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Abstract The problem of finding agents’ rational strategies in bargaining with incomplete
information is well known to be challenging. The literature provides a collection of results
for very narrow uncertainty settings, but no generally applicable algorithm. This lack has
led researchers to develop heuristic approaches in an attempt to find outcomes that, even if
not being of equilibrium, are mutually satisfactory. In the present paper, we focus on the
principal bargaining protocol (i.e., the alternating-offers protocol) where there is uncertainty
regarding one agent’s reserve price. We provide an algorithm based on the combination of
game theoretic analysis and search techniques which finds pure strategy sequential equilibria
when they exist. Our approach is sound, complete and, in principle, can be applied to other
uncertainty settings, e.g., uncertain discount factors, and uncertain weights of negotiation
issues in multi-issue negotiation. We experimentally evaluate our algorithm with a number
of case studies showing that the average computational time is less than 30 s and at least one
pure strategy equilibrium exists in almost all (about 99.7 %) the bilateral bargaining scenarios
we have looked at in the paper.
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1 Introduction

Automated negotiation is an important research area bridging together economics, game the-
ory, and artificial intelligence. It has received a prominent attention in recent years [4,5,19,25]
and its importance is widely acknowledged since intelligent agents that negotiate with each
other on behalf of human users are expected to lead to more efficient negotiations [34]. A
very common class of negotiation is bargaining. It refers to a situation in which individual
agents have the possibility of concluding a mutually beneficial agreement which could not be
imposed without all individuals’ approval. We use the terms ‘negotiation’ and ‘bargaining’
interchangeably in this paper.

While there are many negotiation settings in electronic commerce transactions, the most
common one (also the simplest one) is bilateral negotiation with a single negotiation issue.
For instance, consider a scenario in which a buyer and a seller negotiate on the price of a good.
In such a bargaining scenario, the two agents have different preferences over agreements.
Thus agents need to make concessions toward a mutually acceptable agreement through a
series of offers and counter offers. The negotiation fails if the two agents fail to achieve an
agreement. Negotiations play a crucial role in many real-world scenarios, e.g., between a
service provider and a customer to determine the price for providing a service.

The most widely studied bargaining protocol in strategic bargaining is the alternating-
offers protocol [31,38]. The alternating-offers protocol is considered to be the most satisfac-
tory protocol of bargaining present in literature. Negotiation starts with one agent’s making
an offer to its opponent. After receiving an offer, an agent can either accept the most recent
offer of its opponent or make a new counter offer, which implies that the negotiation pro-
cess continues to the next round. The alternating-offers protocol captures the most important
features of bargaining: bargaining consists of a sequence of offers and decisions to accept
or reject these offers. The alternating-offers protocol has been widely used in the bargaining
theory literature, e.g., [4,5,19,32,35], just to name a few.

There are two main approaches for the study of bargaining, one formal and the other
heuristic. The formal approach is based on game theory and aims at finding strategies that
are in equilibrium (a brief survey follows). The difficulty of finding an equilibrium for prob-
lems that involve uncertainty, except for some special cases, has led researchers to develop
heuristic approaches. According to this second approach, agents follow heuristic tactics that,
even if producing non-equilibrium outcomes, find mutually satisfactory agreements. Well
known examples are [5,14,27,36,37]. The two approaches have several interconnections,
the former providing insights for the latter.

This paper focuses on the first (game theoretic) approach and, more specifically, on one
of the most challenging open bargaining problems: finding agents’ rational strategies in
uncertain information bilateral bargaining with the alternating-offers protocol. Specifically,
we consider one-sided uncertainty regarding the buyer’s reserve price. That is, the buyer’s
reserve price is only known to the buyer and the seller only knows the probability distri-
bution of the buyer’s reserve price, which is common knowledge.1 All other information
(e.g., the seller’s reserve price, agents’ discount factors, negotiation deadlines) is public. In
addition, we assume that each agent has a negotiation deadline. The infinite horizon assump-
tion, which is usually made in game theory literature (e.g., [9,10,32]), is not realistic in
real-world applications [35]. This bargaining problem is customarily modeled as a Bayesian
extensive-form game with infinite number of strategies since price is a continuous value. The

1 We also show in this paper that our approach can be applied to bargaining games with two-sided uncertainty
and other cases.
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sequential equilibrium [18] is the appropriate solution concept for imperfect information
extensive form games including our bargaining game. A sequential equilibrium specifies a
pair: a system of beliefs that prescribes how agents’ beliefs must be updated during the game
and strategies that prescribe how agents should act. In a sequential equilibrium there is a
circularity between the belief system and strategies: strategies must be sequentially rational
given the belief system and belief system must be consistent with respect to strategies.

The study of the alternating-offers protocol with uncertain information is well known to
be hard and there are still many open problems [19]. The microeconomics literature provides
a number of closed form results with very narrow uncertainty settings. For instance, Rubin-
stein [32] considered bilateral infinite horizon bargaining with uncertainty over two possi-
ble discount factors. Gatti et al. [19] analyzed bilateral bargaining with one-sided uncertain
deadlines. Chatterjee et al. [9,10] studied bilateral infinite horizon bargaining with two-type
uncertainty over the reservation values. The absence of agents’ deadlines makes these last
two results nonapplicable to the situation with deadlines. An et al. [3] only consider two-type
uncertainty about reserve prices and their approach cannot be applied to the multiple type
case. Operations research inspired equilibrium calculation algorithms (e.g., [29]) work only
on games with finite number of strategies, and therefore cannot be applied to bargaining in
which each agent’s strategy space is continuous. Similarly, enumeration based methods [30]
cannot be applied to continuous strategy space scenarios. One approach that is applicable to
bargaining games with one-sided uncertainty is presented in [8]. The algorithm we propose in
this paper outperforms the algorithm in [8] as follows. (1) It is much faster, allowing the solv-
ing of negotiations within a given deadline that the algorithm in [8] cannot solve (in addition,
the algorithm in [8] suffers from memory space problems, while our algorithm does not):
our algorithm solves settings with nine types and deadline 14 in a reasonable time, while the
algorithm in [8] suffers from memory space problems even with five types. (2) It produces a
pure strategy equilibrium that is in general more satisfactory than mixed strategy equilibrium
(explained later). (3) It produces Pareto efficient equilibria, while the algorithm in [8] does
not provide any guarantee and can find (unsatisfactory) Pareto dominated equilibria. (4) It
finds all the equilibria and therefore our algorithm can be easily combined with an algorithm
to select an equilibrium given a specific criterion. Ceppi et al. [8] only finds one equilibrium
and thus additional criterion for selection can not be included in their approach.

Several attempts to extend the backward induction method [18] to bargaining games with
uncertainty have been tried, but they work for very restrictive cases. This is because in the
computation of the equilibrium they break down the circularity between strategies and the
belief system. For example, Fatima et al. [16,17] present a polynomial time algorithm to
produce equilibrium strategies in multi-issue bargaining with uncertain reserve prices. By
exploiting backward induction, their algorithm searches agents’ strategy space from the dead-
line to the beginning of negotiation with the initial beliefs. Once the optimal strategies at the
beginning of negotiation have been found, the system of beliefs are designed to be consistent
with them. However, the optimization in their approach is myopic since it does not take
into account the possibility that an agent may deviate by profitably exploiting the updated
beliefs caused by the deviation. As a result, the strategies found by their approach are not
guaranteed to be sequentially rational given the designed system of beliefs, as shown in [19]
for the case with uncertain deadlines. We will further expand on this observation by showing
that the strategies developed by Fatima et al. [16,17] are not sequentially rational in cases
where there is uncertainty over reserve prices.

Furthermore, few complexity results on the computation of a sequential equilibrium of
a bargaining game are known. To the best of our knowledge, the only proven result is pro-
vided in [19], where the authors show that a mixed strategy equilibrium can be computed in
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polynomial time with one-sided uncertainty over the deadlines. However, with this kind of
uncertainty the problem presents a very specific structure that makes it easy to be solved, but
such structure is not present when uncertainty is over other parameters. Furthermore, with
finite games, the problem of computing an equilibrium in mixed strategies is PPAD-hard [29]
and in pure strategies is NP-hard [24] even with simple games (two actions per agent), but
no general result is known when actions are continuous. A positive result on the sequential
equilibrium is that it is possible to verify whether a strategy profile is a sequential equilibrium
in polynomial time regardless of the number of agents [21].

The main contribution of this paper is the development of a novel algorithm to find all pure
strategy sequential equilibria2 in bilateral bargaining with one-sided, multi-type uncertainty.
Our algorithm combines together game theoretic analysis with state space search techniques
and it is sound and complete. Our approach is based on the following two observations:

1. with pure strategies, the buyer’s possible choices regarding whether different buyer types
behave in the same way or in different ways at a decision making point are finite,

2. with pure strategies, the seller’s possible beliefs regarding whether different buyer types
will accept or reject its offer are finite.

We employ a backward approach to find sequential equilibria in the context of a forward
search process: to compute agents’ equilibrium strategy at a continuation game with certain
belief, we search forward to find agents’ equilibria strategies in its continuation game with
different beliefs first by considering agents’ all belief update rules as well as possible choices
regarding whether different buyer types behave in the same way or in different ways; then
we derive theoretically the agents’ optimal strategies by applying backward induction and
check equilibrium existence conditions. Our algorithm has a computational complexity that
is exponential in the length of the bargaining, but our experimental evaluation shows that
it solves bargaining games that are complex enough within a reasonable time. In addition,
because there is potentially more than one equilibrium, we have designed our algorithm to
find all of them. This allows one to select an equilibrium according to some criterion that
depends on the application. As in all the previous work on strategic bargaining, we leave
open the problem of how to define the criteria for the selection of the equilibrium.

We focus on pure strategy equilibria for the following reasons. The concept of mixed strat-
egies is very useful for games having no pure strategy equilibrium. However, the concept of
mixed strategies has been criticized for being “intuitively problematic” since randomization
lacks behavioral support [6]. When mixed strategies are considered, the number of sequential
equilibria of the game usually increases and coordination problems of choosing an equilib-
rium strategy profile has not been fully addressed. Fortunately, simulation results show that
there is at least one pure strategy sequential equilibrium in 99.7 % of various bilateral bar-
gaining games in which the minimum deadline of the two agents is no higher than 14 and
the number of buyer types is no more than 9. Additionally, in our experimental results we
found that as the number of uncertain types and deadlines increase, all cases had at least one
sequential equilibrium.

The rest of this paper is organized as follows. We start with a discussion of complete
information bilateral negotiation in Sect. 2 which sets a context for Sect. 3 that introduces
uncertainty into our bargaining game. Section 4 presents our approach for computing sequen-
tial equilibria. Section 5 shows how to compute the buyer’s equilibrium offer and Sect. 6 shows
how to compute the seller’s equilibrium offer. Section 7 analyzes equilibrium existence. Sec-
tion 8 discusses two potential applications of our approach. Section 9 discusses related work

2 Strategies are pure when actions are played either with a probability of one or with a probability of zero.
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and gives an example to show how our approach leads to a different (and the correct) result
from the approach designed by Fatima et al. [16,17]. Section 10 concludes this paper and
outlines some future research directions.

2 Bargaining with complete information

This section describes the discrete time bargaining between a buyer b and a seller s. We start
with describing how to compute agents’ equilibrium strategies in the complete information
setting since this calculation will be used as part of the algorithm for the incomplete infor-
mation setting. The bilateral bargaining game with complete information has been analyzed
in [19] and here we follow the reasoning in [19]. The seller wants to sell a single indivisible
good to the buyer for a price. All the agents enter the market at time 0. An alternating-offers
bargaining protocol is utilized. Formally, the buyer b and the seller s can act at times t ∈ N.
The player function ι : N → {b, s} returns the agent that acts at time t and is such that
ι(t) #= ι(t + 1), i.e., a pair of agents bargain by making offers in alternate fashion. This
paper focuses on single-issue negotiation but this model can be easily extended to handle
multi-issue negotiation [13]. Table 1 lists the main symbols used in this paper.

Possible actions σ t
ι(t) of agent ι(t) at any time point t > 0 are:

1. offer[x], where x ∈ R is the proposed price for the good;
2. exit, which indicates that negotiation fails;
3. accept, which indicates that b and s have reached an agreement.

At time point t = 0, action accept is not allowed. If σ t
ι(t) = accept the bargaining stops

and the outcome is o = (x, t), where x is the value such that σ t−1
ι(t−1) = offer[x]. This is to

Table 1 Used symbols

b The buyer

bi The type i of the buyer

s The seller

ι(t) The agent acting at time t

σ t
ι(t) The action of ι(t) at time t

RPa The reserve price of agent a

Ta The deadline of agent a

δa The discount factor of agent a

T min(Tb, Ts)

x∗(t) The optimal offer of agent ι(t) at t in complete information setting

µ(t)/∆t
b The seller’s belief at time t

ω0
bi

The probability that b is of type bi at time 0

obi The bargaining outcome if b is of type bi

bh(∆t
b) The buyer type with the highest reserve price in buyer types ∆t

b
et

s|µ(t) The equivalent offer of s

et
bi

|µ(t) The equivalent offer of buyer bi

E BO(bi , x, t) The equilibrium bargaining outcome of bi if it offers x at time t

E BO(bi , ℘) The equilibrium bargaining outcome of bi if it follows ℘
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say that the agents agree on the value x at time point t . If σ t
ι(t) = exit the bargaining stops

and the outcome is F AI L . Otherwise the bargaining continues to the next time point.
Each agent a ∈ {b, s} has a utility function Ua : (R×N)∪{F AI L}→ R, which represents

its gain over the possible bargaining outcomes. Each utility function Ua depends on agent a’s
reserve price RPa ∈ R+, temporal discount factor δa ∈ (0, 1),3 and deadline Ta ∈ N, Ta > 0.
If the bargaining outcome is o = (x, t), then the utility function Ua for agent a is defined as:

Ua(x, t) =






(RPa − x) · (δa)
t if t ≤ Ta and a is a buyer

(x − RPa) · (δa)
t if t ≤ Ta and a is a seller

ε < 0 otherwise

If the negotiation outcome is F AI L , the utility for agent a is Ua(F AI L) = 0. Notice
that the assignment of a strictly negative value ε < 0 to Ua after a’s deadline allows one
to capture the essence of the deadline: an agent, after its deadline, strictly prefers to exit
the negotiation rather than to reach any agreement. Finally, we assume the feasibility of the
problem, i.e., RPb ≥ RPs.

With complete information the appropriate solution concept for the bargaining game is the
subgame perfect equilibrium in which agents’ strategies are in equilibrium in every possible
subgame [18]. Note that there is no deadline constraint in the negotiation protocol, which
indicates that agents are allowed to offer and counteroffer after their deadlines have expired.
However, the deadline constraint is in both agents’ utility functions such that no rational
agent will continue negotiation after its deadline. Therefore, the bargaining game is a finite
horizon game and the subgame perfect equilibrium can be found employing the backward
induction method.

Initially, it is determined that the game rationally stops at time point T = min(Tb, Ts).
The equilibrium outcome of every subgame starting from t ≥ T is F AI L , since at least one
agent will exit from bargaining. Therefore, at t = T agent ι(T ) would accept any offer x
which gives it a utility not worse than F AI L , namely, any offer x such that Uι(T )(x, T ) ≥ 0.
From t = T − 1 back to t = 0 it is possible to find the optimal offer agent ι(t) can make at
t , if it makes an offer, and the offers that it would accept. x∗(t) denotes the optimal offer of
agent ι(t) at t . x∗(t) is the offer such that, if t < T − 1, agent ι(t + 1) is indifferent at t + 1
between accepting it and rejecting it to make its optimal offer x∗(t + 1) and, if t = T − 1,
agent ι(t + 1) is indifferent at t + 1 between accepting it and exiting. Formally, x∗(t) is such
that Uι(t+1)(x∗(t), t) = Uι(t+1)(x∗(t + 1), t + 1) if t < T − 1 and Uι(t+1)(x∗(t), t) = 0 if
t = T − 1. The offers agent ι(t) would accept at t are all those offers that give it a utility
no worse than the utility given by offering x∗(t). The equilibrium strategy of any subgame
starting from 0 ≤ t < T prescribes that agent ι(t) offers x∗(t) at t and agent ι(t + 1) accepts
it at t + 1.

Backward propagation is used to provide a recursive formula for x∗(t): given value x for
agent a, we call the value y the result of a one-step backward propagation of the value x for
agent a such that Ua(y, t − 1) = Ua(x, t); we employ the arrow notation x←a for backward
propagations. Formally, x←b = RPb−(RPb−x)·δb and x←s = RPs+(x−RPs)·δs. If a value
x is backward propagated n times for agent a, we write x←n[a], e.g., x←2[a] = (x←a)←a.
If a value is backward propagated for more than one agent, we list them left to right in the

3 A discount factor is used to model bargaining cost, which is a common assumption in the bargaining literature
[16,19,31,32].
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Fig. 1 Backward induction construction with RPb = 100, RPs = 0, ι(0) = s, δb = 0.75, δs = 0.8, Tb = 10,
Ts = 11; at each time point t the optimal offer x∗(t) is marked; the dashed lines are isoutility curves

subscript, e.g., x←b2[s] = ((x←b)←s)←s. The values of x∗(t) can be calculated recursively
from t = T − 1 back to t = 0 as follows:

x∗(t) =
{

RPι(t+1) if t = T − 1
(x∗(t + 1))←ι(t+1) if t < T − 1

Theorem 1 The following inequalities hold: x←b ≥ x and x←s ≤ x.

Proof We can easily prove this from the backward propagation process. We have x←b ≥ x
as x←b− x = RPb−(RPb− x) ·δb− x = (1−δb)(RPb− x) ≥ 0, which indicates x←b ≥ x .
Similarly, we have x←s ≤ x as x←s− x = RPs +(x−RPs) ·δs− x = (δs−1)(x−RPs) ≤ 0.

Figure 1 shows an example of backward induction construction with parameters RPb =
100, RPs = 0, ι(0) = s, δb = 0.75, δs = 0.8, Tb = 10, and Ts = 11. The backward
induction process starts from time T = min{Tb, Ts} = 10. At time 10, the seller is will-
ing to accept any offer which is no less than its reserve price and thus the optimal offer
at time t = 9 is x∗(9) = RPs = 0. The optimal offer of the seller at time t = 8 is
x∗(8) = (RPs)←b = RPb − (RPb − RPs) · δb = 25. Analogously, the optimal offer of the
buyer at time t = 7 is x∗(7) = (x∗(8))←s = RPs + (x∗(8)− RPs) · δs = 20. Following this
procedure, we can get agents’ optimal offers from time t = 6 to the initial time point t = 0.

Finally, agents’ equilibrium strategies can be defined on the basis of x∗(t) as follows:
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σ ∗b (t) =






t = 0 offer[x∗(0)]

0 < t < T

{
if σs(t − 1) = offer[x] with x ≤ (x∗(t))←b accept
otherwise offer[x∗(t)]

T ≤ t ≤ Tb

{
if σs(t − 1) = offer[x] with x ≤ RPb accept
otherwise exit

Tb < t exit

σ ∗s (t) =






t = 0 offer[x∗(0)]

0 < t < T

{
if σb(t − 1) = offer[x] with x ≥ (x∗(t))←s accept
otherwise offer[x∗(t)]

T ≤ t ≤ Ts

{
if σb(t − 1) = offer[x] with x ≥ RPs accept
otherwise exit

Ts < t exit

We can see that the above strategies constitute the unique subgame perfect equilibrium
of bargaining with complete information. The equilibrium can be found in time linear in the
maximum deadline of the two agents. At the equilibrium, the two agents reach an agreement
at time t = 1 and the agreement price is x∗(0).

3 One-sided uncertainty about reserve prices

In this section, we modifies the complete information bargaining model in the previous
section by introducing one-sided uncertainty regarding the buyer’s reserve price.

In the presence of incomplete information, it is customary in game theory to introduce
probability distributions over the parameters that are not known by the agents, which leads
to games with uncertain information. By Harsanyi’s transformation, uncertain information
games are cast into imperfect information games where players can be of different types
and there is uncertainty over players’ type. The most widely used solution concept from
game theory for an extensive-form bargaining game with imperfect information is sequential
equilibrium [18]. A sequential equilibrium is a pair a = 〈µ, σ 〉 (also called an assessment)
where µ is a belief system that specifies how agents’ beliefs about the other agents’ type
evolve during the game and σ specifies agents’ strategies. At an equilibrium µ must be
consistent with respect to σ and σ must be sequentially rational given µ. Informally, the
rationality requirement says that after every possible sequence of actions, an agent’s strategy
must maximize its expected utility given its beliefs and its opponent’s equilibrium strategy.
An assessment a is consistent (in the sense of Kreps [28]) if there exists a sequence of totally
mixed strategy profiles (with associated sensible beliefs updated according to Bayes’ rule)
that converges to the equilibrium profile.

We assume the one-sided uncertainty regarding the type of the buyer b (the case of having
uncertainty with the type of the seller s can be analyzed analogously). The buyer b can be
of finitely many types {b1, . . . , bn} in which buyer type bi has an associated reserve price
RPi . The initial belief of s (i.e., s’s belief at time 0) on b is described by µ(0) = 〈∆0

b, P0
b 〉

where ∆0
b = {b1, . . . , bn} is the set of possible buyer’s types and P0

b = {ω0
b1

, . . . , ω0
bn

}, such
that

∑
i ω0

bi
= 1, is the probability distribution over the buyer’s types. The belief of s on the

type of b at time t is µ(t) = 〈∆t
b, Pt

b〉 where ∆t
b ⊆ ∆0

b and Pt
b = {ωt

b1
, . . . , ωt

bn
}, with ωt

bi
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denoting the probability assigned by s to b = bi at time t . Given an assessment a = 〈µ, σ 〉,
there are multiple possible bargaining outcomes, one for each possible type of the buyer. We
denote a type-specific outcome by obi if b = bi , while we denote a bargaining outcome as
o = 〈ob1 , . . . , obn 〉.

Seller s’s belief over the type of buyer b will evolve on the basis of the observed actions
and the buyer’s equilibrium strategies. As is customary in economic studies [32], we consider
only stationary systems of beliefs, i.e., if s believes a b’s type with zero probability at time
point t , it will continue to believe such a type with zero probability at any time point t ′ > t .
We can therefore specify µ(t) by specifying ∆t

b and we use µ(t) and ∆t
b interchangeably

in this paper. Moreover, given that µ(t) = ∆t
b and we only consider pure strategies, the

probability that b is of type bi ∈ ∆t
b is ωbi (∆

t
b) = ω0

bi∑
b j∈∆t

b
ω0

b j

.

We need to also specify the belief system off the equilibrium path, i.e., when an agent
takes an action that is not optimal. We use the optimistic conjectures [32,33].4 That is, when
buyer b acts off the equilibrium strategy, agent s will believe that agent b is of its “weakest”
type, i.e., the type against which the seller would gain the most. This choice is made to assure
the existence of the equilibrium for the largest subset of the space of the parameters [19]. If
an equilibrium does not exist with optimistic conjectures then it does not exist. In our case,
the weakest type is the buyer type with the highest reserve price (see Sect. 4.4 for the proof).
That is, if µ(t−1) = ∆t−1

b and b acts off the equilibrium strategy at time t−1, it follows that
∆t

b = bh(∆t−1
b ) where bh(∆t−1

b ) is the buyer type with the highest reserve price in buyer
types ∆t−1

b .
We use the following simple real-life example to explain the applicability of our model.

A buyer and a seller are negotiating for a used car utilizing the alternating-offers protocol.
Each person has a reserve price. The seller’s reserve price is the lowest price the seller can
accept and such a reserve price could be the average contract price for the used car, which can
be gained from trusted resources (e.g., Kelley Blue Book at http://www.kbb.com or Edmunds
at http://www.edmunds.com) for used car prices. The buyer’s reserve price represents the
buyer’s budget constraint, which is uncertain to the seller. For instance, the buyer’s reserve
price could be either low or high and the seller has a prior belief about the buyer’s reserve
price, e.g., the buyer has a low reserve price with 50 %. Such a prior belief is common
knowledge for both players. The focus of this paper is computing both players’ equilibrium
strategies.

4 The algorithm for finding all sequential equilibria

This section first introduces the high level idea that motivates our approach. Following that
we analyze some observations that can be used to reduce drastically the required computation
based on our basic approach. Finally we introduce the algorithm for finding all sequential
equilibria of a bilateral bargaining game with one-sided uncertainty.

4.1 High level idea of the approach

Our approach follows the spirit of backward induction: To compute agent a’s equilibrium
offer with belief ∆b at time t < T −1, agent a takes into account all the sequential equilibria

4 While this paper assumes optimistic conjectures, our approach can be used for any belief update rules for
agents’ actions off the equilibrium path.
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in the continuation game with different beliefs starting from time t +1. A continuation game
is composed of an information set for one agent (buyer or seller) and all of its successor
nodes from the original bilateral bargaining game. Note that there is no proper subgame for
the bargaining game with uncertainty. There are continuation games starting from time points
0, 1, . . .. Let ((t) be the continuation game starting from time t . In the continuation game
((t), agent ι(t) makes its offer at time t first. Let ((t,∆b) be the continuation game ((t)
with seller s’s initial belief ∆b. The problem of finding sequential equilibria for a bargaining
problem is finding sequential equilibria for the continuation game ((0,∆0

b) where ∆0
b is the

seller’s prior belief at time 0.
The definition of a sequential equilibrium requires that after observing buyer b’s counter

offer at time t , seller s must update its belief about b’s type using a belief update rule. If
buyer b makes a new offer at time t , seller s observes two actions from buyer b:

1. Reject action: seller s’s last offer is rejected by the buyer b if t > 0. This is implicitly
done when buyer makes a counteroffer, without making any ‘reject’ action. In some alter-
nating-offers protocols studied in the literature (e.g., [16]), an agent is required to send
a rejection message before making a new offer. However, these protocols are equivalent
to ours. For the sake of simplicity, a rejecting agent does not need to send a rejection
message in our protocol. Therefore, the rejection action still exists in our protocol in the
case when an agent sends a counter-offer.

2. Offer action: Buyer b makes a new offer at time t .

Note that when buyer b makes an offer at time t = 0, the seller only observes the offer
action from the buyer since the seller has not made an offer yet.

Seller s will update its belief given all the actions of buyer b. Therefore, there are two
types of belief update rules:

1. Reject update rules applied when buyer b rejects seller s’s offer;
2. Offer update rules applied when buyer b makes a new offer.

Definition 2 Assume seller s’s belief before applying a reject update rule is ∆b, a reject
update rule is of the following form: If x is rejected, s’s belief about the type of buyer b is
updated to ∆′b ⊆ ∆b.

Definition 3 Assume seller s’s belief before applying an offer update rule is ∆b, an offer
update rule has the following form: If buyer b offers x , seller s’s belief about the type of b is
updated to ∆′b ⊆ ∆b.

When buyer b makes an offer at time t = 0, the seller will only apply its offer update
rule. In any other situation (i.e., buyer b first rejects s’s offer and then makes a new offer at
time t > 0), seller s will apply the reject update rule first and then apply the offer update
rule. Thus, a reject update rule and an offer update rule consist of a belief update rule for the
seller when it observes the buyer’s offer at time t > 0.

The definition of sequential equilibria requires that the seller’s belief update rule should be
consistent with the buyer’s strategy in any sequential equilibrium. Assume that a reject update
rule at time t requires that the seller update its belief from ∆b to ∆′b such that ∆′b ⊆ ∆b.
Bayesian consistency requires that all bi ∈ ∆′b reject the seller’s offer and all b j ∈ ∆b−∆′b
accept the offer. By the requirement of sequential rationality, we need to verify that it is
each bi ∈ ∆′b’s optimal strategy to reject the seller’s offer and it is b j ∈ ∆b − ∆′b’s opti-
mal strategy to accept the seller’s offer. Similarly, an offer update rule also adds constraints
to different buyer types’ offering prices due to requirements of Bayesian consistency and
sequential rationality.
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Fig. 2 A high level illustration of our approach (ι(t) = s and |∆0| > 1)

While the seller is making an offer at time t given the sequential equilibria for the continu-
ation game ((t +1) with different beliefs, the seller will consider different reject update rules
and compute its equilibrium offer for each rule. With pure strategies, the seller’s reject update
rules are finite. The other situation is deciding the buyer’s equilibrium offer at time t given the
sequential equilibria for the continuation game ((t + 1) with different beliefs, the buyer will
consider different choice rules regarding whether different buyer types behave in the same
way or behave in different ways. With pure strategies, buyer types’ choice rules are finite.
For each choice rule, we compute each buyer type’s optimal offer and its corresponding offer
update rule. While computing agents’ equilibrium strategies, we also construct equilibrium
existence conditions and check whether those conditions are satisfied.

Roughly, the idea of our approach is the following (see Fig. 2). To compute agents’
equilibrium offers at a continuation game, we first compute sequential equilibria in its con-
tinuation game with different beliefs. Then we compute agents’ equilibrium offers together
with agents’ belief update rules. There are two cases. While computing the seller’s equilib-
rium strategy, we enumerate all possible reject update rules (e.g., reject update rules 1 and
2 in Fig. 2) and for each reject update rule, we first compute the seller’s optimal strategy
in the corresponding continuation game. For example, for the reject update rule 1 in Fig. 2,
we first solve the continuation game ((t + 1,∆1) where ∆1 ⊆ ∆0 is the seller’s updated
belief if the seller’s offer is rejected. While computing the buyer’s equilibrium strategy, we
consider all choice rules and compute different buyer types’ optimal offer for each choice
rule. For instance, for the choice rule 3 in Fig. 2, we need to first solve the continuation
game ((t + 2,∆3). There are two processes involved in computing all sequential equilibria:
a forward search process to determine the set of continuation games to solve and a backward
induction process to compute agents’ equilibrium strategies based on all sequential equilibria
of continuation games. Furthermore, we introduce some equilibrium existence conditions by
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considering the requirements of Bayesian consistency and sequential rationality: if they are
satisfied, there is a sequential equilibrium in the continuation game.

Consider a bargaining problem with 2 buyer types {b1, b2} and T = 5. Our objective is to
compute all sequential equilibria for the continuation game ((0, {b1, b2}). Since ι(0) = s,
we need to consider different reject update rules. Consider the reject update rule that the seller
is making an offer x that will only be accepted by buyer type b1, i.e., if the buyer rejects offer
x , the seller will update its belief to {b2}. To compute the optimal offer x at time t = 0, we
first compute all sequential equilibria for the continuation game ((1, {b2}) starting from time
t = 1. For another reject update rule that the seller is making an offer x that will be rejected
by both buyer types, we need to first compute sequential equilibria for the continuation game
((1, {b1, b2}) with the original belief. To compute sequential equilibria for the continuation
game ((1, {b1, b2}), we need to consider buyer types’ different choice rules. Consider the
choice rule that buyer type b1 makes an acceptable offer but buyer type b2 makes an offer
that will be rejected. For this choice rule, we need to first compute sequential equilibria for
continuation games ((2, {b1}) and ((2, {b2}) starting from time t = 2. In the same way, we
can recursively try different choice rules and reject update rules to compute all sequential
equilibria of the bargaining game.

4.2 Computation reduction

This section provides some theoretical results which drastically reduce the computation
complexity. Before we proceed, we introduce the concept of equivalent offer. In complete
information bargaining, seller s’s optimal offer x∗(t) at time t is the value to be propagated
backward at time point t − 1. That is, if b offers (x∗(t))←s at time t − 1, s will accept it
at time t . With incomplete information, this property no longer holds since s will accept an
offer if and only if the utility of accepting the offer is not less than the expected utility of
making its optimal offer at time t . Given the equilibrium assessment 〈µ, σ ∗〉, the equilibrium
expected utility of seller s’s offer x at time t , denoted as EUs(x, t), is the expected utility of
the seller’s offering x if (1) the seller’s belief at time t is µ(t) and (2) agents act according to
the equilibrium strategies σ ∗ from time t on. The equivalent offer of s’s offering x , denoted
as et

s|µ(t), is a value satisfying Us(et
s|µ(t), t + 1) = EUs(x, t). et

s|µ(t) is the value to be
propagated backward at time point t − 1.

Similarly, the equivalent offer of buyer bi ’s offering x at time t , denoted as et
bi

|µ(t), is
a value satisfying Ubi (e

t
bi

|µ(t), t + 1) = Ubi (E BO(bi , x, t)) where E BO(bi , x, t) is the
equilibrium bargaining outcome of bi if it offers x at time t . In addition, let E BO(bi ,℘)

denote the equilibrium bargaining outcome of bi if agents follow the strategies specified by
a sequential equilibrium ℘. Given a bargaining outcome oc, buyer bi ’s equivalent offer at
time t is given by function ρ(bi , t, oc) which satisfies Ubi (ρ(bi , t, oc), t + 1) = Ubi (oc).

In an equilibrium, it is possible that the seller will make an offer that will be rejected by
all the buyer types. Without loss of generality, we assume * be seller’s offer that will be
rejected by all buyer types. Assume that the seller’s belief is ∆b. A reject update rule specifies
the seller’s updated belief ∆′b ⊆ ∆b if the seller’s offer is rejected. Therefore, the number of
reject update rules are finite since the number of belief set ∆′b ⊆ ∆b is no more than 2|∆b|.
However, the following theorem shows that there is no sequential equilibrium for most of
the reject update rules.

Theorem 4 If there is a reject update rule with updated belief ∆′b ⊆ ∆b such that RPi < RP j
for buyer type bi ∈ ∆b \ ∆′b and buyer type b j ∈ ∆′b, agents’ strategies are not sequentially
rational.
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Proof This result can be proved by contradiction. If there is a sequential equilibrium with this
reject update rule in which s’s equilibrium offer at time t is x , the following two conditions
are satisfied:

1. bi has no incentive to behave as b j , i.e., Ubi (x, t + 1) ≥ Ubi (e
t+1
b j

|∆′b, t + 2) where

et+1
b j

|∆′b is b j ’s equivalent offer in the continuation game starting from t + 1 with belief
∆′b;

2. b j has no incentive to behave as bi , i.e., Ub j (e
t+1
b j

|∆′b, t + 2) ≥ Ub j (x, t + 1).

Condition (1) suggests that x ≤ (et+1
b j

|∆′b)←bi and condition (2) indicates that x ≥
(et+1

b j
|∆′b)←b j . Therefore, equilibrium existence conditions requires that (et+1

b j
|∆′b)←b j ≤

(et+1
b j

|∆′b)←bi , which cannot be true since RPi < RP j .

Due to Theorem 4, we only need to consider reject update rules in which buyer types
with higher reserve prices accept the seller’s equilibrium offer while buyer types with lower
reserve prices reject the seller’s equilibrium offer. Those reject update rules are called feasible
reject update rules.

Definition 5 If a reject update rule with updated belief ∆′b ⊆ ∆b satisfies the condition that
RPi > RP j for any buyer type bi ∈ ∆b \ ∆′b and any buyer type b j ∈ ∆′b, it is a feasible
reject update rule.

Assume that the seller’s belief before applying a reject update rule is ∆b. The total number
of feasible reject update rules we need to consider is at most |∆b| rather than 2|∆b|, which
are the total number of reject update rules. For each feasible reject update rule at time t , we
need to first compute the sequential equilibrium for the continuation game ((t + 1) with the
corresponding updated belief if the seller’s offer is rejected, i.e., ∆′b. Accordingly, we need to
compute sequential equilibria for the continuation game with at most |∆b| different beliefs.

In addition to the above rejected update rules in which according to the equilibrium strat-
egy at least one buyer type will reject the seller’s offer, we also need to consider the case that
according to the equilibrium strategy, the seller’s offer will be accepted by all buyer types. If
the offer is rejected (i.e., the buyer is acting off the equilibrium path), the seller will update its
belief to the buyer type with the highest reserve price according to the optimistic conjectures.
We call this reject update rule as null reject update rule.

The other situation is deciding the buyer’s equilibrium offer at time t . We use the term
“choice rule” to characterize buyer types’ strategies regarding whether they behave in the
same way at a specific decision making point. With pure strategies, buyer types’ choice rules
are finite. Consider that the belief of s on the type of b at time t is µ(t) = ∆b where |∆b| > 1
(note that if |∆b| = 1, the bargaining from time t becomes the trivial complete information
bargaining) and ι(t) = b. Let the equilibrium offer of buyer type bi ∈ ∆b be xbi (t). After
receiving b’s offer, s will update its belief and decide whether to accept the offer from b.
Without loss of generality, we assume that xbi (t) = −1 if bi ’s equilibrium offer will be
rejected by seller s at time t + 1. There are two situations: (1) All buyer types make the same
offer. In this case, a pooling choice rule is chosen by different buyer types. (2) Buyer types
make different offers. That is, a separating choice rule is used by different buyer types.

It is easy to see that there are two pooling choice rules depending on whether the seller
will accept the offer at time t + 1 in equilibrium: (1) accepting pooling choice rule in which
all buyer types make the same acceptable offer to seller s; (2) rejecting pooling choice rule
in which all buyer types make the same rejectable offer (i.e.,−1) to seller s. While the buyer
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adopts the separating choice rule, some buyer types’ equilibrium offers are acceptable to the
seller and the number of separating choice rules is drastically reduced due to the following
theorem.

Theorem 6 There is no equilibrium assessment in pure strategies if buyer types make dif-
ferent acceptable offers at t .

Proof We can easily prove this by contradiction. Assume that there is a sequential equilib-
rium for a belief system in which at time t such that ι(t) = b, buyer bi makes an acceptable
offer x to s and buyer types b j makes an acceptable offer y to s such that x #= y. If x > y,
buyer bi has an incentive to behave like buyer b j by offering price y. The other direction is
analogous.

Therefore, we only need to consider the following separating choice rules: buyer types
∆a

b make an acceptable offer to s at time t but buyer types ∆r
b = ∆b \∆a

b make an offer (i.e.,
−1) that will be rejected by s at time t . The total number of partitions satisfying the condition
∆a

b ∪∆r
b = ∆b is 2|∆b| − 2. However, the following theorem indicates that we only need to

consider at most |∆b| different choice rules.

Theorem 7 Assume that b behaves in different ways at a continuation game with belief set
∆b where ∆b = ∆a

b ∪ ∆r
b at time t. If there is a buyer type bi ∈ ∆a

b and a buyer b j ∈ ∆r
b

such that RPi < RP j , there is no sequential equilibrium for this choice rule.

Proof This result can be proved by contradiction. If there is a sequential equilibrium, the
following two conditions are satisfied: (1) Buyer type bi has no incentive to behave as b j , i.e.,
(et+1

s |∆a
b)←s ≤ ρ(bi , t, E BO(b j ,℘

r )); and (2) Buyer type b j has no incentive to behave as
bi , i.e., ρ(b j , t, E BO(b j ,℘

r )) ≤ (et+1
s |∆a

b)←s. Therefore, equilibrium existence requires
that ρ(b j , t, E BO(b j ,℘

r )) ≤ ρ(bi , t, E BO(b j ,℘
r )).

Assume that E BO(b j ,℘
r ) = (x, t ′) where T ≥ t ′ > t . From the definition of equiv-

alent offers, we have
(
RP j − ρ(b j , t, E BO(b j ,℘

r ))
)

· δt+1
b = (RP j − x) · δt ′

b , which

can be rewritten as ρ(b j , t, E BO(b j ,℘
r )) = RP j − (RP j − x) · δt ′−t−1

b . Similarly, we
have ρ(bi , t, E BO(b j ,℘

r )) = RPi − (RPi − x) · δt ′−t−1
b . Since RPi < RP j , it follows

that ρ(bi , t, E BO(b j ,℘
r )) < ρ(b j , t, E BO(b j ,℘

r )) which contradicts with equilibrium
existence conditions.

Theorem 7 says that we only need to consider separating choice rules in which buyer types
with higher reserve prices make an acceptable offer while buyer types with lower reserve
prices make an offer that will be rejected by the seller. Those separating choice rules are
called feasible separating choice rules:

Definition 8 A separating choice rule ∆b = ∆a
b ∪∆r

b is a feasible separating choice rule if
RPi > RP j for any buyer type bi ∈ ∆a

b and any buyer type b j ∈ ∆r
b.

Theorem 7 drastically reduces the number of separating choice rules we need to consider.
Consider a belief set ∆b at time t < T −1 such that |∆b| > 1 and ι(t) = b. The total number
of partitions satisfying the condition ∆a

b ∪∆r
b = ∆b is 2|∆b|− 2. However, the total number

of feasible separating choice rules is |∆b|−1. For each feasible choice rule at time t , we need
to first compute the sequential equilibria for the continuation game ((t + 1) with beliefs ∆a

b
and ∆s

b. Accordingly, we need to compute sequential equilibria for the continuation game
with at most 2(|∆b|− 1) different beliefs.

We call the set of feasible separating choice rules together with the two pooling choice
rules as feasible choice rules. Assume that the seller’s belief before applying an offer update
rule is ∆b, there are |∆b| + 1 feasible choice rules in total.
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4.3 Outline of the algorithm

Algorithms 1 and 2 outline the main steps for computing agents’ equilibrium strategies in a
continuation game based on the sequential equilibria in its continuation game with different
beliefs. To compute a buyer agent’s equilibrium offer, the buyer considers different feasible
choice rules and for each choice rule, we need to consider all the sequential equilibria of the
continuation game with beliefs corresponding to the choice rule since there may be multiple
sequential equilibria for the continuation game with a specific belief. Different buyer types’
equilibrium strategies are derived using backward induction (see Sect. 5). To compute the
seller’s equilibrium offer at a time point, we consider all the feasible reject update rules and for
each reject update rule, we compute the sequential equilibria of the continuation game with
the belief corresponding to the reject update rule. We compute the seller’s equilibrium offer
for each sequential equilibrium corresponding to a reject update rule and check equilibrium
existence conditions (see Sect. 6).

Algorithm 1 Compute equilibrium strategies for a continuation game ((t,∆b) such that
ι(t) = b, |∆b| > 1, and t < T − 1

Let SE(∆b, t)=∅ be the set of sequential equilibria for the continuation game with belief ∆b at t
for each feasible choice rule do

for each equilibrium strategy combination of the continuation game with beliefs corresponding to the
choice rule starting from time t + 1 do

Compute buyer types’ equilibrium offers and construct offer update rules (Sect. 5)
if equilibrium existence conditions are satisfied then

add agents’ equilibrium strategies from time t to SE(∆b, t)
end if

end for
end for
return SE(∆b, t)

Algorithm 2 Compute equilibrium strategies for a continuation game ((t,∆b) such that
ι(t) = s, |∆b| > 1, and t < T − 1

Let SE(∆b, t) = ∅ be the set of sequential equilibria for the continuation game with belief ∆b at t
for each feasible reject update rule do

for each sequential equilibrium of the continuation game with the belief corresponding to the reject update
rule do

Compute the seller s’s optimal offer and buyer types ∆b’s acceptance decision at time t + 1 (Sect. 6)
if equilibrium existence conditions are satisfied then

add agents’ equilibrium strategies from time t to SE(∆b, t)
end if

end for
end for
return SE(∆b, t)

4.4 Off the equilibrium path optimal strategies

Before analyzing equilibrium strategies, we provide the optimal strategies in the situations
seller s believes the buyer to be of one single type. There are two cases: (1) Seller s has the
right belief about the type of the buyer b. In this case, agents’ equilibrium strategies are the
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equilibrium strategies of the corresponding complete information bargaining discussed in
Sect. 2. Let x∗bi

(t) be any agent optimal offer at time t when b is of type bi in this case. (2)
Seller s has the wrong belief about the type of the buyer b, i.e., bi is believed to be b j .

Lemma 9 x∗bi
(t) ≥ x∗b j

(t) if RPi > RP j .

Proof Case 1 (ι(T ) = s). It follows that x∗bi
(T −1) = x∗b j

(T −1) = RPs. Then x∗bi
(T −2) =

RPi (1−δb)+δbx∗bi
(T −1) > x∗b j

(T −2) = RP j (1−δb)+δbx∗bi
(T −1). Similarly, we have

x∗bi
(T − 3) = RPs(1− δs) + δsx∗bi

(T − 2) and x∗b j
(T − 3) = RPs(1− δs) + δsx∗b j

(T − 2).
Thus we have x∗bi

(T −3) > x∗b j
(T −3). Recursively, we have x∗bi

(t) > x∗b j
(t) for t < T −3.

Case 2 (ι(T ) = b). It follows that x∗bi
(T − 1) = RPi > x∗b j

(T − 1) = RP j . Then at time
T − 2, we have x∗bi

(T − 2) = RPs(1− δs) + δsx∗bi
(T − 1) and x∗b j

(T − 2) = RPs(1− δs) +
δsx∗b j

(T − 1). Thus, x∗bi
(T − 2) > x∗b j

(T − 2). Recursively, we have x∗bi
(t) > x∗b j

(t) for
t < T − 2.

We can see that bi is weaker than b j in terms of its offering price at each time point
in complete information bargaining. Similarly, we can get RPi − x∗bi

(t) ≥ RP j − x∗b j
(t).

RPi − x∗bi
(0) is the gain (utility) of bi in complete information bargaining and RP j − x∗b j

(0)

is the gain (utility) of b j in complete information bargaining.

Lemma 10 x∗bi
(t) ≤ (x∗bi

(t + 1))←bi and x∗b j
(t) ≤ (x∗b j

(t + 1))←b j if RPi > RP j .

Proof We can get this result by following the same procedure in the proof of Lemma 9.

Lemma 10 indicates that the buyer will accept sellers’ lowest equilibrium price in com-
plete information bargaining, i.e., agents will reach a final agreement at time T − 2 in the
complete information bargaining case.

Agents’ equilibrium strategies when seller s has the wrong belief about the type of the
buyer b are specified in the following theorem.

Theorem 11 If seller s has the wrong belief about the type of b, its optimal strategies are
those in complete information bargaining. Assume that RPi > RP j . The optimal strategies
σ ∗bi

(t)|{b j } of buyer bi when it is believed to be b j are:

σ ∗bi
(t)|{b j } =

{
accepty if y ≤ (x∗b j

(t))←bi

offer x∗b j
(t) otherwise

The optimal strategies σ ∗b j
(t)|{bi } of the buyer b j when it is believed to be bi are:

– If ι(T ) = b, accept y if y ≤ min{(x∗bi
(t))←b j , RP j }. Otherwise, offer min{x∗bi

(t), RP j }.
– If ι(T ) = s, accept y if y ≤ min{(x∗bi

(t))←b j }, (RPj)←(T−t)[b j ]. Otherwise, offer
min{x∗bi

(t), (RPs)←(T−1−t)[b j ]}.

Proof Case 1 (bi is believed to be b j ). If the seller offers x∗b j
(t−1), buyer bi ’s optimal strat-

egy is to accept it as the minimum price that the seller would accept at time t +1, i.e., x∗b j
(t),

gives bi a utility lesser than x∗b j
(t − 1) since (x∗b j

(t))←bi > (x∗b j
(t))←b j = x∗b j

(t − 1). If
the seller acts off the equilibrium path and offers a price y lower than x∗b j

(t − 1), the optimal
strategy of bi is obviously to accept y. If the seller offers a price y greater than x∗b j

(t−1), the
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optimal strategy of bi is to accept y only if y ≤ (x∗b j
(t))←bi , otherwise bi ’s optimal strategy

is to reject y and to offer x∗b j
(t). Note that x∗bi

(t) ≤ RPi and x∗b j
(t) ≤ RPi .

Case 2 (b j is believed to be bi ). This case is more complicated as seller’s optimal offer
x∗bi

(t − 1) on its equilibrium path is not acceptable to b j as when b j offers x∗bi
(t) at time

t, (x∗bi
(t))←b j < (x∗bi

(t))←bi = x∗bi
(t − 1). In addition, b j may not offer x∗bi

(t) if it is
advantageous to wait for the agreement at time T . There are two situations: (1) ι(T ) = b.
In this case, s will propose RPi at time T − 1, which is not acceptable to buyer b j as RPi
is higher than b j ’s reserve price. Therefore, b j ’s optimal offer at time t is min{x∗bi

(t), RP j }.
Note that x∗b j

(t) is always not acceptable to s. (2) ι(T ) = s. In this case, b j will propose RPs

at time T − 1, which will be accepted by seller s at time T . Therefore, b j ’s optimal offer at
time t is min{x∗bi

(t), (RPs)←(T−1−t)[b j ]}.

5 The buyer’s equilibrium offer

This section focuses on computing the buyer’s equilibrium offer at a continuation game
((t,∆b) such that ι(t) = b. If t = T , it is the buyer agent’s dominant strategy to accept
any offer which is not worse than its reserve price. At time t = T − 1, different buyer
types’ optimal offer is RPs since seller s will accept the offer at time T . If |∆b| = 1, agents’
equilibrium strategies are the equilibrium strategies of the corresponding complete informa-
tion bargaining discussed in Sect. 2. When |∆b| > 1 at time t < T − 1, buyer types have
multiple choice rules and we need to consider the equilibrium strategies for each choice rule.
There could be multiple equilibrium strategies for a choice rule since there could be multiple
sequential equilibria for the continuation game with a reasonable belief starting from time
t + 1. In the rest of this section, we show how to compute different buyer types’ equilibrium
strategies given agents’ equilibrium strategies of the continuation game with different beliefs
and construct agents’ belief systems.

5.1 Pooling choice rule

Here we consider agents’ equilibrium strategies when b employs a pooling choice rule at a
continuation game ((t,∆b). Since all buyer types will behave in the same way, seller s will
not change its belief after observing the buyer’s equilibrium offer. Thus, we need to consider
all sequential equilibria SE(∆b, t +1) of the continuation game with belief ∆b at time t +1.
If SE(∆b, t + 1) = ∅, there is no sequential equilibrium for this choice rule. Otherwise, for
each sequential equilibrium ℘ ∈ SE(∆b, t + 1), we compute buyer types’ optimal offer and
check the satisfaction of equilibrium existence conditions.

First we consider the accepting pooling choice rule. Let et+1
s |∆b be s’s equivalent offer at

time t + 1 given the belief ∆b in the sequential equilibrium ℘. At time t + 1, the equilibrium
strategy of s is that s will accept any offer y if y ≥ (et+1

s |∆b)←s. Therefore, the equilibrium
offer of buyer bi ∈ ∆b at time t is (et+1

s |∆b)←s.5 The corresponding offer update rule is the
following:

µ(t + 1) =
{

∆b if σb(t) = offer (et+1
s |∆b)←s

{bh(∆b)} otherwise

5 We assume that buyer types are “cooperatively selfish” in the sense that when they are making the same
acceptable offer, the will choose the lowest acceptable price.
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If buyer bi ∈ ∆b deviates from offering (et+1
s |∆b)←s, it will be believed to be of type

bh(∆b). Following Theorem 11, when a buyer bi is believed to be of type bh(∆b) which
has a reserve price no less than RPi , bi ’s optimal offer at time t is x∗bi

(t)|{bh(∆b)}. Thus,
the condition of equilibrium existence needed to be checked is et

bi
|∆b ≤ x∗bi

(t)|{bh(∆b)}
for all bi ∈ ∆b. If the equilibrium existence conditions are satisfied, there is a sequential
equilibrium with buyer types’ offer (et+1

s |∆b)←s and ℘ as the sequential equilibrium for the
continuation game from time t + 1. The sequential equilibrium will be added to SE(∆b, t).
Buyer bi ’s equilibrium bargaining outcome in this equilibrium is E BO(bi , (et+1

s |∆b)←s, t)
= ((et+1

s |∆b)←s, t +1) since (et+1
s |∆b)←s is acceptable to the seller. Thus buyer bi ’s equiv-

alent offer is et
bi

|∆b = (et+1
s |∆b)←s.

Then we consider the rejecting pooling choice rule. By definition, all buyer types ∆b will
make an offer (i.e., −1) that will be rejected by the seller. Buyer bi ’s equilibrium bargain-
ing outcome is the bargaining outcome in the sequential equilibrium ℘, i.e., E BO(bi ,−1,

t) = E BO(bi ,℘). Thus buyer bi ’s equivalent offer is et
bi

|∆b = ρ(bi , t, E BO(bi ,℘)). We
can also derive et

bi
|∆b in the following way. If according to the sequential equilibrium ℘,

seller s’s equilibrium offer xt+1|∆b at time t + 1 is * , buyer bi ’s equivalent offer at time
t is then et

bi
|∆b = (et+2

bi
|∆b)←2[bi ] where et+2

bi
|∆b is bi ’s equivalent offer at time t + 2. If

xt+1|∆b #= * , buyer bi ’s equivalent offer et
bi

|∆b at time t is

– et
bi

|∆b = (xt+1|∆b)←bi if according to the sequential equilibrium ℘, s’s equilibrium
offering price xt+1|∆b at time t + 1 will be accepted by buyer type bi

– et
bi

|∆b = (et+2
bi

|∆′b)←2[bi ] if according to the sequential equilibrium ℘, buyer type bi

will reject s’s equilibrium offering price xt+1|∆b at time t + 1 where ∆
′
b is the set of

buyer types that will reject s’s offer at time t + 1

The corresponding offer update rule is the following:

µ(t + 1) =
{

∆b if σb(t) = offer − 1
{bh(∆b)} otherwise

If buyer b deviates from offering−1 at time t , it will be treated as buyer type bh(∆b) and
the equilibrium existence condition is et

bi
|∆b ≤ x∗bi

(t)|{bh(∆b)} for all bi ∈ ∆b.

5.2 Separating choice rule

Next we consider agents’ equilibrium strategies at a continuation game ((t,∆b) when buyer
b employs the separating choice rule where buyer types ∆a

b make an acceptable offer while
buyer types ∆r

b make a rejectable offer −1. For this choice rule, the reasonable beliefs of
its continuation game are ∆a

b and ∆r
b. If one of the continuation games has no sequential

equilibrium, there is no sequential equilibrium for this choice rule. We show how to compute
agents’ equilibrium strategies at time t given a sequential equilibrium ℘a ∈ SE(∆a

b, t + 1)

and a sequential equilibrium ℘r ∈ SE(∆r
b, t + 1).

Let et+1
s |∆a

b be s’s equivalent offer at time t + 1 in the equilibrium ℘a . Let et+1
s |∆r

b
(xt+1|∆r

b, respectively) be s’s equivalent offer (equilibrium offer, respectively) at time t + 1
in the equilibrium ℘r . Similar to the pooling acceptance choice rule, the optimal offer of
buyer types ∆a

b at time t is (et+1
s |∆a

b)←s. Accordingly, buyer bi ∈ ∆a
b’s equivalent offer is

et
bi

|∆b = (et+1
s |∆a

b)←s since its equilibrium bargaining outcome is ((et+1
s |∆a

b)←s, t + 1).
By convention, the equilibrium offer of buyer type b j ∈ ∆r

b at time t is −1. Buyer b j ’s
equilibrium bargaining outcome is the bargaining outcome E BO(b j ,℘

r ) in the sequential
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equilibrium ℘r . Thus buyer b j ∈ ∆r
b’s equivalent offer is et

b j
|∆b = ρ(b j , t, E BO(b j ,℘

r )).

We can also compute et
b j

|∆b by considering the following two situations:

– If xt+1|∆r
b #= * , the equivalent offer of buyer b j ∈ ∆r

b at time t is (1) et
b j

|∆b =
(xt+1|∆r

b)←b j if according to the sequential equilibrium℘r , s’s equilibrium offering price
xt+1|∆r

b at time t +1 will be accepted by buyer type b j ; or (2) et
b j

|∆b = (et+2
b j

|∆r ′
b )←2[b j ]

if according to the sequential equilibrium ℘r , buyer type b j will reject s’s equilibrium
offering price xt+1|∆r

b at time t + 1 where ∆r ′
b ⊆ ∆r

b is the set of buyer types that will
reject s’s offer at time t + 1.

– If xt+1|∆r
b = * , buyer b j ∈ ∆r

b’s equivalent offer at time t is then et
b j

|∆b =
(et+2

b j
|∆r

b)←2[b j ] where et+2
b j

|∆r
b is b j ’s equivalent offer at time t + 2.

Seller s will update its belief to ∆a
b when it receives an offer (et+1

s |∆a
b)←s. If it receives

an offer−1, it will update its belief to ∆r
b. Otherwise, it will update its belief to bh(∆b). The

existence of such an equilibrium depends on the following conditions:

– Any buyer type bi ∈ ∆a
b has no incentive to behave as any buyer type b j ∈ ∆r

b.
If bi pretends to be b j , it will offer −1 at time t and its equilibrium bargaining out-
come will be E BO(b j ,−1, t) = E BO(b j ,℘

r ). Therefore, this condition requires that
Ubi (E BO(bi , (et+1

s |∆a
b)←s, t)) ≥ Ubi (E BO(b j ,℘

r )) or equivalently, (et+1
s |∆a

b)←s
≤ ρ(bi , t, E BO(b j ,℘

r )).
– Any buyer type b j ∈ ∆r

b must have no incentive to behave as bi ∈ ∆a
b. If b j behaves as

bi , it will offer (et+1
s |∆a

b)←s at time t and the offer will be accepted. b j will not choose to
behave as bi if Ub j (E BO(b j ,℘

r ) ≥ Ub j (E BO(b j , (et+1
s |∆a

b)←s, t))) or equivalently,
ρ(b j , t, E BO(b j ,℘

r )) ≤ (et+1
s |∆a

b)←s.
– No buyer type has an incentive to offer a price different from the above two equilibrium

offers. If a buyer type bi ∈ ∆b offers a price different from (et+1
s |∆a

b)←s and −1, it will
be treated as buyer type bh(∆b) and its optimal offer at time t is then x∗bi

(t)|{bh(∆b)}.
Buyer type bi will not choose to act off the equilibrium path if et

bi
|∆b ≤ x∗bi

(t)|{bh(∆b)}.
If all the three conditions are satisfied, buyer types’ optimal offers, the belief update rule,

and the sequential equilibria ℘a and ℘r for the continuation game starting from time t + 1
consists of a sequential equilibrium for the continuation game ((t,∆b).

6 The seller’s equilibrium offer

This section discusses how to compute the seller’s equilibrium offer at a continuation game
((t,∆b) such that ι(t) = s. If t = T , it is the seller’s dominant strategy to accept any offer
which is not worse than its reserve price. At time t = T−1, seller s has multiple choices, each
for one buyer type in ∆b. The optimal offer of seller s for buyer type bi ∈ ∆b is RPi , which
gives seller s an expected utility EUs(RPi , T − 1) = ∑

b j∈∆b,RP j≥RPi
ωb j (∆b)Us(RPi , T )

since RPi is only acceptable to a buyer type with a reserve price no less than RPi . The opti-
mal offer of s at time T − 1 is y = arg maxy∈{RPi |bi∈∆b} EUs(y, T − 1) and its equivalent
offer is eT−1

s |∆b such that Us(eT−1
s |∆b, T ) = EUs(y, T − 1). If |∆b| = 1, agents’ equi-

librium strategies are the equilibrium strategies of the corresponding complete information
bargaining discussed in Sect. 2.

Our idea of computing the seller’s equilibrium offer given a belief ∆b (|∆b| > 1) at
time t < T − 1 is the following. We consider all possible reject update rules and for each
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reject update rule, we compute all the sequential equilibria for the continuation game with
beliefs corresponding to the reject update rule. Then for each sequential equilibrium for a
reject update rule, we compute the seller’s optimal offer and check the equilibrium existence
conditions. Theorem 4 suggests that we only need to consider reject update rules in which
buyer types with higher reserve prices accept the seller’s equilibrium offer while buyer types
with lower reserve prices reject the seller’s equilibrium offer. Thus we only need to consider
a restricted set of beliefs for the continuation game.

We consider a reject update rule in which buyer types ∆′b will reject the seller’s offer and
buyer types ∆b − ∆′b will accept the seller’s offer such that such that RPi > RP j for any
bi ∈ ∆b − ∆′b and b j ∈ ∆′b. We first compute all the sequential equilibria SE(∆′b, t + 1)

for the continuation game with belief ∆′b starting from time t + 1. If there is no sequential
equilibrium for the continuation game ((t +1,∆′b), there is no sequential equilibrium for this
reject update rule. Otherwise, for each sequential equilibrium ℘ ∈ SE(∆′b, t + 1), we check
whether there exists a price x such that the price, the reject update rule, and the sequential
equilibrium ℘ constitute a sequential equilibrium for the continuation game ((t,∆b).

A price x , a reject update rule, and a sequential equilibrium ℘ constitute a sequential equi-
librium if and only if the following three conditions are satisfied (assume that bi ∈ ∆b−∆′b
and b j ∈ ∆′b where buyer types ∆′b will reject the seller’s offer x):

1. bi is willing to accept the offer x and does not want to behave as b j . That is, for any
bi ∈ ∆b − ∆′b and b j ∈ ∆′b, Ubi (x, t + 1) ≥ Ubi (E BO(b j ,℘)) where E BO(b j ,℘)

is the bi ’s equilibrium bargaining outcome when it behaves as b j . This condition can
be reformulated as x ≤ minbi∈∆b−∆′b,b j∈∆′b ρ(bi , t, E BO(b j ,℘)), which provides an
upper bound for seller’s offering price x . Intuitively, if the offering price x is too high
(e.g., higher than RPi ), bi can not accept the offering price.

2. b j will reject the offer x . That is, each buyer type b j ∈ ∆′b has no incentive to behave
as bi , i.e., Ub j (x, t + 1) < Ub j (E BO(b j ,℘)). This condition can be rewritten as
x > maxb j∈∆′b ρ(b j , t, E BO(b j ,℘)), which provides a lower bound for the offering
price x . Intuitively, if the offering price x is very low (e.g., close to 0), b j will choose to
accept the favorite offer.

3. Seller s has no incentive to choose a price other than x given the reject update rule and
the sequential equilibrium ℘ of the continuation game ((t + 1,∆′b);

The third condition requires that the price x is seller’s optimal offer given the reject update
rule and the sequential equilibrium ℘ for the continuation game. Any buyer type can either
accept the seller’s offer x or reject it and receive a bargaining outcome in the sequential equi-
librium ℘ for the continuation game. Formally, buyer type b j ∈ ∆′b will accept a price x if
and only if x ≤ ρ(b j , t, E BO(b j ,℘)). Buyer type bi ∈ ∆b − ∆′b will accept a price
x if and only if x ≤ minb j∈∆′b ρ(bi , t, E BO(b j ,℘)). We can define the acceptance
price φ(bi ,∆

′
b,℘) of each buyer type bi ∈ ∆b given the sequential equilibrium ℘ as follows:

φ(bi ,∆
′
b,℘) =

{
ρ(bi , t, E BO(bi ,℘)) if bi ∈ ∆′b
minb j∈∆′b ρ(bi , t, E BO(b j ,℘)) otherwise

Seller s’s expected utility of making an offer x given the sequential equilibrium ℘ is
defined as

EUs(x, t) =
∑

bi∈∆b

ωbi (∆b)EUs(x, t, bi )
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where EUs(x, t, bi ) is seller s’s utility if the buyer is of type bi , which is defined as

EUs(x, t, bi )=






Us(x, t + 1) if x≤φ(bi , ∆
′
b, ℘)

Us(E BO(bi , ℘)) if x >φ(bi , ∆
′
b, ℘) and bi ∈∆′b

Us(minb j∈∆′b ρ(bi , t, E BO(b j , ℘)), t+1) otherwise

It is easy to see that the optimal offer the seller should be either one buyer type’s acceptance
price or a price that will be rejected by all buyer types (i.e., * ). If the seller’s optimal offer
x satisfies the first two equilibrium existence conditions, there is a sequential equilibrium in
which the seller offers price x and buyer types ∆′b will reject the offer with the sequential
equilibrium ℘. If such a x value does not exist, there is no sequential equilibrium given this
reject update rule and the continuation game equilibrium ℘.

In addition to the above reject update rules under which at least one buyer type will choose
to reject the offer, the seller can also make an offer such that it is all buyer types’ equilibrium
strategies to accept the offer. It is easy to see that the highest offer that will be accepted by all
buyer types in equilibrium is x = minbi∈∆b(x∗bi

(t + 1)|bh(∆b))←bi since if a seller offers
a price larger than x , at least one buyer type has an incentive to deviate from accepting the
offer. If the buyer rejects x , the seller will update its belief to bh(∆b). The acceptance price
of buyer type bi for this reject update rule is thus (x∗bi

(t + 1)|bh(∆b))←bi . If the optimal
offer of the seller in this case is not acceptable to all the buyer types (i.e., the optimal offer is
not minbi∈∆b(x∗bi

(t + 1)|bh(∆b))←bi ), there is no sequential equilibrium for this null reject
update rule. Otherwise, there is a sequential equilibrium in which the seller will make an
offer which will be accepted by all buyer types.

7 Analysis of the approach

This section analyzes the proposed approach. We first show that the proposed approach is
sound and is complete. Then we experimentally show that there is at least one pure strat-
egy sequential equilibrium in most games with moderate complexity. We also evaluate the
running time of our algorithm. Finally, we give an example showing how our approach works.

Theorem 12 Our algorithm can generate all pure strategy sequential equilibria.

Proof Our algorithm is complete since at any decision making point, we consider (1) all
sequential equilibria of the continuation game with different beliefs, (2) all choice rules
when it is the buyer’s turn to make an offer, and (3) all possible reject update rules if it is the
seller’s turn to make an offer. Furthermore, we use optimistic conjectures off the equilibrium
path and, if an assessment is not an equilibrium with optimistic conjectures, then it cannot
be of equilibrium with other conjectures.

If all equilibrium existence conditions are satisfied, agents’ strategies and belief systems
generated by our algorithm constitutes a sequential equilibrium. The sequential rationality
is easily seen from the backward construction: agents’ strategies at time t are optimal in
the continuation game starting from time t . Consistency can be proved by the assessment
sequence an = (µn, σn) where σn is the fully mixed strategy profile such that for the seller
and buyer type bh(∆0

b) there is probability 1 − 1/n of performing the action prescribed by
the equilibrium strategy profile and the remaining probability 1/n is uniformly distributed
among the other allowed actions, while for any other buyer type bi ∈ ∆0

b − bh(∆0
b), there is

probability 1− 1/nT of performing the action prescribed by the equilibrium strategy profile
and the remaining probability 1/nT is uniformly distributed among the other allowed actions,
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Table 2 Simulation parameters Parameters Value range

Deadline (T ) {2, . . . , 14}
Number of buyer types (|∆0

b|) {2, . . . , 9}
Reserve price of buyer (RPi ) [40, 100]
Reserve price of seller (RPs) [5, 20]
Discounting factors (δs, δb) [0.5, 1)

and µn is the system of beliefs obtained applying Bayes rule starting from the same prior
probability distribution P0

b . As n → ∞, the above mixed strategy profile converges to the
equilibrium strategy profile. In addition, the beliefs generated by the mixed strategy profile
converges to the prior probability distribution. Thus, the assessment is consistent.

Since we focus on pure strategy equilibrium, there may be no sequential equilibrium
for some bargaining games. The non-existence problem of the equilibrium in pure strate-
gies is critical since it may affect the applicability of alternating-offers protocol in realistic
settings. Here we show one example which has no sequential equilibrium. The bargaining
game with the following parameters: T = 2, ι(0) = b, RPs = 10, RP1 = 100, RP2 =
40,ω0

b1
= 0.6,ω0

b2
= 0.4, δs = 0.9, and δb = 0.8. First consider that the buyer is apply-

ing the pooling accepting choice rule at time 0. With the initial belief, the seller will get a
utility of 0.6(100 − 10)0.92 = 43.74 if it offers RP1 at time t = 1 and will get a utility of
(40− 10)0.92 = 24.3 if it offers RP2 at time t = 1. Therefore, the optimal offer of the seller
with the initial belief at t = 1 is offering 100. Accordingly, the optimal offer of all buyer
types is (100)←s = 58.6. Obviously, buyer b2 will deviate from it since the offering price
58.6 is higher than its reserve price 40. Consider the pooling rejecting choice rule in which
all buyer types offer −1 and buyer b1’s equivalent offer is (100)←b1 = 100. In this case,
buyer b1 has an incentive to offer x∗b1

(0) = 91 which will be accepted by the seller since it
will update its belief to {b1} after receiving an offer other than 100. The final choice rule for
the buyer is the separating choice rule in which buyer b1 offers x∗b1

(0) = 91 and buyer b2
offers −1. However, buyer b1 has an incentive to offer −1 since at time t = 1 the seller will
offer RP2 = 40, which is better since (40)←b1 = 52 < x∗b1

(0) = 91. Therefore, there is no
sequential equilibrium for this bargaining game.

On the other hand, there may be multiple pure strategy sequential equilibria for each bar-
gaining game and our algorithm can find all of them. Based on the computation reduction
techniques, we just need to find sequential equilibria for at most |∆0

b| continuation games
((t,∆b) at time t where ∆b ⊆ ∆0

b. Let ,(t,∆b) be the maximum number of sequential
equilibria for the continuation game ((t,∆b). If t = T − 1, it follows that ,(t,∆b) = 1.
Otherwise, we have the following: (1) If ι(t) = b,,(t,∆b) = O(|∆b|,(t + 1,∆b)2) since
buyer types can try different choice rules and for each choice rule, we need to consider all
the equilibrium combinations of at most two continuation games. (2) If ι(t) = s,,(t,∆b) <

O(|∆b|2(,(t + 1,∆b))) since we need to consider |∆b| + 1 reject update rules and for each
reject update rule, we need to consider all the sequential equilibria for the corresponding con-
tinuation game. We can see that the number of sequential equilibria may double exponentially
increase with the number |∆0

b| of buyer types and the deadline T .
To evaluate the percentage of games with at least one pure strategy sequential equilibrium,

we performed a series of experiments (using JAVA) in a variety of test environments and the
parameters are given in Table 2. In the experiments, the negotiation deadline is randomly
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selected from {2, . . . , 14}, the number of buyer types is randomly selected from {2, . . . , 9}
and the initial probability of each buyer type is set randomly. The reserve price of each buyer
type is randomly selected from [40, 100] and the reserve price of the seller is randomly
selected from [5, 20]. Therefore, the reserve price of each buyer is always higher than the
reserve price of the seller and the two agents have a negotiation space. Agents’ discounting
factors model how agents’ utilities decrease with time. When discounting factors are smaller
than 0.5, agents’ utilities drastically decrease with time. In order to make our setting more
realistic, agents’ discounting factors are randomly selected from [0.5, 1). The agent making
the first offer is randomly determined. The above setting represents a wide range of scenarios.

Experimental results show that there is at least one sequential equilibrium in∼ 99.7 % of
the bargaining games. Table 3 shows the average number of sequential equilibria (including
both games with sequential equilibria and without sequential equilibria) and percentage of
games with sequential equilibria in negotiation games with different deadlines and number
of buyer types. For each combination of deadlines and number of buyer types, we randomly
generated over 1,000 scenarios and computed the average values. We can see that the aver-
age number of sequential equilibria or the percentage of games with sequential equilibria
increases with the increase of deadlines. Similarly, the average number of sequential equi-
libria slightly increase with the number of buyer types. It can be observed from Table 3
that when the deadline is longer than 2 and the number of buyer types is more than 3, all
scenarios have at least one sequential equilibrium. With more buyer types, there are more
choice rules and reject update rules and potentially, there will be more sequential equilibria.
However, more buyer types introduce more stringent equilibrium existence conditions since
an equilibrium requires that each buyer type has an incentive to choose a different strategy.

Our algorithm can be treated as a tree based search algorithm, each node corresponding to
a continuation game with certain belief. Consider the problem of solving a continuation game
((t,∆b) at time t . If ι(t) = b, we need to consider |b| + 1 choice rules and thus we need
to consider at most 2|b| continuation games at time t + 1. If ι(t) = s, we need to consider
|∆b| + 1 reject update rules and thus we need to consider at most |∆b| + 1 continuation
games at time t + 1. The height of a tree is T + 1. Therefore, the number of continuation
games we need to solve is bounded by O(T |∆0

b|T +1). In our backward induction approach,
the equilibrium calculation for a continuation game with certain belief may be conducted
multiple times. To avoid the repetition of equilibrium calculation in our approach, we stored
known equilibrium strategies for each continuation game with certain belief. If there is no
calculation repetition, the computational complexity of our approach is not higher than any
other complete algorithm.

We experimentally evaluated the running time to our algorithm using the setting specified
in Table 2. All experiments run on a PC with a 2.16 Ghz Intel Pentium Dual processor and
2 GB of memory. Experimental results show that the algorithm’s running time increases with
the deadlines and the number of buyer types. Table 4 shows the average time of computing all
the sequential equilibria in a bargaining game. The average running time is only about 12 s
when the minimum deadline of the two agents is no higher than 14 and the number of buyer
types is no more than 9. We can find that the computation time increases drastically with the
increase of both the negotiation deadline and the number of buyer types, which coincides
with our analysis about the number of continuation games our algorithm has to solve.

In this paper we compute all the sequential equilibria for a bilateral bargaining game. The
algorithm is much faster if we terminate our algorithm once it finds one sequential equilib-
rium. Table 5 shows the average computation time when we just compute one sequential
equilibrium. The overall computation time for all the cases in Table 4 is drastically reduced
as indicated by Table 5, with the more complicated cases showing a higher percentage of
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Table 4 Average computation time for computing all sequential equilibria (in seconds)

T |∆0
b| = 2 |∆0

b| = 3 |∆0
b| = 4 |∆0

b| = 5 |∆0
b| = 6 |∆0

b| = 7 |∆0
b| = 8 |∆0

b| = 9

2 0.01 0.01 0.02 0.04 0.05 0.08 0.11 0.14

3 0.02 0.05 0.11 0.21 0.37 0.60 0.95 1.38

4 0.03 0.10 0.26 0.53 1.02 1.77 2.93 4.64

5 0.05 0.17 0.45 0.97 1.90 3.39 5.78 9.35

6 0.07 0.24 0.66 1.47 2.99 5.42 9.43 15.50

7 0.08 0.33 0.90 2.07 4.22 7.85 13.82 23.09

8 0.10 0.41 1.18 2.71 5.66 10.73 19.00 31.89

9 0.12 0.51 1.46 3.45 7.27 13.78 24.90 42.61

10 0.15 0.60 1.80 4.32 9.14 17.82 32.56 54.40

11 0.17 0.73 2.16 5.24 11.39 22.33 41.32 70.60

12 0.20 0.86 2.63 6.46 14.39 28.12 51.27 92.55

13 0.23 1.02 3.09 7.75 17.28 36.79 69.48 119.52

14 0.26 1.19 3.73 10.14 23.70 50.38 95.47 176.75

Table 5 Average computation time when computing one equilibrium (in seconds)

T |∆0
b| = 2 |∆0

b| = 3 |∆0
b| = 4 |∆0

b| = 5 |∆0
b| = 6 |∆0

b| = 7 |∆0
b| = 8 |∆0

b| = 9

2 0.01 0.01 0.02 0.03 0.04 0.06 0.09 0.11

3 0.02 0.04 0.09 0.16 0.27 0.44 0.70 1.00

4 0.03 0.07 0.17 0.34 0.63 1.06 1.73 2.72

5 0.04 0.11 0.28 0.59 1.10 1.91 3.13 4.90

6 0.05 0.15 0.38 0.79 1.52 2.70 4.61 7.12

7 0.05 0.20 0.50 1.09 2.12 3.68 6.22 10.10

8 0.06 0.23 0.59 1.29 2.49 4.53 7.70 12.74

9 0.07 0.27 0.71 1.56 3.17 5.76 9.65 15.56

10 0.08 0.29 0.78 1.78 3.49 6.39 10.81 17.36

11 0.09 0.35 0.90 2.10 4.08 7.59 13.20 20.94

12 0.10 0.37 0.95 2.19 4.51 7.91 14.57 22.73

13 0.11 0.42 1.11 2.57 5.10 9.05 15.63 26.84

14 0.12 0.44 1.16 2.60 5.25 9.44 16.87 29.82

reduction. Most importantly, the effect of the deadline and the number of buyer types on
the computation time is less significant, which is mainly due to the number of equilibria
increases with the increase of the deadline and the number of buyer types (Table 3).

The algorithm for producing equilibrium strategies is a backward induction process, which
starts from the continuation game with the initial belief at time t = 0. Here we show an exam-
ple of equilibrium calculation for the bargaining game with the following parameters: T = 3,
ι(0) = s, RPs = 10, RP1 = 100, RP2 = 60, RP3 = 50,ω0

b1
= 0.25, ω0

b2
= 0.5,ω0

b3
=

0.25, δs = 0.8, and δb = 0.6. Before we start the backward induction process, we compute
agents’ equilibrium offers in complete information setting using the approach in Sect. 2 since
we may use these equilibrium offers to construct agents’ equilibrium strategies for the bar-
gaining game. If buyer is of type b1, we have x∗b1

(2) = 100, x∗b1
(1) = 82, and x∗b1

(0) = 89.2.
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If buyer is of type b2, we have x∗b2
(2) = 60, x∗b2

(1) = 50.0, and x∗b2
(0) = 54.0. If buyer is

of type b3, we have x∗b3
(2) = 50, x∗b3

(1) = 42.0, and x∗b3
(0) = 45.2.

Now we use our algorithm to compute all the sequential equilibria. Since ι(0) = s, seller s
will consider different reject update rules at time t = 0. Therefore, we need to first compute
all the sequential equilibria for the continuation game with reasonable beliefs {b1, b2, b3},
{b2, b3}, and {b3} at time t = 1. We show how to compute sequential equilibria for the
continuation game with belief {b1, b2, b3} at time t = 1. At time t = 1, b can apply different
choice rules and we need to first compute all the sequential equilibria for the continuation
game with beliefs {b1, b2, b3}, {b1}, {b2, b3}, {b1, b2}, and {b3} at time t = 2. For the con-
tinuation game with belief {b1, b2, b3} at time t = 2, s can offer RP3 = 50, RP2 = 60,
or RP1 = 100: If it offers 50, its expected utility is (50 − 10)0.83 = 20.48; If it offers
60, its expected utility is 0.75(60 − 10)0.83 = 19.20; If it offers 100, its expected utility
is 0.25(100 − 10)0.83 = 11.52. Thus, the optimal offer of s at time t = 3 is 50 and the
equivalent offer is e2

s |{b1, b2, b3} = 50.0. When the belief is {b2, b3}, the optimal offer of s
at time t = 3 is 50 and the equivalent offer is e2

s |{b2, b3} = 50.0. When the belief is {b1, b2},
the optimal offer of s at time t = 3 is 60 and the equivalent offer is e2

s |{b1, b2} = 60.0.
For the pooling accepting choice rule at time t = 1, the optimal offer of all buyer types is
(e2

s |{b1, b2, b3})←s = (50)←s = 42 and no buyer has an incentive to deviate from it: if any
buyer type chooses a different offer, it will be treated as buyer type b1 and its utility in the
later negotiation is 0. For the pooling rejecting choice rule at time t = 1, all buyer types will
offer−1 and no buyer has an incentive to deviate from it. For example, buyer b2’s equivalent
offer of offering −1 is e1

b2
|{b1, b2, b3} = (e2

s |{b1, b2, b3})←b2 = (50)←b2 = 54. If buyer
b2 deviates from offering −1, it will be believed to be b1 and its optimal offer at time t = 1
is then x∗b2

(1)|{b1} = 60, which is higher than e1
b2

|{b1, b2, b3}. For the separating choice
rule in which b1 makes an acceptable offer while the other two buyer types offer −1, there
is only one sequential equilibrium for the continuation game with beliefs {b1} and {b2, b3}.
Thus, the optimal offer of b1 is x1

b1
|{b1} = x∗b1

(1) = 82. However, b1 has an incentive to
behave as b2 or b3 since in the sequential equilibrium for the continuation game with beliefs
{b2, b3}, s will make an offer 50 at time t = 2 which can bring b1 a higher utility because
(50)←b1 = 70 < 82. Therefore, there is no sequential equilibrium for this choice rule. How-
ever we can show that there is a sequential equilibrium for the separating choice rule in which
b1 and b2 make an acceptable offer and their optimal offer is (e2

s |{b1, b2})←s = (60)←s = 50.
There are totally 3 sequential equilibria for the continuation game with belief {b1, b2, b3} at
time t = 1.

In the same way, we can compute the two sequential equilibria for the continuation game
with belief {b2, b3} at time t = 1. One equilibrium is for the pooling accepting choice rule
in which both buyer types offer 42. In this case, both buyer types will accept the offer in
equilibrium. The other is for the separating choice rule in which buyer b2 offers 50 but buyer
b3 offers−1. In this case, b2’s offer will be accepted at time t = 2. b3’s offer will be rejected
and the seller will offer 50 after updating its belief to {b3}.

Now we consider the seller’s equilibrium offers with the initial belief at time t = 0. Seller
s can apply the following different reject update rules:

1. If the buyer rejects the seller s’s offer, seller s will not change its belief, i.e., seller s is
offering * by convention. Under this reject update rule, any buyer type’s acceptance price
depends on the negotiation outcome in the continuation game ((1, {b1, b2, b3}), which
has three sequential equilibria. In the first sequential equilibrium where all buyer types
adopt the pooling accepting choice rule at time t = 1, all buyer types will offer 42 and the
seller will accept it at time t = 2. If seller s offers * , its utility is (42−10)0.82 = 20.48.
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Buyer types’ acceptance prices are (42)←b1 = 65.2 for b1, (42)←b2 = 49.2 for b2,
(42)←b3 = 45.2 for b3. If seller s offers 65.2, buyer type b1 will accept it but buyer
types b2 and b32 will reject it and follow the first sequential equilibrium. Thus, seller s’s
expected utility while offering 65.2 is 0.25 · (65.2−10) · 0.8 + 0.75 · (42−10)0.82 =
26.40. In the same way, we can find that the seller achieves an expected utility of 28.64
while offering 49.2 and achieves an expected utility of 28.16 while offering 45.2. Thus,
the seller’s optimal offer is 49.2. However, buyer types b1 and b2 will accept the offer,
which is in conflict with the reject update rule in which all buyer types will reject the
offer. Therefore, there is no sequential equilibrium for the first sequential equilibrium for
the continuation game ((1, {b1, b2, b3}). In the same way, we can see that there is no
sequential equilibrium for the other two sequential equilibria for the continuation game
((1, {b1, b2, b3}).

2. If the buyer rejects the seller s’s offer, seller s updates its belief to {b3}, i.e., seller s is
making an offer acceptable to b1, b2. There is only one sequential equilibrium for the
continuation game ((1, {b3}) in which type b3 offers x∗b3

(1) = 42.0. It is easy to see that
seller s gets a utility of (42−10)0.82 = 20.48 if it offers * at time 0. Buyer types’ accep-
tance prices are (42)←b1 = 65.2 for b1, (42)←b2 = 49.2 for b2, (42)←b3 = 45.2 for b3.
Seller s’s optimal offer for this reject update rule is 49.2. We can easily see that no buyer
type has an incentive to deviate: (1) By rejecting the offer 49.2, buyer type b1 can gain a
utility of (100−42)0.62 = 20.88, which is lower than the utility (100−49.2)0.6 = 30.48
when it accepts the offer. (2) Buyer type b2 gains a utility of (60 − 49.2)0.6 = 6.48 by
accepting the offer 49.2, which is not lower than its utility (60− 42)0.62 = 6.48 when it
rejects the offer. (3) Buyer type b3 gains a utility of (50− 49.2)0.6 = 0.48 by accepting
the offer 49.2, which is lower than its utility (50 − 42)0.62 = 2.88 when it rejects the
offer.

3. If the buyer rejects the seller s’s offer, seller s updates its belief to {b2, b3}, i.e., seller
s is making an offer only acceptable to b1. There are two sequential equilibria for the
continuation game ((1, {b2, b3}). For the sequential equilibrium in which both buyer
types offer an acceptable price 42, the seller’s optimal offer is 49.2 such that b1 will
accept it and b2 and b3 will reject it. However, we could not find an offer which satis-
fies all equilibrium existence conditions given the other sequential equilibrium for the
continuation game ((1, {b2, b3}).

4. Finally, the seller can make an offer that will be accepted by all buyer types, i.e., seller
s updates its belief to {b1} if buyer rejects the seller s’s offer. The acceptance prices for
buyer types b1, b2, and b3 are 89.2, 60.0, and 50.0, respectively. Seller s’s optimal offer
for this reject update rule is 89.2. Buyer types b2 and b3 will reject the seller’s optimal
offer, which is in conflicting with the reject update rule. Therefore, there is no sequential
equilibrium for this reject update rule.

Therefore, there are two sequential equilibria for the bargaining game. In the first equilib-
rium, seller s will offer 49.2 at time t = 0. If the buyer is of type b1 or b2, it will accept the
offer and they make an agreement at time t = 1. If the buyer is of type b3, it will reject the
offer and make a counter offer 42.0 at time t = 1. When seller s receives offer 42.0, it will
update its belief to {b3} and it will accept the offer at time t = 2. In the second equilibrium,
seller s will also offer 49.2 at time t = 0. If the buyer is of type b1, it will accept the offer
and they make an agreement at time t = 1. If the buyer is of type b2 or b3, it will reject the
offer and make a counter offer 42.0 at time t = 1. When seller s receives offer 42.0, it will
update its belief to {b2, b3} and it will accept the offer at time t = 2.
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8 Applications of the approach

Our approach can be used to compute pure strategy sequential equilibria in other games with
continuous strategy space. This section briefly discusses two potential application of our
proposed approach.

8.1 Bilateral negotiation with uncertain discount factor

This paper considers one-sided uncertainty regarding reserve prices and we assume complete
knowledge about agents’ discount factors. In other cases, one agent may have incomplete
information about the other agent’s discount factors. For example, we can assume that the
buyer b can be of finitely many types {b1, . . . , bn} in which buyer bi has a discount fac-
tor δi

b. The initial belief of s on b is µ(0) = 〈∆0
b, P0

b 〉 where ∆0
b = {b1, . . . , bn} and

P0
b = {ω0

b1
, . . . , ω0

bn
} such that

∑
i ω0

bi
= 1. ω0

bi
is the prior probability that b is of type bi .

Let x∗bi
(t) be any agent optimal offer at time t when b is of type bi in this case. It follows

that x∗bi
(t) ≤ x∗b j

(t) if δi
b > δ

j
b .

Lemma 13 x∗bi
(t) ≤ x∗b j

(t) if δi
b > δ

j
b .

Proof Case 1 (ι(T ) = s). It follows that x∗bi
(T −1) = x∗b j

(T −1) = RPs. Then x∗bi
(T −2) =

RPb − δi
b(RPb − x∗bi

(T − 1)) < x∗b j
(T − 2) = RPb − δ

j
b(RPb − x∗bi

(T − 1)). Similarly, we
have x∗bi

(T −3) = RPs(1−δs)+δsx∗bi
(T −2) and x∗b j

(T −3) = RPs(1−δs)+δsx∗b j
(T −2).

Thus we have x∗bi
(T −3) < x∗b j

(T −3). Recursively, we have x∗bi
(t) < x∗b j

(t) for t < T −3.
Case 2 (ι(T ) = b). It follows that x∗bi

(T−1) = x∗b j
(T−1) = RPb. Then at time T−2, we

have x∗bi
(T −2) = RPs(1−δs)+δsx∗bi

(T −1) = x∗b j
(T −2). Thus, x∗bi

(T −2) > x∗b j
(T −2).

As in case 1, we have x∗bi
(t) < x∗b j

(t) for t < T − 2.

In this setting, it is easy to see that the weakest type is the buyer type with the lowest
discount factor. Accordingly, if the buyer acts off the equilibrium path, the seller will update
its belief to the buyer type with the lowest discount factor following the optimistic conjecture.

One can directly apply our approach to solve the bargaining game with uncertain discount
factors. For the bargaining game with uncertain reserve prices, we use two techniques to
reduce the number of choice rules and reject update rules that need to be considered. Fortu-
nately, we can still only need to a small number of choice rules and reject update rules for
the bargaining game with uncertain discount factors.

First we consider the reject update rule such that the seller will update its belief to ∆′b ⊆ ∆b
if the seller’s offer is rejected by the buyer where ∆b is the seller’s belief while making the
offer.

Theorem 14 If there is a reject update rule with updated belief ∆′b ⊆ ∆b such that δi
b > δ

j
b

for bi ∈ ∆b \ ∆′b and b j ∈ ∆′b, agents’ strategies are not sequentially rational.

Proof The result can be proved by contradiction. Assume that there is a sequential equi-
librium with this reject update rule. Similar to Theorem 4, equilibrium existence conditions
requires that (et+1

b j
|∆′b)←b j ≤ (et+1

b j
|∆′b)←bi where et+1

b j
|∆′b is b j ’s equivalent offer in

the continuation game starting from t + 1 with belief ∆′b. Since δi
b > δ

j
b , it follows that

(et+1
b j

|∆′b)←b j > (et+1
b j

|∆′b)←bi . There is a contradiction.
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Accordingly, we just need to consider no more than |∆b| reject update rules without sacri-
ficing completeness of our approach. Similarly, we just need to consider a small number of
choice rules due to the following theorem.

Theorem 15 Assume that b behaves in different ways at a continuation game with belief set
∆b where ∆b = ∆a

b ∪ ∆r
b at time t. If there is a buyer type bi ∈ ∆a

b and a buyer b j ∈ ∆r
b

such that δi
b > δ

j
b , there is no sequential equilibrium for this choice rule.

Proof Similar to Theorem 7, this result can be proved by contradiction. If there is a sequential
equilibrium, the following two conditions are satisfied: (1) Buyer type bi has no incentive
to behave as b j , i.e., (et+1

s |∆a
b)←s ≤ ρ(bi , t, E BO(b j ,℘

r )); and (2) Buyer type b j has no
incentive to behave as bi , i.e., ρ(b j , t, E BO(b j ,℘

r )) ≤ (et+1
s |∆a

b)←s. Therefore, equilib-
rium existence requires that ρ(b j , t, E BO(b j ,℘

r )) ≤ ρ(bi , t, E BO(b j ,℘
r )).

Assume that E BO(b j ,℘
r ) = (x, t ′) where T ≥ t ′ > t . From the definition of equiv-

alent offers, we have
(
RPb − ρ(b j , t, E BO(b j ,℘

r ))
)
· (δ

j
b)t+1 = (RPb − x) · δt ′

b , which

can be rewritten as ρ(b j , t, E BO(b j ,℘
r )) = RPb − (RPb − x) · (δ

j
b)t ′−t−1. Similarly, we

have ρ(bi , t, E BO(b j ,℘
r )) = RPb − (RPb − x) · (δi

b)t ′−t−1. Since δi
b > δ

j
b , it follows

that ρ(bi , t, E BO(b j ,℘
r )) < ρ(b j , t, E BO(b j ,℘

r )) which contradicts with equilibrium
existence conditions.

In summary, our approach can be directly applied to solve the bargaining game with one-
sided uncertain discount factor and we can use similar techniques to reduce computational
cost.

8.2 Bilateral multi-issue negotiation with uncertain weights

Another potential application of our approach is bilateral multi-issue negotiation, which is
more complex and challenging than a single-issue negotiation since agents need to make
tradeoffs between multiple issues. The problem of bargaining efficiently over multiple issues
with complete information has been addressed in [15–17]. Agents’ equilibrium strategies can
be easily computed by extending the backward induction method in Sect. 2. Specifically, the
acting agent ι(t) at time t chooses its best offer (consisting of values for each negotiation issue)
that is acceptable to the other agent. In presence of incomplete information, it is common to
compute agents’ sequential equilibrium strategies. There are different sources of uncertainty.
For uncertainty about agents’ reserve prices, discount factors or negotiation deadlines, the
calculation of sequential equilibria in a multi-issue negotiation game is the same as that in
a single issue negotiation game. The only new source of uncertainty introduced by having
multiple issues is the uncertainty regarding the weights of different issues.

In multi-issue negotiation, two agents are negotiating over multiple issues 1, . . . , l. For
each issue i , let RPi

a be agent a’s reserve price for the issue. A negotiation outcome can be
represented as o = 〈o1, . . . , ol〉. An agent a’s utility of a negotiation outcome o is defined
as Ua(o) = ∑

1≤i≤l wi
aUa(oi ) where Ua(oi ) is a’s utility given the negotiation outcome oi

for issue i , which is the same as the utility function in single issue negotiation (see Sect. 2).
In the cumulative utility function, wi

a is agent a’s weight for issue i . Let wa = 〈w1
a, . . . , w

l
a〉

be agent a’s weight vector. We consider the one-sided uncertainty about the buyer’s weights
of the issues and all other parameters are complete information. There are n possible weight
vectors {wb1 , . . . , wbn } for the buyer and the probability of the buyer being the type wbi is
ωbi . The probability distribution is common knowledge.

Fatima et al. [16,17] present an algorithm to produce equilibrium strategies in multi-issue
bargaining with uncertain weights but the strategies found by their algorithm are not neces-
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Fig. 3 Failure of the approach in [16,17] with T = 5, ι(0) = s, RP1
s = RP2

s = 0, RP1
b = RP2

b = 90, δs = 0.5,
δb = 0.8, ws = 〈0.9, 0.1〉, {wb1 = 〈0.4, 0.6〉, wb2 = 〈0.9, 0.1〉},ωb1 = 0.9, and ωb2 = 0.1; agents’ offers
in complete information settings were also showed

sarily sequentially rational given the designed system of beliefs as we discussed previously.6

Here we show a simple example (see Fig. 3) where buyer b and seller s are negotiating over
two issues 1 and 2 with the following parameters: T = 5, ι(0) = s, RP1

s = RP2
s = 0, RP1

b =
RP2

b = 90, δs = 0.5, δb = 0.8, ws = 〈0.9, 0.1〉. There are 2 possible weight vectors
{wb1 = 〈0.4, 0.6〉, wb2 = 〈0.9, 0.1〉} for the buyer and the probability of the buyer being the
type wb1 and wb2 are ωb1 = 0.9 and ωb2 = 0.1, respectively. Assume that seller s is the agent
a in the formulation in [16,17]. At time t = 4, function TRADEOFFA1 in [16,17] returns the
seller’s best offer, which are the buyer’s reserve prices for both issues 〈90, 90〉. This optimal
offer gives the seller a utility of 0.9 · (90 − 0) · 0.55 + 0.1 · (90 − 0) · 0.55 = 2.8125.
At time t = 3, both buyer types’ optimal offer that is acceptable to the seller is 〈50, 0〉,
which is returned by function TRADEOFFB1 in [16,17]. The seller is indifferent between
accepting the offer 〈50, 0〉 or making a counter-offer 〈90, 90〉 at time t = 4. At time t = 2,
seller’s optimal offer that is acceptable to buyer type b1 is 〈85, 0〉 which can give seller an
expected utility of 8.8875. Seller’s optimal offer that is acceptable to buyer type b2 is 〈50, 90〉
which can give seller an expected utility of 3.20625. Function TRADEOFFA1 returns seller’s
optimal offer at time t = 2, which is 〈85, 0〉. In the same way, we can compute that both
buyer types’ optimal offer at time t = 1 is 〈39.5, 0〉. Similarly, we can compute that seller’s
optimal offer at time t = 0 is 〈76.6, 0〉, which is only acceptable to the buyer type b1. That
is, if the buyer rejects the offer, the seller will update is belief to {b2}. However, buyer type
b1 has an incentive to reject the offer and to make buyer type b2 complete information offer
〈30, 0〉 which can give b1 a higher utility than accepting seller’s offer 〈76.6, 0〉. Thus, the
equilibrium computed using the approach in [16,17] is not sequential rational.

We can apply our approach to solve the multi-issue bargaining game with uncertain issue
weights in Fig. 3. At time t = 0, we need to try different reject update rules and for each reject
update rule, we first compute the sequential equilibria for its continuation game starting from
time t = 1. To compute all the sequential equilibria for a continuation game starting from
time t = 1, we need to consider different choice rules. While computing agents’ equilibrium

6 The multi-issue negotiation model here is slightly different from the multi-issue negotiation model in [16,17]
where two negotiation agents are splitting pies and the size of each pie shrinks over time due to the discount
factors. In contrast, the utility of each agent shrinks over time. Our formulation of multi-issue negotiation has
been widely used, e.g., [13,15], just to name a few.
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offers, one important optimization problem is computing one buyer type’s (or a seller’s)
optimal offer which can give the seller (or a buyer type) certain utility. For instance, seller’s
expected utility is y > 0 and buyer type b j with weights wb j = 〈w1

b j
, . . . , wl

b j
〉 is finding a

package offer x = 〈x1, . . . , xl〉 at time t to maximize its utility. The optimization problem
can be formulated as

maximise
∑

1≤i≤l

wi
b j

· (RPi
b − xi ) · (δb)t+1

such that
∑

1≤i≤l

wi
s · (xi − RPi

s) · (δs)
t+1 ≥ y

RPi
b ≤ xi ≤ RPi

b for 1 ≤ i ≤ l

As implied in [16,17], the optimal solution can be generated using a greedy approach by
considering wi

s/w
i
b j

for 1 ≤ i ≤ l where wi
b j

/wi
s is the utility that b j needs to give up

in order increase s’s utility by (δb)t+1/(δs)
t+1. Thus, b j begins by making concessions to

seller s on the issue with the lowest wi
b j

/wi
s value. Accordingly, the complexity of solving

the optimization problem is polynomial.
The weakness of different buyer types at any continuation game can be computed by

solving the bargaining game with complete information about weights of negotiation issues.
Recall that the weakest type gives the seller the highest utility in the complete information
bargaining setting. Rather than only considering a small set of reject update rules and choice
rules, here we may need to consider all reject update rules and choice rules since the two com-
putation reduction techniques are not necessarily valid here. However, this only increases the
number of computations and does not affect the applicability of our approach. One sequential
equilibrium for the multi-issue bargaining game in Fig. 3 is that at time t = 0, seller s makes
an offer 〈69, 0〉 that is only acceptable to buyer type b1. It follows that (1) offer 〈69, 0〉 is the
seller’s optimal offer for this reject update rule; (2) buyer type b1 gains a utility of 49.92 and
it has no incentive to reject the offer; and (3) by rejecting the offer, buyer type b2 will gain a
utility of 40.32, which is higher than the utility 22.32 by accepting the offer 〈69, 0〉.

9 Existing solutions in literature

Computing agents’ equilibrium strategies of an extensive-form game with imperfect informa-
tion is well known to be hard and classic game theory does not provide any general approaches
to find sequential equilibria. While there has been long standing literature in solving bargain-
ing games with uncertainty since Rubinstein’s path-breaking work [32], there is no existing
approach that can be applied to compute pure strategy sequential equilibria for the problem
studied in this paper. An interested reader can find a more detailed survey on bargaining with
uncertainty in [7].

Computer science researchers have proposed a number of algorithms for computing Nash
equilibria (e.g., [22,23,26]) or sequential equilibria (e.g., [20,29]). However, these algo-
rithms are not applicable in solving bargaining games since they only consider finite strategy
space rather than continuous strategy space considered in this paper. Due to the same reason,
enumeration based methods (e.g., [30]) cannot be applied to our bargaining problem as well.

The microeconomics literature provides a number of results for some specific bargaining
problems with uncertainty. For instance, [9–11,32] considered bilateral infinite horizon bar-
gaining with uncertainty and those approaches cannot be applied here due to the unrealistic
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infinite horizon assumption. Sandholm and Vulkan [35] analyze agents’ strategic behavior
in a slight variation of the war-of-attrition game where the surplus can be divided. They con-
sider a finite horizon alternating-offer bilateral bargaining game where agents have uncertain
deadlines, time is continuous, and there are not discount factors. In contrast, Gatti et al. [19]
relaxed the infinite horizon deadlines and provided an algorithm to compute agents’ equilib-
rium strategies in bilateral bargaining with one-sided uncertain deadlines. They proved that
agent types would adopt the same strategy at any time point before their deadlines, which
may not be true in our case with uncertain reserve prices. Therefore, their approach cannot
be applied to our case. An et al. [3] only considered two-type uncertainty about reserve prices
and their approach cannot be directly extended to handle multiple types. They considered the
situation that different buyer types can make the same/different offers. However, they assume
that the seller always makes an offer that will be accepted by all the buyer types. Therefore, in
presence of multi-type uncertainty, the algorithm in An et al. [3] is no longer complete. The
algorithm presented in [8] solves bargaining situations with any form of one-sided uncertainty
by reducing the bargaining game to a finite auxiliary game and then solving this by using
a variation of the Lemke algorithm (exploiting a specific lexicographic perturbation able to
find a sequential equilibrium [29]). The auxiliary game is exponential in the number of types
and it can be solved only with very few types (< 5) and short deadlines (< 10). As shown
experimentally, our algorithm can compute all sequential equilibria for games with 9 types
and 14 negotiation rounds within a reasonable time. In addition, the algorithm suffers numer-
ical stability since the matrix associated with the tableau used by the Lemke algorithm is
badly conditioned and, as a result, the algorithm may not terminate, unless arbitrary precision
is used (but, with arbitrary precision, the performance of the algorithm drastically worsens).
Another drawback of this algorithm is that it returns a single equilibrium not allowing the
equilibrium selection. Thus, the algorithm may return an equilibrium in mixed strategies,
even if there is a more satisfactory equilibrium in pure strategies.

The only known general approach that be potentially applied to our bargaining problem to
compute pure strategy equilibria is the backward induction approach by Fatima et al. [16,17].
They studied the alternating-offers protocol with multiple negotiation issues and uncertainty
over the weights of the issues. They proposed an algorithm based on backward induction
to compute sequential equilibria. Note that as in this paper, Fatima et al. [16,17] also focus
on pure strategy equilibria. Basically, their algorithm searches in the space of the strategies
exploiting the backward induction from the last possible deadline to t = 0 with agents’ initial
beliefs, and, once the optimal strategies at time point t = 0 have been found, the system of
beliefs is designed to be consistent with them. Gatti et al. [19] have shown that unfortunately
an equilibrium returned by their algorithm is not necessary a sequential equilibrium in pure
strategies for bilateral bargaining with uncertain deadlines.

We show a single-issue negotiation example with uncertain reserve prices where the algo-
rithm in [16,17] fails in the bargaining problem studied in this paper (see Fig. 4 for agents’
equilibrium offers computed by their algorithm and agents’ equilibrium offers in complete
information settings). Consider the following scenario: T = 5, ι(0) = s, RPs = 10, RP1 =
90, RP2 = 70,ω0

b1
= 0.8,ω0

b2
= 0.2, δs = 0.7, and δb = 0.8. Let x∗bi

(t)be any agent optimal
offer at time t when buyer b is of type bi in the complete information setting. Let x f (t) be any
agent optimal offer at time t computed by the algorithm in [16,17]. Agents’ equilibrium offers
are computed with the initial belief. At time t = 4, seller s can offer either x∗b1

(4) = RP1 = 90
which gives the seller a utility of 0.8 · (90− 10) · 0.75 = 10.75648 or x∗b2

(4) = RP2 = 70
which give the seller a utility of (70− 10) · 0.75 = 10.0842. Therefore, the seller’s optimal
offer at time t = 4 is x f (4) = 90. Then both buyer types’ optimal offer at time t = 3 is
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Fig. 4 Failure of the approach in [16,17] with T = 5, ι(0) = s, RPs = 10, RP1 = 90, RP2 = 70, ω0
b1

= 0.8,

ω0
b2

= 0.2, δs = 0.7, and δb = 0.8; agents’ offers in complete information settings were also showed

x f (3) such that (x f (3) − 10) · 0.74 = 10.75648, i.e., x f (3) = 54.8. At time t = 2, seller
s can offer either (54.8)←b1 = 61.84 or (54.8)←b2 = 57.84. According to [16,17], offering
price 57.84 will be accepted by both buyer types and thus the seller can gain a utility of
(57.84− 10) · 0.73 = 16.40912. In contrast, offering price 61.84 will only be accepted by
buyer type b1 and the seller’s equilibrium offer at time t = 4 will be accepted. Thus, offering
price 61.84 will give the seller a utility of 0.8 · (61.84−10) · 0.73 +0.2 · (74−10) · 0.75 =
16.376192. Thus the optimal offer of the seller at time t = 2 is x f (2) = 57.84. Then both
buyer types’ optimal offer at time t = 1 is x f (1) = (57.84)←s = 43.488. The seller at
time t = 0 can offer either (43.488)←b1 = 52.7904 or (43.488)←b2 = 48.7904 and its
optimal offer is x f (0) = 52.7904 which will only be accepted by buyer type b1. According
to [16,17], buyer type b1 will accept the offer 52.7904 at time t = 0 since the optimal offer
52.7904 is b1’s backward propagated value of its 43.488 at time t = 1. Accordingly, the
seller will update its belief as follows: if its optimal offer 52.7904 is rejected, it will update
its belief to {b2}.

However, the above strategy profile is not in sequential equilibrium since buyer b1 has an
incentive to reject the seller’s equilibrium offer at time t = 1 (also see Fig. 4). If buyer type
b1 rejects the offer 52.7904 at time t = 1 and makes a counter offer 41.92, the seller will
accept it since 41.92 is buyer’s equilibrium offer when the buyer is of type b2. By doing so,
buyer b1 gains a utility of (90 − 41.92) · 0.82 = 30.7712 which is higher than its utility
(90− 52.7904) · 0.8 = 29.76768 when it accepts the seller’s equilibrium offer 52.7904. As
pointed out in [19], the reason behind the failure of [16,17] in producing equilibrium strat-
egies for some settings of parameters is that in each step of backward induction they limit
the search to the space of the strategies, but they do not verify the existence of a consistent
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system of beliefs such that the found strategy is sequentially rational. In other words, they
break the circularity of strategies and belief systems. In the above example, they decide the
acceptance price of buyer type b1 with the initial belief and ignore the effect of the seller’s
belief update rule. As a result, once their algorithm has produced the agents’ strategies at
t = 0 and has designed the system of beliefs consistent with them, the strategies may not be
sequentially rational given the designed system of beliefs.

In the above work in strategic bargaining theory, agents are assumed to be fully rational.
Due to the difficulties of studying strategic bargaining games, many authors have proposed to
relax the assumption of full rationality. More precisely, agents with bounded rationality are
constrained to play heuristic strategies. For example, to build more flexible and sophisticated
negotiation agents, Faratin et al. [14] devised a negotiation model that defines a range of
negotiation decision functions for generating (counter-)proposals based on time, resource,
and behaviors of negotiators. Heuristic based approaches have received a lot of attention
in the recent years and have been applied to many practical applications such as streaming
processing systems [2], multi-resource negotiation [5], and cloud computing [4]. The major
disadvantage of this line of research is choosing heuristics in an ad hoc way and thus agents’
strategies are usually neither optimal nor in equilibrium.

10 Conclusions

Studying rational agents’ strategic behavior is currently one of the most interesting issues
in the field of automated negotiation. However, the bargaining theory literature lacks of
general solutions for bargaining games with the presence of deadlines and incomplete infor-
mation. In this paper we go beyond state of the art by providing an algorithm that can find all
sequential equilibria in incomplete information bargaining games with deadline constraints.
Specifically, this paper analyzes agents’ rational strategic behavior in alternating-offers bilat-
eral bargaining with deadline constraints and one-sided uncertainty on reserve prices. Our
approach computes sequential equilibrium employing backward induction. To guarantee the
completeness of our approach, we enumerate all choice rules and belief reject update rules.
To guarantee the soundness of our approach, we construct equilibrium existence conditions
along the backward induction process. Our approach can also be applied to other uncertainty
settings, e.g., bilateral multi-issue negotiation with uncertain weight functions [16,17], and
bilateral bargaining with uncertain discount factors.

Our study shows that there exists at least one sequential equilibrium in more than 99.7 %
of scenarios we have tried in which there are deadline constraints and incomplete informa-
tion. There are two future research directions for this equilibrium nonexistence problem. On
one hand, we can develop algorithm for finding mixed equilibrium strategies for bargaining
scenarios in which there is no pure strategy equilibrium. On the other hand, we can slightly
modify the alternating-offers protocol that would allow the existence of the equilibrium in
pure strategies, e.g., the introduction of agents’ strategic delay option [12].

While this paper only considers one-sided uncertainty, we think our approach can be
extended to handle two-sided uncertainty. Assume that the buyer is also uncertain about the
seller’s reserve price. When it is the buyer’s turn to make an offer, rather than considering
whether a buyer type’s offer will be accepted be the seller, we need to consider the set of
seller types that will accept the buyer’s offer. That is, we need to combine choice rules and
reject update rules. Similar to the buyer types, all seller types need to not only consider dif-
ferent reject update rules but also different choice rules. In addition to two-sided uncertainty
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regarding reserve prices, our algorithm can also potentially handle two-sided uncertainty
about discount factors.

One major motivation of the study of bargaining theory is designing successful bargain-
ing agents in practical markets where there are more uncertainty and more agents. Although
constraints, complexity, and uncertainty make it impractical to develop optimal negotiation
strategies, our analysis can still give us some insights into the bargaining problems. Consider
that a buyer is acquiring multiple resources in a dynamic market with multiple sellers. We can
first use our approach to generate the strategy for each single seller and then use heuristics
for all sellers to combine the set of strategies to generate the overall negotiation strategy.

There are several other natural directions suggested by our research. The first one concerns
the extension of our game theoretic analysis to incomplete information bargaining games with
multiple agents (including both buyers and sellers). Second, we have seen from experimental
results that there are more than one pure strategy sequential equilibrium in some scenar-
ios. It would be useful to design coordination mechanisms for choosing certain equilibrium
strategies for agents to play. In addition, characterizing bargaining games with no sequential
equilibrium is also on the agenda. Finally, our experiments about the performance of equilib-
rium strategies thus far have focused on scenarios ranging from low to moderate complexity,
but we wish to investigate much larger problems where there are longer deadlines and more
buyer types. We have done some initial work in exploring some static heuristic strategies
and their performance in relationship to the sequential equilibria strategies produced by our
algorithm [1]. For this initial set of strategies, we demonstrated that in fact as expected the
heuristic strategies were significantly worse against out algorithm. However, in order to be
more firm about this conclusion we want to explore a wide range of heuristic strategies,
especially one that are more dynamic.
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