
Noname manuscript No.
(will be inserted by the editor)

Agent-Based Decentralised Coordination for Sensor

Networks using the Max-Sum Algorithm

A. Farinelli · A. Rogers · N. R. Jennings

the date of receipt and acceptance should be inserted later

Abstract In this paper, we consider the generic problem of how a network of physically dis-

tributed, computationally constrained devices can make coordinated decisions to maximise the

effectiveness of the whole sensor network. In particular, we propose a new agent-based represen-

tation of the problem, based on the factor graph, and use state-of-the-art DCOP heuristics (i.e.,

DSA and the max-sum algorithm) to generate sub-optimal solutions. In more detail, we for-

mally model a specific real-world problem where energy-harvesting sensors are deployed within

an urban environment to detect vehicle movements. The sensors coordinate their sense/sleep

schedules, maintaining energy neutral operation while maximising vehicle detection probabil-

ity. We theoretically analyse the performance of the sensor network for various coordination

strategies and show that by appropriately coordinating their schedules the sensors can achieve

significantly improved system-wide performance, detecting up to 50% of the events that a ran-

domly coordinated network fails to detect. Finally, we deploy our coordination approach in

a realistic simulation of our wide area surveillance problem, comparing its performance to a

number of benchmarking coordination strategies. In this setting, our approach achieves up to

a 57% reduction in the number of missed vehicles (compared to an uncoordinated network).

This performance is close to that achieved by a benchmark centralised algorithm (simulated

annealing) and to a continuously powered network (which is an unreachable upper bound for

any coordination approach).

1 Introduction

Increasing attention is being devoted to applications involving networks of low-
power wireless sensing devices that are deployed within an environment in order
to acquire and integrate information. Such networks have found application in
wide-area surveillance [30], animal tracking [55], and monitoring environmental

A. Farinelli
Computer Science Department,
University of Verona, Verona, Italy.
E-mail: alessandro.farinelli@univr.it, Fax: +390458027068

A. Rogers and N. R. Jennings
Electronics and Computer Science
University of Southampton, Southampton, SO17 1BJ, UK.
E-mail: {acr,nrj}@ecs.soton.ac.uk

2 A. Farinelli, A. Rogers and N. R. Jennings

phenomena in remote locations [19]. A fundamental challenge within all such ap-
plications arises due to the fact that the sensors within these networks are often
deployed in an ad hoc manner (e.g. dropped from an aircraft or ground vehicle
within a military surveillance application), and thus, the local environment of
each sensor, and hence the exact configuration of the network, can not be de-
termined prior to deployment. Rather, the sensors themselves must be equipped
with the capability to autonomously adapt, sometime after deployment, once the
local environment in which they (and their neighbours) find themselves has been
determined. Examples of such adaptation include determining the most energy-
efficient communication paths within the network once the actual reliability of
communication links between individual sensors has been measured in situ [39],
dynamically determining the optimal orientation of range and bearing sensors
to track multiple moving targets as they move through the sensor network [12],
and in the application that we consider in detail in this paper, coordinating the
sense/sleep schedules (or duty cycles) of power constrained sensors deployed in
a wide-area surveillance task, once the degree of overlap of the sensing fields of
nearby sensors has been determined.

A common feature of these autonomous adapting problems is that the sensors
must typically choose between a small number of possible actions (e.g. which
neighbouring sensor to transmit data to, which target to focus on, or which
sense/sleep schedule to adopt), and that the effectiveness of the sensor network
as a whole depends not only on the individual choices of action made by each
sensor, but on the joint choices of interacting sensors. Thus, to maximise the
overall effectiveness of the sensor network, the constituent sensors must typically
make coordinated, rather than independent, decisions. For example, in the con-
text of energy-efficient routing, sensors should coordinate to avoid routing all
messages through the same agent, thus consuming all its battery power; in the
context of target tracking, agents should coordinate to decide on which target
to focus, so to have more accurate estimates of the target locations, and, finally,
in the context of the energy constrained sensors involved in wide area surveil-
lance, sensors should coordinate their sense/sleep schedules trying to minimise
the time during which parts of the environment are left without active sensors.
Furthermore, these coordinated decisions must be performed despite the specific
constraints of each individual device (such as limited power, communication and
computational resources), and the fact that each device can, typically, only com-
municate with the few other devices in its local neighbourhood (due to the use of
low-power wireless transceivers, the small form factor of the device and antenna,
and the hostile environments in which they are deployed). Additional challenges
arise through the need to perform such coordination in a decentralised manner
such that there is no central point of failure and no communication bottleneck,
and to ensure that the deployed solution scales well as the number of devices
within the network increases.

In more detail, here we focus on a specific problem concerning the autonomous
adaptation of sensors within a wireless network deployed in an urban environment
to detect vehicle movements on a road network. Within this setting, decentralised
coordination for energy management is a key challenge, and a common conflicting
requirement is to maximise the lifetime of the sensor network, while also collecting
the maximum amount of information possible. In particular, increasing attention
has been devoted to sensor nodes which are able to harvest energy from the

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 3

environment using multiple sources (such as solar cells or micro generators that
can exploit vibrational energy or small temperature differences) in combination
[53]. When equipped with sufficient energy harvesting resources, and the ability
to model and predict future energy usage and harvesting, such sensors may then
control their duty cycle (effectively switching between active sensing modes and
low-power sleep modes) in order to operate in an energy neutral mode, and
hence, exhibit an indefinite lifetime [18]. However, since the sensing ranges of
these sensors will typically overlap with one another, the overall effectiveness of
the sensor network depends not only on the sensors’ individual choice of duty
cycles, but also on the combined choice of neighbouring sensors whose sensing
ranges overlap. With an ad hoc sensor deployment, these interactions are not
known prior to deployment, and thus, we describe how the sensors may auto-
adapt by first learning the interactions between their neighbours (i.e. how much
their neighbours’ sensing fields overlap with their own), and then coordinating
their sense/sleep schedules in order to address the system-wide performance goal
of maximising the probability that a vehicle is detected.

Problems of this nature can be addressed by representing each sensor as an
autonomous agent that collaborates with its peers to learn a joint action policy

[22,16]. This decentralized learning problem can be formalized using a number of
different methods. A possible one is the Markov decision problem framework, and
more specifically decentralized MDPs (Dec-MDPs) [4] where each agent receives
local observations and performs local actions, but the environment evolution and
system performance depend on the joint actions of all the agents. However, while
these models can be used to find optimal solutions to learning and coordination,
their inherent complexity [4] often prevents such techniques from being used for
practical applications1. To combat this, recent advances in approximate solution
techniques for POMDPs [50,35] have been developed and these show that by
exploiting problem structure it is possible to scale to a significantly higher number
of agents (i.e., hundreds or even thousands of agents). For example, in [50] the
authors propose a distributed method to approximately solve POMDPs which
is based on the use of Coordination Locales (i.e., system configurations where
important interactions among agents take place). By focusing on such locales
the authors are able to solve problems involving hundreds of agents. Similarly,
in [35] the author shows that it is possible to address problems involving up
to a thousand agents by exploiting the locality of interactions, where the key
elements are the use of the Factored POMDP model and the use of approximate
value functions. While these approaches are very promising, a key element that
influences the scaling factor is the locality of interactions and these approaches
only scale to large systems when agents’ interactions are very sparse. However,
in our specific application domain, we consider configurations where agents must
coordinate with a large subset of team mates (i.e., up to 64 neighbours in some
configurations) and so such approaches do not seem to be suitable.

Hence, here we prefer to focus on the coordination problem and address learn-
ing in a separate phase. In more detail, we model our coordination problem with
a constraint network [6]. Such networks are often represented by graphs in which
the nodes represent the agents (in this case the sensors) and the edges represent

1 Problems used to benchmark Reinforcement Learning techniques based on MDPs typically
involve a few agents with a few actions, see for example the distributed sensor network problem
used in [22] where eight sensors must collaborate to track three targets.

4 A. Farinelli, A. Rogers and N. R. Jennings

constraints that arise between the agents depending on their combined choice of
action. Constraints can either be hard (i.e., relations that describe accepted joint
assignments of the variables) or soft (i.e., a real valued function that describes
cost or reward for each joint variable assignment). When the constraint net-
work includes only hard constraints the associated problem of finding a variable
assignment that satisfies all constraints is usually referred to as a Distributed
Constraint Satisfaction Problem (DCSP). Indeed DCSP approaches have been
successfully used to represent the coordination problem of agents involved in
target tracking tasks (e.g., [3,11,32]). However, in this paper, we focus on the
more general setting of Distributed Constraint Optimization Problems (DCOPs),
where agents must agree on a variable assignment that maximises (or minimises)
the sum of the constraints’ values.

To date, a number of algorithms have been proposed for solving DCOPs, and
they can be broadly divided into two main categories: exact algorithms that are
guaranteed to provide the optimal solution (such as OptAPO [29], ADOPT [33]
and DPOP [36]) and approximate algorithms that are typically based upon en-
tirely local computation such as distributed stochastic algorithm (DSA) [12] or
maximum gain message (MGM) [28]. Now, while exact algorithms find useful
application within large computational systems, they do not address many of
the additional challenges that are present when considering low power wireless
devices deployed within sensor networks. In particular, all the above exact al-
gorithms calculate the globally optimal solution, and such optimality demands
that some aspects of the algorithm grows exponentially in size (because finding
an optimal solution for a DCOP is NP-hard problem [33]). Such exponential
relationships are simply unacceptable for embedded devices that exhibit con-
strained computation, bandwidth and memory resources. For example, within
the wide area surveillance scenario that motivates our work, the requirement to
operate for an indefinite lifetime imposes the use of extremely low-power de-
vices, and thus we are using the Texas Instruments CC2431 System-on-Chip
devices as a demonstration platform. This is a low-power device incorporating
an IEEE 802.15.4 compliant RF transceiver, 8 kByte RAM, and a 32 MHz 8
bit 8051 micro-controller in a 7x7mm package (see [49] for further details on
the deployment of the max-sum algorithm on this platform). Moreover, most
optimal approaches (e.g., DPOP or ADOPT) require some form of preprocess-
ing of the constraint graph (e.g., pseudo-tree arrangement) before executing the
algorithm, hence they are not able to quickly react to changes in the constraint
network that might be due to the addition/removal of sensors or malfunctioning
of the devices. In this respect, we note that there are approaches to efficiently
maintain pseudo-trees in the face of changes such as agent addition/removal [47].
However, to obtain a new variable assignment the agents must still re-run the
optimization procedure even if only a minimal part of the problem changes2. In
contrast, approximate algorithms often converge to poor quality solutions, and
more importantly, since they can not provide any guarantees on the quality of

2 A notable exception is the superstabilizing version of DPOP (S-DPOP) proposed in [37],
where the authors aim to minimize changes in the optimization protocol when there are low
impact failures in the system. Nevertheless, similar to the original DPOP approach, S-DPOP
requires agents to exchange large messages (where the size of the messages is exponential in
the tree-width of the pseudo-tree arrangement). Hence such an approach would not be feasible
in the context of low-power devices that constitute our reference application platform.

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 5

the solution, empirical good behaviours in specific domains are hard to generalise
across different applications.

Against this background, there is a clear need for decentralised coordination
algorithms that make efficient use of the constrained computational and com-
munication resources found within wireless networks sensor systems, and yet are
able to effectively represent complex interactions among sensors (i.e., interactions
that are domain-specific and that may depend on the joint actions of groups of
sensors). Moreover, sensors should be able to negotiate over the best possible ac-
tions continuously to quickly adapt to possible changes in the environment (e.g.,
due, for example, to hardware failures or sensor addition/removal).

To this end, we propose an agent-based decentralised coordination approach
based on a DCOP formulation of our wide area surveillance application sce-
nario. Notice that, while several previous approaches in the DCOP community
addressed problems related to sensor networks (e.g., [56,25]) most of this work
focuses on target tracking/detection. In contrast, here we address the specific
problem where sensors have energy constraints, can harvest energy from the
environment and aim to schedule their sense/sleep cycles so to achieve energy
neutral operation. Hence the DCOP formulation we propose here is significantly
different from previous work, both in terms of types of actions that agents can
perform and in terms of the constraints that hold among the agents. Moreover,
our solution is based on a factor graph representation of the sensors’ interactions
[23] and we investigate the use of the max-sum algorithm [5], an approximate
solution technique for decentralised coordination [21,10,46,41] that has been
successfully deployed on low-power devices [49], as well as on unmanned aerial
vehicles [8].

The max-sum algorithm belongs to the generalised distributive law (GDL)
framework [1], which is a unifying framework for inference in graphical mod-
els frequently used in information theory, artificial intelligence and statistical
physics. In particular, here, we exploit the extensive evidence that demonstrates
that GDL techniques generate good approximate solutions when applied to cyclic
graphs (in the context of approximate inference through ‘loopy’ belief propaga-
tion on Bayesian networks [34], iterative decoding of practical error correcting
codes [26], clustering of large datasets [13], and solving large scale K-SAT prob-
lems involving thousands of variables [31]). These algorithms effectively prop-
agate information around the network such that the solution converges to a
neighborhood maximum, rather than a simple local maximum [54]. Specifically,
we apply the max-sum algorithm on a bipartite factor graph, which represents
interactions among agents. The use of factor graphs for GDL techniques was
introduced by Kschischang et al. in [23] and proved to be a very powerful and
expressive framework for these techniques.

To summarize, in this paper we make the following contributions to the state
of the art:

– We propose a DCOP formulation of our coordination problem, and more
precisely, we propose the use of a factor graph representation of the agents’
interactions. Specifically, we discuss two possible factor graph mappings, one
based on a decomposition of the global optimisation function into the indi-
vidual agents’ utilities, and the other based on the interactions among neigh-
bouring agents. We discuss the limitations and benefits of the two in terms
of computational efficiency, as well as responsiveness to changes in the en-

6 A. Farinelli, A. Rogers and N. R. Jennings

vironment. Given the factor graph formulation of our problem, we then use
the max-sum algorithm to generate approximate solutions to the general so-
cial welfare maximising problem through decentralised local message passing
between interacting sensors.

– We formally model our wide area surveillance problem and theoretically anal-
yse the performance of the sensor network in the case of (i) continuously
powered, (ii) synchronised, (iii) randomly coordinated, and (iv) optimally co-
ordinated sensors. Our analysis indicates that by appropriately coordinating
their sense/sleep schedules, the sensors can achieve a significantly improved
system-wide performance, detecting up to 50% of the events that the ran-
domly coordinated network fails to detect.

– Finally, we exercise our coordination mechanism in a realistic simulation of
our wide-area surveillance problem. We empirically evaluate our mechanism
within a software simulation (based on the RoboCup Rescue Simulation En-
vironment3) of the scenario. We demonstrate that the sensors are capable
of acquiring (through an initial period observing events within the environ-
ment) the appropriate information necessary to coordinate their sense/sleep
schedules, and that they may then use the max-sum algorithm that we have
derived here to do so. Our approach makes no assumptions regarding the
sensing fields of the sensors, nor does it require the sensors to know their
own location, nor that of the neighbouring sensors with whom they can com-
municate. By using our approach, we achieve up to a 57% reduction in the
number of missed vehicles (compared to an uncoordinated network), and this
performance is shown to be close (on average about 25%) to that achieved by
a benchmark centralised optimisation algorithm (simulated annealing), and
to a continuously powered network (within 10% in the worst case), which
represents an unreachable upper bound for any coordination approach.

The remainder of this paper is structured as follows: in Section 2 we present
our factor graph representation and max-sum decentralised coordination algo-
rithm. We introduce and theoretically analyse the wide area surveillance prob-
lem in Section 3 and in Section 4 we then apply our approach by computing the
degree of overlap with neighbouring sensors (in the absence of any a priori knowl-
edge), and then coordinate with their neighbours to maximise the effectiveness
of the overall network to this problem. Finally, we conclude and discuss future
work in Section 5.

2 The Max-Sum Approach to Coordination

The max-sum algorithm is a specific instance of a general message passing al-
gorithm that exploits the GDL in order to decompose a complex calculation by
factorising it (i.e. representing it as the sum or product of a number of simpler
factors) [1]. In our case, it represents a combination of the best features of the
optimal and the approximate stochastic algorithms. It can make efficient use
of constrained computational and communication resources, and yet be able to
attain close to optimal solutions.

The idea of factoring agent interactions that we exploit in our work has previ-
ously been used for action selection in multi-agent systems. Specifically, Guestrin

3 see www.robocuprescue.org

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 7

et al. introduce the coordination graph framework to provide a tractable plan-
ning algorithm in a dynamic multi-agent system, highlighting the underlying re-
lationships between graphical models and influence diagrams [15]. Furthermore,
the max-sum algorithm was previously proposed as a decentralised technique
for agent coordination to exploit the factorisation model provided by the co-
ordination graph framework. In particular Kok and Vlassis propose the use of
the max-sum algorithm to compute coordinated action for a group of interacting
agents [21], and to provide a decentralised solution to reinforcement learning [22].

With respect to this previous work, we propose the use of the factor graph
to model the agent interactions and to provide an operational framework that
defines the messages exchanged in the max-sum algorithm. The use of the fac-
tor graph has several benefits, the most interesting of which is the possibility
to explicitly represent complex interactions among the agents that can not be
captured by binary relationships. In more detail, coordination graphs, as defined
in [15], can model k-ary relationships among the agents (with k > 2). However,
the graphical model they use to represent agent interactions does not represent
k-ary relationships explicitly, as the mapping between the constraint graph and
the constraint network is not one-to-one (i.e., several constraint networks might
have the same constraint graph). In particular, a constraint network can be
graphically represented, with a one-to-one mapping between the graphical rep-
resentation and the constraint network, only by using a hyper-graph (see [6] for
further details). In such cases, the factor graph essentially represents a hyper-
graph, where factors represent k-ary constraints among variables. This aspect
is critical when modelling the interactions among the sensors in the wide area
surveillance scenario that we consider here (where the sensing fields of more than
two sensors may overlap). In fact, since the factor graph provides not only a rep-
resentation of the agent interactions, but also a computational framework, the
max-sum algorithm specified on the factor graph directly provides an approach
to solve problems that comprise such k-ary functions4.

Moreover, the use of a factor graph allows us to propose different ways of
modelling the coordination problem we face, each favouring different aspects
of the solution approach, such as, for example, responsiveness to unexpected
changes versus computation effort faced by the agents (see Section 2.2 for further
details).

The use of a factor graph together with the max-sum algorithm has been al-
ready successfully used to coordinate the operation of low-power devices [10] and
mobile sensors [46]. Specifically, in [10] max-sum has been evaluated in a bench-
marking graph colouring problem and validated on low-power devices, while in
[46] it has been employed to coordinate the movement of mobile sensors that
must collaborate to acquire accurate information on environmental parameters
(e.g., temperature or gas concentration). However, here we focus on a signifi-
cantly different application domain, hence, with respect to this previous work,
the formulation of the problem, as well as the evaluation methodology, are very
different.

In the following, we first provide a generic DCOP formalization for multi-
agent coordination (Section 2.1), we then discuss the factor graph representation
that we use to apply the max-sum algorithm, highlighting differences with the

4 Notice that the analysis and empirical evaluation performed in [21] and [22] only include
pairwise interactions.

8 A. Farinelli, A. Rogers and N. R. Jennings

standard constraint graph representation frequently used in DCOPs (Section
2.2). Next, we provide a pseudo-code description of the operations associated
with the max-sum algorithm (Section 2.3) as well as an example of its execution
(Section 2.4). We then discuss the message update schedule for the max-sum
algorithm (Section 2.5) and the guarantees on convergence and solution quality
that it provides (Section 2.6). Finally, we present an analysis of the coordination
overhead in terms of communication cost and computational complexity (Section
2.7).

2.1 Distributed Constraint Optimization

A standard DCOP formalization of a multi-agent coordination problem is a tuple
〈A,X ,D,F〉, where A = {a1, . . . , am} is a set of agents and X = {x1, . . . , xs}
is a set of variables, each variable xi is owned by exactly one agent ai, but an
agent can potentially own more than one variable. The agent ai is responsible for
assigning values to the variables it owns. D = {D1, · · · , Ds} is a set of discrete
and finite variable domains, and each variable xi can take values in the domain
Di. Then, F = {F1, . . . , Fn} is a set of functions that describe the constraints
among variables. Each function Fi : Di1 × · · · ×Diki

→ ℜ ∪ {−∞} depends on
a set of variables xi ⊆ X , where ki = |xi| is the arity of the function and −∞
is used to represent hard constraints. Each function assigns a real value to each
possible assignment of the variables it depends on.

The goal is then to find a variable assignment that maximises the sum of
constraints:

argmax
x

∑

i

Fi(xi) (1)

DCOPs are usually graphically represented using an interaction graph, where
variables are represented as circles and an edge between two variables indicates
that the two variables participate in a constraint. For ease of presentation, and
following a common assumption in the DCOP literature, we assume that each
agent controls exactly one variable.

To further clarify this concept, we show in Figure 1(a) an example in which
three sensors, S1, S2, S3, interact through a common overlapping area of their
sensing range. While we will detail the associated coordination problem in Section
3, for now let us consider that agents must coordinate their actions to maximise
event detection in overlapping areas. Therefore, in a standard DCOP formal-
ization, constraints connect sensors that share an overlapping area; Figure 1(b)
shows the corresponding interaction graph.

In the following we detail a factor graph representation for the same sensor
configuration to clarify the differences between the two.

2.2 Factor Graph Representation

A factor graph is a bipartite graph comprising two types of nodes: variable nodes
(usually depicted as circles) and function nodes (usually depicted as squares) [5,
23]. Undirected links connect each function to the variables it depends on. The
factor graph is a widely used graphical representation of factored functions, e.g.
functions that can be expressed as a sum of components such as the function

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 9

S1

S3

S2

(a) (b)

(c)

Fig. 1: A diagram showing (a) three sensors and their overlapping areas, (b) the
corresponding constraint graph, and (c) a factor graph representation.

reported in equation 1. A factor graph explicitly represents the relationships
among variables though the functions nodes. This is in contrast to the constraint
graph discussed above where two variables are connected via an edge if they
participate in some constraints.

To further clarify this concept consider Figure 1(c), where we show a factor
graph representation of the agent interaction configuration in 1(a). Notice that
in this last graphical representation both the binary and the ternary constraints
are explicitly represented, while the edges in Figure 1(b) only indicate that the
three variables share some constraints among them.

Now, there are many ways of modelling the coordination problem represented
by equation 1 with a factor graph, as all we need to ensure is that the sum of
the functions that we choose to represent the agents’ interactions is equivalent
to the objective function expressed by equation 1. In other words, we can use
various decompositions for a given problem setting, and thus we can have several
distinct factor graph representations of the same problem. Moreover, the use of
different factor graphs impacts on the computation performed by the max-sum
algorithm. In particular, here we focus on two important classes of possible factor
graph modelling that have been previously used for the deployment of the max-
sum algorithm in the context of decentralized coordination: the first one is based
on the functions that describe the direct interactions among the sensors, (i.e.,
the interaction-based factor graph), and has been used for example in [38,7]; the
other is based on the utility that each sensor receives depending on the variables’
assignment of its neighbours (i.e., the utility-based factor graph), and has been
used for example in [10,46].

10 A. Farinelli, A. Rogers and N. R. Jennings

2.2.1 Interaction-based factor graphs

In the interaction-based factor graph, functions represent interactions of neigh-
bouring agents. This can be considered as a direct translation of the constraint
graph to a factor graph where we simply introduce one function node for each
constraint and, as above, we have one variable for each sensor.

For example, consider the situation depicted in Figure 2, where Figure 2(a)
shows three sensors interacting with their immediate neighbours through pair-
wise overlaps of their sensing areas, while Figure 2(b) shows its corresponding
constraint graph. The corresponding interaction based factor graph is reported
in Figure 3(a), where function F12(x1, x2) and function F23(x2, x3) directly rep-
resent the constraints that hold between the agents.

Notice that, the max-sum algorithm requires both variable and function nodes
to perform computation for updating messages (see Section 2.3), hence each vari-
able and function node must be allocated to one agent that is responsible to per-
form such computation. The allocation of variables to agents is straightforward
because each sensor has as corresponding variable and hence the agent that is
responsible for that sensor will control the corresponding variable. In contrast,
in the interaction-based factor graph the allocation of function nodes to agents
is not clear because there are function nodes the are shared between different
variables. Therefore this representation requires a previous negotiation phase
between the agents to decide which agent is in charge of the shared functions.
This negotiation phase could be theoretically implemented in a very simple and
straightforward way, because the content of max-sum messages does not depend
on which agent performs the computation, therefore any allocation policy could
be applied. For example, in Figure 3(a) the agent with the lowest id among
all agents sharing the function is the one that is deemed to be in charge for
performing the computation of that function5.

2.2.2 Utility-based factor graphs

In the utility-based factor graph, the objective function must be appropriately
decomposed so that each individual function represents the utility of one agent
and the sum of the agent’s utilities corresponds to the objective function. Such a
decomposition is domain specific and a suitable decomposition for our wide area
surveillance application will be detailed in Section 3.

To further clarify the basic ideas behind the utility-based factor graph, con-
sider again the situation depicted in Figure 2(a). We can build a utility-based
factor graph that represents this situation by adding one variable per sensor
representing its possible sleep/sense schedule, and one function per sensor repre-
senting its individual utility. Next, for each sensor, we connect its utility function
with its own variable and with all the variables of its neighbours (i.e., the sensors
that exhibit an overlapping area with it). For example, focusing on sensor S2, we
connect the function node representing U2 with variables x2 (the sensor’s vari-
able) and with variables x1 and x3 (neighbours’ variables). The resulting factor

5 Notice that, while the content of the max-sum messages will not change the load balance
among the agents will be different depending on the strategy used to allocate the functions.
However this issue is outside the scope of the current paper and we refer the interested reader
to [44] where computational tasks related to GDL algorithms are allocated to agents explicitly
considering their computation and communication capabilities.

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 11

graph is shown in Figure 3(b). The overall function represented by this factor
graph is given by U = U1(x1, x2)+U2(x1, x2, x3)+U3(x2, x3) which is the social
welfare function for the system.

Notice that by using this formalization there is a clear allocation of variables
and function nodes to agents. In other words, each agent is responsible for de-
ciding the allocation of its own variable, for receiving messages for its function
and variable nodes and for updating the messages that flow out of its function
and variable nodes. In this way, agents can negotiate over the best possible ac-
tions continuously, thus being able to quickly react to possible changes in the
environment.

On the other hand, this formalization is not efficient in terms of the com-
putation that each agent must perform. This is because: (i) it results in func-
tions which have an increased number of arguments with respect to the original
constraint graph and (ii) it can create loops in the factor graph which are not
present in the corresponding constraint graph. The latter is an important issue
as max-sum is known to be optimal on acyclic factor graphs but provides no
general guarantees on optimality when cycles exist (see Section 2.3 for further
details). For example, confronting Figure 2(b), which shows the constraint graph
corresponding to our exemplar situation, with Figure 3(b) it is clear that in
the constraint graph there are only binary constraints between the agents but
function U2 in the factor graph is a ternary function. Moreover, the constraint
graph is acyclic, while the factor graph is not. Despite this, the utility based
factor graph is indeed a good choice for representing our problem because it al-
lows agents to start running the coordination procedure as soon as they discover
which are their neighbours. This is in contrast to the interaction based factor
graph, which requires in general some form of negotiation, before running the
max-sum algorithm, to decide which agent is responsible for the computation as-
sociated to shared functions. Hence, the utility based factor graph is well suited
for dynamic environments where neighbours can change over time (e.g., due to
hardware failures or sensor addition/removal).

To summarise, the choice of the factor graph representation clearly depends
on application specific requirements. Since here we wish to allow sensors to
quickly react to possible changes in the environment, in the rest of the paper
we will use the utility-based factor graph representation.

2.3 The Max-Sum Algorithm

The max-sum algorithm operates directly on the factor graph representation
described above. When this graph is cycle free, the algorithm is guaranteed to
converge to the global optimal solution such that it finds the joint assignment
that maximises the sum of the agents’ utilities. In general, there can be multiple
assignments that provide the optimal solution, in this case agents have to per-
form an extra value propagation phase (as in DPOP) to be sure they achieve the
optimal assignment. Another approach, often used to avoid this extra coordina-
tion phase, is to break the symmetry of the problem by artificially inserting a
small random preference for each agent on the values of their domain [10], while
this works well in practice there are no guarantees that agents will coordinate
on the optimal assignment without the value propagation phase.

12 A. Farinelli, A. Rogers and N. R. Jennings

S1

S2

S3

A1 A3

A2

(a) (b)

Fig. 2: A diagram showing (a) the position of three sensors in the environment
whose sensing ranges overlap, and (b) the agent constraint graph.

(a) (b)

Fig. 3: Two different factor graph representations for the problem instance re-
ported in Figure 2 : Interaction-based (a) and Utility-based (b).

When applied to cyclic graphs (as is often the case in real settings when
using the utility-based factor graph representation), there is no guarantee of
convergence, but extensive empirical evidence demonstrates that this family of
algorithms generate good approximate solutions [23,27].

Specifically, the max-sum algorithm proceeds by iteratively passing messages
from variables to functions, and from functions to variables. These messages are
defined as follows:

– From variable to function:

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi) (2)

where Mi is a vector of function indexes, indicating which function nodes are
connected to variable node i, and αij is a scaler chosen such that

∑

xi
qi→j(xi) =

06, in order to normalise the message and hence prevent them increasing end-
lessly in the cyclic graphs that we face here.

6 As stated in [41] this normalisation will fail in the case of a negative infinity utility that
represents a hard constraint on the solution. However, we can replace the negative infinity
reward with one whose absolute value is greater than the sum of the maximum values of each
function.

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 13

– From function to variable:

rj→i(xi) = max
xj\i



Uj(xj) +
∑

k∈Nj\i

qk→j(xk)



 (3)

where Nj is a vector of variable indexes, indicating which variable nodes are
connected to function node j and xj\i ≡ {xk : k ∈ Nj \ i}.

The messages flowing into and out of the variable nodes within the factor graph
are functions that represent the total utility of the network for each of the possible
value assignments of the variable that is sending/receiving the message. At any
time during the propagation of these messages, agent i is able to determine which
value it should adopt such that the sum over all the agents’ utilities is maximised.
This is done by locally calculating the function, zi(xi), from the messages flowing
into agent i’s variable node:

zi(xi) =
∑

j∈Mi

rj→i(xi) (4)

and hence finding argmaxxi zi(xi).
Thus, although the max-sum algorithm is approximating the solution to a

global optimisation problem, it involves only local communication and compu-
tation. Moreover, notice that, in most previous applications, the max-sum algo-
rithm was used as a centralised optimisation technique (e.g., for efficient itera-
tively decoding of error correcting codes [26]). In our setting the factor graph is
actually physically divided among the sensors within the network, and thus the
computation of the system-wide global utility function is carried out through a
distributed computation involving message passing between agents.

Algorithm 1 max-sum

1: Q← ∅ {Initialize the set of received variable to function message}
2: R← ∅ {Initialize the set of received function to variable message}
3: while termination condition is not met do
4: for j ∈ Ni do
5: ri→j(xj) = computeMessageToV ariable(xj , Ui,Q)
6: SendMsg(ri→j (xj),aj)
7: end for
8: for j ∈Mi do
9: qi→j(xi) = computeMessageToFunction(xi, Uj ,R)
10: SendMsg(qi→j(xi),aj)
11: end for
12: Q← getMessagesFromFunctions()
13: R← getMessagesFromV ariables()
14: x∗

i = updateCurrentV alue(xi,R)
15: end while

In more detail, Algorithm 1 reports a pseudo-code description of the opera-
tions that each agent performs to implement the max-sum algorithm. At each
execution step, each agent computes and sends the variable to function and
function to variable messages. Such messages depend on the receiver variable (or

14 A. Farinelli, A. Rogers and N. R. Jennings

Algorithm 2 computeMessageToVariable(xj, Ui,Q)

Input: xj : the receiver’s variable, Ui: the sender’s function, Q: the current set of variable to
function messages received by the sender.

Output: ri→j(xj) the function to variable message from function Ui to variable xj .
1: ri→j(xj) = −∞
2: for di ∈ Di{all joint assignments of xi} do
3: σ = Ui(di)
4: for dk ∈ dj, (k 6= j) do
5: σ = σ + qk→i(dk) {qk→i ∈ Q}
6: end for
7: ri→j(dj) = max ri→j(dj), σ {dj ∈ di}
8: end for
9: return ri→j(xj)

Algorithm 3 computeMessageToFunction(xi, Uj,R)

Input: xi: the sender’s variable, Uj : the receiver’s function, R: the current set of function to
variable messages received by the sender.

Output: qi→j(xi) the variable to function message from variable xi to function Uj .
1: qi→j(xi) = 0
2: for rk→i ∈ R k 6= j do
3: qi→j(xi) = qi→j(xi) + rk→i(xi)
4: end for

5: αij = −

∑
di∈Di

qi→j(di)

|Di|

6: qi→j(xi) = qi→j(xi) + αij

7: return qi→j(xi)

function) and are computed according to equations 2 and 3 respectively. Algo-
rithms 2 and 3 report a pseudo-code description of the operations required to
compute such messages7. The agent updates the incoming Q and R messages
and then update its current value by computing the variable assignment that
maximises function zi(xi). Notice that, the value of the agent variable does not
have any influence on message computation. Therefore, if the termination condi-
tion does not depend on this value, line 14 could be taken out of the main while
loop without affecting the final assignment computation. Here, we stop the max-
sum algorithm after a fixed amount of executions of the while loop, hence we
could compute the assignment outside the while loop, but we prefer to provide
this more general version of the pseudo-code.

2.4 Worked Example

Figure 4 shows a subset of the messages that are exchanged when the max-sum
algorithm is executed on the factor graph shown in Figure 3(b). Note that, with
both the utility-based and the interaction-based factor graph representation, the
nodes of the factor graph are distributed across the various agents within the
system, and, as such, some messages are internal to a single agent (e.g., the
message q2→2(x2)) while other messages are sent between agents (e.g., q2→3(x2)).
To better illustrate the functioning of the max-sum algorithm we can consider the
computation of a sample variable to function message, q2→3(x2), and a sample
function to variable message, r2→1(x1).

7 This pseudo-code description is based on the procedures for max-sum message computation
presented in [7]

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 15

x1 x3

U3U1 x2

U2

r1→2(x2) q2→3(x2)

q3→2(x3)r2→1(x1)

q2→2(x2) r2→2(x2)

Fig. 4: Subset of the messages exchanged over the factor graph using the max-sum
algorithm.

We first consider the variable to function message q2→3(x2), and for ease of
exposition we do not consider the scaler α23. Thus, following equation 2, message
q2→3(x2) is given by:

q2→3(x2) =
∑

k∈M2\3

rk→2(x2)

Considering that in our case M2 \ 3 = {1, 2}, we can expand the summation to
obtain:

q2→3(x2) = r1→2(x2) + r2→2(x2)

Therefore, for variable to function messages each agent only needs to aggregate
the information received from all the neighbouring functions, without consider-
ing the receiver of the message (i.e., function node of agent 3 in our case). The
aggregation is performed simply by summing the messages. Notice that messages
in the max-sum algorithms do not contain a single assignment value, but con-
tain one real value for each possible variable assignment. In our case, since the
domain of the variables are discrete, we represent each message as a vector with
|Di| components. Then the above summation can be directly implemented as a
component-wise sum of the vectors as Algorithm 2 illustrates. This is possible
because all the messages refer to the same variable. The scaler α23 is computed
so to have

∑

di∈D2
q2→3(d2) = 0, as Line 5 of Algorithm 2 shows.

We now turn to the computation involved with a message sent from a function
to a variable and in particular we focus on message r2→1(x1) from equation 3 we
have:

r2→1(x1) = max
x2\1



U2(x2) +
∑

k∈N2\1

qk→2(xk)





Considering that in our case N2 \ 1 = {2, 3} and that x2 \ 1 = {x2, x3} we then
have:

r2→1(x1) = max
x2,x3

[U2(x1, x2, x3) + q2→2(x2) + q3→2(x3)]

Therefore, for function to variable messages each agent needs to maximise a
function which results from the summation of its utility and the messages received
from neighbouring variables. Again, since in our case, the variables are discrete,

16 A. Farinelli, A. Rogers and N. R. Jennings

−3

−4

−2

−3

−2

0

−1

−5

Sumq2→2(x2) q3→2(x3)x1 x2 x3 U(x1, x2, x3) r2→1(x1)

−2 0 −10 1 0

−2 −1 −11 0 0

−1 0 −11 1 0

−2 −1 00 0 1

−1 −1 01 0 1

0 0 01 1 1

−1 0 00 1 1

−3 −1 −10 0 0

−1

0

0

−1

0

0

−1

−1

Fig. 5: Computation for message r2→1(x1)

functions can be represented as tables. Algorithm 3 reports the pseudo-code
description of the operations required for the message computation. Notice that
the for loop in line 2 iterates over all the joint assignments of variables in xi

(i.e., x2 = 〈x1, x2, x3〉 in our example). Note that, this results in a number of
iterations that is exponential in the number of neighbours that each agent has.
However, this is typically much less than the total number of agents within the
system.

An alternative way to describe the above computation is to join the tables
representing Uj(xj) with all the incoming messages and then sum the corre-
sponding rows. A join operation here is required because the function we are
summing over are defined on different variables. Similarly, the maximisation can
be implemented by projecting the columns corresponding to the variables we are
maximising over (e.g., variables x2 and x3 in our example) and removing dupli-
cate rows that have lower values. Figure 5 shows an exemplar computation of
message r2→1(x1) using the method described above, the projection operation
is illustrated by deleting the columns that refer to x2 and x3. The last column
reports the maximum value in the Sum column for each of the possible values of
x1.

Finally notice that, while here we focus on applications where each agent
action can be represented as a discrete variable, the max-sum algorithm can be
used also in the case of continuous variable. In that case however, the operations
performed by the agents must be carefully adapted; we refer the interest reader
to [45] where the max-sum algorithm is applied to a multi-agent system with
continuously valued variables and piecewise linear functions.

2.5 Message Update Schedule

The messages described above may be randomly initialised, and then updated
whenever an agent receives an updated message from a neighbouring agent; there
is no need for a strict ordering or synchronisation of the messages. In addition,
the calculation of the marginal function shown in equation 4 can be performed
at any time (using the most recent messages received), and thus, agents have a
continuously updated estimate of their optimum assignment.

The final state of the algorithm depends on the structure of the agents’ utility
functions, and, in general, three behaviours can be observed:

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 17

1. The preferred joint assignment of all agents converges to fixed values that
represent either the optimal solution, or a solution close to the optimal, and
the messages also converge (i.e. the updated message is equal to the previous
message sent on that edge), and thus, the propagation of messages ceases.

2. The preferred joint assignment converges as above, but the messages continue
to change slightly at each update, and thus continue to be propagated around
the network.

3. Neither the preferred joint assignment, nor the messages converge and both
display cyclic behaviour.

Thus, depending on problem being addressed, and the convergence properties
observed, the algorithm may be used with different termination rules:

1. Continue to propagate messages until they converge, either changing the value
assignment of the agent continuously to match the optimum indicated, or only
after convergence has occurred.

2. Propagate messages for a fixed number of iterations per agent (again either
changing the value assignment of the agent continuously or only at termina-
tion).

Notice that, both the above rules require only local information for the agents,
i.e., each agent only needs to check whether the assignment for the variable it
controls changed, whether the new messages it should send differ from the pre-
vious messages, or simply count the number of executions of the message update
steps. The first termination rule favours the quality of the solution. When the
algorithm converges, it does not converge to a simple local maximum, but to a
neighbourhood maximum that is guaranteed to be greater than all other max-
ima within a particular large region of the search space [54]. Depending on the
structure of the factor graph, this neighbourhood can be exponentially large.
For practical applications the second termination rule is often preferred. In fact,
empirical evidence shows that the max-sum algorithm reaches good approximate
solutions in few iterations. Finally, notice that for dynamic scenarios in which the
utilities of the agents or the interactions of the agents change over time (perhaps
due to sensor failures or additions), the max-sum algorithm can run indefinitely
without any termination rule; the agents can decide at every cycle which value
to choose based on equation 4, and operate on a continuously changing coordi-
nation problem. In this way changes that affect the problem configuration will
be directly reflected by a change in messages exchanged and thus will be con-
sidered by the agents in their assignment decision. Notice that, such continuous
behaviour can be obtained also by using other coordination approaches such as
DSA. Precisely assessing the merits of max-sum with respect to DSA (or other
similar coordination approaches) in such dynamic settings requires however fur-
ther investigations that fall outside the scope of the present contribution.

2.6 Guarantees on Convergence and Solution Quality

As previously mentioned, empirical evidence shows that GDL-like algorithms are
able to provide very good approximate solutions for large scale problems with
complex structure [31,13]. Nonetheless, providing theoretical guarantees on con-
vergence and quality of provided solutions for GDL-like algorithms is still an

18 A. Farinelli, A. Rogers and N. R. Jennings

open area of investigation. In particular, theoretical guarantees can only be pro-
vided regarding the quality of solutions when the algorithm has converged [54],
and guarantees of convergence can only be provided for specific graph topologies,
which typically only contain a single loop [54,51]. Notice that, this is clearly not
the case in our settings as the factor graph representation reported in Figure
3(b) shows.

Since convergence and solution quality are dependent on the structure of the
factor graph, we can obtain structures which are more likely to converge and in-
crease the quality of the approximate solutions obtained, by modifying the factor
graph. In particular, we can perform transformations that are similar to those
used in graphical models to build junction trees; these involve stretching vari-
ables, and clustering both variables and functions [23]. These transformations
do not change the problem being solved (i.e., the new factor graph represents
the same global function as before), however, by applying a sequence of such
transformations, all the loops may be removed from the factor graph, with the
result that the max-sum algorithm is then guaranteed to converge to the opti-
mal solution. However, in general, this process incurs an exponential increase in
computation cost and message size.

In this respect, the GDL framework on which we build, subsumes the DPOP
algorithm; it provides the same guarantees on solution quality and convergence,
with the same complexity in terms of message size and computation [52]. How-
ever, we can exploit the generality of the GDL framework by applying the above
mentioned transformations only to critical portions of the factor graph that ex-
hibit many loops. In this way, we can perform a principled trade-off between
solution quality and computation/communication overhead involved in running
the algorithm. A full discussion of this extension to the algorithm is beyond the
scope of this paper. However, a concrete example can be found in [10], where
this idea was exploited in the context of graph colouring by modifying the utility
function of each agent to explicitly consider constraints among its neighbours.
This effectively corresponds to cluster function nodes that form cliques and result
in better performance in graphs with many small loops. Moreover, we can obtain
bounded approximations of the optimal solution by using the Bounded Max-Sum
(BMS) approach [41]. The main idea behind BMS is to optimally solve an acyclic,
relaxed version of the original factor graph where some of the dependencies be-
tween variables and functions have been ignored. By carefully choosing which
dependencies should be removed BMS can efficiently provide accurate bounds of
the optimal solution.

2.7 Coordination overhead

As mentioned before, for our target application we favour the use of the utility-
based factor graph representation. When using such a representation, each agent
controls one variable (xi) and one function (Ui(xi)). Thus, as detailed in Al-
gorithm 1, each agent sends two messages to each neighbour at each execution
step: one message from the agent variable xi to the neighbour function Uj(xj)
(qi→j(xi)) that depends on the sender variable xi, and one message from the
agent function Ui(xi) to the neighbour variable xj (ri→j(xj)) that depends on
the receiver variables. Since in our application variables are discrete, each of these
messages is a vector that contains a number of values which equals the possible

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 19

values of the variable’s domain di = |Di|. Summarizing the number of values
communicated by the each agent at each execution step can be expressed as
O(kd) where k is the number of neighbours for the agent and d is the maximum
cardinality of the variables’ domains.

The computational complexity of the local optimization procedure is dom-
inated by the computation of the messages from functions to variables which
require a maximization step that, following Algorithm 3, must go through all
the joint assignments of the neighbours. Again, given our utility-based factor
graph representation each function directly depends on all the neighbours and
on the agent, hence the computational complexity of the maximization step can
be expressed as O(dk+1). Notice that, the computational effort associated with
the message update computation could be significantly reduced by an advanced
maximization procedure that consider the natural decomposition of the utility
function into a sum of smaller factors. For example, consider the factor graph
in Figure 4 and the computation of message r2→1(x1), the function of three
variables U2(x1, x2, x3) can be decomposed into a sum of two functions that
depends on two variables each: U2(x1, x2, x3) = F12(x1, x2) + F23(x2, x3). This
decomposition can be exploited by optimization techniques such as for example,
Cluster Tree Elimination or Bucket Elimination which are known to be power-
ful techniques for decomposable functions [6]. Such decomposition of the utility
function is directly exploited by the interaction-based factor graph representa-
tion. For example, the interaction-based factor graph shown in Figure 3(a) does
not contain any ternary constraints, while the corresponding utility based fac-
tor graph shown in Figure 3(b) includes function U2(x1, x2, x3). Following this
approach, the computational complexity associated with the message update is
dominated by O(dz) where z is the maximum arity of the functions that agent i
is controlling. In most applications, and in our wide area surveillance scenario, z
can be significantly smaller than the number of neighbours of the agents. While,
the representation based on the interaction-based factor graph would result in a
significant reduction of computation as mentioned before, here we focus on the
utility-based representation because in this formulation each agent has a clear
responsibility over functions to control and therefore each agent can update mes-
sages and perform the coordination phase without the need of any pre-processing
phase (e.g., pseudo-tree building or any means of allocating functions to agents).
This benefit can not be easily quantified with an empirical evaluation as it is
not directly related to a measurable performance metric. Nonetheless, it is an
important aspect when developing our system.

3 The Wide Area Surveillance Problem

Having presented our coordination approach, we now focus on its application
to an illustrative wide area surveillance problem for a sensor network. Thus,
in this section, we describe and analyse a formal model of the problem that
we address, in order to calculate an upper bound on the increase in system-
wide performance that can be accrued through coordination. In performing this
analysis, we make a number of simplifying assumptions (common in previous
work in this field [17]) which we subsequently relax in section 4 where we show
how agents can compute the information required for coordination through an

20 A. Farinelli, A. Rogers and N. R. Jennings

initial period observing events within the environment, and can then use the
max-sum algorithm to perform the decentralised coordination.

3.1 Problem Description

Following the utility-based factor graph formulation reported in Section 2.2.2,
our problem formulation includes M sensors, where each sensor is controlled by
a specific agent. Each agent has control over a discrete variable xi that represents
the possible schedules of the sensor. Each agent interacts locally with a number of
other agents such that we can define a set of local functions, Fi(xi), that depend
on the schedules of a subset of the agents (defined by the set xi). In particular,
in our wide area surveillance problem, the subsets of interacting agents are those
whose sensor sensing areas overlap, and the utility describes the probability of
detecting an event within the sensor’s sensing range.

Within this setting, we wish to find the joint schedule for all the sensors, x∗,
such that the sum of the individual agents’ utilities (i.e., the social welfare) is
maximised:

x∗ = argmax
x

M
∑

i=1

Ui(xi) (5)

Furthermore, in order to enforce a truly decentralised solution, we assume that
each agent only has knowledge of, and can directly communicate with, the few
neighbouring agents on whose assignment its own utility directly depends.

3.2 Theoretical Model

We assume that multiple sensors are deployed according to a Poisson process
with rate per unit area λs (i.e. within a unit area we expect to find λs sensors).
The use of Poisson processes to describe these events is common within the
literature [17], and represents a generic, non-domain specific model of a random
sensor deployment. Each sensor has a circular sensing field, with radius r, and
is tasked with detecting transient events within its sensing field. We make no
assumptions regarding the process by which events occur, and we consider a
general case in which events may have a limited duration in which they remain
detectable after their initial appearance. Note that our model is not limited to
uniformly distributed events in space or time, as long as we have no prior belief
as to when and where events may occur. Event duration is described by another
Poisson process with rate per unit time λd. Thus, the probability of an event
lasting time t is given by λde

−λdt.
We assume that the sensors are able to harvest energy from their local envi-

ronment, but at a rate that is insufficient to allow them to be powered continually.
Thus at any time a sensor can be in one of two states: either sensing or sleeping.
In the sensing state the sensor consumes energy at a constant rate, and is able
to interact with the surrounding environment (e.g. it can detect events within
its sensing field and communicate with other sensors). In the sleep state the sen-
sor can not interact with the environment but it consumes negligible energy. To
maintain energy neutral operation, and thus exhibit an indefinite lifetime, sensors
adopt a duty cycle whereby within discrete time slots they switch between these

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 21

A{1,3}

A{1,2,3}

A{1}

A{1,2}

A{2}

A{2,3}

A{3}

S1

S2

S3

s2 = {1, 0}
s1 = {0, 1}

s3 = {0, 1}

Fig. 6: Example coordination problem in which three sensors, {S1, S2, S3}, have
sensing fields that overlap.

two states according to a fixed schedule of length L. We denote the schedule of
sensor i by a vector si = {si0, . . . , s

i
L−1} where sik ∈ {0, 1}, and sik = 1 indicates

that sensor i is in its active sensing state during time slot k (and conversely, it
is sleeping when sik = 0). We assume that this schedule is repeated indefinitely,
and in this paper, we specifically consider schedules in which the sensor is in its
sense state for one time slot, and in a sleep state for all L − 1 other time slots
(i.e.

∑L−1
k=0 sik = 1). For example, considering L = 2 there would be only two

possible schedules for sensor i: {1, 0} and {0, 1}. This represents the simplest
description of a power constrained sensing schedule, however, given our model of
event duration and our assumption of having no prior beliefs on event occurrence,
considering only this type of sensing schedule seems a reasonable assumption. In
fact, it essentially tries to minimise the off time between two activations of one
sensor thus reducing the probability of missing an event in the area that is cov-
ered only by that sensor. Nonetheless, we note that the theoretical analysis that
we perform, and the max-sum coordination algorithm that we have presented in
the last section, can be applied for any discrete schedule. Notice that, if we do
not have any constraints on the number of time steps in which the sensor can
be in a sensing state the variable domains will be exponential in L, to represent
all possible combinations of sense/sleep states. Therefore, while we can still use
max-sum to address this problem, the associated computational effort might be-
come prohibitive. This however would be a problem for most DCOP techniques,
for example, even a very simple and computationally cheap approach such as
DSA or MGM would incur an exponential element in the local optimization step
that depends on the size of the variables’ domains (see Section 4.3 for further
details on the DSA approach we use here).

3.3 The Coordination Problem

Figure 6 illustrates the coordination problem that results from this scenario.
In this specific example, three sensors, {S1, S2, S3}, are randomly deployed and
exhibit overlapping sensing fields. In order to maintain energy neutral operation,

22 A. Farinelli, A. Rogers and N. R. Jennings

each sensor can only actively sense for half of the time (i.e. L = 2), and thus,
each sensor has a choice from two sensing schedules: either {1, 0} or {0, 1}.

The system-wide goal is to maximise the probability that events are detected
by the sensor network as a whole. This is achieved by ensuring that the area
covered by the three sensors is actively sensed by at least one sensor at any time.
However, with the sensing schedules available, it is clearly not possible to ensure
that area S1 ∩S2, area S2 ∩S3 and area S1 ∩S3 are all sensed continually. Thus,
the sensors must coordinate to ensure that the minimal area possible exhibits the
minimal periods during which no sensor is actively sensing it. In this case, the
optimal solution is the one shown where s1 = {0, 1}, s2 = {1, 0} and s3 = {0, 1}.
Note that this leads to areas A{1,2}, A{2,3} and A{1,2,3} being sensed continually,
and the smallest area, A{1,3}, and of course the three non-overlapping areas,
exhibiting intermittent sensing.

In a larger sensor deployment, each of these three sensors is also likely to
overlap with other sensors. Thus, finding the appropriate sensing schedule of
each sensor, such that the probability of detecting an event is maximised, is a
combinatorial optimisation problem. As such, this problem is similar to the graph
colouring problem commonly used to benchmark DCOP algorithms (see [33]
for example). However, an important difference is that in our sensor scheduling
problem we can have interactions between multiple sensors (as is the case in the
example shown in Figure 6), rather than interaction between just pairs of sensors
(as is the case in the standard graph colouring problem).

3.4 Theoretical Analysis

Given the model described above, we now quantify, through a theoretical analysis,
the gain in performance that coordination can yield. To this end, we consider
four specific cases:

– Continuously Powered Sensors:
We initially ignore the energy constraints of the sensors and assume that they
remain in their sensing state continuously. This represents an absolute upper
bound on the performance of the network.

– Synchronised Sensors:
We assume that the sensors are limited to sensing for just one in every L time
slots, and that the choice of which time slot to use is identical for all sensors;
thus sensors in this case exhibit no adaptation.

– Randomly Coordinated Sensors:
As above, we assume sensors are limited to sensing for just one in every L
time slots, but the choice of which time slot to use is made randomly by each
individual sensor with no coordination with nearby sensors.

– Optimally Coordinated Sensors:
We again consider sensors limited to sensing for just one in every L time
slots, but we consider that they are able to optimally coordinate the choice of
sensing time slot with neighbouring sensors whose sensing fields overlap with
their own.

In each case, we calculate the probability of event detection, PED, (i.e., the
probability that any event that occurs within the environment is indeed detected
by the network).

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 23

✛ ✲

one time period

s1 = {1, 0, 0, 0}

❄

❄ ❄ ❄

n = 0 n = 3 n = 2 n = 1

✛ ✲

one time period

s1 = {1, 0, 0, 0}

s2 = {0, 0, 0, 1}

s3 = {1, 0, 0, 0}

s = {1, 0, 0, 1}

❄

❄ ❄

❄

n = 0 n = 2 n = 1 n = 0

(a) (b)

Fig. 7: Example showing the effective schedule for an area that falls within the
sensing radius of (a) a single sensor with sensing schedule s1 = {1, 0, 0, 0}, and
(b) three sensors with sensing schedules s1 = {1, 0, 0, 0}, s2 = {0, 0, 0, 1} and
s3 = {1, 0, 0, 0}.

3.4.1 Continuously Powered Sensors

If we assume that the sensors remain continuously in their sense state then
an event will be detected if it occurs within the sensing field of at least one
sensor. Given the Poisson process that describes the deployment of sensors, the
probability that an event falls within the sensing field of m sensors is given by
(λsπr

2)me−λsπr
2

/m!. Thus, an event will be detected in all cases that m > 0,
and thus, the overall probability of event detection is given by:

PEDcontinuous = 1− e−λsπr
2

(6)

Clearly, increasing either the density of the sensor, λs, or the sensing field of the
sensors, r, increases the probability with which events are detected.

3.4.2 Synchronised Sensors

If the sensors are energy constrained and use a synchronised sensing schedule in
which all sensors select the same single time slot for sensing, then an event will
be detected if it occurs within the sensing field of at least one sensor whilst the
sensors are actively sensing, or if the event occurs whilst the sensors are sleeping,
but is still detectable when they next start actively sensing again. Given the
Poisson process describing the time during which an event remains detectable
after its initial occurrence, the probability of an event being detectable after time
t is given by

∫∞

t
λde

−λdτdτ = e−λdt. Thus, if we consider that an event occurs
within any specific time slot, and define n as the number of time slots until the
sensors are again in their sensing state (where n = 0 indicates that one of the
sensors is currently in its sense state), then the probability of detecting the event

is 1 when n = 0, and is given by
∫ 1/L

0
e−λd(n/L−t)dt = e−λdn/LL

λd

(

eλd/L − 1
)

when
n ≥ 1.

Using this result, the fact that events are equally likely to occur within all
L time slots, and the result for the probability that the event occurs within the

24 A. Farinelli, A. Rogers and N. R. Jennings

sensing range of at least one sensor derived in the previous section, allows us to
express the overall probability of event detection as:

PEDsynchronised =
(

1− e−λsπr
2
)

L−1
∑

n=0

{

1/L n = 0
e−λdn/L

λd

(

eλd/L − 1
)

n ≥ 1
(7)

Figure 7(a) shows an illustration of this case when L = 4.

3.4.3 Randomly Coordinated Sensors

In order to calculate the probability of event detection when sensors are energy
constrained but each uses a sensing schedule in which one time slot is indepen-
dently randomly selected for sensing, we note that the effective sensing schedule
of an area that falls within the sensing ranges of a number of sensors is de-
scribed by the logical ‘OR’ of the schedules of each individual sensor. For ex-
ample, Figure 7(b) shows the case where an area is overlapped by three sensors,
{S1, S2, S3}, with individual sensing schedules, s1 = {1, 0, 0, 0}, s2 = {0, 0, 0, 1},
and s3 = {1, 0, 0, 0}, giving rise to the effective schedule of s = {1, 0, 0, 1}. As
above, given any such schedule we can calculate the probability of detecting an
event within this area, by simply summing over each time slot and considering
the number of time slots until the sensors are again in their sensing state (see
Figure 7(b) again).

Algorithm 4 presents a general method to calculate the probability that an
event is detected if it occurs within an area whose sensing schedule is described
by the vector s = {s0, . . . , sL−1}. Note that as λd increases (such that the events
become increasingly transient), then the probability of detection decreases toward
only detecting the event during the cycle in which the sensor is in its sense state
(i.e. 1/L). Conversely, as λd decreases toward zero (such that the events become
increasingly long lived), then the probability of detecting the event approaches
one.

Algorithm 4 P (detection|λd, s)

1: value← 0
2: for i = 0 to L− 1 do
3: n← 0; j ← i
4: while sj = 0 do
5: j ← mod(j + 1, L);n← n+ 1
6: end while
7: if n = 0 then
8: value← value + 1/L
9: else
10: value← value+ e−λdn/L

(

eλd/L − 1
)

/λd

11: end if
12: end for
13: return value

We can then use this result to calculate the probability of detecting an event
assuming that each sensor individually selects one of the L time slots in which
to sense. We do so by summing over the probabilities that any point in the envi-
ronment is within the sensing fields of m sensors, and that the sensing schedules

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 25

of these m sensors combine to give any of the 2L possible sensing schedules (de-
noted by S). In the latter case, the probability of any sensing schedules, s, arising
from the combination of m individual schedules, each of length L with a single
active sensing time slot, is given by

∑n
k=0(−1)k

(

n
k

)

(n− k)m/Lm, where n is the
number of sensing time slots in the combined schedule. Note that the numer-
ator in this expression is a standard result in probability theory regarding the
number of ways in which m balls may be placed into L cups such that exactly n
of them are not empty (see for example [42]), and the denominator is the total
number of ways in which m balls may be placed in L cups. Algorithm 5 shows
this calculation in pseudo-code.

Algorithm 5 PEDrandom(λs, λd, r, L)

1: value← 0
2: for m = 1 to ∞ do
3: P (m) = (λsπr2)me−λsπr2/m!
4: for s ∈ S do

5: n←
∑L−1

k=0 sk
6: if n ≤ m then

7: P (s) =
∑n

k=0(−1)
k
(n
k

)

(n− k)m/Lm

8: value← value + P (m) × P (s)× P (detection|λd, s)
9: end if
10: end for
11: end for
12: return value

3.4.4 Optimally Coordinated Sensors

Finally, we can calculate an upper bound for the effectiveness of coordination
between sensors. To do so, we assume that if any point in the environment is
within the sensing fields of m sensors, then these sensors are able to perfectly
coordinate their sensing schedules in order to maximise the probability that
an event is detected at this point. This represents a strict upper bound on the
probability that the network detects an event, since we ignore the real constraints
on achieving this coordination for any given sensor network configuration8. Thus,
if m ≥ L we assume that the area is continually sensed, and when 1 < m < L we
assume that the sensor coordination gives rise to an optimal sensing schedule,
s∗m,L. This optimal schedule can be automatically derived through exhaustive
search using Algorithm 1, or more simply, by noting that the detection probability
is maximised when the schedule contains m sensed time slots that are maximally
separated. For example, if L = 4, then s∗1,4 = {1, 0, 0, 0}, s∗2,4 = {1, 0, 1, 0} and
s∗3,4 = {1, 1, 1, 0}. Algorithm 6 shows this calculation.

8 This is equivalent to the statement that zero clashes is a strict lower bound for solutions
to a graph colouring problem, even though a specific problem instance may not be colourable.

26 A. Farinelli, A. Rogers and N. R. Jennings

Algorithm 6 PEDoptimal(λs, λd, r, L)

1: value← 0
2: for m = 1 to ∞ do
3: P (m) = (λsπr2)me−λsπr2/m!
4: if m < L then
5: value← value + P (m) × P (detection|λd, s

∗
m,L)

6: else
7: value← value + P (m)
8: end if
9: end for
10: return value

3.5 Network Performance Comparison

Using the theoretical results presented in this section, we can calculate the maxi-
mum gain in system-wide performance that coordination may yield. These results
are shown in Figure 8 for cases where L = 2, 3 and 4, and in all cases, the de-
parture rate of events is much greater than 1/L (i.e. events are very short lived).
Short lived events represent the lower limit of performance of the network, be-
cause an event can only be detected if a sensor is in its active sensing state when
the event occurs. As such, it represents the case where coordination can have the
most significant impact.

In addition, we show results from a simulation of the sensor network described
by our model in which a centralised optimisation routine (specifically simulated
annealing) is used to calculate a sensor schedule against which to compare the
theoretically calculated optimal. In contrast with the ideal upper bound, this al-
gorithm provides feasible schedules, but cannot be used in practice to coordinate
the sense/sleep schedules of the real sensors since it is centralised and assumes
full knowledge of the topology of the network.

Notice that, while the theoretical analysis assumes that optimal coordination
can be achieved for every point in the network, the theoretical optimal coor-
dination case calculated in Section 3.4.4 is an upper bound for any operating
conditions (as long as the distribution of sensors and the visibility time of the
targets follow a Poisson distribution). Moreover, the centralised simulated an-
nealing solution closely approximates this upper bound, indicating that this is
a relatively tight bound, since it closely reflects what is possible in practice by
running a simulated annealing algorithm on the network. Finally, this result sug-
gests that the centralised simulated annealing solution is a useful benchmark
for evaluating our decentralised max-sum algorithm against (as we do in Sec-
tion 4). Clearly, as the density of the sensor deployment (λs) increases, then the
probability of event detection increases, and in the limit, all events that occur
within the environment are detected. Note that the optimally coordinated net-
work always out performs the randomly coordinated network (as it must), and
that as the density of the deployment increases, the gain increases. Indeed, in
this example, for the case where L = 4, when λs > 35 the optimally coordinated
network detects 50% of the events that the randomly coordinated network fails
to detect, or conversely, the optimally coordinated network is able to achieve the
same level of performance as the randomly coordinated network with just 60%
of the sensors deployed. Summarising, these results indicate that coordination

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 27

10 15 20 25 30 35 40 45 50
0

0.25

0.5

0.75

1
Probability of Event Detection (PED) − L=2

Sensor Density (λ
s
)

P
ro

ba
bi

lit
y

continuous
optimal
simulated annealing
random
synchronised

10 15 20 25 30 35 40 45 50
0

0.25

0.5

0.75

1
Probability of Event Detection (PED) − L=3

Sensor Density (λ
s
)

P
ro

ba
bi

lit
y

continuous
optimal
simulated annealing
random
synchronised

10 15 20 25 30 35 40 45 50
0

0.25

0.5

0.75

1
Probability of Event Detection (PED) − L=4

Sensor Density (λ
s
)

P
ro

ba
bi

lit
y

continuous
optimal
simulated annealing
random
synchronised

Fig. 8: Comparison of theoretical and simulation results for the probability of
event detection for continuously powered, randomly coordinated and optimally
coordinated sensors (r = 0.2 and λd = 20)

can yield a significant and worthwhile improvement in system-wide performance
in this application.

4 Decentralised Coordination for the Wide Area Surveillance

Problem

The above analysis indicates that significant gains can be realised by coordinat-
ing the sense/sleep schedules of power-constrained sensors, and based on this,
we now focus on decentralised coordination algorithms that can be deployed
on the sensor nodes. Previous work in the area of wireless sensor networks has

28 A. Farinelli, A. Rogers and N. R. Jennings

A{1,3}

A{1,2,3}

A{1}

A{1,2}

A{2}

A{2,3}

A{3}

S1

S2

S3

Fig. 9: Example showing the complete set of overlapping areas for three sensors
S1, S2 and S3.

begun to address this challenge, for example, Hsin and Liu in [17] consider co-
ordinating the duty cycles of non-energy harvesting sensors in order to maintain
a minimum probability of event detection while maximising the lifetime of the
individual sensors. Giusti et al. in [14] consider the problem of coordinating the
wakeup time of energy neutral sensors, but do not explicitly consider the degree
to which the sensing areas of neighbouring sensors overlap. Conversely, Kumar
et al. [24] do explicitly deal with the expected overlap of neighbouring sensors in
a setting where each point in the region must be covered by at least k sensors in
order to correctly identify significant events (k-coverage). However, rather than
providing a coordination mechanism, they analyse a model of the problem, and
provide guidance as to the number of sensors that should be deployed to achieve
k-coverage and longevity of the network, in the absence of any coordination.
Similarly, Ammari and Das in [2] address the issue of k-coverage explicitly focus-
ing on investigating the conditional connectivity of k-covered sensor networks,
i.e. the minimal number of sensors whose removal disconnects the network into
components each maintaining a specified property. In particular, they provide
bounds for the conditional connectivity of a k-covered network given an isotropic
model for the sensors.

However, much of this work assumes that the sensors have perfect a priori
knowledge of their location, the location of their neighbours, and the degree of
overlap of perfect circular sensing areas (see Section 3 for more details). In this
section, we show how we can apply the max-sum algorithm to the wide area
surveillance problem presented in Section 3, removing these restrictive assump-
tions, and thus developing an adaptive distributed coordination mechanism.

4.1 Applying the Max-Sum Algorithm

To apply the max-sum coordination algorithm to the wide area surveillance prob-
lem it is necessary to first decompose the system-wide goal that we face (that of
maximising the probability that an event is detected) into individual sensor util-
ity functions. As shown in Section 3.3, the utility of each sensor is determined by
its own sense/sleep schedule, and by those of sensors whose sensing fields overlap
with its own. In the case that the sensors know the relative positions of these

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 29

other sensors and the geometry of their sensing fields, and events are equally
likely to occur anywhere within the area covered by the sensor network (strong
assumptions common in the literature [17], and ones that we relax shortly), this
utility function can easily be determined.

To this end, we defineNi to be a set of indexes indicating which other sensors’
sensing fields overlap with that of sensor i and k is any subset of Ni (including
the empty set). A{i}∪k is the area that is overlapped only by sensor i and those
sensors in k. For example, with respect to Figure 9, the area A{1,2} is the area
that is sensed only by sensors 1 and 2. In a slight abuse of notation, we represent
the entire sensing area of sensor S1 as S1, and thus, note that the area A{1,2} is
different from S1 ∩ S2 because the area S1 ∩ S2 would include also the sub area
S1 ∩ S2 ∩ S3. In general, we have:

A{i}∪k =
⋂

j∈({i}∪k)

Sj \
⋃

l 6∈({i}∪k)

Sl

We define a function G : 2X → S and G(x{i}∪k) is the combined sensing schedule
of sensor i and those sensors in k (calculated through the logical ‘OR’ of each
individual schedule, as shown in Figure 7). The utility of sensor i is then given
by:

Ui(xi) =
∑

k⊆Ni

A{i}∪k

|{i} ∪ k|
× P (detection|λd, G(x{i}∪k)) (8)

where P (detection|λd, G(x{i}∪k)) is given by Algorithm 4. Note, that we scale
the area by the number of sensors that can sense it to avoid double-counting areas
which are represented by multiple sensors. This is important since we require that
∑

i Ui(xi) is equal to the global probability of detecting an event. Also, note that
when the set k is empty we consider the area covered only by the single sensor.
For example, let us consider sensor S2 shown in Figure 9. To compute U2(x2) we
need to consider all possible subsets of N2 = {1, 3}. These subsets are: {∅}, {1},
{3}, {1, 3}, therefore, U2(x2) is calculated considering the shaded areas A{2},
A{1,2}, A{2,3} and A{1,2,3}.

4.2 Learning the Mutual Interaction of Sensing Fields

The utility function presented in equation 8 makes some strong assumptions
regarding how each individual sensor calculates its utility. Specifically, it assumes
that the sensors are able to determine the area of overlap of their own and their
neighbouring sensors’ sensing fields, and that they have no prior knowledge as
to the distribution of events over these areas. In reality, sensors may have highly
irregular and obscured sensing areas, they may not be able to determine the exact
position of themselves, let alone neighbouring sensors, and events may be known
to be more likely to occur in some areas than others. Thus in this section we relax
these constraints, and describe how an additional calibration phase may be used
to allow the individual sensors to learn these relationships through observing
events in the environment prior to making a coordinated decision regarding their
sense/sleep schedules.

To this end, rather than the theoretically tractable model of a wide area
surveillance problem that we introduced in Section 3, we now consider a more

30 A. Farinelli, A. Rogers and N. R. Jennings

Fig. 10: Simulation of a wide area surveillance scenario (based on the RoboCup
Rescue Simulation Environment).

realistic scenario based upon a simulation of an urban setting (based upon the
RoboCup Rescue Simulation Environment [20]). We again assume that energy
harvesting sensors (with the same energy constraints and sense/sleep schedules
as those previously considered) are randomly deployed within the environment,
and these sensors are tasked with detecting vehicles that travel along the roads.
We assume that the sensors have no a priori knowledge of the road network, and
do not know their own location within it. We make no assumptions regarding
the sensing fields of these sensors, although for ease of coding the simulation, we
model these as circular fields with randomly assigned radii (which are unknown
to the sensors). Figure 10 shows this simulation environment in operation. The
area sensed by active sensors is shown in red, and moving vehicles are shown
as white markers on the roads. A video of its operation is available online at
https://vimeo.com/48231842

We then implement an additional calibration phase after deployment in which
the sensors synchronise their sensing schedules and exchange information re-
garding the events that they have observed. In more detail, we implement the
following scheme:

1. Calibration Phase:
We assume that all sensors select the same sensing schedule, and thus, the
sensors are all active and sense simultaneously. At regular intervals during
this phase sensors exchange information regarding the events that they have
detected, and they keep track of (i) the number of events that they observe
individually, Oi , and (ii) the number of events that are both detected by
themselves and a subset of their neighbours, O{i}∪k. The exact form that this
exchange of information takes depends on the nature of the sensors used, and

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 31

Fig. 11: Example showing the paths of two vehicles on roads, {R1, R2}, crossing
the sensing fields of three overlapping sensors S1, S2 and S3.

the events that they are detecting. Within our simulated wide area surveil-
lance scenario, we assume either acoustic, seismic or visual sensors that are
able to time stamp the appearance and disappearance of vehicles within their
sensing fields. Comparison of the time stamps of observations of other sen-
sors allows each sensor to identify whether vehicles are detected by multiple
sensors as they cross its own sensing field.

For example, consider Figure 11 in which two vehicles cross three overlapping
sensing fields, and assume that sensor S1 time stamps the appearance and dis-
appearance of a vehicle at times 09:02:12 and 09:02:21 respectively, sensor S2

time stamps the appearance and disappearance of a vehicle at times 09:02:15
and 09:02:24 respectively, and finally, sensor S3 time stamps the appearance
and disappearance of a vehicle at times 09:02:27 and 09:02:33 respectively.
In this case, the intersection of the time stamps of sensors S1 and S2 lead
these two sensors to conclude that O{1} = 1, O{1,2} = 1, O{2} = 1, while
the non-intersection of the time stamps of sensor S3 leads it to conclude that
O{3} = 1.
Note that in general, more complex techniques may be required to differen-
tiate events when they occur concurrently. This will typically require some
additional information such as the position of the event, or some recognis-
able characteristic of the event. Conversely, in other settings, such as tracking
assets that are equipped with RFID tags, identification and detection auto-
matically occur together. Within the data fusion and tracking literature, this
problem is commonly known as data or track association [43]. Since data as-
sociation is not the focus of this paper, in our simulated scenario we assume
that events can be uniquely identified by their appearance and disappearance
time9.
Moreover, notice that this calibration phase is a relatively long procedure
where agents need to synchronize their sense/sleep schedules and exchange

9 Hence, in the specific setting we consider here, sensors can compute the number of mutually
observed events (i.e., O{i}∪k) by sending at regular intervals a message to all neighbours that
contains, for each detected vehicles, the time of appearance and the time of disappearance.

32 A. Farinelli, A. Rogers and N. R. Jennings

information for several communication cycles. Hence it should be run only
when there is a high likelihood that the traffic load may change significantly,
for example it could be run at fixed times of the day based on general infor-
mation on traffic load dynamics (i.e., when there could be a transition from
rush hour to a normal traffic situation and viceversa). In contrast, the cali-
bration procedure should not be used in case of unexpected changes in the
system configuration due for example to sensor malfunctioning or temporary
communication breakdown, as the performance loss due to running this pro-
cedure would most likely be more significant than the possible gain due to
having a more up to date system configuration.

2. Coordination Phase:
The numbers of events observed in the calibration phase now acts as a proxy
for the unknown areas of overlap between neighbouring sensors. Furthermore,
it also captures the fact that events will not occur evenly over the entire area,
but are restricted to certain areas (i.e. the roads in our case). Hence, the
sensors now calculate their utility based on a modification of equation 8 given
by:

Ui(xi) =
∑

k⊆Ni

O{i}∪k

|{i} ∪ k|
× P (detection|λd, G(x{i}∪k)) (9)

The sensors can now use the max-sum coordination algorithm presented ear-
lier to coordinate their choice of sense/sleep schedule such that the utility of
the overall sensor network is maximised, and hence, the probability of detec-
tion of a vehicle travelling within the area covered by the sensor network is
maximised.

3. Operational Phase:
Finally, the operational phase proceeds as before, sensors simply follow the
sense/sleep schedule determined in the previous coordination phase. If dur-
ing this phase a sensor fails the coordination algorithm above may simply be
re-run to coordinate over the smaller sensor network. Likewise, should the po-
sition of sensors change, or new sensors be added, both the calibration phase
and the coordination phase can be re-run to coordinate over the new environ-
ment in which the sensors find themselves. In Section 5 we shall describe our
future work developing a more principled approach that allows for continuous
self-adaption of the sensor network as the state of the environment, or the
sensors themselves, changes over time.

To validate this approach we now perform an empirical evaluation within our
simulation environment comparing max-sum with various coordination mecha-
nisms that we detail below.

4.3 Coordination Mechanisms and Coordination Overhead

We compare results for four different coordination mechanisms:

– Randomly Coordinated Sensors:
As in section 3.4, the choice of each sensors’ sense/sleep schedule is made
randomly by each individual sensor with no coordination.

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 33

– DSA Coordinated Sensors:
Using the results of the calibration phase, the sensors use the DSA algorithm
(described below) to coordinate their sense/sleep schedules.

– Max-sum Coordinated Sensors:
Using the results of the calibration phase, the sensors use the max-sum algo-
rithm to coordinate their sense/sleep schedules.

– Simulated Annealing Coordinated Sensors:
We use an offline centralised optimisation algorithm to benchmark the per-
formance of DSA and max-sum. This is the same approach used in Section
3.510.

As mentioned before, simulated annealing cannot be used in practice to coordi-
nate the sense/sleep schedules of the real sensors because it is centralised and
assumes full knowledge of the topology of the network. However, it is a useful
benchmark for the performance of the decentralised coordination mechanisms we
use here. In fact, a brute force approach for computing an optimal assignment
would not scale to the instance size we are interested in, and while simulated
annealing is not provably optimal, in our empirical evaluation it has very good
performance being in the worst case less than 10% away from the continuously
powered network (which is an unreachable upper bound for any coordination
approach). Moreover, in contrast to the optimal calculation presented in Section
3.4.4, simulated annealing does not make any assumption on sensors’ distribu-
tion, event visibility time, and it does not assume that perfect coordination is
always possible among sensors for every point in the environment. In this sense,
simulated annealing represents what could actually be achieved by using a cen-
tralized optimization method in our experimental settings.

Algorithm 7 reports the pseudo-code description of the DSA algorithm we
used here (which is similar to version DSA-C of [56]). In more detail, each agent
executes the local optimization (line 5) only with probability p. When perform-
ing the optimization, the agent chooses a value for xi that maximises the local
utility Ui given the current values of neighbours x

−i
11. In our experiments, the

termination condition is met when the number of executions of the while loop
equals a predefined threshold, which is set to 300. Given our reference application
where agents do not necessarily have a synchronized execution cycle for coordi-
nation, we decided to perform simulation following an asynchronous execution
model where sensors execute the coordination algorithm independently of the
others using the most up to date messages received by neighbours.

In more details, following [12], we assume that each agent executes Algorithm
7 and communicates possible changes to its neighbours with a uniform time pe-
riod (i.e., every τ milliseconds) and that the execution times of the agents are
randomly distributed through one DSA optimization cycle. Within this setting,

10 Notice that, the empirical setting here is different from Section 3.5, but, as discussed below,
Simulated Annealing still performs very close to the continuously powered network.
11 As in version DSA-C of [56] we allow agents to change assignment whenever the utility does
not degrade, hence agents are allowed to change the assignment also when the best alternative
gives the same value of local utility. However, in [56] authors focus on a graph colouring problem
and hence differentiate between situations where there is at least one conflict and the utility
does not degrade (both DSA-B and DSA-C can change assignment) and situations where there
is no conflict and the utility does not degrade (only DSA-C can change assignment). Since here
we do not have hard constraints we do not consider conflicts but only the value of the utility,
in this sense our version of DSA is similar to DSA-C.

34 A. Farinelli, A. Rogers and N. R. Jennings

Fitzpatrick and Meertens in [12] empirically show that the probability of exe-
cution p, which usually is a key parameter for DSA, does not have a significant
impact on performance as long as the following condition holds: 1−(1−p)L ≤ PT ,
where L is communication latency and PT is a constant for a given graph. Since
here we assume instantaneous communication, in our setting the activation prob-
ability of DSA has only a minor impact (in the experiments we use p = 0.6). To
evaluate the sensitivity of the execution model and activation probability on DSA
performance in our specific setting, we compared results for DSA in the asyn-
chronous execution model specified above and in the more standard synchronous
execution model, where agents execute all at the same time and possible value
changes are propagate in the next time step. In more detail, for each empirical
configuration (number of sensors and number of time lots) considered in Figure
16 we tested three activation probabilities {0.3, 0.6, 0.9} for both the execution
models averaging results over 100 runs. We then optimized DSA performance
for each configuration and computed the difference in the percentage of missed
vehicles between the synchronous and asynchronous model (where the percent-
age of missed vehicles is computed with respect to the continuous network model
as specified in Section 4.4). Results show that the maximum difference between
DSA performance in the two execution models was 0.8% for DSA considering all
neighbours and 0.5% for DSA reducing the number of neighbours to 4 (see below
for a discussion on the neighbour reduction process). Hence, we can conclude
that while in general the level of exploration performed by DSA is dependent on
the execution model in our specific setting this element appears to have a minor
impact on the results.

As for communication overhead when executing the DSA algorithm, agents
send in the worst case one message for each neighbour at each time step, and
each message is one value indicating in which time step the agent will activate
the sensor. Therefore the number of values communicated by each agent can be
expressed as O(k) where k is the number of neighbours. When executing the
local optimization procedure, in the worst case, each agent must iterate through
a number of values which is linear in the number of possible assignments for the
variable xi, i.e., O(L) in our setting.

As for max-sum, each agent executes Algorithm 1. Also in this case we use an
asynchronous execution model, and each agent terminates after 300 executions
of the procedure. Following the analysis of max-sum coordination overhead in
Section 2.7, the number of values communicated by each agent when executing
the max-sum algorithm can be expressed as O(Lk), while the computational
complexity can be expressed as O(Lk+1). When the number of neighbours is
high, as is the case for some of the network configurations that we consider
in our empirical analysis, the computational effort associated with the message
update procedure can become prohibitive, especially considering the memory and
computation constraints of the low-power devices that are our target platform
for deployment. To address this issue, we perform the max-sum coordination
procedure with a reduced number of neighbours. In more detail, after we build
the factor graph representation of our problem, each agent sorts its neighbours in
decreasing order of the sum of events that they can both observe. For example,
considering again the example in Figure 9, agent a1 will compute V2 = O1,2 +
O1,2,3 for neighbour a2 and V3 = O1,3 + O1,2,3 for neighbour a3 and sort its
neighbours accordingly. Next, each agent considers in the max-sum coordination

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 35

procedure only its first r neighbours, where r is a predefined number. With this
procedure we can control the computational complexity of the message update
phase, that is now dominated by O(Lr+1), as well as the communication overhead
(O(Lr)). Notice that when we perform this neighbour reduction procedure, it
might be the case that an agent a1 considers another agent a2 as its neighbour
but a2 does not consider a1. To better understand this, consider the example
in Figure 12, where 12(a) shows the interaction graph and Figure 12(b) shows
neighbour relations after running the neighbour reduction procedure: a directed
arrow from agent ai to agent aj indicates that ai considers aj as its neighbour in
the coordination procedure. Figure 12(c) shows the resulting factor graph which
is essentially a relaxation of the original factor graph with some links removed by
the neighbour reduction procedure (dashed links in the picture). In the empirical
evaluation, we apply the neighbour reduction procedure to DSA as well. In this
case, each agent ai shares information with all the agents that considers ai to
be their neighbour. However, when performing the local optimization step, ai
considers only the agents that it considers to be neighbours and ignores the
others. For example, in the situation of Figure 12 agent a2 sends messages for
value update to a1 and a3, but does not consider a1 in its local optimization
procedure. The benefit for DSA in using a reduced number of neighbours is
to decrease communication. For example in Figure 12, agent a1 does not need
to send any message because no one considers it to be a neighbour. While the
communication overhead of DSA is usually moderate, the interaction graphs that
we deal with in our empirical evaluation can be very dense (i.e., for 120 sensors
we have an average density of 12.7). Moreover, in some configurations we can
have agents that have a very high number of neighbours (i.e., up to 64 in our
experiments). Since radio communication is usually a very energy consuming
task for low-power devices, reducing the communication load is in our setting
highly desirable.

Having described the coordination mechanisms that we consider, we now
provide results for our empirical evaluation.

Algorithm 7 DSA(p)

1: xi ← Random Assignment
2: while termination condition is not met do
3: r ← Random number
4: if r < p then
5: Vi = Ui(xi;x−i)
6: V ∗

i = maxxi Ui(xi;x−i)
7: x∗

i = argmaxxi Ui(xi;x−i)
8: if Vi ≤ V ∗

i then
9: xi ← x∗

i
10: SendValue(xi)
11: end if
12: end if
13: ReceiveValues()
14: end while

36 A. Farinelli, A. Rogers and N. R. Jennings

(a) (b)

(c)

Fig. 12: A diagram showing (a) an interaction graph for three agents, (b) the
neighbour relations after the neighbour reduction procedure (maximum number
of neighbours set to 1), (c) the corresponding factor graph (the dashed edge
represents the link removed from the neighbour reduction procedure).

4.4 Empirical Evaluation

We empirically evaluate our coordination mechanisms by simulating the above
three phases with various random deployments of sensors whose sensing ranges
are assumed to be circular discs with radius drawn uniformly between 0.05dim
and 0.15dim (where dim is the maximum dimension of the area in which the
sensors are deployed). During the calibration phase we simulated the movement
of various vehicles between random start and end points, and the sensors ex-
changed observations with one another regarding their observations during this
time. During the coordination phase, the sensors use the max-sum algorithm over
a fixed number of cycles, in order to coordinate their sensing schedules. Finally,
during the operational phase the sensors use the sensing schedules determined in
the negotiation phase, and we simulate the movement of 1000 vehicles between
random start and end points. We measure the operational effectiveness of the
sensor network by calculating the percentage of vehicles that are missed by the
sensor network (i.e. vehicles that move between their start and end point without
ever being within the sensing field of an actively sensing sensor) and for those
vehicles that are detected, we measure the time taken for the first detection (i.e.
the time at which the network first becomes aware of the presence of the vehicle
after it leaves its start point). In computing these measures we consider only
vehicles that can be detected by a continuously powered network, i.e., we do
not consider as missed vehicles those that never crossed the sensing field of the
network.

In more detail, we first evaluate the impact of the number of vehicle paths used
in the calibration phase on the network performance. Specifically, we considered
various numbers of sensors ({30, 60, 90}) and we fixed the sensing schedule length

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 37

to three (L = 3). We then varied the number of vehicle paths used for calibrating
and we plot the percentage of missed vehicles (measured in the coordination
phase) against this number.

40 80 100 500 1000
5

10

15
Percentage of Vehicles Missed − (Sensor Number = 30, L = 3)

Training paths (N)

P
er

ce
nt

ag
e

(%
)

40 80 100 500 1000
0

2.5

5
Percentage of Vehicles Missed − (Sensor Number = 60, L = 3)

Training paths (N)

P
er

ce
nt

ag
e

(%
)

40 80 100 500 1000
0

1

2
Percentage of Vehicles Missed − (Sensor Number = 90, L = 3)

Training paths (N)

P
er

ce
nt

ag
e

(%
)

DSA max−sum simulated annealing

Fig. 13: Comparison of simulation results reporting the percentage of missed
vehicles for a sensor network using DSA, max-sum, and centralised simulated
annealing coordination algorithms plotted against the number of training paths
used to calibrate the network.

Figure 13 reports the average and standard error of the means of the per-
centage of missed vehicles over 100 repetitions. Results indicate that for all the
coordination mechanisms, performance increases by increasing the number of
training paths. Moreover the increase in performance seems to be similar for all

38 A. Farinelli, A. Rogers and N. R. Jennings

the coordination mechanisms. However, the difference in performance is less sig-
nificant for higher values of training paths and this difference becomes negligible
after 500 paths. Based on this analysis, we used in all the subsequent experiments
1000 vehicle paths in the calibration phase.

Next, we evaluate the impact of the neighbour reduction procedure described
in the previous section on the network performance. In particular, Figure 14 plots
the percentage of vehicles missed against the number of neighbours used in the
coordination mechanisms. We compared the performance of DSA and simulated
annealing with all neighbours, DSA and max-sum with a reduced number of
neighbours (named DSA(r) and max-sum(r) respectively). Results show that, as
expected, for both DSA(r) and max-sum(r) performance increases by increasing
the maximum number of neighbours used in the coordination phase. However, the
difference in performance between a maximum number of neighbours of 4 and 6
is rather small and DSA(4) and max-sum(4) reach comparable performance with
the version of DSA and simulated annealing that consider all possible neigh-
bours. This is an interesting result. Especially because, as mentioned before, the
interaction graphs that correspond to our problem instance are very dense, (in
this setting we have an average density of 4.34 and an average maximum de-
gree of 27). Therefore, the neighbour reduction procedure is an effective way
to substantially reduce the coordination overhead for max-sum and DSA, while
maintaining good performance. Based on the above discussion, we use the neigh-
bour reduction procedure in the following experiments with a maximum number
of neighbours of 4.

1 2 4 6
0

3.5

7
Percentage of Vehicles Missed − (Sensor Number = 40 ; L=2)

Number of Neighbours (N)

P
er

ce
nt

ag
e

(%
)

DSA(r) max−sum(r) DSA simulated annealing

Fig. 14: Comparison of simulation results reporting the percentage of missed ve-
hicles for a sensor network using DSA with r neighbours (DSA(r)), DSA using all
neighbours (DSA),max-sum with r neighbours (max-sum(r)), a centralised simu-
lated annealing coordination algorithms plotted against the number of neighbours
used

As mentioned in section 2.5, when running the max-sum algorithm one can
observe different behaviours for convergence: i) the messages converge to a fixed
point (and consequently the joint assignment is stable), ii) messages do not con-
verge but the joint assignment converges, and iii) messages do not converge and
the joint assignment oscillates. Table 1 reports results for convergence of max-
sum(4), DSA(4) and DSA, for a network with 40 sensors and L = 2. In more

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 39

detail, we show the percentage of runs for which max-sum(4) converged (both for
assignment and message) and the number of execution steps to reach convergence
(these data are averaged over 100 runs). Results show that, as expected, DSA
converges in all the runs and it converges in very few iterations. An interesting
point is that the use of a reduced number of neighbours does not have a signif-
icant impact on convergence of DSA. The max-sum algorithm has a high rate
of convergence, it takes longer to converge than DSA (particularly for message
convergence), but the joint assignment typically stabilizes in about 20 iterations.
In our experiments we consider two messages to be equal if their euclidean dis-
tance is smaller than a given threshold12. To give an indication of how the utility
associated with the joint assignment evolves during the coordination phase, Fig-
ure 15 reports the percentage of global utility achieved by the algorithms against
the execution steps. We report the percentage of global utility (i.e., the sum of
all Ui(xi)) achieved by the coordination mechanisms with respect to the global
utility obtained with a continuously powered network. Notice that we use the
global utility instead of the percentage of missed vehicles because here we are
evaluating the joint assignment during the coordination phase, and thus before
the sensors employ the negotiated joint assignment to actually detect vehicles.
In this vein, Figure 15(a) shows an exemplar trace of a run where max-sum(4)
reached convergence (message and assignment) while Figure 15(b) shows an ex-
emplar trace of a run where max-sum(4) did not reach a stable assignment. In
this latter case, max-sum(4) typically oscillates among assignments with values
that lie in a relatively small interval.

Coordination Percentage of Average execution steps for convergence
Algorithm convergence [standard error of the mean]

max-sum(4) Assignment = 97 Assignment = 19.9±[1.28]
Messsage = 94 Message = 43.04±[3.90]

DSA(4) 100 4.9±[0.20]
DSA 100 4.95±[0.22]

Table 1: Comparison of percentage of converged runs and number of execution
steps to reach convergence for a network with 40 sensors and L = 2 with different
coordination algorithms: max-sum with four neighbours (max-sum(4)), DSA with
four neighbours (DSA(4)), and DSA with all neighbours (DSA).

Next, we evaluate the performance of the sensor network for three different
length sensing schedules (L = 2, 3 and 4) and we investigate three different
ranges of sensor number such that the effective number of sensors (given by
N/L) remained constant. In this way, in each deployment the total amount of
energy that the network can use for sensing is the same. Notice however, that
we keep the same size of the environment, therefore when more sensors are used
there will be more overlap and, as results show, the network is able to detect more
vehicles. Moreover, when there is more overlap among sensors, coordination has
a higher impact on system performance.

The results of these experiments (averaged over 100 runs) are shown in figures
16 and 17, where the error bars represent the standard error of the mean in the

12 We set the threshold to 10−3.

40 A. Farinelli, A. Rogers and N. R. Jennings

0 50 100 150 200 250 300
2

3

4

5

6

7

8

9
Percentage of Global Utility − (Sensor Number = 40 ; L=2 ; Neighbours = 4)

Cycles

P
er

ce
nt

ag
e

(%
)

max−sum(4) DSA(4) DSA

(a)

0 50 100 150 200 250 300
2

3

4

5

6

7

8

9
Percentage of Global Utility − (Sensor Number = 40 ; L=2 ; Neighbours = 4)

Cycles

P
er

ce
nt

ag
e

(%
)

max−sum(4) DSA(4) DSA

(b)

Fig. 15: Comparison of simulation results reporting the percentage of global util-
ity for max-sum with four neighbours (max-sum(4)), DSA with four neighbours
(DSA(4)), DSA using all neighbours (DSA), plotted against the simulation cy-
cles. The two plot refer to one run where max-sum converged (joint assignment
and messages) (a), and one run for which the max-sum joint assignment did not
converge (b).

repeated experiments. In more detail, Figure 16 shows the percentage of vehicles
that could be detected by a continuously powered network but fail to be detected
by the coordinated sensor network; this is our main metric for the performance of
the network. Figure 17 shows the time that it took the coordinated sensor network
to first detect each vehicle; a metric that we do not actively seek to minimise.
Note that in all cases, the randomly coordinated sensor network performs the
worst (failing to detect more vehicles and taking a longer time to detect them),
and that the centralised simulated annealing approach provides the best solution.
In more detail, averaging across all configurations, max-sum(4) achieves a 48%
improvement over the randomly coordinated network and simulated annealing
shows a 25% improvement over max-sum(4).13

In most configurations, max-sum(4) and DSA(4) have comparable perfor-
mance, with max-sum(4) usually being slightly superior (averaging across all
configurations max-sum(4) shows a 10% improvement over DSA(4)). The differ-
ence between the algorithms increases as both the number of sensors within the
network and the length of sensing schedules increase. This trend is expected as
the combinatorial coordination problem becomes harder as both these factors
increase.

In more detail, Table 2 shows the results for both of these metrics for the
specific case when L = 4 and N = 120. In this case, by using max-sum(4),
we achieve a 57% reduction in the number of missed vehicles (compared to the

13 The performance improvement of a method X over a method Y is computed as (performance
of X - performance of Y)/performance of X.

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 41

20 30 40 50 60
0

5

10

15

20
Percentage of Vehicles Missed − L=2

Number of Sensors (N)

P
er

ce
nt

ag
e

(%
)

30 45 60 75 90
0

5

10

15

20
Percentage of Vehicles Missed − L=3

Number of Sensors (N)

P
er

ce
nt

ag
e

(%
)

40 60 80 100 120
0

5

10

15

20
Percentage of Vehicles Missed − L=4

Number of Sensors (N)

P
er

ce
nt

ag
e

(%
)

random DSA(4) max−sum(4) simulated annealing

Fig. 16: Comparison of simulation results reporting the percentage of missed ve-
hicles, for a sensor network using random, DSA(4), max-sum(4), and centralised
simulated annealing coordination algorithms plotted against the number of de-
ployed sensors.

randomly coordinated network), and this performance is significantly better than
DSA(4) (with a 35% improvement of performance).

Notice that, this comparison is not considering the same level of communi-
cation overhead (in terms of number of bits exchanged over the network) but
the same level of neighbours that the two algorithms consider in the optimiza-
tion procedure. Hence, if we want to compare the two algorithms on the same
level of communication one could increase the number of neighbours for DSA.
However, a fair comparison in terms of communication load should also consider
the device specific communication protocol (e.g., sending one message over the
network with only one value, as it is the case in DSA, might actually be a waste
of energy when packets have a fixed length) and since we prefer to avoid such low
level details we report here the comparison based on the number of neighbours.

42 A. Farinelli, A. Rogers and N. R. Jennings

20 30 40 50 60
0

0.05

0.1

0.15
Time to Detect Vehicle (Cycles) − L=2

Number of Sensors (N)

T
im

e
(C

yc
le

s)

30 45 60 75 90
0

0.05

0.1

0.15
Time to Detect Vehicle (Cycles) − L=3

Number of Sensors (N)

T
im

e
(C

yc
le

s)

40 60 80 100 120
0

0.05

0.1

0.15
Time to Detect Vehicle (Cycles) − L=4

Number of Sensors (N)

T
im

e
(C

yc
le

s)

random DSA(4) max−sum(4) simulated annealing

Fig. 17: Comparison of simulation results reporting the mean time to first detect
a vehicle, for a sensor network using random, DSA(4), max-sum(4), and cen-
tralised simulated annealing coordination algorithms plotted against the number
of deployed sensors.

As for execution time, in the experiments we noticed that the execution time
of the different algorithms is comparable. Therefore, we do not report this as
a separate performance metric, as small differences in execution time are, in
general, not good indicators of the computational requirements of the approach14.
However, notice that, as stated in Section 2.7 message computation for max-
sum using our utility-based factor graph representation shows an exponential
elements in the number of neighbours, hence it does require more computation
than DSA. The reader can have an estimation of the running time required

14 Execution time is heavily dependent on many implementation specific details, which are
not relevant to the core ideas of the technique. Simulated annealing is, in this respect, a notable
exception, as it requires considerably more time than the other techniques. However, simulated
annealing is used here only as a centralised upper bound on system performance.

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 43

Coordination Percentage of Time to Detect
Algorithm Vehicles Missed (%) Vehicle (Cycles)
random 2.0±[0.4] 0.033±[0.002]
DSA(4) 1.4±[0.2] 0.030±[0.002]

max-sum(4) 0.9±[0.2] 0.027±[0.002]
simulated annealing 0.3±[0.2] 0.025±[0.002]

Table 2: Comparison of percentage of vehicles missed and time to detect vehicles
for each coordination algorithm when L = 4 and N = 120.

to execute the experiments from the video at https://vimeo.com/48231842, which
shows a live execution of the coordination algorithms.

Finally, we compare the performance of the max-sum and DSA algorithm in
the presence of a lossy communication channel between the agents, a situation
that is very likely to occur with low-power wireless devices. In more detail, Figure
18 compares the percentage of missed vehicles for max-sum(4) and DSA(4) for a
network with 40 sensors and L = 2 decreasing the probability of successful trans-
mission of agent-to-agent messages. Results show that max-sum(4) performance
remains almost constant, while DSA(4) performance significantly degrades when
the probability of successful transmission decreases. The reason for this is that
(as discussed in Section 2.7) when using max-sum each agent communicates util-
ity information over each possible variable assignment every time it receives an
updated message itself. In contrast, when using DSA, agents only communicate
their preferred variable assignment and they only communicate this information
when the assignment changes. Therefore, in this setting the minimal communi-
cation strategy of DSA can become disadvantageous15.

100 70 50 30 10 0
0

2.5

5

7.5

10
Percentage of Vehicles Missed − (Sensor Number = 40 ; L=2)

Transmission Probability (%)

P
er

ce
nt

ag
e

(%
)

random DSA(4) max−sum(4) simulated annealing

Fig. 18: Comparison of simulation results reporting the percentage of missed
vehicles for a sensor network using DSA(4) and max-sum(4) in the presence of a
lossy communication channel (random and simulated annealing are not affected
by the message loss and are reported only for reference).

15 These results confirm the behaviour observed in [10] where max-sum and DSA were com-
pared in the presence of a lossy communication channel on graph colouring benchmarks.

44 A. Farinelli, A. Rogers and N. R. Jennings

5 Conclusions

In this paper, we have presented a theoretical analysis of a wide area surveillance
scenario and shown that coordination can yield significant gains in system-wide
performance in this problem. We have discussed how agent-based decentralised
coordination approaches, namely max-sum and DSA, can be applied in this set-
ting and we have demonstrated how coordination can be achieved when sensors
are deployed with no a priori information regarding their local environment. In
such cases, agents must learn how their actions interact with those of neigh-
bouring sensors, prior to using the coordination algorithm to coordinate their
sense/sleep schedules in order to maximise the effectiveness of the sensor net-
work as a whole. In a software simulation, we showed that this approach yields
significant improvements in performance over the case of random coordination,
and closely approaches that of a centralised optimisation algorithm (which has
complete information regarding the network). The max-sum algorithm has com-
parable performance to DSA in most of the configurations we tested. However,
it is significantly superior when the overlap among sensors is higher and the
sensing schedule is longer. Moreover, max-sum performance is significantly less
sensitive to the possibility of message losses than DSA. Nevertheless, DSA has a
lower coordination overhead than max-sum, both in terms of communication and
computation. Hence, when performance is comparable it is a valid coordination
approach for some of our wide area surveillance settings.

In terms of future work, a first direction in this space is a full quantitative
evaluation of the proposed approach with real sensors deployed for a specific
application (e.g., for surveillance or monitoring). In particular, the validation of
the max-sum algorithm on hardware presented in [49] and [8] shows that it can
operate on limited hardware devices, and that it is able to adapt to unexpected
changes of operating conditions (i.e. sensors that are added or removed from
the environment or tasks that are inserted while the UAVs are executing their
mission). However, a full quantitative evaluation of the approach in the wide area
surveillance scenario considered here is important to properly assess its potential
benefits for realistic applications. Specifically, such a deployment would be an
ideal test-bed to properly compare the interaction-based and utility-based factor
graph representations. In fact, it would allow us to consider important aspects
that are hard to evaluate in simulation, such as the possibility for agents to
update messages and perform the coordination phase without the need of any
pre-processing phase (e.g., any means of allocating functions to agents) and thus
immediately react to any changes that could happen in the environment.

Second, we plan to address the trade-off between the performance of the
max-sum algorithm and the coordination overhead. To this end, an interesting
direction is to iteratively remove cycles from the factor graph, by applying known
transformations, such as variable or function clustering [23], and estimate the in-
crease in communication and computation overhead due to such transformations.
In particular, diminishing the number of cycles in the factor graph has, in general,
a positive effect on both convergence and solution quality. Thus a decentralised
iterative approach that performs such transformations while estimating the in-
troduced coordination overhead, would result in a flexible technique to address
such a trade-off. This approach could be merged with Bounded Max-Sum, in
order to obtain an approach that can quickly provide bounds on the optimal so-

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 45

lution and refine both bounds and solution quality by iteratively performing the
above mentioned transformations. An initial investigation towards this direction
is presented in [44], where junction trees are built to perform optimal coordina-
tion trying to minimise communication and computation overhead of the agents,
but a more comprehensive analysis is still lacking.

Third, we plan to extend the work by relaxing the requirement for a separate
calibration phase prior to the negotiation phase. In this context, the synchronised
schedules of the sensors during the calibration phase correspond to a period of
poor system-wide performance that is offset by improved system-wide perfor-
mance during the operational phase. However, it is also possible to learn about
the occurrence of events, and hence the overlap of sensors’ sensing fields, dur-
ing this operational phase. Thus, we would like to investigate online algorithms
that can explicitly trade-off between exploratory behaviour (synchronising with
neighbouring sensors to learn about the occurrence of events), and exploitative
behaviour (using relationships already learnt to coordinate the sensors). Recent
advances on collaborative approaches to reinforcement learning that exploit prob-
lem structure seem a promising direction to realise such an online approach [22].
Moreover, we have already taken an initial step in this direction by proposing a
Bayesian Reinforcement Learning approach in a cooperative multi-agent system
that exploits problem structure by decomposing the overall coordination problem
into regional sub-problems [48]. Applying this approach within this setting would
remove the requirement for the three distinct phases. Rather, the sensors would
continuously self-organise and self-adapt, changing sense/sleep schedules continu-
ously to trade-off between exploration and exploitation. Such an approach would
also naturally apply within dynamic settings where sensors’ utilities may change
at any time, sensors may fail, or additional sensors may be deployed. Moreover,
the max-sum coordination algorithm that we derived in this paper already sup-
ports this continual behaviour since utility messages can be communicated, and
sensors can estimate their optimal sensing schedule at anytime. Thus, it would
appear to be a solid base on which to develop this more advanced behaviour.

6 Acknowledgements

This work was funded by the ORCHID project (http:// www.orchid.ac.uk/).
Preliminary versions of some of the material presented in this article have previ-
ously appeared in the paper [40] and in the workshop paper [9]. In particular, in
[9] we proposed the use of the max-sum approach to coordinate the sense/sleep
cycles of energy constrained sensor networks for wide area surveillance, while in
[40] we extend that contribution by removing the assumption that agents have
a priori knowledge about their deployment. Here we significantly extend both
the contributions by providing a more detailed discussion about the max-sum
algorithm and new experiments. In particular we give a detailed description of
the methodology to model coordination problem using different types of factor
graphs and we include an example to clarify max-sum message computation.
Moreover, we provide new experiments to evaluate the impact of the calibration
phase on network performance, the trade-off between coordination overhead and
performance, and finally the performance of coordination mechanisms to lossy
communication.

46 A. Farinelli, A. Rogers and N. R. Jennings

References

1. S. M. Aji and R. J. McEliece. The generalized distributive law. Information Theory, IEEE
Transactions on, 46(2):325–343, 2000.

2. H. M. Ammari and S. R. Das. Fault tolerance measures for large-scale wireless sensor
networks. ACM Trans. Auton. Adapt. Syst., 4(1):1–28, 2009.

3. R. Béjar, C. Domshlak, C. Fernández, C. Gomes, B. Krishnamachari, B. Selman, and
M. Valls. Sensor networks and distributed csp: communication, computation and complex-
ity. Artificial Intelligence, 161(1-2):117–147, 2005.

4. D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized control
of markov decision processes. In Proc. of UAI-2000, pages 32–37, 2000.

5. C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
6. R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
7. F. M. Delle Fave, A. Farinelli, A. Rogers, and N. R. Jennings. A methodology for deploying

the max-sum algorithm and a case study on unmanned aerial vehicles. In IAAI 2012: The
Twenty-Fourth Innovative Applications of Artificial Intelligence Conference, pages 2275–
2280, 2012.

8. F. M. Delle Fave, A. Rogers, Z. Xu, S. Sukkarieh, and N. R. Jennings. Deploying the
max-sum algorithm for coordination and task allocation of unmanned aerial vehicles for
live aerial imagery collection. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 469–476, May 2012.

9. A. Farinelli, A. Rogers, and N. R. Jennings. Maximising sensor network efficiency through
agent-based coordination of sense/sleep schedules. In Proceedings of the Workshop on
Energy in Wireless Sensor Networks in conjuction with DCOSS 2008, 2008.

10. A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In Proceedings of the Sev-
enth International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), pages 639–646, 2008.

11. C. Fernández, R. Béjar, Krishnamachari B., C. Gomes, and B. Selman. Distributed Sen-
sor Networks A multiagent perspective, chapter Communication and Computation in Dis-
tributed CSP Algorithms, pages 299–319. Kluwer Academic, 2003.

12. S. Fitzpatrick and L. Meertens. Distributed Sensor Networks A multiagent perspective,
chapter Distributed Coordination through Anarchic Optimization, pages 257–293. Kluwer
Academic, 2003.

13. B. J. Frey and D. Dueck. Clustering by Passing Messages Between Data Points. Science,
315(5814):972, 2007.

14. A. Giusti, A. L. Murphy, and G. P. Picco. Decentralised scattering of wake-up times in
wireless sensor networks. In Proc. of the Fourth European Conference on Wireless Sensor
Networks, pages 245–260, 2007.

15. C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored mdps. In Advances
in Neural Information Processing Systems (NIPS), pages 1523–1530, Vancouver, Canada,
December 2001.

16. C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated reinforcement learning. In Proc.
of ICML-02, pages 227–234, 2002.

17. C. Hsin and M. Liu. Network coverage using low duty-cycled sensors: Random & coor-
dinated sleep algorithm. In Proc. of the Third International Symposium on Information
Processing in Sensor Networks (IPSN 2004), pages 433–442, 2004.

18. A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management in energy harvesting
sensor networks. ACM Transactions on Embedded Computing Systems, 6(4), 2007.

19. J. Kho, A. Rogers, and N. R. Jennings. Decentralised control of adaptive sampling in
wireless sensor networks. ACM Transactions on Sensor Networks, 5(3):article 19–(35
pages), March 2009.

20. H. Kitano. Robocup rescue: A grand challenge for multi-agent systems. In Proceedings of
the Fourth International Conference on Multi-Agent Systems (ICMAS), pages 5–12, 2000.

21. J. R. Kok and N. Vlassis. Using the max-plus algorithm for multiagent decision making in
coordination graphs. In RoboCup-2005: Robot Soccer World Cup IX, Osaka, Japan, july
2005.

22. J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement learning by payoff prop-
agation. Journal of Machine Learning Research, 7:1789–1828, December 2006.

23. F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 42(2):498–519, 2001.

24. S. Kumar, H. T. Lai, and Balogh J. On k-coverage in a mostly sleeping sensor network. In
Proc. of the Tenth Annual International Conference on Mobile Computing and Networking
(MobiCom 2004), pages 144–158, 2004.

Decentralised Coordination for Sensor Networks using the Max-Sum Algorithm 47

25. V. Lesser, C. L. Ortiz, and M. Tambe, editors. Distributed Sensor Networks A multiagent
perspective. Kluwer Academic, 2003.

26. D. J. C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE
Transactions on Information Theory, 45(2):399–431, 1999.

27. D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2003.

28. R. T. Maheswaran, J. P. Pearce, and M Tambe. Distributed algorithms for dcop: A
graphical-game-based approach. In the 17th International Conference on Parallel and
Distributed Computing Systems (PDCS),, pages 432–439, September 2004.

29. R. Mailler and V. Lesser. Solving distributed constraint optimization problems using coop-
erative mediation. In Proceedings of Third International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS 2004), pages 438–445, 2004.

30. A. Makarenko and H.F Durrant-Whyte. Decentralized data fusion and control algorithms in
active sensor networks. In Proceedings of Seventh International Conference on Information
Fusion (Fusion 2004), pages 479–486, 2004.

31. M. Mezard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random
satisfiability problems. Science, 297(5582):812–815, 2002.

32. P. J. Modi, P. Scerri, Shen W. M., and M. Tambe. Distributed Sensor Networks A mul-
tiagent perspective, chapter Distributed Resource Allocation, pages 219–256. Kluwer Aca-
demic, 2003.

33. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence Journal, (161):149–
180, 2005.

34. K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate
inference: An empirical study. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence (UAI’99), pages 467–475, 1999.

35. Frans A. Oliehoek. Value-Based Planning for Teams of Agents in Stochastic Partially
Observable Environments. PhD thesis, Informatics Institute, University of Amsterdam,
2010.

36. A. Petcu and B. Faltings. DPOP: A scalable method for multiagent constraint opti-
mization. In Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, (IJCAI 2005), pages 266–271, 2005.

37. A. Petcu and B. Faltings. S-dpop: Superstabilizing, fault-containing multiagent combina-
torial optimization. In Proceedings of the National Conference on Artificial Intelligence,
AAAI-05, pages 449–454, Pittsburgh, Pennsylvania, USA, July 2005. AAAI.

38. S. Ramchurn, A. Farinelli, K. Macarthur, M. Polukarov, and N. R. Jennings. Decentralised
coordination in robocup rescue. The Computer Journal, 53(9):1–15, 2010.

39. A. Rogers, E. David, and N. R. Jennings. Self-organized routing for wireless microsensor
networks. Systems, Man and Cybernetics, Part A, IEEE Transactions on, 35(3):349–359,
2005.

40. A. Rogers, A. Farinelli, and N. R. Jennings. Self-organising sensors for wide area surveil-
lance using the max-sum algorithm, 2010.

41. A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings. Bounded approximate decen-
tralised coordination via the max-sum algorithm. Artificial Intelligence, 175(2):730–759,
February 2011.

42. Y. A. Rozanov. Probability Theory: A Concise Course. Dover Books on Mathematics
Series. Dover Publications, 1977.

43. Y. Bar Shalom and T. E. Fortmann. Tracking and Data Association. Academic-Press,
Boston, 1988.

44. N. Stefanovitch, A. Farinelli, A. Rogers, and N. R. Jennings. Resource-aware junction trees
for efficient multi-agent coordination. In Tenth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2011), pages 363–370, Taipei, Taiwan, 2011.

45. R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decentralised control of con-
tinuously valued control parameters using the max-sum algorithm. In 8th International
Conference on Autonomous Agents and Multiagent Systems, pages 601–608, May 2009.

46. R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decentralised coordination of
mobile sensors using the max-sum algorithm. In Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence, pages 299–304, 2009.

47. E. A. Sultanik, R. N. Lass, and W. C. Regli. Dynamic configuration of agent organizations.
In Proceedings of the 21st international jont conference on Artifical intelligence, IJCAI’09,
pages 305–311, 2009.

48 A. Farinelli, A. Rogers and N. R. Jennings

48. W. T. L. Teacy, G. Chalkiadakis, A. Farinelli, A. Rogers, N. R. Jennings, S. McClean,
and G. Parr. Decentralized bayesian reinforcement learning for online agent collaboration.
In 11th International Conference on Autonomous Agents and Multiagent Systems, pages
417–424, June 2012.

49. W. T. L. Teacy, A. Farinelli, N. J. Grabham, P. Padhy, A. Rogers, and N. R. Jennings.
Max-sum decentralised coordination for sensor systems. In 7th International Conference
on Autonomous Agents and Multiagent Systems, pages 1697–1698, May 2008.

50. P. Velagapudi, P. Varakantham, K. Sycara, and P. Scerri. Distributed model shaping
for scaling to decentralized pomdps with hundreds of agents. In The 10th International
Conference on Autonomous Agents and Multiagent Systems - Volume 3, AAMAS ’11,
pages 955–962, 2011.

51. M. Vinyals, J. Cerquides, A. Farinelli, and J. A. Rodrguez-Aguilar. Worst-case bounds
on the quality of max-product fixed-points. In In Neural Information Processing Systems
(NIPS), pages pp. 2325–2333. MIT Press, 2010.

52. M. Vinyals, J. Rodriguez-Aguilar, and J. Cerquides. Constructing a unifying theory of
dynamic programming dcop algorithms via the generalized distributive law. Autonomous
Agents and Multi-Agent Systems, 22:439–464, 2011.

53. A. S. Weddell, N. R. Harris, and N. M.White. Alternative Energy Sources for Sensor Nodes:
Rationalized Design for Long-Term Deployment. In Proceedings of the IEEE International
Instrumentation and Measurement Technology Conference (I2MTC 2008), 2008. In press.

54. Y. Weiss and W. T. Freeman. On the optimality of solutions of the max-product belief
propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory,
47(2):723–735, 2001.

55. P. Zhang, C. Sadler, S. Lyon, and M. Martonosi. Hardware design experiences in zebranet.
In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys),
2004.

56. W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed stochastic search and
distributed breakout: properties, comparison and applications to constraint optimization
problems in sensor networks. Artificial Intelligence, 161(1-2):55–87, January 2005.

