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Abstract Natural human interaction is characterized by interpersonal coordination: inter-
locutors converge in their speech rates, smoothly switch speaking turns with virtually no
delay, provide their interlocutors with verbal and nonverbal backchannel feedback, wait for
and react to such feedback, execute physical tasks in tight synchrony, etc. If virtual humans
are to achieve such interpersonal coordination they require very flexible behavior plans that
are adjustable on-the-fly. In this paper we discuss how such plans are represented, maintained
and constructed in our BML realizer Elckerlyc. We argue that behavior scheduling for Vir-
tual Humans can be viewed as a constraint satisfaction problem, and show how Elckerlyc
uses this view in its flexible behavior plan representation that allows one to make on-the-fly
adjustments to behaviors while keeping the specified constraints between them intact.

Keywords Virtual Humans · Behavior Markup Language · SAIBA · Multimodal plan
representation · Interpersonal coordination

1 Introduction

A virtual human uses verbal and nonverbal behavior to express (communicative) intentions,
in a dialog or other interaction context. This should not happen in monolithic series of
monologues: a virtual human need to be able to on-the-fly adapt their ongoing behavior.

This paper is an extended and revised version of a paper presented at IVA 2011.
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They need to add actions in the middle of a sentence (e.g., look up briefly at a passer-by),
interrupt themselves, change the timing of their speech and gestures to accommodate behavior
of the interlocutor such as feedback and interruptions. Goodwin describes an example of such
adjustments in human–human conversation: when a listener utters an assessment feedback,
the speaker, upon recognizing this, will slightly delay subsequent speech (e.g. by an inhalation
or production of a filler) until the listener has completed his assessment [3]. A virtual human
might also have to closely coordinate their movements with those of a human partner while
performing a joint physical task. For example, when a virtual sports coach is performing
an exercise along with the user, it needs to continually update the exact timing with which
it performs the movements in order to stay synchronized with the user. Our aim is to build
virtual humans with such capabilities for human-like interpersonal coordination. For this, we
need to be able to make on-the-fly adjustments to the behavior being displayed [6,9].

This paper describes three important contributions towards achieving this flexibility.

(1) We describe how the addition of verbal and nonverbal behavior to an ongoing motor
plan can be viewed as a constraint satisfaction problem: a collection of behaviors, with
constraints on their possible timing, is added to a flexible (motor) plan in such a way
that these constraints are met, and existing constraints in the plan are retained. Several
algorithms (including constraint programming/constraint optimization) can be used to
solve this constraint satisfaction problem. The focus of our paper is on the constraint
representation rather than on algorithms to solve the constraint satisfaction problem –
for the latter we make use of an improved version of the constraint solving strategy used
in the SmartBody realizer and illustrate how other strategies might be incorperated in
our work. We show why it is important that these constraints are represented explicitly
in some way in the motor plan, for maintenance of (adherence to) the set of constraints
in case of on-the-fly adaptation or incremental extension of the plan.1

(2) We introduce our implementation of a novel and flexible intermediate motor plan rep-
resentation in which we can easily make the required kinds of on-the-fly adaptations to
the behavior of the virtual human.

(3) Finally, we discuss practical examples of how we use these new capabilities, imple-
mented in Elckerlyc [13], to do a number of things that would not have been possible
(or at least: more difficult to achieve) without the above.

2 Behavior planning in SAIBA

The SAIBA framework [8] provides a good starting point for designing interactive virtual
humans. Figure 1 shows a slightly elaborated version of the SAIBA reference architecture
for behavior generation. The Intent Planner is responsible for generating the higher level
communicative intentions of the virtual human, in a dialog or any other interaction setting.
Example intentions are to ask the user for their name, to explain a mathematics exercise, to
compliment the user on their new hair cut, etcetera.

The Behavior Planner specifies the verbal and nonverbal behavior that should be used to
express these intentions. The type of behavior, and the constraints on its timing, are specified
using the Behavior Markup Language (BML). A single BML block typically contains a

1 We use this “constraint problem” view to develop a novel flexible motor plan representation, but its value is
actually broader than that. It can also contribute to clarifying standards for multimodal behavior generation,
validating behavior realizers and/or scripts, etcetera. Having formal constraints also means that you can
(partially) express the expected end result for a BML expression independently from the system used to
generate the virtual human’s behavior, facilitating systematic testing and validation [14].
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Fig. 1 Simplified overview of the SAIBA virtual human behavior generation pipeline. Communicative intent
is translated to a multimodal behavior plan specified in BML. This BML is performed on the embodiment
of the virtual human in two steps, by the BML Realizer. The scheduler takes the BML and adapts/extends
the current motor plan. The player executes the motor plan on the embodiment of the virtual human through
sound and movement

Fig. 2 BML is used to specify the required behavior of the virtual human, and the various alignments between
the single behaviors. This figure shows an example BML script and the standard sync points of a BML gesture
behavior

number of behavior elements; alignment and timing are specified in reference to sync points
such as the start or end of a behavior. Figure 2 shows an example BML block and the standard
sync points of a BML gesture behavior. A stream of BML blocks is sent from the behavior
planner to the BML realizer.

The BML Realizer, finally, is responsible for displaying the content of the BML block on
the embodiment of the virtual human, using sound and motion. The BML realizer should
execute the behaviors in such a way that the time constraints specified in the BML blocks are
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satisfied. Realizer implementations typically handle this by separating the BML scheduling
process from the playback process. As can be seen in Fig. 1, the scheduling process generally
converts the BML blocks to a motor plan that can be directly displayed by the playback process
on the embodiment of the virtual human.

Figure 3 shows how the motor plan is extended with new elements, based on BML that
has been sent by the behavior planner to the BML realizer. The motor plan representation
forms an intermediate level between the multimodal behavior plan (BML) and the surface
realization on the embodiment of the virtual human (body movement, speech audio, facial
movement, etcetera). In most BML Realizers scheduling the stream of BML blocks results
in a rigid motor plan. Once scheduled, the plan cannot be modified very well—at best, a
Realizer allows one to drop (a subset of) the current plan and replace it with a new plan.
The more flexible plan representation that is introduced later in this paper allows one to
interrupt behaviors, change the timing of sync points, add additional behaviors, and change
the parameterization of behaviors on-the-fly while keeping the constraints intact. This makes
it eminently suitable for VH applications in which a tightly coordinated interaction between
user and VH is required.

3 BML scheduling as a constraint problem

BML expressions specify behaviors to be realized by a BML Realizer, and their timing and
alignment. Figure 3 already showed how the scheduling process creates and maintains the
intermediate multimodal motor plan that will be displayed on the virtual human’s embodiment
at playback time. In this section we look in more detail at the various types of constraints set
to the motor plan by the BML, and describe how scheduling can be thought of as constructing
a motor plan that adheres to these constraints.

A new BML block u is sent to the scheduler at time ct (indicated by the vertical white bar
in Fig. 3). The block u specifies new behaviors b with sync points s (such as start, stroke,
or end) and their alignment. The scheduling process of a realizer updates the current motor
plan on the basis of u.

Scheduler
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 behaviors
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BML block
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Fig. 3 The scheduling process that transforms a stream of BML into a motor plan. The white bar indicates
the current time ct . The new BML block u defines how the currently playing and planned behaviors are
updated and which new behaviors are inserted, using a composition attribute. merge (top) specifies that
the behaviors in the BML block are to be started at the current time. append (bottom) indicates that the
behaviors in the BML block are to be inserted after all behaviors in the current plan
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A scheduling function f : s → t maps sync points s to global time t . Another scheduling
function blockstart : u → t maps blocks u to their global start time t . The goal of scheduling
is to find the values of f (s) for all sync points in all behaviors in a new block u as well as the
value of blockstart (u), in such a way that all constraints are satisfied. Because most BML
blocks are underspecified, schedulers have a lot of freedom to solve this in such a way as to
obtain nice and natural looking animations.

The behaviors are added to the motor plan subject to a set of timing constraints c. Firstly,
there are the constraints that are explicitly defined in the BML block specification. Secondly,
there are certain implicit constraints that hold for any BML block (e.g., behaviors should
start before they end). Thirdly, a specific realizer can impose additional constraints upon the
scheduling, motivated by biological capabilities of the virtual human it steers. Technical lim-
itations (e.g. inflexible timing of Text To Speech Systems) might further constrain the timing
of the behavior plan. Finally, Block Level Constraints, as specified by the composition
attribute in the BML block, define the relation between the start of the to-be-scheduled BML
block and the behaviors already present in the current motor plan (see the difference between
the two examples in Fig. 3). The five types of constraints are described in more detail below
using BML Example 1. Appendix A contains a more formal and detailed treatment.

3.1 Explicit constraints

Explicit time constraints are specified directly in the BML expression, as a time relation
between sync references. A sync reference consists of either a time value in seconds, denoting
an offset from the start of the BML block, or a sync point of one of the behaviors and an
offset (may be 0). BML defines two types of time relations:

– before/after: sync reference a occurs before (or after) sync reference b.
– at: sync references a and b occur at the same time.

In Example 1, the stroke of the gesture is constrained to be 0.5 s after s1 of the speech.
The sync references involved in this constraint are expressed as [[[bml1, speech1], s1], 0.5]
and [[[bml1, point1], stroke], 0]. Given the notations and definitions from Appendix A, the
constraint on these sync references comes out as

cr = [[[bml1, speech1], s1], [[bml1, point1], stroke],−0.5] (1)

Explicit constraints typically express the multimodal timing of behavior. They also provide
the Behavior Planner with the ability to define those constraints on a behavior that maintain
the intended meaning of a behavior.
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3.2 Implicit constraints

Apart from the explicit constraints defined in the BML block, several implicit constraints act
upon f :

1. Sync points may not occur before the block in which they occur is started.
2. Behaviors should have a nonzero duration.
3. The default BML sync points of each behavior (for gestures: start, ready,

stroke_start, stroke, stroke_end, relax, end) must stay in that order.

For example, the first point implies that the time assigned to the sync points must be
greater than the start time of the example block, even though no start time was specified in
the BML block for those two behaviors. More formally: for all sync points s ∈ s of behaviors
speech1 and point1 in block bml1, f (s) ≥ blockstart (bml1)

In addition to the constraints mentioned above, a set of implicit cluster constraints enforces
that there is no ‘unnecessary whitespace’ between behaviors (see Appendix A.3.2 for a more
rigourous treatment). That is, each behavior, as well as each block, is supposed to start as
early as possible, as long as it satisfies all other constraints.

3.3 Biomechanical constraints

Realizers might impose additional biomechanical constraints that are typically behavior spe-
cific. A realizer might, e.g., forbid solutions that require a VH to gesture at speeds beyond
its physical ability.

3.4 Technical constraints

Other constraints are due to a technical limitations of current behavior realization techniques.
For example, most Text-To-Speech systems do not allow one to make detailed changes to
the timing of the generated speech. Therefore, realizers typically forbid scheduling solutions
that require the stretching of speech behaviors beyond the default timing provided by the
TTS system.

3.5 Block level constraints

The composition attribute associated with a BML Block (see also Fig. 3) defines con-
straints on the start of the block in relation to the set of current behaviors in the motor plan
and to the current global time ct . BML defines the following composition attributes:

1. merge: start the block at ct .
2. replace: remove all behaviors from the current plan, start the block at ct .
3. append: start the block as soon as possible after all behaviors in the current plan have

finished (but not earlier than ct).

In Example 1, the composition is append so the start time of the block must be greater
than the end time of everything that is currently in the motor plan, as well as greater than
ct . Clearly, these equations can also be rewritten in terms of the start time of all behaviors
b ∈ b in BML block bml1, constrained relative to the end time of all behaviors already in
the current motor plan. This is also explained in Appendix A.
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3.6 Additional behavior plan constraints in Elckerlyc

We have defined extensions to BML that allows us to specify an additional block level
constraint: in addition to the merge and append block composition attributes, Elckerlyc
provides the append-after(X) attribute. This starts a BML block directly after a selected
set of behaviors in the current behavior plan (those from all blocks in X) are finished. The
block level constraints for this composition attribute can, again, be rewritten into constraints
on only the behaviors in the current plan and in the new block. A more formal and extensive
treatment of Elckerlyc’s BML block constraint extensions can be found in Appendix A.5.

3.7 Meaning retaining constraints

Behaviors might be executed in ways that that are biomechanically plausible, but that validate
the meaning intended by the Behavior Planner. In our view, a BML Realizer should not
be responsible for the maintenance of intended meaning and intended meaning should not
be expressed in BML. Instead, the Behavior Planner should express the time constraints it
requires to retain meaning explicitly in BML (perhaps using a BML behavior library in which
such constraints are annotated per intention). However, the exact semantics of BML 1.0 are
still open and it has been suggested to map BML behavior elements to gesture repertoire
elements in which meaning retaince constraints are annotated. Such a behavior construction
technique is compatible with our solver and constraint maintenance mechanisms, as meaning
retaining constraints can simple be added to the constraint representation.

4 Existing BML scheduling solutions

In this section we describe the scheduling solutions implemented in the BML Realizers
SmartBody and EMBR. Both EMBR and SmartBody apply top down scheduling, resulting
in a rigid behavior plan. More flexible behavior scheduling (albeit not within the SAIBA
framework) was previously achieved in the ACE system, for the specific application of
gesture co-articulation.

4.1 Top down, rigid scheduling

EMBR [4,5] uses a constraint optimization technique to solve the scheduling problem. The
EMBR scheduler first solves the absolute value of all BML sync points in speech. A timing
constraint solver then solves for the timing of the remaining nonverbal behaviors. Synchro-
nization constraints might require the stretching or shortening of behavior phases as compared
to the defaults given in the behavior lexicon. The constraint solver uses the sum of ‘errors’ (in
seconds) of the stretch over all behaviors as its cost function. It thus finds solutions in which
the overall stretch is minimized. The EMBR scheduler can schedule BML blocks containing
before and after constraints, and favors solutions that result in more natural behavior (for
EMBR’s measure of the naturalness: minimal overall behavior stretching).

SmartBody [12] uses a very fast custom scheduler that does not use constraint optimization
techniques. SmartBody’s scheduling algorithm solves the constraints in the following way.
It processes the behaviors in a BML block one by one, in the order in which they appear
(syntactically) in the block. Given the next behavior, it assigns an absolute timing to its
sync points so that they adhere to all timing constraints posed by its (syntactic) predecessors
in the BML block and to any absolute time constraints (offset from the start time of the
block). Once the a behavior is processed, its timing is fixed; if a subsequent behavior must
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be aligned to it, those constraints are solved by manipulating that subsequent behavior. If
two time constraints on a behavior require certain phases of that behavior to be stretched
or skewed, the scheduler achieves this by stretching or skewing the behavior uniformly, to
avoid discontinuities in animation speed. SmartBody’s scheduling mechanism can result in
some time constraints being scheduled into the past (that is, before the start of the BML
block). A final normalization pass is performed in which, where needed, connected clusters
of behaviors are shifted forward in time to fix this. SmartBody cannot handle before/after
constraints yet, but does comply with all explicit constraints and implicit constraints that do
not concern before and after constraints.

Because the SmartBody scheduling algorithm schedules behaviors in the order in which
they syntactically appeared in the BML block, this ordering, which should not have a semantic
effect, can actually influence the scheduling solution. At worst, this may lead to situations
in which BML cannot be scheduled in one order while it can be in another. For example,
the BML block in Example 2(a) cannot be scheduled because the timing of the nod1 is
determined first, and the scheduler attempts to retime speech1 to adhere to this timing.
Most speech synthesis systems, including the one used in SmartBody, forbid such retiming.
If the behavior order is changed, as in Example 2(b), then speech1 is scheduled first, and
nod1 will adhere to the timing imposed by speech1. That being said, the SmartBody
scheduling algorithm is easy to implement and provides rapid scheduling. In practice, most
BML scripts are simple and the SmartBody scheduler will find a reasonable scheduling
solution for such scripts.

Two motor plan properties are important for flexible plan adaptation: Firstly, one must
maintain a grounding from units in the motor plan to the BML expressions that resulted in
them being added to the plan. This means that even after the motor plan is constructed, it
is possible to refer to (and modify or remove) units of this plan using their original BML
identifiers. Secondly, the constraints that act upon the plan must be still represented after it
has been scheduled, so that modifications to the plan can be made that do not invalidate the
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constraints specified in BML. Both EMBR’s and SmartBody’s scheduling approaches are
applied in one-shot fashion: scheduling resolves BML behaviors and constraints into a plan
describing the absolute timing of to be executed motor units (e.g. audio files for speech and
keyframe animation for gestures). While their motor plan (to some extent) retains a grounding
of units in the motor plan to their matching BML behaviors (this is also required for behavior
progress feedback), they do not represent the BML constraints in the motor plan. Therefore
their approach lead to a rigid motor plan that cannot easily be modified.

4.2 Combining top-down scheduling with last-minute bottom up scheduling

Both EMBR and SmartBody employ top-down scheduling mechanisms that are steered using
a central scheduler with a single scheduling step that directly translate BML into a rigid motor
plan. However, some information on the timing of behavior is not readily available at the start
of the BML block it is in. For example, the duration of the preparation phase of a gesture is
dependent on the position of the hand at the start of the gesture, which typically only known
close to the actual start time of the gesture. For other behaviors—such as robot gesture—
it is hard to predict the timing precisely beforehand. To achieve synchronization for such
behaviors, it makes sense to adapt their timing flexibly be adapted in a bottom up (so from
the modules executing the behavior, rather from a central scheduler), last-minute manner.

A combination of top down and bottom up scheduling was previously employed in the
ACE system [7]. ACE executes multimodal behavior using successive ‘chunks’ containing
one tone unit in speech and a co-expressive gesture phrase. The gesture phrase is aligned to
the tone unit in such a way that the stroke phase of the gesture starts before (in ACE this is
0.3 s or one syllable) the affiliate in speech. Because of technical limitations of the text-to-
speech system employed in ACE, the duration of the tone unit is completely fixed. A top down
scheduler first resolves as much of the timing and shape of the chunk as possible: it synthesizes
the tone unit, selects a lexicalized gesture template, allocates body parts, expands abstract
movement constraints and resolves deictic references. A second top-down scheduling step
starts as soon as the chunk has to be started: now the scheduler needs to determines whether to
start with the gesture or with the tone unit. If the chunk starts with the gesture, the duration of
the preparation phase of the gesture is determined based upon the current hand position, and
the start time of the tone unit is determined in such a way that the synchronization constraint
between the gesture’s stroke and the tone-unit’s affiliate in speech is satisfied. The timing
of all behaviors is then determined and no further time adaptations are required. Typically
however, the chunk is to start with the tone unit in speech. The second top-down scheduling
step then determines the timing of the tone unit, and provides a first prediction of the start
time of the gesture, based upon the current position of the hand. Predictions for the start
time of the gesture are made continuously while the chunk is being played, by the process
playing the gesture animations (thus in a bottom-up fashion). As soon as the predictions
are at or past the current time, the gesture start time is commited and the gesture is started.
In Section 6.2 we show how such bottom up scheduling can be used with Elckerlyc’s plan
representation and how we can generalize it to provide synchronization strategies between
multiple modalities that all provide flexible re-timing.

5 Scheduling and plan representation in Elckerlyc

Our BML Realizer “Elckerlyc” [13] was designed specifically for highly adaptive behavior
generation. Its multimodal behavior plan can continually be updated: the timing of certain
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Fig. 4 A simplified view of Elckerlyc’s scheduling architecture

sync points can be adjusted, ongoing behaviors can be interrupted using special “interrupt
behaviors”, behaviors can be added, and the parametrisation of ongoing behaviors can be
changed.2 In order to achieve this flexibility, Elckerlyc needs not only to be able to schedule
BML specifications into a motor plan that describes the surface realization of the behaviors,
but also to maintain information about how these surface realizations relate to the original
BML specification. This allows the scheduler to figure out which surface realizations need
to be changed, when changes to BML behaviors are requested.

In this section we describe our implementation of Elckerlyc’s novel motor plan represen-
tation and scheduling approach that achieves this.

5.1 Scheduling in Elckerlyc

The Elckerlyc scheduling architecture uses an interplay between different unimodal Engines
that are specialized in planning the motor behaviors for one specific modality (e.g. Speech
Engine, Animation Engine, see also Fig. 4). Elckerlyc’s motor plan representation (cf. Fig.1)
is actually distributed over separate unimodal plans in each Engine. These unimodal plans
contain Timed Plan Units, describing in detail the control of an embodiment (i.e., movement or

2 The mechanisms for specifying these changes are described in [16].
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sound) required to display behaviors from the BML behavior plan. The Peg Board, discussed
in detail later, is used to maintain information about absolute timing constraints for Timed
Plan Units as well as timing constraints between Timed Plan Units in different modalities.

Interfacing with the Engines Elckerlyc’s scheduler communicates with the Engines through
their abstract interface (see below). It knows for each BML behavior type which Engine
handles it. The various Engines provide the central scheduler with detailed information on
the possible timing of behaviors in their specific modality, given the BML description and
time constraints. To this end, each Engine implements functionality to:

1. Add a BML behavior to its unimodal motor plan.
2. Resolve unknown time constraints on a behavior, given certain known time constraints.
3. Check which behaviors in the Plan (if any) are currently invalid (due to recent modifica-

tions elsewhere in the motor plan).
4. Modify parameters on Timed Plan Units, given the id of the BML behavior that these

units express (and the new parameter values).
5. Remove Timed Plan Units, given the id of the BML behavior that these units express.

An Engine can be queried for time constraints on a behavior without adding it to the plan.
This allows a scheduler to try out multiple constraint configurations on each behavior before
it commits to a specific motor plan.3 All communication with the Engine is in terms of BML
behaviors. It is up to the Engine to map the BML behaviors to Timed Plan Units. The validity
check is typically used to check if a motor plan is still valid after the timing of behaviors has
been modified, in this modality or in another modality.

Scheduling algorithm Elckerlyc was designed to be configurable with regards of the actual
scheduling mechanism that it uses: the BML parsing and block management are separated
from the scheduling algorithm, and the Engines provide generic interfaces that provide a
scheduling algorithm with the timing of unknown constraints on behaviors, given certain
known constraints.

The scheduler delegates the actual scheduling to a dedicated algorithm class that assigns
(a prediction of) the timing of all Timed Plan Units that result from adding a new BML block,
given the current multimodal motor plan and a parsed BML block that is to be scheduled.
Elckerlyc currently uses an improved version of SmartBody’s scheduling algorithm to do this,
in which the behaviors in a new BML block are first sorted with respect to the flexibility of the
behavior type, to avoid the ordering problem discussed in Sect. 4. However, this scheduling
algorithm can easily be replaced by other algorithms (e.g., a custom constraint solver such
as that of EMBR).

5.2 Elckerlyc’s plan representation

Central to Elckerlyc’s plan representation is the Peg Board shown in Fig. 4. Here we describe
the relations between the elements on the Peg board; a graphical representation of the relations
is shown in Fig. 5.

The sync points of each Timed Plan Unit in the motor plan are associated with Time Pegs
on the Peg Board. These Time Pegs can be moved, automatically changing the timing of
the associated sync points. If two sync points are connected by an ‘at’ constraint, they share
the same Time Peg. This Time Peg can then be moved without violating the ‘at’ constraint,

3 Our current SmartBody-based scheduling strategy does not make use of this functionality yet, it is provided
for future extension.
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Fig. 5 Each BML block has its
associated BML Block Peg.
Internal constraints are linked to
Time Pegs associated with this
BML Block Peg. BML block
bml1 contains a constraint that is
linked to an external Time Peg
(marked with *). BML block
bml2 is block scheduled with the
tight-merge scheduling
algorithm. It has a constraint
whose timing is defined by a
Time Peg from BML block bml1
(marked with +)

because this simultaneously changes the actual time of both sync points. Each BML Block
has its own associated BML Block Peg that defines the global start time of that block. Time
Pegs are linked to their associated BML Block Peg, and thus provide local timing (that is, as
offset from the start of the block). If the BML Block Peg is moved, all Time Pegs associated
with it move along. This allows one to move the block as a whole, implicitly keeping the
intra-block constraints consistent (see Fig. 5). The actual time of a BML Block Peg is first
estimated to be ct (the time at which it is being scheduled). When playback of the Block Peg is
started, its time is updated to reflect its actual start time. Since the Time Pegs inside the block
are attached to the Block Peg, they will now also adhere to the actual start time of the block.

Some behaviors have constraints (and thus Time Pegs) that are linked to external global
Pegs, used to synchronize behavior with external events. These are hooked up to a special,
unmovable global BML Block Peg at global t = 0.

5.3 Resolving constraints to time pegs

In Elckerlyc, scheduling consists of resolving the constraints in a BML block to Time Pegs,
and assigning the Time Pegs a first prediction of their execution time. Relative ‘at’ synchro-
nization constraints that share a sync point (behavior id, sync id pair) should be connected
to the same Time Peg. Such ‘at’ constraints may involve a fixed, nonzero timing offset, for
example when a nod is constrained to occur exactly half a second after the stroke of a gesture.
Such offsets are maintained by special “Offset Pegs”. An Offset Peg is a Time Peg that is
restrained to stay at a fixed offset to its linked Time Peg. If the Offset Peg is moved, its linked
Time Peg moves with it and vice-versa. Offset Pegs can also be added by the scheduler for
other reasons. For example, if the start sync is not constrained in a behavior, it may be
resolved as an Offset Peg. That is: the start sync of the Timed Plan Unit is linked to the
closest Time Peg of another sync point within the same Timed Plan Unit. If this other Time
Peg is moved, the start of the Timed Plan Unit is moved with it. If a behavior is completely
unconstrained, a new Time Peg is created and connected to the start sync of its Timed Plan
Unit. BML Example 3 shows how Time Pegs are resolved for an example BML constraint
specification.

5.4 Managing adjustments of the behavior plan during behavior playback

Once a BML block is scheduled, several changes can occur to its timing at playback time. Such
changes may, for example, be initiated by a Time Peg being moved for external reasons (e.g.,
to postpone a speech phrase until the interlocutor finished uttering an assessment feedback,

123



Auton Agent Multi-Agent Syst (2013) 27:305–327 317

as explained in the introduction), or by other behaviors in the plan being removed. Since
the sync points of behaviors are symbolically linked to the Time Pegs, timing updates are
handled automatically (stretching or shortening the duration of behaviors when required) and
the explicit constraints of Sect. 3.1 remain satisfied.

A dedicated BML Block management state machine automatically updates the timing
of the BML Block Pegs in reaction to behavior plan modifications that occur at runtime,
to maintain the BML Block constraints. For example, when a block bi was scheduled to
occur immediately after all behaviors already present in the motor plan, and the immediately
preceding behaviors in the plan are removed from the plan through aninterrupt behavior,
the state machine will automatically move the BML Block Peg of bi to close the resulting gap.
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Plan changes, and constraint satisfaction after plan changes, are achieved in an efficient
manner, that is, without requiring a time consuming scheduling action for minor plan adjust-
ments. Interrupting a behavior in a BML block might shorten the length of the block. Since
the BML Block management state machine dynamically manages the block end, shortening
the block whenever this happens, the cluster constraint and append constraints automatically
remain satisfied.

More significant updates might require re-scheduling of behaviors, such as when a Time
Peg, linked to the start of a behavior, is moved to occur after the end of the same behavior. To
check for such situations, the Scheduler asks each Engine whether its current plan is still valid
(i.e., its constraints are still satisfied). The Scheduler then omits the behaviors that are no
longer valid and notifies the SAIBA Behavior Planner using the BML feedback mechanism.
It will then be up to the SAIBA Behavior Planner to update the behavior plan (using BML),
if desired.

6 Employing the flexible plan representation

In the previous sections we described Elckerlyc’s capabilities for on-the-fly adjustments
to its multimodal behavior plans. We have been experimenting with these capabilities in
a number of applications and proof of concept scenarios. The latest version of our Reac-
tive Virtual Trainer performs fitness exercises along with the user, adjusting the timing
of its performance to that of the user [2]. In our experiments on Attentive Speaking, a
route guide slightly delays its speech to make space for listener responses from the user
[10] (using a Wizard of Oz setup for detecting start and end of listener responses). We
have implemented a proof of concept setup for graceful interruption, in which the user can
enter a text for the virtual human to speak, and then, while the virtual human is speaking,
interrupt it—after which the virtual human finishes its current syllable, then completes the
current word on a slightly lower pitch and volume than originally planned (parameter adap-
tation), and finally drops the remainder of the sentence. A number of other applications
and scenarios have been described elsewhere; videos and demonstrations may be found on
the Elckerlyc web site and in the open source code release. Our scheduling approach has
recently been adapted in the Thalamus robotic framework developed at the Technical Uni-
versity of Lisbon [11], where it provides flexible (input) event based control of interactive
robots.

In this section we explore a bit further the possibilities and consequences of the increased
flexibility of our platform.

6.1 Continuous (re)scheduling

Rather than scheduling the plan only once, the plan could be rescheduled every execution
step (or more efficiently at events that trigger a plan change). This would result in a con-
straint satisfaction that is more flexible to change than the one currently used in Elckerlyc.
Furthermore, the resulting plan would always be the most natural one (for some measure of
naturalness). However, continuous (re)scheduling is calculation time intensive and might not
reflect actual human behavior. This approach also requires one to design a reward function
for the naturalness of the motion plan. This is already challenging for one modality; design-
ing one that models cross-modal naturalness in a non-adhoc fashion is probably infeasible.
Nevertheless, is might be interesting to explore this approach further.
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Fig. 6 An example of gesture chunking in AsapRealizer: First BML block bml1 is being executed and a
preliminary plan for bml2 is being created using a top down scheduling step (top plan graph). As bml1 is
subsiding, bml2 is (in another top-down scheduling step) re-aligned to fit the current behavior state (middle).
This involves shortening the gesture preparation since the hand is still in gesture space. As the gesture of bml1
is being retracted, it has a lower priority than the preparation of the gesture of bml2 and is overridden by it
(bottom plan graph). Since bml2’s gesture acts only on the left hand, a cleanup motion is generated for the
right hand part of bml1’s gesture. Continuous bottom-up plan updates are used to adapt the preparation and
retraction times of the gestures to the current hand position and rest state respectively

6.2 Combining top down scheduling with bottom up scheduling in Elckerlyc.

In Sect. 4.2 we described the flexible bottom up scheduling approach employed in the ACE
system [7]. In Fig. 6 we illustrate how this scheduling strategy is implemented using Elck-
erlyc’s plan representation and a combination of one top-down scheduling step to construct
a flexible motor plan, another top-down scheduling step to make last-minute adjustments to
the ongoing plan, and continuous bottom-up plan updates to modify the timing of uncon-
strained elements (e.g. the timing of the preparation and retraction duration of gestures). This
scheduling approach has been implemented in Elckerlyc’s successor AsapRealizer; we refer
the interested reader to [15] for implementation details. Our current implementation only
shifts the start time of speech behaviors, their inner timing is left unmodified.

However, the plan representation proposed in this work can provide a further generalization
to this strategy: it is not limited to synchronizing one modality with flexible timing to one with
completely fixed timing: instead it can provide synchronization strategies between multiple
modalities that all provide flexible re-timing. In Fig. 7 illustrates a scenario in which speech
generated by a speech synthesis system that allow speech re-timing (e.g. [1]) to a flexible
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Fig. 7 Synchronizing a flexible speech behavior with a gesture. In the first scheduling step (left), the plan
representation is constructed. Time Peg x, y and z are connected to the start, stroke and end of gesture1
respectively. The affiliate of speech1 is connected to the stroke of gesture1. Since the timing of speech is
completely flexible, speech1 has its start and end sync points connected to two separate Time Pegs v and w. In
the second scheduling step, it is determined that the bml block starts with speech1. This commits the timing
of Time Peg v. As the bml block is being executed, the timing of its uncommitted Time Pegs is continuously
updated (3 rightmost steps). Note that Time Peg y can potentially be updated by both the gesture engine and
the speech engine. In this example, a simple conflict resolution mechanism is used: (1) the gesture engine
will not update y as long as gesture1 is not running and x can be achieved given an y provided by the speech
engine; (2) the speech engine will not update Time Pegs that have been assigned a predictive value by a less
flexible engine (here the gesture engine). This results in the speech engine updating y as long as gesture1 is
not started, and the gesture engine updating y thereafter

gesture. When the synchronization of two or more flexible modalities is managed in a flexible
manner, multiple engines might be updating the same Time Peg. A conflict management
strategy should be designed to handle such conflicting update requests. It could, for example,
give precedence to updates from less flexible engines, or set a weighted average of the values
set by different engines. The management strategy (or the Peg Board itself) should at the
very least keep track of which process (e.g. top down scheduling, Engine X) has set the
value of a certain Time Peg. This allows Engines to identify and overwrite their previous
predictions of Time Peg values. Furthermore, the management strategy could keep track of/
use certain features of Engines and/or behaviors that can be used to calculate a joint time
prediction for sync points shared by multiple behaviors. What exactly these features are, and
how to design good conflict resolution strategies will be determined in future work. A first
simple strategy—that captures ACE’s functionality—would be to encode the flexibility of
each Engine and give the least flexible Engine precedence when updating shared Time Peg
values.

6.3 Multithreaded scheduling

Currently, Elckerlyc schedules one BML block at a time, and the blocks are scheduled in
order of arrival. The blocks that are to be scheduled form a scheduling queue. If a new BML
block is appended to the scheduling queue, it will not be scheduled until the scheduling of the
other blocks is finished. This can potentially ruin the rapid interruptibility and adaptability
we strive for. If, for example, the agent is currently speaking, and we have just sent off a few
more long sentences that we need to be uttered next, the scheduler may be occupied for a
while. If then the Virtual Human’s interlocutor smiles, and we immediately want the virtual
human to smile back, we send a BML block containing a smile behavior to the Realizer—but
the scheduler is occupied and cannot add the smile to the plan in time! Obviously, in that
situation, the scheduling of the new BML block with the smile should not have been delayed
until the scheduling of the (unrelated) other blocks of speech are finished.

However, it is not actually necessary for the Realizer to schedule the BML blocks in order.
Scheduling of any new BML block can be started as soon as there are no dependent BML
blocks in front of it in the scheduling queue.

A BML block bmlY is dependent on BML block bmlX if:
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1. bmlX is in front of bmlY in the queue, and
2. bmlX and bmlY share any constraints

From Sect. 3 and Appendix A it may be seen that bmlX and bmlY share any constraints
if:

1. bmlY is appended after bmlX, or
2. bmlY interrupts bmlX, or
3. one or more time constraints in bmlY refer to bmlX (directly or indirectly), or
4. one or more behaviors in bmlY refer to bmlX (currently only for interrupt behaviors and

parameter change behaviors)

All these situations can be found by parsing (rather than scheduling) the BML block.
Elckerlyc’s scheduler can be extended to a multi-threaded scheduler that spawns new

scheduling threads for all independent BML blocks in the queue. Whenever a new BML
block is added to the queue, or scheduling of a BML block is finished, the scheduler will
check the current queue of BML blocks and their parsed constraints and spawn a scheduling
thread for all BML blocks that have no more dependencies on other unscheduled blocks.

7 Conclusion

We showed in this paper how the BML scheduling process can be viewed as a constraint
problem, and how Elckerlyc uses this view to maintain a flexible behavior plan representation
that allows one to make on-the-fly adjustments to behaviors while maintaining adherence to
constraints. In Elckerlyc, scheduling is modeled as an interplay between different unimodal
Engines that provide detailed information on the timing of the behaviors that are to be realized.
The separation of concerns between unimodal behavior timing, BML parsing, BML block
progress management and multimodal scheduling makes it easy to exchange Elckerlyc’s
scheduling algorithm by a different one as well as to add new modalities. Thanks to the
capability for on-the-fly plan adjustments, Elckerlyc is eminently suitable for Virtual Human
applications in which a tight mutual coordination between user and Virtual Human is required.

Acknowledgments This research has been supported by the GATE project, funded by the Dutch Organiza-
tion for Scientific Research (NWO), and by the GATE KTP project.

Appendix A: Full constraint descriptions

A.1 Explicit constraints

A sync ref consists of either an offset from the start of the BML block, or a pair [s, o], where
s is a sync point, defined by the pair [b, sync id] and o is a time offset (in seconds) from the
time of the sync id. b is defined as [block id, behavior id].

For ease of specification and without loss of generality, we define each time constraint as
acting between two sync refs. A constraint is an absolute constraint if one of the sync refs is
an offset from the start of the BML block. A constraint is a relative constraint if both sync
refs are triples of behavior id, sync id and offset time.

An absolute ‘at’ constraint ca on a sync point with id s in behavior b at offset o from the
start of the BML block is defined by

ca = [[b, s], o] (2)
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Absolute before and after constraints cab and caa on a sync point with id s in behavior b at
offset o from the start of the BML block are defined as

cab = [[b, s], o] (3)

caa = [[b, s], o] (4)

A relative ‘at’ constraint cr between sync refs [[b1, s1], o1] and [[b2, s2], o2] is defined by

cr = [[b1, s1], [b2, s2], o2 − o1] (5)

Relative before crb and relative after cra constraints between sync refs [[b1, s1], o1] and
[[b2, s2], o2] are defined as follows:

crb = [[b1, s1], [b2, s2], o2 − o1] (6)

cra = [[b1, s1], [b2, s2], o2 − o1] (7)

A relative before constraint [[b1, s1], [b2, s2], o] can be converted to relative after constraint
cra using

cra = [[b2, s2], [b1, s1],−o] (8)

A BML block contains a set of behaviors b, a set of sync points (pairs of behavior id
and sync id) s, a set of absolute constraints ca, a set of absolute before constraints cab , a
set of absolute after constraints caa , a set of relative constraints cr and a set of relative after
constraints cra .4

The function f : s → t maps a sync point s to global time t . The goal of scheduling
is to find such a mapping for all sync points in all behaviors in the block in such a way
that all constraints are satisfied. The function blockstart : u → t maps the block id u to its
global start time t . In Sect. 3.5 we show how the blockstart is defined, given the composition
attribute of the BML block.

The BML block defines the following explicit constraints on f :

∀[[[bmlid, behid], s], o] ∈ ca · f ([bmlid, behid], s) = o + blockstart(bmlid) (9)

∀[[[bmlid, behid], s], o] ∈ caa · f ([bmlid, behid], s) ≥ o + blockstart(bmlid) (10)

∀[[[bmlid, behid], s], o] ∈ cab · f ([bmlid, behid], s) ≤ o + blockstart(bmlid) (11)

∀[[b1, s1], [b2, s2], o] ∈ cr · f (b1, s1) + o = f (b2, s2) (12)

∀[[b1, s1], [b2, s2], o] ∈ cra · f (b1, s1) + o ≥ f (b2, s2) (13)

A.2 Implicit constraints

Besides the explicit constraints defined in the BML block, several implicit constraints act
upon f :

1. Sync points may not occur before the block they are in is started (Eq. 14).
2. Behaviors should have a nonzero duration (Eq. 15).
3. The default BML sync points of each behavior must stay in order (Eq. 16).

∀[[bmlid, behid], s] ∈ s · f ([bmlid, behid], s]) ≥ blockstart(bmlid) (14)

∀b ∈ b · f ([b, end]) > f ([b, start]) (15)

4 To specify the explicit constraints in a BML block in a unique manner, all relative before constraints are
converted to after constraints using Eq. 8.
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∀b ∈ b · f ([b, start]) ≥ f ([b, ready)

≥ f ([b, strokestart]) ≥ f ([b, stroke])
≥ f ([b, strokeend]) ≥ f ([b, relax]) ≥ f ([b, end]) (16)

A.3 Cluster constraints

A BML block may contain several clusters of behaviors. Each cluster contains a set of
behavior connected with ‘at’ constraints. We define the start of the cluster as the start of the
first behavior in the cluster. A cluster can be grounded5, that is, connected to the start of a
BML block with an absolute ‘at’ constraint, or ungrounded.

A scheduler has the freedom to set up the internal timing of each behavior as it likes, as
long as the implicit and explicit constraints defined in the sections above are satisfied. This
freedom is typically used to set up the timing of behaviors in such away that the resulting
motor behavior is natural. One would like to schedule ungrounded clusters in such a way that
gaps between clusters, or, between clusters and the start of the block are minimized, so that
they start ‘as soon as possible’, while retaining this scheduling freedom.

The cluster constraint achieves this by setting up the constraint as one that acts between
clusters, without requiring changes to the relative timing of the behavior within a cluster.

A.3.1 Cluster properties

To define the cluster constraint formally, we introduce some predicates that indicate the
cluster properties of a behavior.

The predicate DirectLink(b1, b2) expresses that two behaviors b1 and b2 are directly
connected by an ‘at’ constraint.

DirectLink(b1, b2) ≡ ∃o, s1, s2 · ([[b1, s1], [b2, s2], o] ∈ cr ∨
[[b2, s2], [b1, s1], o] ∈ cr) (17)

The predicate IsConnected(c, d) expresses that two behaviors c and d are connected by a
chain of ‘at’ constraints.

IsConnected(c, d) ≡
∃N > 0 · ∀i ∈ 0..N − 1 · bi ∈ b ∧ DirectLink(bi , bi+i ) ∧ c = b0 ∧ d = bN (18)

The predicate DirectGround expresses that a behavior b has an absolute constraint.

DirectGround(b) ≡ ∃o, s · [[b, s], o] ∈ ca (19)

The predicate DirectAfterGround expresses that a behavior b has an absolute after con-
straint.

DirectAfterGround(b) ≡ ∃o, s · [[b, s], o] ∈ caa (20)

The predicate IsGrounded(b) expresses that a behavior b is part of a grounded cluster of
behaviors.

IsGrounded(b) ≡
DirectGround(b) ∨ ∃c · (IsConnected(b, c) ∧ DirectGround(c)) (21)

5 The notion of grounding was taken from [5].
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The predicate OnBlockStart([bmlid, behid]) expresses that the cluster of behavior
[bmlid, behid] starts at blockstart(bmlid).

OnBlockStart([bmlid,behid]) ≡
f ([[bmlid, behid], start]) = blockstart(bmlid)∨

(∃c ∈ b · IsConnected([bmlid, behid], c) ∧ f ([c, start]) = blockstart(bmlid))

(22)

The predicate OnAbsAfterConstraint(b) expresses that the cluster of behavior b satisfies
one of its absolute after constraints as an at constraint.

OnAbsAfterConstraint([bmlid,behid]) ≡
∃[[b1, s1], o] ∈ caa · (([bmlid, behid] = b1∨

IsConnected([bmlid, behid], b1))∧
f ([b1, s1]) + o = blockstart(bmlid))

(23)

The predicate OnRelAfterConstraint(b) expresses that the cluster of behavior b satisfies
one of its relative after constraints as an at constraint.

OnRelAfterConstraint([bmlid,behid]) ≡
∃[[b1, s1], [b2, s2], o] ∈ cra · (([bmlid, behid] = b1∨

IsConnected([bmlid, behid], b1))∧
f (b1, s1) = f (b2, s2) + o)

(24)

A.3.2 The cluster constraint

An ungrounded cluster may contain relative or absolute ‘after’ constraints. If the gaps between
clusters are to be minimized using only one constraint per cluster, this means that the cluster
should start at the start of the BML block it is in, or that one of its ‘after’ constraints is satisfied
as an ‘at’ constraint. If an ungrounded cluster has no ‘after’ constraints, then it should start
at the start of the BML block it is in.

Using the cluster properties defined above, this cluster constraint is defined as:

¬IsGrounded([bmlid, behid]) →
OnBlockStart([bmlid, behid])∨

OnAbsAfterConstraint([bmlid, behid])∨
OnRelAfterConstraint([bmlid, behid])

(25)

A.4 Block level constraints

The composition attribute defined in the BML Block defines constraints on the start of the
block in relation to the set of current behaviors in the multimodal behavior plan B and the
current global time ct. Core BML defines the following scheduling attributes:

1. merge: start the block at ct (Eq. 26).
2. replace: completely replaces the current behavior, start the block at ct (Eq. 27).
3. append: start the block directly after all behaviors in the current plan are finished

(Eq. 28).

compositionattribute(bml1) = merge → blockstart(bml1) = ct (26)

compositionattribute(bml1) = replace → blockstart(bml1) = ct (27)
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compositionattribute(bml1) = append → blockstart(bml1) ≥ ct∧
∀b ∈ B · f (b, end) ≤ blockstart(bml1)∧

((∃b ∈ B · f (b, end) = blockstart(bml1)) ∨ (blockstart(bml1) = ct))

(28)

A.5 Additional behavior plan constraints in Elckerlyc

Elckerlyc provides an extension to BML, BMLT, that, among other things, allows the spec-
ification of additional behavior constraints.

A.5.1 Anticipator constraints

Elckerlyc’s multimodal behavior plan is designed to allow micro adjustments in its timing.
Such time adjustments are often steered by Anticipators. An Anticipator instantiates sync
points that can be used in BML blocks to constrain the timing of behaviors. It uses perceptions
of events in the real world to continuously update the timing of its sync points, by extrapolating
the perceptions into predictions of the timing of future events. An anticipator sync a is defined
by a = [anticipatorid, syncid].

Constraint cant describes an ‘at’ constraint on sync with id s in behavior b at offset o from
the anticipator sync a.

cant = [[b, s], o, a] (29)

A sync point should be connected to at most one anticipator sync with an ‘at’ constraint.
Constraint canta describes an ‘after’ constraint on sync with id s in behavior b at offset o

from the anticipator sync a.

canta = [[b, s], o, a] (30)

Constraint cantb describes a ‘before’ constraint on sync with id s in behavior b at offset o
from the anticipator sync a.

cantb = [[b, s], o, a] (31)

In addition to a set of behaviors b, a set of sync points (pairs of behavior id and sync id)
s, a set of absolute constraints ca, a set of absolute before constraints cab , a set of absolute
after constraints caa , a set of relative constraints cr and a set of relative after constraints cra ,
a BMLT block contains a set of anticipator syncs a, a set of Anticipator constraints cant, a
set of Anticipator after constraints canta and a set of Anticipator before constraints cantb .

Anticipators provide a global time for their sync points. The function g : a → t maps an
Anticipator sync a to its global time t . The value of g(a) is completely defined by the time
prediction of a’s Anticipator. Anticipator constraints add the following explicit constraint to
the behavior plan:

∀[[b, s], o, a] ∈ cant · f ([b, s]) + o = g(a) (32)

∀[[b, s], o, a] ∈ canta · f ([b, s]) + o ≥ g(a) (33)

∀[[b, s], o, a] ∈ cantb · f ([b, s]) + o ≤ g(a) (34)

A.5.2 Cluster constraints

Anticipators extend Elckerlyc’s notion of ‘grounding’. In Elckerlyc, a behavior is grounded
not only if it is connected to an absolute ‘at’ constraint but also if it is connected to an
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Anticipator sync point. The DirectGround predicate is updated to reflect this (see Eq. 35).

DirectGround(b) ≡ ∃o, s · [[b, s], o] ∈ ca ∨ ∃o, s · [[b, s], o, a] ∈ cant (35)

The predicate OnAbsAfterAntConstraint(b) expresses that the cluster containing behavior
b satisfies one of its absolute anticipator ‘after’ constraints as an ‘at’ constraint.

OnAbsAfterAntConstraint([bmlid,behid]) ≡
∃[[b1, s1], o, a] ∈ caanta

· (([bmlid, behid] = b1∨
IsConnected([bmlid, behid], b1))∧

f ([b1, s1]) + o = g(a))

(36)

The updated cluster constraint then becomes:

¬IsGrounded([bmlid, behid]) →
OnBlockStart([bmlid, behid])∨

OnAbsAfterConstraint([bmlid, behid])∨
OnRelAfterConstraint([bmlid, behid])∨

OnAbsAfterAntConstraint([bmlid, behid])

(37)

A.5.3 Block level constraint

In addition to the Core BML merge and append composition attributes, BMLT provides
the append-after(X) composition attribute. Append-after starts a BML block directly
after a selected set of behaviors (those from a BML block in X) in the current behavior plan
are finished (Eq. 38).

compositionattribute(bml1) = append-after(X) →
blockstart(bml1) ≥ ct∧

(∀[bmlid, behid] ∈ B · bmlid ∈ X →
f ([bmlid, behid], end) ≤ blockstart(bml1))∧

((∃[bmlid, behid] ∈ B · f ([bmlid, behid], end) = blockstart(bml1)∧
bmlid ∈ X)∨

(blockstart(bml1) = ct))

(38)
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