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Abstract Adversarial decision making is aimed at determining optimal decision
strategies to deal with an adaptive opponent. A clear example of such situation is
the repeated imitation game presented here. Two agents compete in an adversarial
model where one agent wants to learn how to imitate the actions taken by the other
agent by means of the observation and memorization of the past actions. One
defense against this adversary is to make decisions that are intended to confuse
him. To achieve this, randomized strategies that change along time for one of the
agents are proposed and their performance is analysed from both a theoretical
and empirical point of view. We also study the ability of the imitator to avoid
deception and adapt to a new behaviour by forgetting the oldest observations.
The results confirm that wrong assumptions about the imitator’s behaviour lead
to dramatic losses due to a failure in causing deception.

1 Introduction

Adversarial decision is largely about understanding the mind and actions of one’s
opponent. It is relevant to a broad range of problems where the actors are aware
of each other, and they know they are contesting at least some of the other’s
objectives. The study of many of these strategic situations is carried with game
theoretic tools, although other fields such as planning or probabilistic reasoning
have also been used, as pointed out in [7]. The goal of this kind of analysis is to
find optimal strategies taking into account not only one’s preferences but also the
beliefs and preferences of the opponents as perceived by oneself, which does not
always match the true adversarial preferences.
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A special case of adversarial situation is the model presented in [15] and re-
viewed here. It involves two participants, S and T', each of which chooses an action
without knowing the choice of the other. As a result of these choices, a payoff is
assigned to the participants. When this scenario is repeated many times, i.e. situa-
tions of repeated conflicting encounters arise, then the situation becomes complex
as the participants have the possibility to learn the other’s strategy. We can see
this as a repeated imitation game, where the imitator T learns from the actions
taken by S in the past. The more frequently 7" imitates S correctly, the smaller is
the reward of S.

Imitation games have been recently studied from a formal perspective in works
by McLennan and Tourky [10-12]. They are relevant for several reasons. Despite
being a seemingly simple version of a non-cooperative two-personal game, they
have proven as complex as a general game. It is shown in [11] that many prob-
lems related to the computation of an equilibrium in an imitation game are NP-
complete, although [10] proves that a mixed-strategy Nash equilibrium always
exists in one-shot imitation games. Recall that this computation requires that a
player knows the payoff matrices of both players.

However, all of these works focus on theoretical complexity issues and the anal-
ogy of Nash equilibrium problem with other, apparently non-related ones such as
proving Kakutani’s fixed-point theorem [10]. Further, none of these works explicitly
considers repeated games. Here we expose a strategic situation in which, differ-
ently from many other studies, the agents do not have perfect knowledge of the
game being played. To be precise, we present a finitely repeated imitation game
where the imitator has no explicit access to the preferences of the other agent, as
will be explained later. This makes our situation more realistic than traditional
equilibrium-based approaches since we are not looking for the most rational strat-
egy in a perfect-knowledge situation but in one that is based on repeated empirical
observations which are likely to be deceptive.

When an agent S knows he is being observed by another agent T trying to
learn from his behaviour, he should adopt some counter-measure to avoid this
intrusion in his cognitive process. In that case, S should not choose his actions
based just on his own preferences but must take into account the presence of the
adversary and the fact that his behaviour should not be invariant and clear. A
defense against T is to make decisions that are intended to confuse him, although
S’s reward can be diminished. Agent S wants to force the presence of uncertainty
in order to confuse the adversary while its payoff is as less affected as possible,
using randomized strategies [15,18,14] that minimize the payoff losses, either these
are due to correct guesses or to non-optimal responses.

The aim of this work is twofold. Firstly, we will propose and analyze decision
strategies for agent S that are not constant along the time, but change at certain
time steps in the iterated process. We tackle the strategy design as a constrained
non-linear optimization problem whose solution gives both the exact moment at
which agent S must change and the new strategy he must use. Secondly, we will
evaluate such strategies in a different scenario in which agent T" forgets the oldest
observations, in order to test if this is benefitial or not for T". This will test if the
strategies presented in previous work are severely affected by wrong assumptions
about the adversary or not.

The paper is organized as follows. Section 2 describes the main characteristics
and components of the model used and discusses the suitability of game theoretic
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Fig. 1 Graphical representation of the model.

equilibrium concepts. Section 3 is a review of the material presented in [17], and
deals with the need of randomized strategies, explains a static mixed strategy
for agent S, and also introduces the concept of dynamic, time-changing decision
strategies as opposite to the former static strategy. The analytical expression of
the expected payoff attained by S when using both kinds of strategies is explained
step by step. An optimization process is also introduced here to obtain the best
dynamic strategy under certain assumptions. Section 4 modifies the assumptions
made in the preceding section to deal with an adversary with a limited observation
memory, which yields a generalized expression of the expected payoff. In Section
5 we describe the computational experiments performed and the results obtained.
They are aimed at checking the validity of the theoretical expressions with empir-
ical results and comparing the performance of static and dynamic strategies with
both unlimited and limited observation memory. Finally, Section 6 is devoted to
discussions and further work.

2 Adversarial Model

The model is a simplified version of the one presented in [15]. It is based on two
agents S and T (the adversary or imitator) and a set of actions A = {a1,az,...,am}
available to both agents, with a set of payoffs P = {p1,p2,...,pm} associated as
follows. The agents play repeatedly a simultaneous imitation game. At each en-
counter!, they must select an action at the same time and withouth knowing what
the other agent will do. If S selects action a; and T' matches that choice (i.e. T
was successful in predicting S’s action), then T gets a payoff of 1 and S gets 0.
Otherwise, S gets p; and T gets none. Fig. 1 shows a depiction of the model.

Algorithm 1 describes the steps of the model, with L being the length of the se-
quence of encounters that is known in advance by both agents. Different strategies
for the agents are explained in section 3.

The reward calculation for S is formalised in expression (1).

0 ifag=uaj
p; otherwise

flassagp) = { (1)

1 From now on, the terms encounter and step will be used interchangeably within the text
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Algorithm 1 Sequence of steps in the model.

for{=1to L do
Agent T “guesses” an action ay according to his strategy
Agent S determines an action a; according to his (randomized) strategy
Calculate payoff for S as a function of p;,ag, a;
Agent T increases in 1 the value o;
end for

Table 1 Payoff matrix of the simultaneous game played at each step. Showing payoffs for S
and T for each possible outcome.

T
a1 as as .. am
a1 [ 0,1) [ 1,0 [ (p1,0) [ ... T (p1,0)
a2 (p27 0) (07 1) (p27 0) M (p2y 0)
g | a [ (3,0 | (p3,0) (0,1) [...] (p3, 0)
am (pm: 0) (pmv 0) (p'nu 0) ce (0: 1)

This means that agent S gets no reward when agent 7" matched his response.
The game outcomes and payoffs are summarized in the payoff matrix of the si-
multaneous game played at each stage, shown in Table 1. Notice that 7" is equally
interested in guessing any action because all the correct guesses report the same
payoff to him, while S does have an incentive for choosing some actions instead of
some others because the payoff he may attain when not guessed is higher.

A key aspect of this game is that agent T" does not know the payoffs S gets
for each action when he is not correctly guessed, i.e. the vector P = {p1,...,pm } is
unknown to T'. However, after each encounter, both agents are informed of what
the adversary has chosen in the last round. Agent 7" has his own memory as an
observation vector O = {01, ..., om } that he updates after each encounter. Element
o; stands for the number of times that, in the past, agent S has chosen action a;.
Agent T may take into account this information for future decisions.

Since agent T tries to learn S’s behaviour, such behaviour should be partially
randomized to avoid predictability. Although it is impossible to predict, a com-
pletely random behaviour might not be the best option because actions with low
payoff may get selected too often, resulting in excessive loss with respect to the
actions with the highest payoff.

2.1 On the suitability of equilibrium concepts

A note on the use of game theory tools should be done here. Apparently the
model could be seen as a leader-follower game. In this kind of games, one of the
players (the leader) has a strategic advantage over the other player (the follower)
so he is able to commit to a strategy that he explicitly reveals to the follower in a
credible way that guarantees he will not change the strategy he has commited to
[5]. Commiting to a strategy does not imply to reveal which action will be played by
the leader (this is only the case if the commitment is to a pure strategy), since the
strategy may be itself a randomization over the available actions (which is known
as a mized strategy [13]). In that case, the leader just reveals the probability
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distribution he is using to select an action. There are many works on security
with autonomous agents that make use of this idea [1,3] and assume that the
leader using a randomized strategy implicitly reveals his strategy because the
follower observes the leader’s behaviour for long enough before engaging in conflict.
However, note that the situation presented in this work section requires that the
follower, agent T', gives a response at each turn, i.e. at the same time that he
is recording observations. The reason for which one may consider that this kind
of game fits our problem is the fact that we are emphasizing agent T is able to
record observations of the behaviour of S in the past. To some extent this can be
considered as if agent S is revealing his strategy.

In a leader-follower situation, the solution concept is the leader-follower equi-
librium which maximizes the leader’s expected payoff while at the same time the
follower maximizes his own payoff, i.e. the follower’s strategy is the best one for
him, given the strategy imposed by the leader. This equilibrium is usually com-
puted using bilinear programming tools and states that the best strategy for the
follower is always pure [5]. Further, in order for this equilibrium to be computed,
it is not necessary that the follower knows the leader’s payoffs, and one can think
this is just what happens in our problem: agent S knows both players’ payoffs, but
T does not have access to S’s payoffs.

Having stated the reasons for which a leader-follower game seems initially to
be the model to be fitted here, now we will discuss why, in our opinion, such choice
is not the appropriate one. In our adversarial model, the only way to implicitly
reveal a mixed strategy is through the repeated observations recorded by agent T.
The best strategy for the follower is to choose the action that the leader selects
with highest probability. If agent 7' takes the observed relative frequencies as
probabilities, then his best response is to choose the action that he has observed
the most in the past (which we call Most Frequent in the next section), since it
reports the highest expected payoff for the follower.

However, the fact that the only clue about S’s strategy are empirical obser-
vations motivates that agent S, anticipating the best-responser he may be facing,
can use a deterministic, alternating strategy that systematically avoids selecting
an action when it is currently the most frequently used. For this reason, the leader-
follower equilibrium is not feasible since it always prescribes a pure strategy for the
follower. Recall that our game is repeated along time and S could learn to avoid
the predictions when they are made on a deterministic basis. Thus T’s strategy
should also be mixed. The explanation for this behaviour is that observing S’s
past behaviour is not equivalent to considering S is implicitly revealing his ac-
tual behaviour which, for instance, could be based on some other complicated,
non-randomized behaviour rules that are difficult to perceive but do not actually
constitute a mixed strategy. In other words, S does not make a true commitment
and, as a result, T has no reason to consider S’s past behaviour to be credible for
the future and thus, to trust it.

Finally, note that conventional Nash equilibrium to mixed strategies is un-
feasible since T' does not know S’s payoff and therefore T' cannot compute such
equilibrium2 .

2 The use of uncoupled dynamics that do not need any knowledge of the adversary’s payoff
to eventually converge to mixed equilibrium under some conditions is proposed as future work
in the conclusions section
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For these reasons, we assume that agent 7' employs a different mixed strategy
called Proportional to Frequency instead of Most Frequent, as described below.

3 Behaviour of the Agents
3.1 Strategies for Agent T'

In [15], the authors presented and evaluated several strategies for agent S and 7.
A first, simple deterministic strategy for agent T is called most frequent (MF),
which deterministically chooses the action that was observed most times in the
past. But in that case, agent S could easily exploit this strategy by always selecting
alternatively the best and the second-best actions, avoiding all the time a correct
guess. For this reason, it seems reasonable that T uses a randomized strategy in his
predictions. Another simple strategy is called proportional to frequency (PF), with
good performance according to empirical results [15]. It means that the probability
of selecting an action as a prediction is proportional to the number of times (in
percentage) such action was observed in the past (this information is stored in the
observation vector O). As can be seen, it is a randomized strategy and because
of that, it is safer than MF. In what follows, PF will be the strategy assigned to
agent 7.

We must point out that constructing a model for T is an aspect that deserves
further investigation (see for instance [19] and [9]), possibly involving learning
techniques.

In Sections 3.2 and 3.3 we review the approaches published in [17] for agent
S to emphasize the assumptions that allowed to compute such decision strategies.
Sections 3.4, 4 and 5 present a completely novel study on how a change on certain
adversarial conditions can affect the performance of decision strategies that were
supposed to be optimal under original assumptions that do not hold anymore.

3.2 Static Mixed Strategy for Agent S.

Agent S could use a totally deterministic strategy that always select the action
with the highest payoff. However, this would be very easy to learn for agent 7" so he
would quickly predict this behavior correctly after a short number of repetitions. S
could also employ a totally random strategy that would select an action in a totally
random way. This behaviour would be very hard to learn from observations but,
on the other hand, the payoff attained would be low because bad actions (i.e. those
with low payoff) may be selected with the same probability than best actions.

The need exists here to get to a good balance between confusion and payoff,
as concluded in [15]. But instead of running computational simulations that test
new proposals of strategies, our objective now is to calculate the expected payoff
of new strategies without running a computational experiment.

As stated before, a mixed strategy is a set of weights representing a probability
distribution over the actions. When a player has to do a movement, he uses this
probability distribution to choose his action. In our model, we are interested in the
best randomization or, in other words, the set of weights that lead to the highest
payoff when playing against agent 7. From now we will use the expression set of
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weights to refer to a probability distribution over the actions of the model. Thus
such weights are in [0, 1] and their sum is 1.

With these weights, it is possible to calculate the expected payoff for a given
player, which is the sum of all the possible outcomes of the game weighted by the
probability that each outcome eventually arises and by the payoff that outcome
reports to the player. In the adversarial model we are dealing with, this means
that we can weight each payoff in vector P by the probability that agent S even-
tually gets that payoff. This probability can be computed as the product of the
probabilities of two independent events happening simultaneously. Agent S will
attain payoff p; if two conditions hold:

(i) Agent S must select action a; as a response. This probability is noted o,
although we will refer to it as the weight used by S to select action a;.

(ii) In addition, S will only get the payoff p; if agent T does not successfully
predict his response. Actually this probability is independent of (i) if we consider
it as a conditional probability that is conditioned to the fact that S has already
selected action a;.

This (conditional) probability can be computed as follows. In case agent S
is using a non-variant weight «; (a static mixed strategy) during a sequence of
L repetitions of the game, then the probability that agent T" does not guess his
actions if T uses PF strategy is (1 - o). The explanation is as follows. After L
repetitions, since agent S uses «;, then action a; would have been selected L - o
times, and this is what agent T" sees in O;. The probability that T" selects action
a; as a prediction is

0O; _ L-ay
Z}ll o L

with m being the number of actions available. The probability of not being
guessed correctly is then 1 — Pyyess(j) = 1 — .

Taking into account the probabilities of the two conditions described above
yields the following expression of the expected payoff for agent S after a sequence
of L encounters when he uses weights «; to select his actions:

Pyuess(j) = =q; (2)

EPstatic = L Z aj(l —Qj )pj (3)

j=1

If we want to maximize the expected payoff, we have to maximize expression
(3) by computing the values of the optimal weights ;. This can be achieved using
numerical methods for constrained optimization. The optimization problem can
be formalized as follows.

max(q,} Zaj~(1 — ;) pj (4)
j=1

subject to:
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3.3 Dynamic Mixed Strategy for Agent S

In the previous section we described a static strategy for agent S. It was static
in the sense that the same set of weights is used all the time to make encounters
for which S will use the same weights to choose his action. The static mixed
strategy described above can be viewed as one single period, because the weights
computed by S do not change along time. Now the idea is to define several periods
and calculate the optimal mixed strategy for every period. The length of a period
is the duration of the period, i.e. the number of consecutive encounters of the game
during which agent S will use the same mixed strategy.

For a given period, the set of optimal weights is different from that of other
periods. Let Nj, be the length of the h-th period. The next example illustrates this
concept. Suppose that we have a sequence of length L = 100 encounters. Then,
we can define for instance 4 periods of length N1 = 30, N2 = 10, N3 = 20 and N4
= 40. Fig. 2 shows a depiction of a dynamic mixed strategy.

N, N, N; N,
(@i, ) (@, ..., ah) @i, ..., am) (at, ., am)

Fig. 2 Example of a dynamic strategy with 4 different periods. The letters inside each rect-
angle represent the length of that period and the mixed strategy to be used in that period.

In order to calculate the best randomization under this scenario, we need to
apply constrained optimization methods to compute the values of the optimal
weights for each period, along with the optimal length of every period. In principle,
we should also compute the optimal number of periods but this, as will be seen
later, requires solving independent optimization problems since the number of
periods affects the total number of variables of the problem. For this reason, the
number of periods is assumed to be known. See Section 5.2.1 for a study on the
influence of this parameter.

The objective function of such constrained optimization problem is the ex-
pression of S’s expected payoff for a dynamic strategy, which can be computed
as follows. Let (a’f, ey aﬁn) be the set of weights that agent S uses to choose an
action during the h-th period. Then, within a given period, a? represents the
probability that S selects action a;. The difficult part of the expression we need
is computing the probability of not being guessed, which is the same within a
period but different from one period to another. After the first period of length,
say, N1, the observation vector O has the following values (absolute frequencies of
the responses given in the past by .S):

OZ(Nl-O& Nyoz}n )

Clearly, the probability of not being guessed Pyg during the first period is
(1—04;), according to the same explanation given in Section 3.2. This reasoning
becomes more complicated when considering the observation vector at the end of
the second period, whose length is Na:

O:( N1-&%+N2-Oé% N1-a}n—|—N2-afn )
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According to these values, the probability at the end of the second period that
agent 1" selects action a; as a prediction is

O; _ N1~ajl+N2~a?

P, 1) = =
guess(]) ;y;l Oj N1+ Ny

so the probability of not being guessed at the end of the second period is

. . Nl(l—al-)+N2~(1—a2-)
PrnG(j) =1 = Pguess(j) = Nt J

What happens in the middle, i.e. during the second period? The probability of
not being guessed changes at every step because the number of times each response
has been observed by T varies along time. This variation can be modeled as follows.
At a certain step s of the second period (s is measured from the beginning of the
period, so 0 < s < N»), the probability that T correctly predicts response a; is

_ 0 _Miatsal
N Z;’Ll O; - N1 +s
Notice we have added a second argument to this probability to emphasize that

it also depends on the step s of the simulation. The probability of not being guessed
is then

(6)

Pyuess(J, 5)

Ni(1—aj)+s(1—aj)
Ni+s
As stated before, notice that this probability changes at every step within a

period. Now, it is possible to generalize this reasoning to obtain the probability of
not being guessed at step s of the h-th period (0 < s < Np,):

PNG(jaS) =1 _Pguess(j75) =

kot Ne(1—a3) +s(1 - aff)
SkI1 Nk +s
Argument h points out the period to which s belongs, although this is just a
formalism that will be eliminated below. The expression of the total expected pay-

off with H periods of length N}, is a generalization of (3), using (7) as probability
of not being guessed:

Pn(jhss) = 1 = Pyuess(j, hy 5) =

pj (7)

H Nn m h.ZZ;%Nk(lfa?)Jrs(lfoz?)
j

Edenamic = Z Z Z «

h—1
h=1s=1j=1 21 Nk +s

The next expression should be also verified: 25:1 Np, = L. Recall that L is
known in advance by both agents.

Once again, the reader should note that this expression is valid only when T
uses the strategy Proportional to Frequency. Further, S must know in advance the
lenght of the sequence (the exact number of steps of the complete simulation) to
add the last constraint to the optimization process.

With this approach, the number of unknown parameters is greater than that of
static mixed strategies. Recall that the number of periods H is given by the user
in advance, but the optimal length of each period N}, is unknown. In addition,
instead of computing only m weights as in the static mixed strategy, we have to
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compute m- H weights (H sets of weights) plus the H lengths of the periods N,
for h = 1, ..., H which are integer values. The optimization problem in this case
can be formulated as follows:

max(opyopny D Y DA

h— pj (8)
h=1s=1j—1 SNk +s

subject to:

m
S all=1, h=1,.,H

=1

<

ol >0, j=1,..,m h=1,.,H
H
> Ny=L (9)
h=1

As explained before, the number of unknown variables to be optimized when
we are computing a dynamic strategy with H periods is m-H + H = H(m + 1).
Therefore, a different optimization problem with a different number of variables is
generated for each H value (see Fig. 2). The way to find the best choice for H is
to solve the optimization problem for different H values and accept the strategy
that provides the highest payoff for S.

3.4 A generalized notation for the expected payoff

In this part we will rewrite expression (7) with a slightly different notation that
simplifies and generalizes the previous one and that will be employed in Section
4.1.

For a given step d of the simulation, let PCD(d) : N — N be the index
(starting in 1) of the period that precedes the one to which d belongs, or 0 if d
belongs to period 1. The step d is measured from the beginning of the simulation,
so in this case 1 < d < L. The name PCD stands for preceding. Let H(d) be the
period to which step d belongs. H(d) and PCD(d) can be defined in terms of the
lengths of the periods as follows:

maz{k € N: ¥ 5_, Ny <d} ifd> Ny

0 otherwise

PCD(d) = { (10)

H(d) =PCD(d)+1
Now let Y (d) be the number of steps measured from the beginning of period
H(d):

PCD(d)
Y(d)=d— > N (11)
k=1
Fig. 3 depicts the meaning of these functions when applied for instance to step
d = 224 belonging to the third period of a strategy whose 5 first periods have
length 100, 90, 112, 76 and 120.
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PCD(d)=2
H(d) =3
| | | =224 | | |
[ [ N [ [ [
0 «— > |
Y(d) = 34
N — DIN v U\ -~ A\ N -
Period 1 Period 2 Period 3 Period 4 Period 5
N, =100 N, =90 N,=112 N,=76 N, =120

Fig. 3 Example of dynamic strategy and the notation explained in this section

Finally, let OBS(d, 7) be the value of cell O; after d steps. It can be expressed
in terms of the weights used by S in his decisions, as follows. The otherwise part
was written to make this function also valid for the case of limited memory, as
explained later.

PCD(d H(d .
(Zk=1 ( )Nkaé?) +Y(d)al P ifd>0
OBS(d,j) =
0 otherwise
As can be seen, (12) is the numerator of expression (6), generalized for an

arbitrary number of steps d. The total number of observations in the observation
vector after d steps is exactly d:

m m PCD(d) m
S oBSd, ) =Y Nia |+ Y(d)al W =
j=1 j=1 k=1 j=1
PCD(d) m m
= Z Ny, Za? +Y(d) Zaf(d) =
k=1 j=1 j=1
PCD(d) PCD(d)

S Ne|+d—| > Ni|=d
k=1 k=1

so the probability of being guessed after d steps when choosing action a; can
be rewritten as %(d’j) if d > 0. In the first encounter (d = 0), nothing has
been observed yet by agent T' so we assume he makes a prediction in a totally
random way. The probability of being guessed is thus 1/m in this case. With these
functions, expression (7) can be rewritten as

Edenamic(d) - Z ajl(]- - 1/m)pj
=1

d m .
+3>al (12 OB, (12)

s=2j=1
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where d is the number of steps of the simulation, provided that we have defined
enough periods to cover, at least, that number of steps.

4 Forgetting as a way to avoid deception

The key point of the optimized mixed strategies presented in [17] is that they
intend to manipulate the observations made by 7" so that S has long periods to
safely choose very good actions without being guessed. In other words, they were
exploiting the fact that T considers all the observations done in the past and gives
all of them the same importance. This means that, if T' observed a very frequent
action many times in the past, and uses Proportional to Frequency, then it is
difficult for him to predict something different in the future unless he observes
a different action approximately as many times as the first one. We can see this
phenomenon as a sort of ”inertia” which makes T difficult to recover after a series
of observations of one very frequent action. For that reason, S manipulates with
its actions T’s observation vector to his convenience, and in fact the optimization
process tells S the best way to do this at every step.

As mentioned in Sections 3.2 and 3.3, expressions (3) and (7) consider that T’
is playing proportional to frequency with an unlimited memory, i.e. T" would be
annotating every action a; forever. We hypothesize that a limited memory for T'
would be beneficial for T (or harmful for S) because it would attenuate or even
eliminate this inertial behaviour that makes T easy to manipulate. This way T
can be thought of as a more intelligent adversary that only takes into account the
most recent observations and simply forgets older ones.

4.1 Expected payoff with limited memory

The following reasoning can be applied to obtain the expression of the expected
payoff when T uses PF but has limited memory. As stated before, limited memory
means that the number of observations T' can store in his memory is limited to
a certain number. When the memory is full and a new action a; is to be stored,
the oldest observation is simply deleted. Suppose that the oldest observation was
action a:, then the deletion consists in decreasing the value O; in one unit. This
idea can be applied to obtain an expression of the expected payoff as follows.
Suppose that we have observed N + s steps, and that agent S was using a mixed
strategy of two periods of lengths N1 and N». Then, recall that after N1 + s steps,
the observation vector of T' will look like

O=( Niaj+saof ... ... Niap+sap)
Suppose that now we add a new observation. We do not know what exact action
S will do in the next step, but we can model the behaviour using the probability

that the action is each of the possible ones. So after one additional step, the same
row will now look like

O=( Niraj+(s+1)af ... ... Niap+(s+1)ad, )
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Notice that we have not added 1 unit to any component, but we have added
a? to every component of the vector. Now let us see what happens if now T
forgets the first observation he made, at stage, say, so. This means he will forget
an observation that was made when S was in the first period of his strategy, i.e.
S was using the set of weights {a, ..., @}, } at that moment. Thus the probability
that the action observed at step so was a1 is ai, the probability that it was az is
a3,... and the probability that it was am is ab,. Since we do not know what really
happened at that step because we are modelling an expected payoff, we cannot
substract 1 to any concrete component of the observation vector. What we should
do is substract the probability that the action observed in that moment was each
of the possible actions, just in an analog way that we added that probability to
every component of the vector at the time when we considered a new observation.
Thus the observation vector will look like

O:((Nl—l)-o&—i—(s—i—l)wx% ci e (N =1)ab + (s+1)a2, )

It is important to note that the weights that are substracted correspond to
those used by S at the moment of the observation that is being deleted. This
means that it is necessary to compute which set of weights was being used by S
at the moment of the observation. Function (12) was designed for this purpose,
because it calculates what was in the observation vector at a certain step, no
matter how many different periods were employed from the beginning to that
step. If the capacity of the memory is limited, it is enough to delete everything
that had been observed up to a certain step corresponding to the one before the
oldest step that is still stored in memory. Thus the content of O; after step d
(1 <d < L) of the simulation with an observation memory limited to mem steps
(d > mem) can be expressed as OBS(d, j) — OBS(d — mem, j). The case where
d—mem < 0 is nonsense but was added to the definition of function OBS to enable
a general expression for the expected payoff. Obviously, Vj, OBS(d — mem,j) =0
when d < mem, meaning that T has observed nothing before the beginning of the
simulation. Limited memory can be seen as a sliding window, as shown in Fig. 4.

mem mem
~ A ~ ~ N ~
| | b I
| | | ' |
d d — mem d
(d<mem) (d>mem)

Fig. 4 Depiction of limited memory in a temporal line at step s of the sequence in two cases:
when d is smaller (left) and greater (right) than the capacity of the memory. In the former
case, agent T still remembers everything from the beginning of the simulation but in the latter,
he only remembers the mem last responses of S

Summarizing, expression (12) can be generalized to support limited observation
memory of mem steps as follows.
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EPjim(d,mem) = aj(1—1/m)p; +

i=1

i i L (1 _ OBS(s—1,j) —OBS(s — 1 — mem,j))

min{s — 1, mem}

Dj (13)

5 Experiments and Results

The experiments we conducted are aimed at answering the following questions:

1. Do the results obtained with the analytical expressions match those obtained
by empirical simulations?

2. Do dynamic mixed strategies outperform a static mixed strategy in terms of
expected payoff?

3. Does a limited memory have an impact over the expected payoff? Is it beneficial
or detrimental for agent T to forget the oldest observations?

5.1 Experimental settings

The parameter configuration of the model instance that has been used in the
empirical evaluation of strategies was the following:

— Number of different actions: m = 5.

— Number of encounters: L = 500.

— Payoff vectors: 15 different vectors were tested. The payoffs of every vector are
summarized in Table 2.

Table 2 The 15 payoff vectors used in the experiments, separated in 3 groups according to
the payoff structure, and the maximum total payoff attainable by S after 500 encounters

Maximum reward possible
Vector Payoffs after 500 encounters
\%] 1 09 09 08 0,85 500
Va 0,8 0,9 0,6 0,7 1 500
V3 1 0,85 0,7 0,4 0,55 500
Vi 1 06 08 04 0,2 500
Vs 0,25 0,01 0,5 1 0,75 500
Ve 1,1 095 09 1,05 1 550
%4 1,2 1 1,1 0,9 0,8 600
Vs 1,3 1 1,15 0,85 0,7 650
Vo 1,2 1,4 1 0,8 0,6 700
Vio 1,5 1 0,75 1,25 0,5 750
Vi1 0,8 0,6 0,4 1,5 1 750
Via 0,8 0,6 04 1,75 1 875
Vis 08 06 04 2 1 1000
\% 0,8 0,6 04 2,25 1 1125
Vis 0,8 0,6 0,4 2,5 1 1250
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Evaluation of a strategy To compare empirical and theoretical results for every
payoft vector, we did the following. For each payoff vector, the numerical values
p; are substituted in the theoretical expression as well as the number of periods
H that is required in case of dynamic mixed strategies (recall that we tested
H varying from 1 to 4), and the optimization algorithm is then executed. The
algorithm returns the values of the optimal strategy for that payoff vector. Once we
have such values defining the strategy, we evaluate it theoretically by substituting
them in the theoretical expressions (3) (if it is a static strategy) or (7) and (13) (if
it is dynamic), to obtain the expected payoff. In addition to this, we also use that
strategy in 100 independent empirical simulations with the current payoff vector,
and take the average of the executions to compare it with the theoretical expected
payoff.

Optimization algorithm The NMazimize command of the Mathematica software
package was used to solve the constrained optimization problems (4) and (8). The
maximization it carries out is not analytical but employs approximate heuristic
methods that depend on the initial solution. However, the same command was
used for both the static and dynamic strategies so this phenomenon affects both
families of strategies in the same way.

Recall that the number of periods H is not part of the optimization process
but must be set by the user. In order to test the influence of such parameter, we
tested H varying from 1 to 4 periods and compared the results. Insights on this
are provided in Section 5.2.1. On the other hand, the optimal length N}, of every
period is part of the set of variables to optimize.

5.2 Results

In order to answer the first question posed above, first note that the theoretical
expressions have to be evaluated given the numerical values (period lengths and
weights) that define the concrete strategy being tested. In our case, the strategies
that we will evaluate are those obtained by the optimization process explained in
previous sections.

Fig. 5(a) shows a comparison of the expected and empirical payoff for an opti-
mal dynamic mixed strategy with 4 periods with unlimited memory (see (7)). The
plot confirms an almost perfect matching between the predicted and the actual
payoff in all the payoff vectors. The payoff is presented as a percentage of the ac-
cumulated payoff over the mazimum, which is the total payoff attainable if agent
S always selects the action with the highest payoff and he is never guessed. This
would be the ideal situation that only occurs when there is no adversary. Fig. 5(b)
shows again a perfect matching in case of limited memory for T, so expression
(13) has been proven to be correct as well.

We now analyze the performance of both static and dynamic mixed strategies
with unlimited memory to answer the second question posed above. The results
are shown in Fig. 6. This figure proves a very important result. In all the pay-
off vectors tested, the three optimal dynamic mixed strategies outperformed the
optimal static strategy. In addition, increasing the number of periods was always
beneficial in terms of the payoff attained. Recall that these results do not come
from a simulation but from a prediction made using the expressions, so they are



16 Pablo J. Villacorta et al.

75

~+--Empirical
—&-Expected

o [} [} ~
a =] o [S]

Payoff attained (% over maximum)

o
=]

45

4 V2 V3 V4 V5 V6 v7 Ve Ve V10 V11 V12 VI3 V14 V15

Payoff vector

(a)

80

-—+--Empirical
-5~ Expected

~
o

N o @
o S S

w
S

Payoff attained (% over maximum)

20

4 V2 V3 V4 V5 V6 v7 V8 Vo V10 Vi1 V12 VI3 V14 V15

Payoff vector
(b)

Fig. 5 Expected and empirical payoff for S of dynamic mixed strategies with 4 periods and
unlimited memory (a) and with limited memory of 30 steps (b)

not influenced by random factors. Notice that the greater gain in performance was
achieved in vectors Vi1 to Vis, which are those where the highest payoff is much
greater than the rest. This is a particularly encouraging result for problems in
which it is especially important to do the best action as many times as possible.
In order to answer the third question, the impact of limited memory over the
expected payoff is going to be studied. As explained in Section 4, limited memory is
a violation of the assumptions made for the optimized dynamic mixed strategies.
In other words, the optimization process carried out was assuming some facts
that are not true anymore, so the results obtained are not optimal now. Fig. 7
shows the expected payoff using the optimized dynamic strategies with 4 periods
(which were the best-performing ones) both with unlimited and limited memory.
Recall that all these strategies being tested now were originally designed assuming
an unlimited-memory adversary so our aim now is to measure how the existing
strategies are affected if the assumption is violated. According to Fig. 7, in all cases
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Fig. 6 Expected payoff for S with unlimited memory for every payoft vector

it was beneficial for T to have a limited memory as this allowed him to recover
faster from deception and consequently the payoff of S was much lower. The case
of payoff vectors Vi1 to Vis is dramatic. In these vectors, S achieved the greatest
gain with respect to static strategies using 4-period dynamic strategies. But now
that T has limited memory, however, S only attains 20 % of the maximum payoff
in Vi3, Viq and Vis, 30 % in V12 and less than 40 % in Vi1.

It is important to note that agent S could have designed better strategies if
he knew in advance the length of the limited memory, i.e. if he had an accurate
model of the adversary. In that case, he could exploit this knowledge: it would
suffice to substitute the objective function of the optimization problem by the one
with limited memory given in Section 4.1. As a result, S would not suffer such
payoff loss, but we think that assuming such an accurate knowledge of T is too
unrealistic as the information would be very asymmetric and favour S even more
than in the current model.

Strategies obtained with 4 periods Examining the optimal dynamic strategies ob-
tained is useful to understand how agent S tries to cause deception along time.
Figure 8 shows four selected dynamic strategies with 4 periods. The mixed strat-
egy used in each period is depicted in a 5-axis star-plot where the axes represent
the m = 5 available actions of the model a1, ...,a5. The continuous and dashed
polygons represent the probabilities of choosing each action during each of the
periods. Since the dynamic strategies depicted have 4 periods, we have plotted the
first 2 periods in one plot (on the left side) and the last 2 periods in another (on
the right), to avoid excesive overlapping on one single plot that makes it difficult
to read. Notice that in the last period, usually the best and second-best actions
are the only ones with a probability greater than 0 of being chosen. However these
choices are supposed to be safe because the rest of the actions were chosen many
times during the first periods. This behaviour is emphasized in vectors in which
the best action has associated a very prominent payoff in relation with the other
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Fig. 7 Expected payoff for S of the 4-period dynamic strategies originally designed under
unlimited memory assumption, now being tested with both unlimited and limited memory for
every payoff vector

actions, as happens in V5 and Vi5. In the last period the strategy just chooses the
best action all the time, but since we assume unlimited memory, agent S will not
be able to recover from all the previous observations and as a result, it is still safe
to deterministically choose the best action during all the 4th period.

5.2.1 Insights into the behaviour with limited memory

In order to understand why limited memory is beneficial for T, we propose to study
the probability of making a correct guess, and how it changes along time. This
study must be done for one specific action since the evolution of this probability
is different from one action to another. Recall that dynamic strategies are aimed
at inducing confusion at the beginning to safely choose the best action after the
initial periods. For this reason, the most interesting action to track this evolution
is the best action (i.e. that with highest payoff) of each vector. Fig. 9 shows
the evolution of the probability of being guessed correctly (Op/ "7~ O;) when
choosing the best action a; of payoff vectors Vi, Vi1 and Vis. Agent T employs
a 4-period dynamic mixed strategy. The changes on the guess probability are
more abrupt when the memory is limited because the observation vector starts to
display the new behaviour very quickly after a change of S. As a consequence, T
is able to adapt to the new situation faster and the deception that S tried does
not work very well. The cases of vector Vis is specially dramatic. As it was very
important to choose the best action as many times as possible because it has a
remarkably high payoff, S had planned a first period with several different bad
choices, and then switching to a second period with a single repeated best choice.
Now T quickly notices this change and when S starts choosing always the best
action in the second period, T" learns this behaviour and starts being successful in
his predictions from a very early stage of this second period.

Since limited memory for T seems to be very harmful for S in relation to
unlimited memory, it may be interesting as well to find out what the exact impact
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of memory capacity over the expected payoff is. In the extreme case, with a memory
of only one step of capacity, T would always make his election based on the last
action observed. Of course, if S were aware of this, it would be very easy for him
to exploit this behaviour to his own benefit, but for now we will assume S does
not know. We will study the impact in relation to the payoff vector used in order
to discover if limited memory affects some vectors more than others. Figure 10
shows the results. The lines represent the theoretically expected payoff for a given
capacity value after 500 encounters. As can be seen in the plot, we have tested the
capacity of the observation vector varying from 1 to 500. A capacity of 500 in a
500-step setting is equivalent to infinite memory.

First of all, the three plots confirm that the shorter the memory, the worse
for S or equivalently the better for T. As expected, the payoff vector has a clear
influence on the impact of limited memory. For instance in vectors Vi to Vs as well
as Vs to Vio, the slope of the curves 4 and 5 as well as 9 and 10 is greater than
the others, because these vectors are “more difficult” than the rest. By difficult
we mean that the payoffs of the vector are very different among them, so every
time a good action is correctly guessed by T, it leads S to a great loss in payoff. In
these cases it is specially important to choose good actions to avoid great losses.
In vectors Vi1 to Vis one of the payoffs is much greater than the rest as explained
in preceding sections. All the curves of that group have big slopes meaning that
the impact of the capacity of the memory is greater. Secondly, all the curves tend
to present big slopes at the beginning but turn horizontal after a certain value
of capacity. This value can be thought of as a threshold. Above this value, it is
almost impossible for T' to recover from the past observations and adapt to a new
situation (strategy), which means that S has been sucessful in his deception.

On the influence of the number of periods We have done all the experiments so far
with 4-period dynamic strategies. The value of the number of periods originates a
different optimization problem in each case, increasing the number of variables in
m + 1 as the number of periods increases in one unit. For this reason, this value
should not be too high to keep the size of the optimization problem in reasonable
limits. Further, it should be in accordance with the number of encounters L that are
going to take place, since too short periods have a low impact on the performance
of the overall strategy, and the corresponding set of weights cannot modulate
properly the overall behaviour due to lack of rounds.

We have sampled H from 2 to 30 by running the optimization process for each
H value, for adversaries with memory capacity of 30, 100, 200 and 500 (unlimited
memory) steps. The results are shown in Fig. 11 and prove that the impact of dy-
namic strategies is different depending on the adaptive capacity of the adversary,
with a shorter memory representing a more adaptive opponent. In case of unlim-
ited memory, the best performance is achieved with 4 periods, and increasing the
number of periods does not give S a higher payoff (the corresponding line in the
plots becomes horizontal very quickly). This is because unlimited memory allows
for greater space for deception and thus it is enough to have less periods. In case
the observation memory is limited, then it becomes more important to employ a
strategy with a high number of periods, because the deception achieved when S
switches from one period to another is quickly attenuated when oldest observa-
tions are forgotten. In other words, agent T' can quickly adapt and learn the new
behaviour. As a result, the effect of switching to a different set of weights becomes
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useless after a very short time, and therefore another change in the weights used
by S is needed soon after the previous one. It can be seen in the plots that in all
cases (except for 30-step memory capacity), a threshold on the number of periods
exists that gives the maximum performance, and increasing the number of periods
beyond the threshold does not clearly improve the payoff. This behaviour mirrors
the results of unlimited memory, although the threshold value depends on the pay-
off vector and the memory capacity of the adversary. If the number of periods is
high enough, then it is possible to exploit the limited memory to achieve a greater
payoff than with unlimited memory, as shown in payoff vector V1o, but this also
depends on the payoff vector of the problem.

5.2.2 Study of the competitive ratio against a clairvoyant adversary

An interest kind of analysis consists in comparing the payoff attained by S using
our strategies with that attained in the mixed equilibrium situation, even though
such equilibrium to mixed strategies cannot be played since T' does not know S’s
payoff. The aim is to compute the competitive ratio, which was defined originally
for online tasks, i.e. those consisting in satisfying a sequence of requests that arise
one at a time, without knowledge of future requests [8,16]. It can be computed as
the performance ratio of the algorithm that does not know in advance which de-
mands will be received, divided by the payoff attained with an optimal, clairvoyant
algorithm which knows in advance all the requests and their ordering.

Our imitation problem is not exactly an on-line task because there is nothing
new at each repeated encounter that is unknown for any of the agents before that
turn. However, it is true that agent T does not have full knowledge of the situation
because he does not have access to S’s payoffs. Therefore, we can compute the
competitive ratio by considering the situation in which agent T' knows S’s payofs,
and thus he is able to compute and play the mixed strategy prescribed by mixed
Nash equilibrium.

By definition of Nash equilibrium [13], in case T plays mixed Nash equilibrium,
the best S can do is play his own Nash equilibrium too. Any other strategy would
be worse for S. Therefore, the interesting situation is to assess (a) the payoff
attained by S when he uses a dynamic mixed strategy that was designed assuming
PF for T and T plays the mixed Nash equilibrium strategy, with respect to (b) the
payoff attained by S when both agents play Nash equilibrium (which is the most
clairvoyant situation because both agents know the adversary’s payoffs and also
know that the adversary knows their own payoff, so they both have a motivation to
play Nash equilibrium). As stated before, if T plays Nash equilibrium, we know for
sure that S’s payoff when playing any strategy different than the Nash equilibrium
(in particular, when playing a dynamic mixed strategy) is smaller than the payoff
when playing S’s own Nash equilibrium. The aim is to assess how big this difference
can be, in ratio.

Such experiment has been conducted assuming a 4-period dynamic mixed strat-
egy for S that was found by the optimization algorithm under the assumption that
T was using PF. The strategy found was then played by S against an adversary
using the mixed Nash equilibrium. The one-shot mixed Nash equilibrium strategy
for T was computed using the Gambit software tool 3. The results are depicted

3 It is freely available at www.gambit-project.org
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in Fig. 12. It can be seen in the figure that the competitive ratio, as defined in
Fig. 12, is very close to 1 in all cases. This means that a dynamic mixed strategy
designed under the assumption of and unlimited-memory PF adversary is not seri-
ously damaged if the adversary actually plays the one-shot mixed Nash equilibrium
at every encounter, instead of PF as he was assumed to play. Here, not seriously
damaged refers to S’s payoff in relation to the payoff S could have attained if
he also plays Nash equilibrium instead of a 4-period dynamic mixed strategy. Of
course, any of these payoffs are notably lower than the payoff S could attain if T
actually played PF (see the top-most series of Fig. 12(a)), but this situation is not
the one considered for the competitive ratio.

6 Conclusions and further work

Static and dynamic mixed strategies for an agent in an adversarial model have
been successfully designed using numerical optimization methods. Analytical ex-
pressions of the expected payoff for both strategies have been provided and vali-
dated also from an empirical point of view. Furthermore, optimal dynamic mixed
strategies have shown to outperform optimal static mixed strategies in all the sce-
narios tested, specially when the difference between the payoff of the best action
and the payoff of the rest of actions becomes greater.

However, such conclusions are valid only when we accept some assumptions
about the behaviour of the adversary, agent T. These assumptions include that
(a) the adversary has an unlimited observation memory (so an agent that knows
he is being watched can manipulate the observer agent with his own behaviour),
and (b) T uses a strategy proportional to the observed frequency to make his
predictions, which allows S to previously take this into account when designing
his strategies. If these conditions are not met, i.e. our model of the opponent is
not accurate, then the strategies previously designed are not optimal any more,
i.e. if T has a limited observation memory, then the manipulation that S had
planned has no effect, thus leading to important (sometimes dramatic) losses in
the payoff attained by S. Again, theoretical expressions of the expected payoff
were provided and successfully contrasted with empirical simulations for this new
situation. When 7' simply guesses with the last action observed (1-step memory),
the results were very bad for S because in a mixed strategy a player often repeats
probabilistically the same action in consecutive turns. Notice that one easy way to
avoid this behaviour is to use the so-called Random among K best actions strategy,
which was one of the very first strategies presented in [15,18].

Since game theory in general usually relies on assumptions such as perfect
rationality of all the players (all are supposed to be best-responsers) or perfect
knowledge of the utility functions (which does not hold here because T' does not
know S’s payoffs, which is the key aspect of our model), it is clear that new ro-
bust approaches are required to solve such adversarial scenarios. Therefore, further
work may include using game-theory related models to study what happens when
the assumptions about the adversary are violated, in a similar way as the present
work. Such studies represent the starting point to enhance the application of these
models in real-world contexts [2,4,6]. In addition, extensions of the model can be
introduced, such as a generalization in which the payoffs of the game change at
every step with a correlation between an action chosen by S and the next game
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to be played (this is formally called a stochastic game). This means that the de-
cisions not only should take into account the immediate payoff of current round
but also if the payoffs of the next game to be played are high, as a function of the
current choice. Intuitively, one can think of each game to be played as an external
stimulus that both agents can perceive, and which requires a response (be it a
movement, a complete plan, or anything else) from them. Experimentation with
more sophisticated (learning) techinques for T' to make accurate predictions could
be interesting as well, specially those concerning convergence to equilibrium with-
out knowing the adversary’s payoff (uncoupled dynamics). Finally, the application
of the model to real situations is of great interest and is currently under research.
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Fig. 8 Depiction of the optimal 4-period strategies obtained for vectors Vi, Vs, Vg, Vi1 and
Vis after applying optimization, assuming unlimited observation memory of T'
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Fig. 9 Evolution of the probability that 7' successfully matches the action chosen by S if S
chooses the action with highest payoff of each vector. S is using the optimal 4-period dynamic
strategy obtained for payoff vectors V1 (top), Vi1 (middle), and Vis (bottom)
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Fig. 10 Expected payoff for S as a function of the capacity of the observation memory of
T for every payoff vector. Agent S is using the optimal 4-period dynamic strategy originally
designed under the assumption of unlimited adversarial memory
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Fig. 11 Expected payoff for S for payoff vectors Vi (top), Vip (middle) and Vi5 (bottom), as
a function of the number of periods of the optimized dynamic strategy he employs. Strategies
were found assuming the memory capacity of 7' was known before the optimization process
starts.
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Fig. 12 Payoff attained by S when playing against different kind of adversaries (a) and
competitive ratio in the case that S plays 4-period dynamic strategies designed originally for
an unlimited-memory adversary playing PF, and T is assumed clairvoyant and plays mixed
Nash equilibirium (b). Note that (b) is the quotient of the two bottom lines of (a)



