction algorithms have been used to avoid separation as-
surance problems [16, 24]. Similarly collision avoidance reduction has
been approached using trajectory models and geometric based avoid-
ance heuristics [9]. In addition Lagrangian models have been used to
predict sector capacities allowing them to be put into the framework
of Eulerian models. Key progress in this area has been in improved
differential models of air traffic flow, improved hybrid state estimation
and the creation of application specific polynomial time algorithms that
can be used in lieu of integer programming [6, 22, 36, 45].
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Instead of predicting the path of individual aircraft, Eulerian and
aggregate flow models predict flow patterns in the airspace [7, 13, 32].
While these models lose some of fine granularity of the Lagrangian
approach, they lead to a simplification of the airspace allowing for more
optimization techniques to be applied. Aggregating over sectors, it was
found that linear programming could be used to find integral solutions
in the optimization of airflow [7, 27]. By modeling flow between control
volumes in the airspace, linear algorithms can be used to control the
airspace [29, 32, 40]. In addition, aggregate models have been developed
to help analyze departure, enroute and arrival delays [31]. Also models
have shown to be effective with piecewise linearization [41].

In addition to being applied to the current airspace model, tradi-
tional optimization methods have also been applied to “free flight”
paradigms, where aircraft can improve efficiency by using custom routes [8,
17, 19, 25, 30, 35, 50]. Quasi-linearization has been shown to be effective
in free flight problems with dense traffic conditions [30]. For creating
wind-optimal free flight routes dynamic programming methods have
shown to be effective [19]. Also rule based systems have been used to
handle conflicts in free flight systems [17].

While these traditional approaches are well understood and effec-
tive in many scenarios, they are difficult to apply to situations where
conditions change locally or automation works side-by-side with human
controllers. First, such centralized algorithms are slow to incorporate
changing conditions as they require recomputing a full simulation for
each set of new parameters. Second, they provide a monolithic solution
where it is difficult for air traffic controllers distributed throughout
the air traffic system to provide data or receive suggestions as needed.
Third, they are difficult to interpret by a human controller, and thus,
it is exceedingly difficult for an air traffic controller to perform “sanity
checks” to see if the proposed solution makes sense in the controller’s
local environment. Because they do not provide adaptive, decentralized
and understandable solutions, one can understand why such methods
have not gained the trust of both administrators and air traffic con-
trollers. In contrast, an adaptive agent approach can potentially address
all three issues and provide, adaptive, local solutions, both independent
of the types of control used in other parts of the airspace, and readily
analyzable by the local air traffic controller.

1.2.2. Agent Based Air Traffic Control
As agent methods are a natural tool to help automate existing air
traffic systems, there has been significant research into other agent
solutions as well [23, 21, 33, 34]. These solutions typically involve a
set of autonomous agents that try to optimize some overall goal either
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through learning or through negotiation (note these “learning agents”
are not closely related to “agents” in fields that attempt to model
or augment human behavior) [11, 12]. Agent interactions, inspired by
economic principles, have been shown to achieve fairness in air traffic
management through an artificial monetary system that allows for re-
taliation against greedy agents [23]. In addition learning agents have
also been used for air traffic systems. Though one key problem that
needs to be addressed with learning agents is how to derive reward
functions for each agent so that agents do not learn to hinder each other.
In other contexts this has been addressed through a “satisficing” reward
that specifically encourages cooperation and penalizes anti-cooperative
behavior [21], and difference rewards where the actions of the agents
aim to improve the system wide performance criteria [3, 47, 48]. An
extension of that work also investigated the impact of agent sugges-
tions on human decision making [5]. To date, the most complete path
planning, control and collision avoidance based on agent technology
is AgentFly which achieves reliable air traffic flow control without
centralized planning [33, 34, 38, 39].

Instead of independently maximizing a reward, agents can often
form solutions to air traffic problems through negotiation and other
explicit coordination mechanisms. To avoid conflicts in free flight, agent
negotiation has been combined with utilities that incorporate overall
risk [52]. Also, to coordinate runway slot times agent negotiation has
been successfully applied without the need for centralized control or
perfect situation knowledge [51]. Outside of negotiation, tokens have
been used in distributed air traffic management to optimize paths while
retaining safety [14].

Agent methods can also involve distributed control laws and dis-
tributed scheduling that seek to implicitly reduce traffic conflict. In
the context of setting safe landing distances, agents operating on dis-
tributed control laws effectively reduce conflict [20]. In the context of
free flight, agents using a combination of aircraft dynamical laws and
theorem provers were also able to produce solutions to reduce con-
flict [26]. In addition a number of methods where agents model aircraft
control laws has been successfully tried. In order to create compromise
scheduling solutions involving airlines with different cost structures,
models using partial differential equations have been combined with
Nash Bargaining between airlines [37]. A control law approach has also
been used in the avoidance control domain in systems that have been
decomposed into combinations of local non-linear functions [43].
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1.3. Contributions of this Work

The main contribution of this paper is to present an adaptive air
traffic flow management algorithm that both provides a coordinated
multiagent solution, and can be readily implemented and tested using
FACET. The work in this paper extends our earlier work on applying
multiagent learning to air traffic control [3, 47, 48]. In particular, in
addition to a more detailed discussion of agent selection and deci-
sion making, it contains a thorough mathematical derivation of agent
rewards to ensure coordinated global behavior, the derivation of esti-
mates for those agent rewards, increased action space for the agents,
in depth scaling results, and results from historical data obtained from
the Chicago and New York airspaces. We not only show that allowing
agents multiple actions provide further improvements over our initial
results [47], but that the results both scale well and extend to real world
data.

In Section 2, we describe the air traffic flow problem, describe the
FACET simulator and present the system evaluation function. In Sec-
tion 3, we present the agent-based approach, focusing on the selection
of the agents, their action space, their learning algorithms and their
reward structure. In Section 4 we present results in a simulated domain
with one and two congestions, and explore the impact of the different
action spaces, the trade-offs between the various terms of the system
evaluation function and the computational cost of achieving certain
levels of performance. In Section 5 we present results from the Chicago
and New York airspaces that show that the agent based approach per-
forms well in a real world setting. Finally, in Section 6, we discuss the
implications of these results and highlight future research directions,
including how to include humans in the decision making process.

2. Air Traffic Flow Management

With over 40,000 flights operating within the United States airspace
on an average day, the management of traffic flow is a complex and
demanding problem. Not only are there concerns for the efficiency of
the system, but also for fairness (e.g., different airlines), adaptability
(e.g., developing weather patterns), reliability and safety (e.g., airport
management). In order to address such issues, the management of this
traffic flow occurs over four hierarchical levels:

1. Separation assurance (2-30 minute decisions);

2. Regional flow (20 minutes to 2 hours);
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3. National flow (1-8 hours); and

4. Dynamic airspace configuration (6 hours to 1 year).

Because of the strict guidelines and safety concerns surrounding air-
craft separation, we will not address that control level in this paper.
Similarly, because of the business and political impact of dynamic
airspace configuration, we will not address the outermost flow control
level either. Instead, we will focus on the regional and national flow
management problems, restricting our impact to decisions with time
horizons between twenty minutes and eight hours. The proposed algo-
rithm will fit between long term planning by the FAA and the very
short term decisions by air traffic controllers.

2.1. Airspace Configuration

The continental US airspace consists of 20 regional centers (handling
200-300 flights on a given day) and 830 sectors (handling 10-40 flights).
The flow control problem has to address the integration of policies
across these sectors and centers, account for the complexity of the sys-
tem (e.g., over 5200 public use airports and 16,000 air traffic controllers)
and handle changes to the policies caused by weather patterns. Two of
the fundamental problems in addressing the flow problem are: (i) mod-
eling and simulating such a large complex system as the fidelity required
to provide reliable results is difficult to achieve; and (ii) establishing
the method by which the flow management is evaluated, as directly
minimizing the total delay may lead to inequities towards particular
regions or commercial entities. Below, we discuss how we addressed
both issues, namely, we present FACET a widely used simulation tool
and discuss our system evaluation function.

2.2. FACET

FACET (Future ATM Concepts Evaluation Tool), a physics based
model of the US airspace was developed to accurately model the com-
plex air traffic flow problem [10]. It is based on propagating the tra-
jectories of proposed flights forward in time. FACET can be used to
either simulate and display air traffic (a 24 hour slice with 60,000 flights
takes 15 minutes to simulate on a 3 GHz, 1 GB RAM computer) or
provide rapid statistics on recorded data (4D trajectories for 10,000
flights including sectors, airports, and fix statistics in 10 seconds on
the same computer) [10, 40].

FACET simulates air traffic based on flight plans and through a
graphical user interface allows the user to analyze congestion patterns
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Figure 1. FACET screenshot displaying traffic routes and air flow statistics.

of different sectors and centers (Figure 1). FACET also allows the
user to change the flow patterns of the aircraft through a number of
mechanisms, including metering aircraft through fixes. The user can
then observe the effects of these changes to congestion. In this paper,
agents use FACET to computing the routes of aircraft after the agent
applies a control action. The agents then produce their rewards based
on received feedback from FACET about the impact of these controls.

2.3. System Evaluation

The system performance evaluation function we selected focuses on de-
lay and congestion but does not account for fairness impact on different
commercial entities. Instead it focuses on the amount of congestion in a
particular sector and on the amount of measured air traffic delay. The
linear combination of these two terms gives the full system evaluation
function, G(z) as a function of the full system state z. More precisely,
we have:

G(z) = −(B(z) + αC(z)) , (1)

where B(z) is the total delay penalty for all aircraft in the system, and
C(z) is the total congestion penalty. The relative importance of these
two penalties is determined by the value of α, a congestion cost. For
instance setting a to 5 (as it is for the all experiments in this paper,
except those reported in Figure 6 where we specifically investigate the
impact of changing α) means that a sector over capacity by one aircraft
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for one time step has the same cost as 5 minutes of delay. With this
interpretation the entire system evaluation, G(z), can be seen as total
cost in terms of minutes of delay equivalents.

The total delay, B, is a sum of delays over the set of aircraft A and
is given by:

B(z) =
∑
a∈A

Ba(z) (2)

where Ba(z) is the delay of each aircraft caused the the agents’ controls.
For controls that delay aircraft (discussed in Sections 4.1 and 4.2),
the Ba(z) is simply the amount of delay applied to that aircraft. For
controls involving rerouting (Section 4.3), the delay is the amount of
additional time it takes an aircraft to go on its new route instead of its
schedule route.

The total congestion penalty is a sum over the congestion penalties
over the sectors of observation, S:

C(z) =
∑
s∈S

Cs(z) (3)

where
Cs(z) =

∑
t

Θ(ks,t − cs)(ks,t − cs)2 , (4)

where cs is the capacity of sector s as defined by the FAA and Θ(·) is
the step function that equals 1 when its argument is greater or equal
to zero, and has a value of zero otherwise. Intuitively, Cs(z) penalizes a
system state where the number of aircraft in a sector exceeds the FAAs
official sector capacity. Each sector capacity is computed using various
metrics which include the number of air traffic controllers available. The
quadratic penalty is intended to provide strong feedback to return the
number of aircraft in a sector to below the FAA mandated capacities.

3. Agent Based Air Traffic Flow

The multi agent approach to air traffic flow management we present
is predicated on adaptive agents taking independent actions that max-
imize the system evaluation function discussed above. In this model,
each agent first chooses an action. The results of all the agents’ actions
are then simulated in FACET. From the simulation all congestion and
lateness values are observed, a system reward is computed and agents
compute their appropriate rewards. While agents may use the system
evaluation as their reward there are other possibilities too, discussed in
Section 3. These rewards are then used to modify the agents’ control
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policies, which are then used to choose the next action. For the agent-
based air traffic management system to succeed, we need to make four
critical decisions that need to be made: defining the agents, defining
the agents’ action space, selecting the agents’ learning algorithms, and
selecting the agents’ reward structure, and we discuss each step below.

Sector 

With Possible  

Congestion 

Agent 

Agent 

Agent 
Agent 

Agent 

Agent 

Figure 2. Schematic of agent architecture. The agents corresponding to fixes sur-
rounding a possible congestion become “live” and start setting new separation
times.

3.1. Defining the Agents

Selecting the aircraft as agents is perhaps the most obvious choice for
defining an agent. That selection has the advantage that agent actions
can be intuitive (e.g., change of flight plan, increase or decrease speed
and altitude) and offer a high level of granularity, in that each agent
can have its own policy. However, there are several problems with that
approach. First, there are in excess of 40,000 aircraft in a given day,
leading to a massively large multiagent system. Second, as the agents
would not be able to sample their state space sufficiently, learning would
be prohibitively slow.

As an alternative, we assign agents to individual ground locations
throughout the airspace called “fixes.” Each agent is then responsible
for any aircraft going through its fix. Fixes offer many advantages as
agents:
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1. Their number can vary depending on need. The system can have as
many agents as required for a given situation(e.g., agents coming
“live” around an area with developing weather conditions).

2. Because fixes are stationary, collecting data and matching behavior
to reward is easier.

3. Because Aircraft flight plans consist of fixes, agent will have the
ability to affect traffic flow patterns.

4. They can be deployed within the current air traffic routing proce-
dures, and can be used as tools to help air traffic controllers rather
than compete with or replace them.

Figure 2 shows a schematic of this agent based system. Agents sur-
rounding a congestion or weather condition affect the flow of traffic to
reduce the burden on particular regions. Notice in our formulation, a
single agent controls one flow into a congestion. While arrangement de-
couples agents somewhat in terms of their actions, they are still strongly
coupled in terms of their performance: how an agent best controls one
flow, is dependent on how all the other agents are controlling their
flows.

3.2. Defining Agent Actions

The second issue that needs to be addressed, is determining the action
set of the agents. Again, an obvious choice may be for fixes to “bid”
on aircraft, affecting their flight plans. Though appealing from a free
flight perspective, that approach makes the flight plans too unreliable
and significantly complicates the scheduling problem (e.g., arrival at
airports and the subsequent gate assignment process).

Instead, we explore three methods for the agent based fixes to control
the flow. Allowing agents to have the flexibility to control aircraft in
multiple ways is essential to their ability to be integrated into existing
systems. Even if all the methods work relatively well, an organization
or a sector controller may only be comfortable with a particular form
of flow control. Agents that are not flexible enough to conform to these
needs will not be used. The methods used in this paper are as follows:

1. Miles in Trail (MIT): Agents control the distance aircraft have
to keep from each other wile approaching a fix. With a higher MIT
value, fewer aircraft will be able to go through a particular fix
during congested periods, because aircraft will be slowing down to
keep their spacing. Therefore setting high MIT values can be used
to reduce congestion downstream of a fix.
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2. Ground Delays: An agent controls how long aircraft that will
eventually go through a fix should wait on the ground. Imposing a
ground delay will cause aircraft to arrive at a fix later. With this
action, congestion can be reduced if some agents choose ground
delays and others do not, as this will spread out the congestion.
However, note that if all the agents choose the same ground delay,
then the congestion will simply happen at a later moment in time.

3. Rerouting: An agent controls the routes of aircraft going through
its fix, by diverting them to take other routes that will (in principle)
avoid the congestion.

Note that these methods also differ in the cost to implement them.
For instance delaying an aircraft on the ground may be far preferable
to delaying it in the air. The relative cost/benefit will depend on the
circumstances of the airspace and the airlines, so it is important to have
several options available.

3.3. Selecting Agent Learning Algorithms

The objective of each agent is to select the action that leads to the
best system performance, G (given in Equation 1). Each agent will
have its own reward function and will aim to maximize that reward
using a reinforcement learning algorithm [44] (though alternatives such
as evolving neuro-controllers are also effective [1]). For delayed-reward
problems, sophisticated reinforcement learning systems such as tempo-
ral difference may have to be used. However, due to our agent selection
and agent action set, the air traffic congestion domain modeled in this
paper only needs to utilize immediate rewards. As a consequence, a
simple table-based immediate reward reinforcement learner is used.
Our reinforcement learner is equivalent to an ε-greedy action-value
learner [44]. At every episode an agent takes an action and then receives
a reward evaluating that action. After taking action a and receiving
reward R an agent updates its value for action a, V (a) (which is its
estimate of the value for taking that action [44]) as follows:

V (a)← (1− λ)V (a) + (λ)R, (5)

where λ is the learning rate. At every time step, the agent chooses the
action with the highest table value with probability 1− ε and chooses
a random action with probability ε. In the experiments described in
this paper, λ is equal to 0.5 and ε is equal to 0.25. The parameters
were chosen experimentally, though system performance was not overly
sensitive to these parameters.
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3.4. Selecting Agent Reward Structure

The final issue that needs to be addressed is selecting the reward struc-
ture for the learning agents. The first and most direct approach is to let
each agent receive the system performance as its reward. However, in
many domains such a reward structure leads to slow learning. We will
therefore also set up a second set of reward structures based on agent-
specific rewards. Given that agents aim to maximize their own rewards,
a critical task is to create “good” agent rewards, or rewards that when
pursued by the agents lead to good overall system performance. In this
work we focus on “difference rewards” which aim to provide a reward
that is both sensitive to that agent’s actions and aligned with the overall
system reward [2, 49, 53].

3.4.1. Difference Rewards
Consider difference rewards of the form [2, 49, 53]:

Di ≡ G(z)−G(z − zi + ci) , (6)

where zi is the action of agent i. All the components of z that are
affected by agent i are replaced with the fixed constant ci 1.

In many situations it is possible to use a ci that is equivalent to
taking agent i out of the system. Intuitively this causes the second
term of the difference reward to evaluate the performance of the system
without i and therefore D evaluates the agent’s contribution to the sys-
tem performance. There are two advantages to using D: First, because
the second term removes a significant portion of the impact of other
agents in the system, it provides an agent with a “cleaner” signal than
G. This benefit has been dubbed “learnability” (agents have an easier
time learning) in previous work [2, 49]. Second, because the second term
does not depend on the actions of agent i, any action by agent i that
improves D, also improves G. This term which measures the amount
of alignment between two rewards has been dubbed “factoredness” in
previous work [2, 49].

3.4.2. Difference Reward Estimate
Though providing a good compromise between aiming for system per-
formance and removing the impact of other agents from an agent’s
reward, one issue that may plague D is computational cost. Because
it relies on the computation of the counterfactual term G(z − zi + ci)

1 This notation uses zero padding and vector addition rather than concatenation
to form full state vectors from partial state vectors. The vector “zi” in our notation
would be ziei in standard vector notation, where ei is a vector with a value of 1 in
the ith component and is zero everywhere else.
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(i.e., the system performance without agent i) it may be difficult or
impossible to compute, particularly when the exact mathematical form
of G is not known. Let us focus on G functions in the following form:

G(z) = Gf (f(z)), (7)

where Gf () is non-linear with a known functional form and,

f(z) =
∑

i

fi(zi) , (8)

where each fi is an unknown non-linear function. We assume that we
can sample values from f(z), enabling us to compute G, but that we
cannot sample from each fi(zi). In addition, we assume that Gf is
much easier to compute than f(z), or that we may not be able to
even compute f(z) directly and must sample it from a “black box”
computation. This form of G matches our system evaluation in the air
traffic domain. When we arrange agents so that each aircraft is typically
only affected by a single agent, each agent’s impact of the counts of the
number of aircraft in a sector, kt,s, will be mostly independent of the
other agents. These values of kt,s are the “f(z)s” in our formulation and
the penalty functions form “Gf .” Note that given aircraft counts, the
penalty functions (Gf ) can be easily computed in microseconds, while
aircraft counts (f) can only be computed by running FACET taking
on the order of seconds.

To compute our counterfactual G(z − zi + ci) we need to compute:

Gf (f(z − zi + ci)) = Gf

∑
j 6=i

fj(zj) + fi(ci)

 (9)

= Gf (f(z)− fi(zi) + fi(ci)) . (10)

Unfortunately, we cannot compute this directly as the values of fi(zi)
are unknown. However, if agents take actions independently (it does
not observe how other agents act before taking its own action) we can
take advantage of the linear form of f(z) in the fis with the following
equality:

E(f−i(z−i)|zi) = E(f−i(z−i)|ci) (11)

where E(f−i(z−i)|zi) is the expected value of all of the fs other than
fi given the value of zi and E(f−i(z−i)|ci) is the expected value of all
of the fs other than fi given the value of zi is changed to ci. We can
then estimate f(z − zi + ci):

f(z)− fi(zi) + fi(ci) = f(z)− fi(zi) + fi(ci)

tumer_airtraffic_jaamas_2010.tex; 3/06/2010; 14:23; p.14



15

+ E(f−i(z−i)|ci)− E(f−i(z−i)|zi)
= f(z)− E(fi(zi)|zi) + E(fi(ci)|ci)
+ E(f−i(z−i)|ci)− E(f−i(z−i)|zi)
= f(z)− E(f(z)|zi) + E(f(z)|ci) .

Therefore we can evaluate Di = G(z)−G(z − zi + ci) as:

Dexpected
i = Gf (f(z))−Gf (f(z)− E(f(z)|zi) + E(f(z)|ci)) , (12)

leaving us with the task of estimating the values of E(f(z)|zi) and
E(f(z)|ci)). These estimates can be computed by keeping a table of
averages where we average the values of the observed f(z) for each
value of zi that we have seen. This estimate should improve as the
number of samples increases.

To improve our estimates, we can set ci = E(z) and if we make
the mean squared approximation of f(E(z)) ≈ E(f(z)) then we can
estimate G(z)−G(z − zi + ci) as:

Dest
i = Gf (f(z))−Gf (f(z)− E(f(z)|zi) + E(f(z))) . (13)

This formulation has the advantage in that we have more samples at
our disposal to estimate E(f(z)) than we do to estimate E(f(z)|ci)).

3.5. Pre-Computed Difference Rewards

In addition to the estimates to the difference rewards, it is possible to
pre-compute certain values that can be later used by the agents. In
particular, −E(f(z)|zi) + E(f(z)|ci) can be computed exactly if the
function f can be interrogated for certain values of z:

−E(f(z)|zi) + E(f(z)|ci)
= −E(f−i(z−i))− E(fi(zi)|zi)

+E(f−i(z−i)) + E(fi(zi)|ci)
= −E(fi(zi)|zi) + E(fi(zi)|ci)
= −fi(zi) + fi(ci)
= −f−i(k−i)− fi(zi) + f−i(k−i) + fi(ci)
= −f(k−i + zi) + f(k−i + ci) ,

where k−i is a constant set of actions for all the agents other than i
and f−i is equal to

∑
j 6=i fj(zj) . Then by precomputing f(k−i + zi) for

each action for each agent, the value of D can be computed exactly.
With n agents and m possible actions this requires

Npre = 1 +m× n (14)
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computations of f .

4. Experimental Results with Simulated Air Traffic

In this section we test the performance of our agent based air traffic
optimization method on a series of simulations using the FACET air
traffic simulator. In all experiments we test the performance of four
different methods. The first method is Monte Carlo estimation, where
random policies are created, with the best policy being chosen. The
other three methods are agent based methods where the agents are
maximizing one of the following rewards:

1. The system reward, G(z), as define in Equation 1.

2. The difference reward Di(z), assuming that agents can calculate
counterfactuals.

3. Estimation to the difference reward Dest
i (z), where agents estimate

the counterfactual using E(f(z)|zi) and E(f(z)).

We test the performance of these reward for all three action spaces.
In all cases, we investigate two types of congestion. The first one con-
sists of an air traffic scenario using artificial data with there are 1000
aircraft. Here 600 of the aircraft are going through an area of high
congestion, while 400 aircraft are going through an area of moderate
congestion. Our second scenario consists of real-world historical data
in the Chicago and New York areas. All experiments are for an eight
our window of traffic.

In all experiments the goal of the system is to maximize the sys-
tem performance given by G(z) with the parameters, α = 5. In all
experiments to make the agent results comparable to the Monte Carlo
estimation, the best policies chosen by the agents are used in the re-
sults. All results are an average of thirty independent trials with the
differences in the mean (σ/

√
n) shown as error bars, though in most

cases the error bars are too small to see.

4.1. Controlling Miles in Trail

In our first set of experiments, agents control Miles in Trail (MIT):
the distance aircraft have to separate themselves from each other when
approaching a fix. Here agents choose between the eleven actions of
setting the MIT value ranging from 0 to 100 miles in increments of
10 miles. Setting the MIT to 0 produces no effect, while setting it to
high values forces the aircraft to slow down to keep their separation
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distance. Therefore setting high MIT values upstream of a congestion
can alleviate a congestion, at the cost the increased delay.

In the first experiment we test the performance of the four meth-
ods on the artificial data using two points of congestion, with twenty
agents. The first point of congestion is created by setting up a series of
flight plans that cause the number of aircraft in the sector of interest
to be significantly more than the number allowed by the FAA. The
second congestion is placed in a different part of the US airspace and is
less severe than the first one, so agents have to form different policies
depending which point of congestion they are influencing. The results
displayed in Figures 3 show the performance of all four algorithms.
These results show that the agent based methods significantly outper-
form the Monte Carlo method. This result is not surprising since the
agent based methods intelligently explore their space, where as the
Monte Carlo method explores the space randomly.
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Figure 3. Performance of agents controlling miles in trail on the dual congestion
problem, with 1,000 Aircraft, 20 Agents and α = 5.

Among the agent based methods, agents using difference rewards
perform very well and considerable better than agents using the system
reward. They were able to achieve a result with a performance penalty
of about 4000. Recall this is measured in lateness in minutes plus five
times congestion. We can view this combination as a “lateness equiva-
lent.” Therefore this solution achieves a “lateness equivalent” of about
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4 minutes per-aircraft. This result is pretty good and is within 2% of the
best solution obtained after 20,000 trials using difference rewards and
competing methods. Also in our analysis of good solutions, the tradeoffs
made between lateness and congestion varied. Though in many of these
solutions they were fairly equal after weighting: about 2000 minutes of
lateness with the rest of the penalty coming from congestion.

Having agents using the difference reward perform better is not sur-
prising, since with twenty agents, an agent directly trying to maximize
the system reward has difficulty determining the effect of its actions on
its own reward. Even if an agent takes an action that reduces congestion
and lateness, other agents at the same time may take actions that
increase congestion and lateness, causing the agent to wrongly believe
that its action was poor. In contrast agents using the difference reward
have more influence over the value of their own reward, therefore when
an agent takes a good action, the value of this action is more likely to be
reflected in its reward. This experiment also shows that estimating the
difference reward is not only possible, but also quite effective, when
the true value of the difference reward cannot be computed. While
agents using the estimate do not achieve as high of results as agents
using the true difference reward, they still perform significantly better
than agents using the system reward. Note, however, that the benefit
of the estimated difference rewards are only present later in learning.
Earlier in learning, the estimates are poor, and agents using the esti-
mated difference reward perform no better then agents using the system
reward.

To verify that the performance improvement of our methods is main-
tained when there are a different number of agents, we perform addi-
tional experiments with 50 agents. In these experiments we also in-
creased the number of aircraft to 2,500 so that the number of aircraft
for each agent remained constant, allowing us to use the same MIT
values for the agents’ actions. The results displayed in Figure 4 show
that when there are more agents, the agents using the difference reward
perform even better. Figure 5 shows scaling results and demonstrates
that the conclusions hold over a wide range of number of agents. Note
that as the number of agents increases, the performance of agents using
the difference reward remain relatively stable, while the performance
of agents using other rewards goes down significantly. This can be ex-
plained by the agents having increasing difficulty separating the impact
of their actions from the impact of the actions of all the other agents on
their reward. However, here the difference reward is cleanly separating
out an agent’s impact on its reward from the influence of all the other
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Figure 4. Performance of agents controlling miles in trail on the dual congestion
problem, with 2,500 Aircraft, 50 Agents and α = 5.

agents, allowing performance to remain steady as the number of agents
increases 2.

4.1.1. Penalty Tradeoffs
The system evaluation function used in the experiments is G(z) =
−(B(z) + αC(z)), which comprises of penalties for both congestion
and lateness. This evaluation function forces the agents to tradeoff
these relative penalties depending on the value of α. With high α
the optimization focuses on reducing congestion, while with low α the
system focuses on reducing lateness. In this experiment we explore the
impact of α on the system performance. Figure 6 shows the results of
varying α for controlling miles in trail. At alpha = 0, the only goal
of the agents is to minimize lateness, allowing for the zero penalty
solution of setting all MIT values to zero. Agents using difference re-
wards find this solution, while most other agents find low-cost solutions.
Note however that agents using Monte Carlo have trouble optimizing
even this trivial problem. As α get larger, the problem becomes more

2 This agent-scaling results here are significantly different than those reported in
[47] on similar data. The main differences here are that the number of aircraft is
scaled with the number of agents, and that the system reward function is different,
significantly changes the results
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Figure 5. Scaling properties of agents controlling miles in trail on the dual conges-
tion problem, with α = 5. Number of aircraft is proportional to number of agents
ranging from 500 - 2,500 aircraft (Note sector capacities have been scaled according
to number of aircraft also).

difficult as agents have to both minimize lateness and congestion. As α
increases the curves tend to flatten out as the agents are successful in
creating solutions designed primarily to reduce congestion. Note that
under all values of α agents using difference rewards or estimates of
difference rewards perform better than agents using Monte Carlo or
agents directly maximizing the system reward.

4.2. Controlling Ground Delays

In the second set of experiments, agents control aircraft through ground
delays. Here an agent can order aircraft that are scheduled to go through
its fix to be delayed on the ground before they can takeoff. In this
scenario agents choose between one of eleven actions ranging from no
delay to 50 minutes of delay in increments of 5 minutes. Note that the
dynamics of ground delays are quite different than with MITs since if
all the agents choose the same ground delay, the congestion will still
happen, just at a later time. Instead agents have to form the correct
pattern of ground delays.

The results show (Figure 7) that the different rewards’ performance
is qualitatively similar to the case where agents control MITs. Agents
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Figure 6. Tradeoff between delay and congestion on the dual congestion problem,
with 1000 Aircraft and 20 Agents where agents control miles in trail. When only
optimizing for lateness, a zero penalty solution is possible. The problem becomes for
difficult when both lateness and congestion need to be optimized at once.

using the difference reward perform the best, while agents using the
estimated difference reward also performed well. Note however, that
agents using G or Monte Carlo estimation perform particularly poorly
in this problem. This can be attributed to the problem being more
difficult, since the action-reward mapping is more dependent on the
actions of other agents. In essence, there is more “noise” in this system,
and agent rewards that do not deal well with noise perform poorly.

4.3. Controlling Reroutes

In this experiment agents alleviate congestions by rerouting aircraft
around congestions. Here an agent’s action is to set the probability that
it will reroute an aircraft that goes through it’s associated fix. In this
experiment agents choose between one of eleven probabilities ranging
from 0% to 100% in increments of 10%. The results show that again
agents using D or Dest perform significantly better than agents using
G or Monte Carlo estimation. Also note that the reward values here
are much higher for all reward methods for agents controlling rerouting
than for agents controlling MITs or ground delays. The reason for this
is that rerouting aircraft around congested areas is highly effective as it
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Figure 7. Performance of agents controlling ground delays on the dual congestion
problem, with 1000 Aircraft, 20 Agents and α = 5.

completely removes the aircraft from the congested area instead of just
delaying it. However, the reward values are not necessary comparable
since delays incurred for rerouting aircraft represent having the aircraft
going longer distances and spend more time in the air, which could be
significantly more costly than holding them on the ground.

4.4. Computational Cost

The results in the previous sections show the performance of the dif-
ferent algorithms after a specific number of episodes. Those results
show that D is significantly superior to the other algorithms. One
question that arises, though, is what computational overhead D puts
on the system, and what results would be obtained if the additional
computational expense of D is made available to the other algorithms.

The computation cost of the system evaluation, G (Equation 1) is
almost entirely dependent on the computation of the airplane counts for
the sectors kt,s, which need to be computed using FACET. Except when
D is used, the values of k are computed once per episode. However, to
compute the counterfactual term in D, if FACET is treated as a “black
box”, each agent would have to compute their own values of k for
their counterfactual resulting in n + 1 computation of k per episode.
While it may be possible to streamline the computation of D with
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Figure 8. Performance of agents controlling reroutes on the dual congestion problem,
with 1000 Aircraft, 20 Agents and α = 5.

some knowledge of the internals of FACET, given the complexity of
the FACET simulation, it is not unreasonable in this case to treat it as
a black box.

Table I. Performance of 20 Agents,
dual congestion and α = 5 (for
agents controlling miles in trail), af-
ter 2100 G evaluations (except for
D44K which has 44100 G evalua-
tions at t=2100).

Reward G σ/
√
n time

Dest -4282 36 2100

D -4716 126 100

D44K -3757 1 2100

G -5109 51 2100

MC -6492 79 2100

Table 4.4 shows the performance of the agents controlling miles in
trail using different reward structures after 2100 G computations for
each of the algorithms for the simulations presented in Figure 3. These
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results are based on 20 agents and 2 congestions with α = 5. All the
algorithms except the fully computed D reach 2100 k computations
at time step 2100. D however computes k once for the system, and
then once for each agent, leading to 21 computations per time step. It
therefore reaches 2100 computations at time step 100. We also show
the results of the full D computation at t=2100, which needs 44100
computations of k as D44K . Although D44K provides the best result
by a slight margin, it is achieved at a considerable computational cost.
Indeed, the performance of the D estimate is remarkable in this case,
as it was obtained with about twenty times fewer computations of
k. Furthermore, the D estimate significantly outperformed the full D
computation for a given number of computations of k and validates the
assumptions made in Section 3.4.2. This shows that for this domain,
in practice it is more fruitful to perform more learning steps and ap-
proximate D, than few learning steps with full D computation when we
treat FACET as a black box.
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Figure 9. Impact of 130% congestion on agents controlling miles in trail on the dual
congestion problem, with 1,000 Aircraft, 20 Agents and α = 5.

4.5. Increased Congestion

In our next experiment we simulate a situation where the amount of
congestion present is increased by 30%. This experiment models one of
the goals of the next generation airtraffic system initiative to increase
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Figure 10. Sensitivity of system performance to congestion. Agents control miles in
trail on the dual congestion problem, with 1,000 Aircraft, 20 Agents and α = 5.

the level of airtraffic with minimal increase of infrastructure. The results
(Fig 9) show that the relative performance of agents using different
reward functions is similar for this higher level of congestion. Again
agents using G and Monte Carlo estimation perform poorly. Also the
learning system maximizing the difference reward performs significantly
better than the other methods. This trend is emphasized in Figure 10
where we vary the amount of congestion from 60% of the original traffic
to 130%. Note that as congestion increases the problem becomes much
harder. However, the absolute difference between the performance of
the agents using different rewards tends to remain relatively constant
at different levels of congestion. This can be explained by there being
less degrees of freedom at high levels of congestion - all agents need
to force a high level of delay. At moderate levels of congestion there is
much more opportunity for optimization and agents using the difference
reward can take advantage of this.

4.6. Rule-Based Agents

In the experiments so far, all the agent algorithms were based on
reinforcement learning, where agents gradually try to maximize an
objective function. In this section we contrast this form of agent, to
a rule-based agent that never even observes the objective function.
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Instead the rule-based agents are hand-coded with prior knowledge
about a desirable state of the system. Using a closed-loop feedback
system, the rule-based agents observe lateness and congestion directly
and through a pre-programmed table try to modify the state of the
system to try to send these properties back to desirable levels.

Using prior knowledge of the system, levels of congestion and late-
ness are broken down into high, medium and low values. Depending
on the severity of the congestion and lateness measured in the system,
the rule-base agents can increase or decrease the Mile-In-Trail values
as summarized in Table 4.6. For instance if there is high congestion
and low lateness, each agent will increase its MIT value by 20. In this
process the agents start with random MIT values, but through there
rules, they attempt to find metering values that lead to acceptable
levels of congestion and lateness. The hardest decision for a rule-based
agents, comes when both congestion and lateness are high or medium.
In these situation we have three experiments: 1) agents increase MIT
values (favoring more lateness), 2) agents decrease MIT values (favoring
more congestion), 3) agents randomly break the tie by either increase
MIT by 10 or decrease it by 10.

Table II. Rules for rule-based agent.
Up-Down is levels of lateness. Left-
-Right is levels of congestion. De-
pending on the levels of lateness and
congestion, MIT values are increased,
decreased, or held constant. Entries
with “*” are either +10, -10 or ran-
domly set to ±10 depending on the
algorithm.

Low Medium High

Low 0 +10 +20

Medium -10 * +10

High -20 -10 *

Figure 11 shows the performance level of the rule-based agents. It
is clear the the rule-based agents with no-randomness, perform very
poorly. They are unable to fine-tune the situation where both conges-
tion and lateness are at similar levels, as there is no clear solution to
this problem. Instead rule-based agents that are able to “break the tie”
in this situation, using a randomly generated choice, perform better.
In fact these rule-based agents are initially able to perform better than
learning agents using Dest. However, all the learning agents are eventu-
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ally able to perform better, and learning agents using D perform much
better.
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Figure 11. Comparison of rule-based agents vs. learning agents controlling miles in
trail on the dual congestion problem, with 1,000 Aircraft, 20 Agents and α = 5.

5. Experimental Results with Real Air Traffic

In this section we test the performance of the multiagent air traffic
flow management algorithms on historical data from the Chicago and
New York areas. For experiments in the Chicago area, twenty agents
are responsible for twenty fixes commonly used for aircraft arriving
at Chicago OHare. Experiments in the New York area are similar,
using twenty fixes commonly used for aircraft arriving at JFK, Newark
and LaGuardia. Each agent is responsible for setting MIT values for
aircraft that are schedule to go through its fix ranging from 0 to 10
miles. As with the previous results on artificial data, the agents gener-
ate rewards representing the impact of their choice of MIT using the
FACET simulator. However, to speed up simulation, only the aircraft
going through the twenty fixes are simulated. Sector counts generated
from these simulations are combined with sector counts of a previous
simulation using all air traffic for the entire U.S. airspace.
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5.1. Chicago Air Traffic

We perform experiments with Chicago area data on a day where con-
gestion peaks at certain times, and is moderate at other times. The
results (Figure 12) are similar to those with artificial data. They show
that the learning method directly maximizing the system reward and
Monte Carlo estimation still perform poorly compared to agents using
the difference reward. Agents using D learn quickly and again reach the
highest level of performance. Note however in this experiment, agents
using Dest to not perform any better than agents using G.
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Figure 12. Performance of agents controlling miles in trail on historical data from
Chicago area. Agents control 1297 aircraft.

5.2. New York Air Traffic

Along with Chicago area data, we perform experiments using New York
area data. The congestion scenario in this data is significantly different
than that in the Chicago area, in that congestion is heavy throughout
the day. This scenario is more difficult, since in many situations slowing
down aircraft to avoid a current congestion just adds to aircraft in
a future congestion. The results show (Figure 13) that agents using
D were able to overcome this challenge and significantly outperform
agents using the other rewards. In addition agents using the estimate
to D were able to perform better than agents using G.
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Figure 13. Performance of agents controlling miles in trail on historical data from
New York area. Agents control 1577 aircraft.

6. Summary

The efficient, safe and reliable management of air traffic flow is a com-
plex problem, requiring solutions that integrate control policies with
time horizons ranging from minutes up to a year. The main contribution
of this paper is to present a distributed adaptive air traffic flow man-
agement algorithm that can be readily implemented and to test that
algorithm using FACET, a simulation tool widely used by the FAA,
NASA and the industry. Our method is based on agents representing
fixes and having each agent determine the separation between aircraft
approaching its fix. It offers the significant benefit of not requiring
radical changes to the current air flow management structure and is
therefore readily deployable. The agents use reinforcement learning to
learn control policies and we explore different agent reward functions
and different ways of estimating those functions.

We are currently extending this work in three directions. First,
we are exploring new methods of estimating agent rewards, to fur-
ther speed up the simulations. Second we are investigating deployment
strategies and looking for modifications that would have larger impact.
One such modification is to extend the definition of agents from fixes
to sectors, giving agents more opportunity to control the traffic flow,
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and allow them to be more efficient in eliminating congestion. Finally,
in cooperation with domain experts, we are investigating different sys-
tem evaluation functions, above and beyond the delay and congestion
dependent G presented in this paper.
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