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Abstract In complex open Multi-Agent Systems (MAS), where there is no cen-
tralised control and individuals have equal authority, ensuring cooperative and
coordinated behaviour is challenging. Norms and conventions are useful means
of supporting cooperation in an emergent decentralised manner, however it takes
time for effective norms and conventions to emerge. Identifying influential individ-
uals enables the targeted seeding of desirable norms and conventions, which can
reduce the establishment time and increase efficacy. Existing research is limited
with respect to considering (i) how to identify influential agents, (ii) the extent to
which network location imbues influence on an agent, and (iii) the extent to which
different network structures affect influence.

In this paper, we propose a methodology for learning a model for predicting
the network value of an agent, in terms of the extent to which it can influence the
rest of the population. Applying our methodology, we show that exploiting knowl-
edge of the network structure can significantly increase the ability of individuals
to influence which convention emerges. We evaluate our methodology in the con-
text of two agent-interaction models, namely, the language coordination domain
used by Salazar et al. [40] and a coordination game of the form used by Sen and
Airiau [42] with heterogeneous agent learning mechanisms, and on a variety of
synthetic and real-world networks. We further show that (i) the models resulting
from our methodology are effective in predicting influential network locations, (ii)
there are very few locations that can be classified as influential in typical networks,
(iii) four single metrics are robustly indicative of influence across a range of net-
work structures, and (iv) our methodology learns which single metric or combined
measure is the best predictor of influence in a given network.
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1 Introduction

Modern application domains for complex open Multi-Agent Systems (MAS) are
typically constrained by an underlying network connecting individual agents. A
wide variety of research has shown that these networks display rich structure that
significantly influences the dynamics of agent interactions and the flow of infor-
mation (e.g. [8,11,36,41,45]). The structure of a network can mean that some
individual locations are significantly more important than others, by virtue of
being able to influence large proportions of a population, controlling the flow of
information through a network, or connecting disparate communities of individ-
uals (as with the vital hub nodes in scale-free networks [30]). Determining the
importance of individual locations is thus a key research question in a variety of
fields including computer science, biology, chemistry, sociology and economics [5,
22,32]. Such systems can be viewed as complex systems, which exhibit cohesion and
emergent properties as a result of the interactions of individuals [2,34].

In this paper, we focus on location importance in terms of influence: the ex-
tent to which an individual can manipulate the choices of the rest of a population
due to its location. We propose a novel methodology for learning a model for pre-
dicting the network value of an agent requiring only (i) a way of estimating the
effective influence an agent exerts on a population and (ii) the ability to sample a
portion of the network. Our methodology can be used online and can be used to
predict influence across a wide variety of domains. By online, we mean that our
methodology can be applied to active complex open MAS by learning from agent
interactions as they occur. As such, it is more generally applicable than typical
mechanisms formulated to solve the influence maximisation problem (see Section
2.1 for more details). This paper extends work published in [12] through consider-
ation of additional network sampling methods, comparison with synthetic network
topologies in addition to samples from real-world networks, and application of the
methodology to the coordination game in addition to the language coordination
game. We also investigate applying a prediction model learnt in one domain to
manipulating convention emergence in another domain, and explore verifying the
accuracy of the prediction models by comparing with predictions after a second
iteration of model building.

We apply three instantiations of our methodology: (i) determining which of
fourteen metrics of location are effective heuristics for influence, (ii) unsupervised
learning of influence using principal components analysis, and (iii) supervised
learning of influence using linear regression models. We evaluate our methodol-
ogy on a variety of synthetic and real-world networks, and show that four out of
fourteen of our chosen metrics of location effectively predict the influence of an
agent’s location across a highly heterogeneous range of networks. To evaluate our
approach we use two common interaction models concerned with convention emer-
gence, namely Salazar et al.’s [40] language emergence domain and a coordination
game similar to that used by Sen and Airiau [42].

Conventions typically emerge through the “gradual accretion of precedence” [50],
due to the existence of feedback effects in which an agent’s choice in an interac-
tion influences the choices of agents in the future. Investigating influence using
convention emergence thus has two advantages: (i) it provides a natural measure
of influence, since the actions of a highly influential agent are more likely to be
reproduced in the rest of the population than those of a less influential agent,
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facilitating research into the impact of network structure on influence, and (ii) it
is a setting in which research into influence can be usefully applied to improve ex-
isting techniques. In this paper we also provide an in-depth discussion of network
sampling techniques and the overheads inherent in applying our methodology and
calculating each topological metric.

2 Background

2.1 Influence propagation

One of the earliest investigations into influence was contributed by Domingos and
Richardson [6], who attempted to define the network value of an individual by
modelling a market as a Markov random field. More typically, influence has been
investigated in the context of the Linear Threshold and Independent Cascade
models [22], in which nodes in a network, which we view as agents, are considered
to be either active or inactive, where active could represent believing an idea or
adopting a convention. An agent can switch from inactive to active either based
on how many of its neighbours are currently active, or by an active agent tar-
geting it for activation. In such models, researchers have investigated how to find
k individuals that maximise the number of agents eventually made active in the
network. This is known as the influence maximisation problem. While in general this
problem is NP-hard, approximate solutions using degree and distance centrality
heuristics as predictors of influence have shown good results. Watts has shown that
high-degree individuals are more likely to cause cascade effects [48], corroborating
the assumption that degree is a useful metric of influence. Kempe and Kleinberg
show that a greedy algorithm can achieve results within a known bound (63%)
of the optimal while being computationally tractable (although the approach is
still computationally expensive) [22]. Chen et al. propose a computationally cheap
alternative using a degree-discount heuristic, in which the nominal degree of an
agent is discounted when one or more of its neighbours has already been chosen [5].

The influence maximisation problem has been extensively investigated (e.g. [16,
18]), but the extent to which these results generalise to other open MAS domains
is unknown. Khrabrov and Cybenko’s recent study concluded that in-degree did
not in fact correlate with user influence in the Twitter social network [24], placing
empirical data at odds with the success of degree as a heuristic in the work on
influence maximisation. Although this is an isolated disagreement with the idea
of degree indicating influence, we hypothesise that there are various facets of in-
fluence propagation that the influence maximisation problem does not capture.
Our methodology mitigates this by learning a statistical model for predicting the
influence of an agent’s location from the available empirical data.

Fagyal et al. investigate the role of network structure in language change, and
further validate the assumption of the degree of a location being an important in-
dicator of the influence of an agent at that location [11]. They also conclude that
peripheral agents play an important role in keeping norms stable, demonstrating
that network features other than degree deserve investigation. Determining influ-
ential users in real-world social networks has been a popular research topic due to
the potential applications for marketing and PR [23]. Trusov et al. have attempted
to tractably measure influence in real-world social networks using log-in activ-
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ity [44], and Hartline et al. provide a useful example of how influence research can
be applied in the real world [19]. Convention emergence is also related to the prob-
lem of multi agent sensor fusion, where information is propagated and updated in
a network of agents, some of which are equipped with sensors. However, there are
important differences since in sensor fusion there is typically only a subset of the
agents that are equipped with sensors, and there is a notion of a ‘correct’ value in
the sense of the true value of the property being monitored. Conversely, in conven-
tion emergence, as the members of the population interact they all have an equal
role in the creation and emergence of a convention, thus there is no equivalent of
a subset of sensor agents. Moreover, there is no notion of a ‘correct’ convention,
since a convention is simply that strategy which emerges through the interactions
of the agents in the population (and multiple conventions can co-exist).

We are aware of only a small number of contributions that explicitly investigate
the role of agent influence in realistic complex open MAS domains other than social
media. Sen and Airiau investigate convention emergence with private interactions,
and show that 4 agents in a population of 3000 can influence the population
to adopt a given convention (from two alternatives) [42]. Although they do not
model an underlying connecting topology, their results demonstrate the significant
influence that small proportions of agents can have in complex open MAS. Other
investigations have also shown that a small number of individuals can influence a
population of agents [38,51].

2.2 Conventions

Conventions are considered to be social rules or standards of behaviour agreed
upon by a set of individuals [25,50]. Typically, a convention is considered to be
established if 90% of a population adheres to it around 90% of the time [25]. Con-
ventions can increase levels of coordination in MAS [20], and they are a powerful
abstraction tool for modelling the aggregate interactions of agents.

Conventions can be generated offline by system designers or dynamically emerge
through interactions. Generating conventions offline is difficult, due to limited
knowledge of society characteristics, time variance, and computational expense.
Such conventions also lack robustness to evolving populations and environments.
As such, much research has concentrated on generating conventions online (e.g.
[35,40]), and this remains an open research problem. Conventions in complex open
MAS are characterised by uniform levels of agent authority, lack of centralised in-
stitutions, and complex network structures restricting the interactions between
individuals. Such domains are particularly suited to techniques in which specific
agents are targeted or inserted to influence convention emergence.

Most models of convention emergence in MAS consider small convention spaces
(i.e. a small number of possible conventions). Sen and Airiau [41] and Pujol et

al. [39], for example, both use models with only two potential conventions. An
exception is the work of Salazar et al. who explore convention emergence in a
language coordination domain [40], containing 1010 possible conventions. Many
real-world contexts have a large convention space, and so in this paper we adopt
the language coordination domain as one of the two interactions models that we
investigate. Franks et al. recently introduced the Influencer Agent (IA) concept [13],
in which a small proportion of agents are inserted with goals and strategies cho-
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sen specifically to influence the population to adopt particular conventions. They
demonstrate that (i) IAs can significantly manipulate which convention emerges
in a population, even with a large convention space, and (ii) positioning IAs using
topological information can increase their efficacy. While there has been some work
investigating the role of network topology in convention emergence (e.g. [39]), to
our knowledge previous work has not attempted to use intrinsic network influence
in MAS to manipulate convention emergence, in terms of identifying the features
of locations that indicate how influential an agent at that location is, and inserting
agents at appropriate locations to promote a particular convention.

3 Methodology for learning influence

In this section we present a general methodology for predicting the influence of an
agent at a given location within a network. We assume the existence of a measure
of influence, to be chosen depending on the domain, and a network G < V,E >,
where V is a set of agents and E is a set of edges that constrain the permitted
communications and interactions between agents. We also assume the ability to
sample properties of locations within the network, and either global knowledge
of the network or (more practically) the ability to sample smaller sub-networks
around the locations in question.

Our methodology is as follows:

1. If necessary, sample a sub-graph Gs ⊂ G from the network around selected
locations to obtain a portion of the network of interest. In cases where the
domain involves very large populations, this may be required to allow practical
application of the methodology.

2. Sample a representative set S ⊂ V of n locations within the network1, where
n << |V |, and where representative implies sampling locations of both high
and low influence.

3. Choose a measure of influence, and a model of influence propagation.
4. Compute the influence of an agent located at each of the locations in S, on the

rest of the population (e.g. by running multiple simulations of the influence
model).

5. For each agent in V , calculate topological metrics that characterise the location
of each agent in terms of their position in the overall network topology. Details
of the metrics we consider in this paper are given in the following section.

6. Build a prediction model using the topological location metrics and the esti-
mated influence of agents placed at locations in S to predict which network
locations are highly influential, and use it to predict the influence of all agents
in V . Our methodology is general, and any appropriate machine learning tech-
nique can be used to build the prediction model in this step.

Note that our methodology can also be performed online by making a small
modification to Step 4, as follows. Rather than running multiple simulations for
each sampled location, select a measure of influence that can be measured on-
line (e.g. if investigating Twitter, one might choose the number of re-tweets) and
measure sufficient data for building the prediction model.

1 If step 1 is performed, then V ≡ Vs and E ≡ ES . To simplify presentation, we omit the
subscript.
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Fig. 1: Degree distribution of an Enron-SNS network sample, where the dotted
lines denote the boundaries of each bin when applying our stratified sampling
technique.

The main computational expense in our methodology is the calculation of topo-
logical metrics for all agents in V and, if used, the influence model simulations for
each location in S, which is O(|S||E|k), where k is the number of simulation cycles.
Depending on the size of S this can be significantly less than using the full network,
which is O(|V ||E|k). Additionally, Step 1 allows us to use a sample of the network
to estimate influence, reducing the computational expense of the methodology. We
recognise that the expense of computing location metrics is varied and might be
high, and while we do not explicitly account for this within the methodology, we
discuss local and approximation algorithms for our selected metrics in Section 4.

3.1 Selecting representative agent location samples

In order to effectively predict influence our methodology requires a sample of
agents, S, that reflects the range of influence and topological metrics in the net-
work. If the influence distribution is highly skewed then a random sample will
not be representative (we discuss this further in Section 7). Therefore, we propose
selecting a sample (in Step 2) by stratifying agents using degree. Since degree is
known to be indicative of influence [5], our hypothesis is that this approach will
give a more representative sample in terms of influence.

To obtain a stratified sample, we divide the network into bins, and sort the
locations by degree. In this paper we use 10 bins, with a threshold of |V |/10
locations per bin, where |V | is the number of locations in the network. We add
all locations of each degree into the current bin, starting with the lowest degree
locations, until the threshold is reached. If adding all locations of a given degree
pushes a bin over the threshold, we do not split the remainder but add all locations
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of the same degree to the same bin. We then sample an equal number of locations
from each bin, until we have reached our required sample size, |S|. Note that given
the long tail of the degree distribution it is possible for this approach to result
in the locations being allocated to fewer than 10 bins if there are significantly
more than |V |/10 locations in the first bin of lowest degree locations (or indeed in
subsequent bins). The distribution and bin boundaries shown in Figure 1 are an
illustration of this occurring, in which the approach results in 6 bins.

4 Topological metrics

In this section, we introduce the metrics that we hypothesise may aid in predicting
agent influence, and discuss their computational tractability.

4.1 Metrics

There are a wide variety of metrics that quantify the structural properties of a
given location in a network. Assuming a network, G < V,E >, and a given agent
in the network located at node vi ∈ V , we hypothesise that the following metrics
may be implicated in determining influence2.

1. Degree Centrality

If N(vi) denotes the set of neighbours for the agent located at vi, then de-
gree centrality ki = |N(vi)|. Intuitively, the more agents that an individual can
directly communicate with, the more of the population that individual can di-
rectly influence3. Degree centrality is trivial to compute with local information.

2. Local Clustering Coefficient (LCC)

The local clustering coefficient measures the extent to which the neighbours of
vi are connected to each other. If eij ∈ E denotes an edge between vi and vj ,
where vi, vj ∈ V , then

LCC(vi) =
2|ejk|

ki(ki − 1)
: vj , vk ∈ N(vi), ejk ∈ E

Initially introduced by Watts and Strogatz, LCC is a useful measure of com-
munity structure in a network [49]. A individual at a location vi with a high
LCC is likely to be able to influence the local cluster in which it is embedded
more effectively than individuals that are external to the cluster, and choices
by neighbours of vi are more likely to be reinforced by vi in subsequent inter-
actions.

3. Average Neighbour Degree (AND)

Average neighbour degree measures the average degree centrality of the neigh-
bours of an agent. While a given agent may not be intrinsically influential

2 Note that for simplicity of presentation, and for consistency with the notation typically
used in network analysis, we use vi to denote the agent that is located at node vi in the
network.

3 An intuition effectively encapsulated by the aphorism “It’s not what you know, but who
you know”.
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itself, communicating with a neighbouring influential neighbour may allow fur-
ther opportunities for manipulating a population. We define AND as

AND(vi) =

∑
vj∈N(vi)

|N(vj)|
|N(vi)|

Average neighbour degree has not been investigated significantly. Li et al. have
introduced a metric designed to measure the extent to which a network is scale-
free [30], based on the Joint Degree Distribution (JDD), for which AND is an
approximation [33], but we are not aware of other contributions considering
the connectivity of neighbours of an agent at a given location.

4. Edge Embeddeddness and Overlap (EE/EO)

Edge embeddedness and overlap are two related measures that determine the
extent to which the endpoints of an edge are embedded within a cluster of
nodes [8]. Edge embeddedness for edge eij between agents located at nodes vi
and vj is defined as

EE(eij) = |N(vi)
⋂

N(vj)|

Edge overlap is subsequently defined as

EO(eij) =
EE(eij)

|N(vi)
⋃
N(vj)|

Since these metrics are defined on a per-edge basis, we use three measures of
each metric for a given location:
(a) Average (AEE/AEO): The average embeddedness or overlap will be high-

est when an agent is highly embedded within a local cluster, providing
opportunities to influence a small group of agents simultaneously.

(b) Highest (HEE/HEO): Taking the maximum embeddedness or overlap indi-
cates whether an agent has any edges highly embedded within a cluster,
while allowing for the agent itself to be connected to a wide variety of other
agents or clusters.

(c) Lowest (LEE/LEO): An edge with low embeddedness or overlap may con-
nect disparate clusters of agents, allowing the agents on each endpoint to
influence across disparate communities in a network.

5. Average Shortest Path Length (ASPL)

Given a geodesic, or shortest, path between two locations vi, vj ∈ V , defined
by a set of edges Espl(vi, vj) ∈ E, the average shortest path length for vi is
given by

ASPL(vi) =

∑
vj∈V \vi |Espl(vi, vj)|

|V | − 1

Assuming that an agent’s influence diminishes as the number of hops increases,
an agent with low ASPL may be able to indirectly influence a larger proportion
of the population than an agent with a correspondingly higher ASPL.

6. Betweenness Centrality (BC)

Node centralities are a class of metrics that attempt to measure various facets of
importance of a nodes in a network. The betweenness centrality of vi specifically
measures the number of shortest paths in a network that pass through vi. If
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σjk is the set of shortest paths that exist from vj to vk, and σjk(vi) is the set
of shortest paths from vj to vk that pass through vi, then

BC(vi) =
∑

vi,vj ,vk∈V,vi 6=vj 6=vk

|σjk(vi)|
|σjk|

Betweenness centrality is a useful measure of how much information is likely
to flow through location vi, given that communications are likely to be along
shortest paths. As such, an agent with high betweenness has the ability to
manipulate the information flow in a network more effectively than an agent
with low betweenness.

7. Closeness Centrality (CC)

Closeness centrality is a measure of how quickly information can spread from a
given agent. If SPL(vi, vj) indicates the shortest path between vi and vj , then
CC is calculated as

CC(vi) =
1∑

vj∈V \vi |SPL(vi, vj)|

Since the assumption of information transfer following shortest paths may not
hold in all domains, it may also be useful to calculate random walk centralities,
which follow the identical definitions as above but use random walks instead
of shortest paths. However, calculating these measures can be prohibitively
expensive.

8. Eigenvector Centrality (EC)

Initially proposed by Bonacich, eigenvector centrality is calculated using the
eigenvector of the largest eigenvalue given by the adjacency matrix representing
the network in question [3]. An agent is central if it is connected to other agents
that are central, and the measure takes into account both direct and indirect
connections between agents. Google’s PageRank algorithm is a variant of EC,
and this supports our intuition that EC may effectively estimate influence.
Each entry avi,vj in the adjacency matrix A is 1 if eij ∈ E and 0 otherwise. The
eigenvector centrality of an agent located at node vi is subsequently calculated
as

EC(vi) =
1

λ

∑
vj∈N(vi)

avi,vj × EC(vj)

where λ is a constant.
9. Hyperlink-Induced Topic Search (HITS)

Initially introduced by Kleinberg, HITS attempts to measure hubs and author-

ities in a network [26]. The motivation behind Kleinberg’s work is that in any
given WWW search topic, there are a number of pages that contain author-
itative information and a number of pages that link to many authorities. As
such, HITS is a recursive measure in which hubs are nodes that connect to
many authorities, and authorities are nodes that are pointed to by many hubs.
A page that ranks highly under this algorithm can be said to be more influ-
ential. We incorporate this metric into our work to test this hypothesis. The
algorithm to calculate HITS is relatively complex in comparison to the other
metrics discussed, so we do not reproduce it here. It is fully described in [26].
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In total, we evaluate 14 metrics for the extent to which they determine agent in-
fluence. Broadly, each metric can be linked to influence as follows. Eigenvector Cen-
trality (EC), Betweenness Centrality (BC), Closeness Centrality (CC), Hyperlink-
Induced Topic Search (HITS), and Average Shortest Path Length (ASPL) all
measure the ability of an agent to manipulate information flow in a network. Lo-
cal Clustering Coefficient (LCC), embeddedness, and overlap measure the extent
to which an agent is part of a cluster of agents. Highly clustered areas of networks
have efficient internal information propagation, and an agent that is very central to
such a cluster is likely to be able to influence that cluster more effectively. Degree
centrality is a measure of how many agents a given individual is able to directly
influence, and Average Neighbour Degree (AND) is a measure of how many agents
a given individual can indirectly influence to a depth of 2.

4.2 Computational tractability

While a number of these metrics are highly tractable, some of them require either,
or both, of (i) global knowledge of the network, and (ii) significant computational
resources. In typical on-line analysis of MAS networks these properties are unlikely
to be attainable. The following discussion evaluates the computational costs and
data requirements of each of our chosen metrics.

Degree, local clustering coefficient, edge embeddedness, edge overlap, and neigh-
bour degrees are all easily computable with local knowledge. The most significant
concerns are the centrality measures, which have typically required both global
knowledge of the network and significant computational resources.

Edge betweenness is used in the Girvan and Newman (GN) algorithm for find-
ing community structure [17]. Edge betweenness is a measure of the number of
shortest paths between all nodes that contain a given edge, computable in O(mn)
with global knowledge of a network with n nodes and m edges. Gregory proposed
a local measure, h-betweenness, which only considers paths of maximum length
h [17]. Computation subsequently involves a breadth-first search (BFS) of depth h

around the node in question, and then computing betweenness on the BFS-sampled
sub-graph. While Gregory provides strong results demonstrating the technique’s
efficacy when substituted into the GN algorithm, there are no results on the ac-
tual accuracy of the estimation. Marsden uses a similar technique [31], defining
an egocentric betweenness centrality using the neighbours of a node, equivalent
to 1-betweenness in Gregory’s measure. Marsden found that the ranking of nodes
given by egocentric betweenness and the traditional global betweenness is very
similar, but only evaluated fairly simple networks.

Andersen et al. have demonstrated a technique for calculating the PageRank
of a node, which is a variant of Eigenvector Centrality (EC), using only local
information [1]. The technique requires examination of O(e−1) nodes for a given
error bound of e. Interestingly, Andersen et al. note the potential of PageRank for
approximating influence in a network [1].

Closeness centrality is computable in either O(n3) or O(nm+n2logn) (depend-
ing on the algorithm used) given global knowledge, and faster for certain network
classes. Eppstein and Wang have demonstrated a fast approximation algorithm
for computing closeness centrality, but this still requires global knowledge [10].
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Table 1: Correlation between estimated centrality using Gregory’s h-betweenness
concept and actual centrality for Betweenness Centrality (BC), and applying the
technique to Eigenvector Centrality (EC) and Closeness Centrality (CC), averaged
over 15 networks for selected network sampling techniques (see Section 5 for more
details).

Sampling mech. BC EC CC
h = 2 h = 3 h = 2 h = 3 h = 2 h = 3

BFS 0.90 0.96 0.36 0.42 -0.37 0.41
SNS 0.75 0.93 0.14 0.36 -0.49 0.62
MHRW 0.02 0.02 0.50 0.61 -0.72 -0.74
MHDA 0.02 0.02 0.51 0.61 -0.73 -0.74

To our knowledge, there are no known local algorithms for HITS, but Gollapudi
et al. have demonstrated a highly effective approximation algorithm for HITS-
like ranking algorithms that demonstrates considerable efficiency gains [15]. The
original proposal for HITS [26] calls for determining an initial seed set of around
200 nodes (in the context of finding pages on the World Wide Web), and then
performing a limited snowball sampling (see Section 5) around this set. HITS
does not require global knowledge of the network, but still has highly non-local
information requirements.

We performed a series of tests for determining the accuracy of centrality estima-
tion using Gregory’s h-betweenness technique [17]. For each location, we calculated
the actual centrality measure and an estimation on the sub-graph induced by BFS
around the location depth-limited to h = {2, 3}. Table 1 presents the correlation
between the estimation and actual value. We used a selection of network sampling
techniques to sample 15 networks of size 1000 from each of three real-world net-
work datasets (see Section 5 for more details on the sampling mechanisms and
network datasets used in this paper). Note that Gregory’s method was proposed
only for betweenness-centrality, which shows the best correlations. The other cen-
trality measures are included for completeness, but show much poorer estimation
accuracy. For closeness centrality, this is by definition, since CC measures the in-
verse of the sum of the shortest path length to all other locations, and with h = 2
the path length is either 1 or 2 for all locations. The technique used for sam-
pling the network clearly has a significant impact on the efficacy of the estimation
technique, implying that (i) estimating network measures in this way is highly
sensitive to the local topological structure, and (ii) that each sampling technique
reproduces unique subsets of the structural properties of the full network.

Table 2 summarises the computational tractability of these metrics. For clarity,
we have categorised HITS as requiring global information, but note that it requires
sampling of a portion of the global network rather than the entire network itself.
Thus, of the base metrics that we consider in this paper, four are easily computable
with local data and two have approximations with local data, and therefore are
practical for for application in our methodology. Of the remaining two, there is
an approximation for HITS using non-local (but not strictly global) data, and
an approximation for closeness centrality that uses global data. As we discuss in
Section 7, of the four metrics that we identify as most universally indicative of
influence, two are computable with local information (Degree and Highest Edge
Embeddedness), one has an approximation with local information (Eigenvector
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Table 2: Computational and information requirements for the calculation of each
metric that we hypothesise might predict the influence of an agent at a given
location. We denote the existence of a suitable algorithm with ‘X’, ‘x’ means that
no known algorithm exists, and the blanks to the right of the table indicate that
no algorithm is required (e.g. there is no need for an approximation if the solution
is fully computable efficiently).

Local Data Global Data
Metric Computable Approximatable Fast approx.
Degree X
Local Clustering Coefficient X
Edge embeddedness X
Edge overlap X
Average Neighbour Degree X
Betweenness Centrality x X
Closeness Centrality x x X
Eigenvector Centrality x X
HITS x x X

Centrality), and the other (HITS) has an approximation using sampling a portion
of the global network.

5 Network sampling

In this section, we discuss common approaches to sampling networks from real-
world datasets. We analyse their efficacy in reproducing properties of the network
being sampled, and describe the properties of networks sampled using each tech-
nique from the datasets that we use in this paper. We assume that agents are
arranged according to some underlying topology that restricts their communica-
tions and interactions, and in the subsequent sections of this paper we will use
such network samples to initialise the social relationships within populations of
agents for our experiments.

5.1 Network sampling techniques

A wide variety of synthetic network generators have been proposed, but tend to
be poor models of real-world networks [29,37]. To demonstrate the applicability
of our methodology, we require datasets representing networks found in real-world
domains. Real-world networks typically exhibit two limiting properties: (i) they
can be very large, beyond any size that is practically usable in a large number
of simulations, and (ii) they contain a wide variety of rich structural properties
that cannot be reproduced by current synthetic network generation algorithms (we
demonstrate this in Section 7). We cannot typically expect to use global knowledge
of the network to determine influential agents in practical applications. As such,
sampling a portion of the network is often a necessary step in our methodology.

Careful consideration must therefore be given to the sampling technique. Ide-
ally, we would like the structural properties of the sampled sub-network to be as
close as possible to the network that it is sampled from, for important metrics
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such as clustering coefficient or average degree, and other significant metrics such
as degree distribution or edge embeddedness distribution.

There are a number of possible sampling techniques that can be used. Each
starts at a random location, and progressively adds locations to a seed set until a
threshold is reached.

1. Breadth-first search (BFS)

In each iteration of BFS, all the neighbours of seed set locations that are not
already in the seed set are added, until the threshold is reached.

2. Snowball-sampling (SNS)

SNS proceeds identically to BFS, except within each iteration, if adding all
the new neighbours to the seed set would push the set past the threshold,
then neighbours are chosen randomly from those available until the sample
size threshold is reached.

3. Random-walk (RW)

A random walk adds one location at a time to the seed set, by following a
random traversal through the network from the start location. Each neighbour
is chosen with uniform probability.

4. Metropolis-Hastings Random Walk (MHRW)

MHRW is a random-walk with transition probabilities biased away from high-
degree locations, in an attempt to generate a uniform sampling (in terms of de-
gree) of locations from the network. It was initially investigated in this context
by Gjoka et al., who demonstrated that MHRW produces a uniform sampling
of locations from the full network and effectively preserves the degree distri-
bution [14], which is known to be a key component in the study of complex
networks.

5. Metropolis-Hastings Random Walk with Delayed Acceptance (MHDA)

MHDA is the same as MHRW but with a further modification of transition
probabilities to reduce the likelihood of re-visiting locations. Initially intro-
duced by Lee et al., MHDA covers more of the network when sampling, in-
creasing the estimation accuracy [28].

6. Albatross sampling

Introduced by Jin et al., Albatross sampling is a random walk with modified
transition probabilities and a chance of randomly jumping to another location
in the network, in order to gain greater coverage and avoid problems associated
with sampling networks with multiple connected components [21].

BFS, SNS and RW are all known to be biased towards high-degree locations,
distorting the degree distribution and the structure of the sampled network away
from that of the full network [14]. However, BFS and SNS produce good cover-
age of the local area around the start location, and so retain local structure. As
such, they are subject to greater variation between samples, but may be useful for
ensuring that a wide variety of structural properties are tested. MHRW, MHDA
and Albatross have all been shown to converge towards the degree distribution
exhibited in the full network being sampled. However, Albatross sampling can
result in rather sparse and disconnected samples where the sample size is small
compared to the overall network size. Therefore, in the remainder of this paper
we consider BFS, SNS, MHRW and MHDA sampling techniques. Note that for all
these sampling methods, there are no guarantees about the reproduction of any
other metrics or structural properties.



14 Henry Franks et al.

Table 3: Important global metrics for network samples produced by applying each
sampling technique to the (a) Gnutella, (b) Enron, and (c) arXiv networks, aver-
aged over 15 repeats. Standard deviation is in brackets.

Sampling tech. Nodes Edges Avg.Degree CC Diameter Centralization
None 62586 147892 4.726 0.005 Inf. 0.001
BFS 1009.2 (7.73) 1246 (95) 2.47 (0.18) 0.026 (0.005) 6.93 (0.80) 0.03 (0.004)
SNS 1000 (0) 1197.8 (54.5) 2.40 (0.11) 0.02 (0.008) 7.33 (0.98) 0.034 (0.008)
MHRW 1000 (0) 1122.3 (13.1) 2.24 (0.03) 0.008 (0.004) 36.4 (4.4) 0.005 (0.001)
MHDA 1000 (0) 1120.1 (10.8) 2.24 (0.02) 0.007 (0.003) 38.7 (3.22) 0.005 (0.001)

(a)

Sampling tech. Nodes Edges Avg.Degree CC Diameter Centralization
None 36692 183831 10.02 0.497 13 0.037
BFS 1255 (291) 16584 (6242) 26.2 (6.5) 0.55 (0.04) 3.8 (0.8) 0.66 (0.2)
SNS 1000 (0) 7751 (3760) 15.5 (7.5) 0.44 (0.13) 4.5 (0.92) 0.51 (0.31)
MHRW 1000 (0) 4480 (443) 8.96 (0.89) 0.52 (0.03) 11 (1.41) 0.10 (0.02)
MHDA 1000 (0) 4495 (255) 9.00 (0.51) 0.52 (0.02) 10.6 (1.04) 0.10 (0.02)

(b)

Sampling tech. Nodes Edges Avg.Degree CC Diameter Centralization
None 5242 14496 5.526 0.530 17 0.014
BFS 1006 (2.93) 4065 (512) 8.08 (1.02) 0.58 (0.01) 8.5 (0.79) 0.06 (0.01)
SNS 1000 (0) 3663 (405) 7.32 (0.81) 0.53 (0.04) 8.67 (1.18) 0.06 (0.01)
MHRW 1000 (0) 3561 (413) 7.12 (0.83) 0.57 (0.02) 14.3 (1.04) 0.05 (0.01)
MHDA 1000 (0) 3190 (394) 6.38 (0.79) 0.58 (0.02) 15.5 (1.41) 0.04 (0.01)

(c)

5.2 Technique efficacy

In order to evaluate the efficacy of each sampling technique, we sampled 15 graphs
of 1000 nodes per sampling technique for each of three real-world networks (for
a total of 180 networks). In this paper, we use the following networks: (i) a peer
connection network from Gnutella (a P2P file-sharing platform), (ii) the Enron
email dataset, and (iii) the arXiv general relativity section collaboration net-
work4. The Enron and arXiv networks are both based on human interactions,
but are generated by very different processes: the Enron dataset represents email
communications, while arXiv is based on more formal links made through research
collaborations. Conversely, Gnutella is a computational network representing links
in a P2P system. Since these networks are generated by very different processes
they display varied structural properties, allowing us to evaluate our methodol-
ogy on a range of structures. The Gnutella and Enron networks are directed, but
since MHRW and MHDA sampling explicitly only consider undirected networks,
we treat each network as undirected.

The structural properties of these networks can be characterised by the high-
level metrics shown in Table 3. The global clustering coefficient (GCC) is the
average of the clustering coefficients for each node. Diameter describes the longest
shortest path-length between a pair of nodes in the network. Centralization is a
measure of how much heterogeneity exists in a graph [7]: if we define the density

of a network of size n as

Density =
mean(k)

n− 1

4 All taken from the Stanford large dataset collection, http://snap.stanford.edu/data/
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(a) (b)

Fig. 2: Structure of an example network sample produced by (a) Snowball sampling
(SNS) and (b) MHRW sampling.

where k denotes node degree, then we can define centralization as

Centralization =
max(k)

n
−Density

Centralization indicates the extent of variation of node degree in the network, with
a low centralization indicating that most nodes have a similar connectivity, whereas
high centralization implies a higher degree of structural variation throughout the
network. While this measure is mainly practically applied in biological studies, it
is useful here as an indication of the extent to which a mechanism has generated
a uniform sample.

From examination of the data in Table 3, we can see that no single technique
produces an ideal sample. As discussed above, BFS and SNS are known to be
highly biased towards high-degree nodes, but produce good coverage of localised
areas in a network. The standard deviation between individual samples is highest
using these techniques, indicating a large variation in structural properties between
samples. The centralisation is also very high using BFS and SNS, indicating that a
much higher level of internal hetereogeneity is introduced by using these sampling
techniques. MHRW and MHDA tend to have the lowest standard deviation be-
tween samples, and produce networks with metric values such as average degree,
clustering coefficient and centralisation much closer to the full network than SNS
and BFS. However, the diameter of the MHRW and MHDA samples is far higher
than with SNS and BFS, which we hypothesise is due to the random walk nature
of these techniques covering large areas of the network. Given that these sampled
networks clearly no longer display the small-world property, we cannot assert that
many of the structural properties of the full network are reproduced, beyond the
node degree distribution.

There do not appear to be any consistent differences between SNS and BFS,
beyond that SNS tends to produce network samples with lower average degrees,
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Table 4: Important global metrics for networks produced by the Eppstein and
Kleinberg network generators, averaged over 15 repeats. Standard deviation is in
brackets. For the Eppstein networks, the number annotation indicates the number
of edges. For the Kleinberg networks, the “-xc” annotation indicates the additional
number of extra connections x (a parameter to the algorithm) that was used to
generate the network.

Generated graphs averaged over 15 repeats, standard dev. in brackets
Network Nodes Edges Avg.Degree CC Diameter Centralization
Eppstein-5000 1000 (0) 5000 (0) 10 (0) 0.02 (0.00) 6 (0) 0.026 (0.00)
Eppstein-10000 1000 (0) 10000 (0) 20 (0) 0.035 (0.00) 6 (0) 0.04 (0.00)
Kleinberg-1c 1000 (0) 2991 (2.66) 5.98 (0.01) 0.001 (0.00) 7 (0) 0.004 (0.00)
Kleinberg-3c 1000 (0) 4899 (12.3) 9.78 (0.02) 0.03 (0.00) 5.2 (0.41) 0.01 (0.00)
Kleinberg-7c 1000 (0) 8629 (15.8) 17.2 (0.03) 0.05 (0.00) 4 (0) 0.012 (0.00)

perhaps indicating that SNS is slightly less biased towards high degree nodes.
However, SNS can often produce distorted network structures depending on the
initial node chosen. Figure 2a shows a SNS network sample where the first node
sampled has a very large degree, resulting in a star-shaped sample with unrep-
resentative node degree distribution and clustering coefficient. Figure 2b shows a
MHRW sample of the same network, clearly showing a more homogeneous network
structure.

If we are to claim that our methodology is effective in a general sense, we must
be careful to analyse agent populations that are situated upon as many network
structures as possible. We believe that the best approach is to use a portfolio of
network samples derived using a variety of sampling techniques. Using BFS or
SNS allows us to apply our methodology on samples that are more representative
of localised areas of the full network, and the higher variance between samples
indicates a wider variety of structural properties will be analysed. Given that there
is little consistent difference between BFS and SNS, for simplicity in the remainder
of this paper we use SNS as a sampling method for retaining a representation of
local structure. Using MHRW or MHDA allows analysis of samples in which we can
be sure that the node degree distribution is closer to that of the full network, but
we cannot make any assertions about other properties. Given that the diameter
is so much larger in network samples produced using these techniques, it is likely
that there are other as-yet undocumented biases introduced.

Therefore we sample, from each of the Gnutella, Enron, and arXiv datasets, 5
network samples using SNS, 5 network samples using MHRW, and 5 network sam-
ples using MHDA, making a total of 45 networks with which to test our method-
ology. These network samples are used to configure our simulations, such that
the network topology determines the set of neighbours for each individual agent
in the population. We also initially include a number of synthetic networks for
comparison, as follows.

1. Scale-free networks generated using the Eppstein power-law generation algo-
rithm [9]. We use two Eppstein power-law networks generated with 1000 nodes,
and 5000 and 10000 edges respectively.

2. Small-world networks generated using Kleinberg’s algorithm [27]. We generate
Kleinberg small-world networks of 1000 nodes, with a clustering exponent of
1, and a maximum of 1, 3 or 7 additional edges per node.
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Comparing the properties of the real-world networks (Table 3) with the syn-
thetic network properties in Table 4 illustrates the significant differences between
the real-world and synthetic networks. This is best demonstrated by inspecting
the clustering coefficient, which is far higher in real-world networks. This is in-
dicative of the structural differences between these networks and the insufficiency
of common network generation algorithms in modelling real-world domains. The
synthetic generation algorithms produce consistently structurally similar graphs.
For example, over 200 generated Eppstein power-law networks, using identical con-
figurations, the standard deviation for node degree is 0 and the standard deviation
for clustering coefficient is 0.001.

6 Experimental setup

To evaluate our methodology for learning influence, as described in Section 3, we
use two major models of convention emergence in complex open MAS, namely,
Salazar et al.’s language coordination domain [40], and the coordination game
(described, for example, in [42]). In each experiment, we insert a single fixed-
strategy Influencer Agent (IA) [13] at a randomly chosen location, and measure
the extent to which the population converges on the strategy of the IA.

We apply our methodology as follows. From each of the Gnutella, Enron and
arXiv networks described above, we sample 45 sub-networks of 1000 nodes using
the SNS, MHRW and MHDA network sampling methods, and use these network
samples to initialise a population of 1000 agents (Step 1 of our methodology). We
then sample 50 locations, using either random or stratified-by-degree sampling
(Step 2), and run our simulation 20 times for each location, giving a total of 1000
simulation runs per sub-network. We select an appropriate measure of influence for
the interaction domain used (Step 3), as discussed later in this section. After each
simulation, we measure the extent to which the agent at this location influenced
the rest of the population, and calculate each of the fourteen topological location
metrics (introduced in Section 4) for that location (Step 4). We then calculate the
topological location metrics for all agents in the population (Step 5). Finally, we
use machine learning techniques to build a prediction model using the topological
location metrics to estimate the influence of all agents in the population (Step
6). In this paper, our focus is on the methodology itself and the identification
of appropriate location metrics, and so we build simple prediction models using
Principal Components Analysis (PCA) for unsupervised learning and Linear Re-
gression (LR) for supervised learning. To evaluate our approach, we then run new
simulations using the location predicted as most influential by each model, and
determine the extent to which influence has increased.

We use the Java Universal Network/Graph Framework5 in our simulations
and Cytoscape6 for off-line structural analysis of networks. Statistical analyses are
performed using R7 and Weka8.

5 http://jung.sourceforge.net/
6 http://www.cytoscape.org/
7 http://www.r-project.org/
8 http://www.cs.waikato.ac.nz/ml/weka/
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6.1 Language coordination domain

The first domain that we use to learn agent influence is the language coordination
domain introduced by Salazar et al., in which agents are associated with a lexicon

that maps words to concepts [40]. We use Salazar et al.’s parameter settings of 10
concepts and 10 words, with 10 mappings per lexicon (giving a convention space
of size 1010) [40]. Each timestep, three phases are executed. First, each agent in
turn communicates a single mapping from its lexicon to a single randomly chosen
neighbour. It is assumed that agents can determine whether the recipient’s lexicon
contains the same mapping, in which case the communication is successful, other-
wise it is unsuccessful. Second, each agent has a chance to propagate part of its
lexicon to all of its neighbours, along with the communicative efficacy of the lexicon,
defined as the proportion of successful communications in the last 20 communi-
cations. Third, each agent has a chance to update their internal lexicon based on
the partial lexicons received from their neighbours, using a two-point crossover.
Agents use an elitist strategy, such that they update their lexicon with the received
mappings that have the highest communicative efficacy. It is important to note
that since agents only communicate a single mapping from the 10 in their lexicon
there is a significant level of partial observability in this domain. When updating
their mappings agents are subject to this partial observability, since they are only
able to adopt the single mapping that was communicated, with the remaining 9
mappings used by the sending agent being unknown.

Over time a shared lexicon, a set of mappings from words to concepts, emerges.
We run each simulation for 50000 timesteps, and each agent propagates their
lexicon with a probability of 0.01 and updates their lexicon with a probability
of 0.01. By the end of a typical simulation run 600–800 agents have adopted the
dominant lexicon.

In this domain, we define an agent’s influence (Step 3 of our methodology) as
the similarity between its lexicon (L) and final dominant lexicon in the population
(L′) using Jaccard’s similarity coefficient, J(L,L′) = |L ∩ L′|/|L ∪ L′|, where a
similarity of 1 implies that agents use an identical lexicon, and 0 implies there are
no mappings in common.

6.2 Coordination game domain

To corroborate our results in the language coordination domain, we use a model
of convention emergence loosely based on Sen and Airiau’s private learning [42]
and Walker and Wooldridge’s model of convention emergence with local informa-
tion [46], with modifications. Each timestep, every agent in turn engages in an
interaction with a randomly chosen neighbour, using a coordination game with
ten possible action choices (see Table 5 for the payoff structure). Since social im-
itation and information propagation are fundamental processes in the emergence
of conventions, we split strategy selection for each agent into two mechanisms: (i)
personal, based on the individual’s direct interaction history, and (ii) social, based
on the interactions an individual has observed. When selecting a strategy, agents
choose uniformly at random between personal and social choices.

In typical real-world complex open MAS, we can assume that agents will have
a wide variety of goals, architectures and internal algorithms. To model this het-
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Table 5: Payoff structure for the 10-action coordination game, showing the payoffs
received by agents for a given combination of actions, where ai represents action i,
and x, y represents the payoffs received by the row and column players respectively.

a0 a1 . . . a9
a0 4,4 -1,-1 . . . -1,-1
a1 -1,-1 4,4 . . . -1,-1

...
...

...
...

a9 -1,-1 -1,-1 . . . 4,4

erogeneity, we use a variety of strategy selection mechanisms. For personal expe-
rience, agents learn using either a Q-learning algorithm [47] or WoLF-PHC [4].
When selecting a strategy based on social experience, an agent learns using either
Q-learning, WoLF-PHC, Highest Cumulative Reward (HCR) [43], or Most Re-
cently observed (MR). At the start of the simulation, each agent is initialised with
a mechanism for personal and a mechanism for social choice chosen uniformly at
random, giving a total of 8 possible agent configurations. Agents explore in 10% of
interactions by selecting a strategy uniformly at random. This exploration intro-
duces a significant level of noise into our simulations, since 10% of the time agents
select actions randomly rather than according to their true strategy, which in turn
provides noisy information on which their interaction partner will learn.

The ideal goal is for the population to converge to a state in which every agent
selects the same strategy, resulting in population-wide coordination. In practice, we
find that around 3 or 4 strategies persist as co-existing conventions, each having
similar numbers of adherents. We define a “win” as a simulation run in which
the dominant strategy (i.e. the strategy or lexicon with the highest number of
adherents) is that used by the IA, and use the normalised number of wins over 20
simulation repeats as our metric of influence (Step 3 of our methodology). Due to
the co-existence of conventions with similar adherence numbers, the exploration
of agents, and the higher possibility of a win being the result of chance, influence
is harder to measure accurately in this setting than in the language coordination
domain. Since the classification of whether an agent adheres to a convention relies
on the agent’s interaction history, convention memberships are volatile over time
which introduces noise into the measure of whether an agent has been influenced.

7 Results

We structure the results of evaluating our methodology as follows: initially, we
focus on the language coordination domain, and analyse the predictive power of
each individual metric. Subsequently, we analyse the results of learning influence
prediction models, and demonstrate that refining models learnt from the initial
individual metrics can significantly improve accuracy. We corroborate our results
in the coordination game domain, investigate applying models learnt in one domain
to another domain, and finally use our results from both domains to derive the
properties of an ideal measure of influence.
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Fig. 3: Correlation of HEE, EC, and HITS with node degree in an example arXiv-
SNS network sample.

7.1 Targeting IAs using individual metrics

Inspecting the extent to which individual metrics predict influence may allow us
to refine our models, and analysis of the correlations between each metric and
influence reveals that Degree, EC, HEE, and HITS all robustly correlate with
influence over all networks. These metrics are statistically significantly correlated
in over 90% of the networks (with correlations ranging from 0.68 in the arXiv
networks to 0.27 in the Enron networks), whereas the other metrics statistically
significantly correlate only in isolated networks (on average, in 48% of networks).
Correlating with influence in isolated networks is likely to be due to unique network
structures, and these metrics are less likely to indicate influential agents in the
general case. This corroborates previous research on the link between degree and
influence (e.g. [5]), but to our knowledge this is the first time that EC, HEE and
HITS have been shown to predict influence.

Ranking agents by each of the four identified metrics results in significant over-
lap over the top 5 agents — with 7.8 unique agents over the top 5 for each metric (a
0.39 proportion, standard deviation 0.15), where disjoint sets would give 20 unique
agents. While each metric selects roughly similar sets as being the most influential,
their relative rankings are unique. Figure 3 plots normalised EC, HEE and HITS
against degree, from which we can see the correlations. Interestingly, HEE and
HITS clearly bisect the population, which may be useful for splitting a population
into influential and non-influential agents, while EC has an approximately linear
relationship with degree.
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Table 6: Average lexicon similarity and number of wins for placing a single fixed-
strategy agent (IA) either at a location maximising one of the chosen metrics or
randomly in the language coordination domain. The best performing placement
strategies are in bold. In the Kleinberg networks, the “CE” annotation indicates
the clustering exponent (a parameter of the algorithm) used to generate the net-
work.

Network Average lexicon similarity Number of wins (normalised)
Degree HE EC HITS Random Degree HE EC HITS Random

arXiv-SNS 0.58 0.54 0.6 0.54 0.16 0.47 0.41 0.5 0.40 0.03
arXiv-MHRW 0.54 0.6 0.56 0.58 0.18 0.41 0.50 0.47 0.42 0.02
arXiv-MHDA 0.6 0.58 0.56 0.48 0.16 0.5 0.5 0.47 0.37 0.02
Enron-SNS 0.58 0.56 0.48 0.54 0.16 0.45 0.47 0.34 0.42 0.02
Enron-MHRW 0.62 0.48 0.55 0.63 0.16 0.55 0.41 0.44 0.56 0.02
Enron-MHDA 0.56 0.58 0.6 0.6 0.16 0.47 0.47 0.6 0.6 0.02
Gnutella-SNS 0.4 0.3 0.38 0.5 0.18 0.30 0.18 0.25 0.41 0.06
Gnutella-MHRW 0.22 0.18 0.2 0.38 0.16 0.08 0.05 0.06 0.21 0.02
Gnutella-MHDA 0.3 0.2 0.3 0.34 0.18 0.2 0.06 0.17 0.18 0.04
Eppstein-5000 0.35 0.40 0.17 0.265 0.19 0.4 0.33 0.05 0.1 0.1
Eppstein-10000 0.46 0.32 0.20 0.25 0.23 0.25 0.2 0.05 0.2 0.15
Kleinberg-CE1-1c 0.31 0.21 0.14 0.2 0.19 0.25 0.13 0.05 0.1 0.25
Kleinberg-CE1-3c 0.25 0.22 0.31 0.29 0.23 0.2 0.13 0.2 0.23 0.14
Kleinberg-CE1-7c 0.37 0.3 0.16 0.244 0.23 0.3 0.23 0.07 0.13 0.14
Kleinberg-CE10-1c 0.19 0.16 0.15 0.28 0.27 0.1 0.1 0.1 0.2 0.1
Kleinberg-CE10-3c 0.15 0.17 0.19 0.28 0.2 0.07 0.1 0.1 0.17 0.12
Kleinberg-CE10-7c 0.44 0.17 0.25 0.26 0.29 0.37 0.17 0.17 0.1 0.12

Table 6 shows the average lexicon similarity and the number of wins for placing
an IA at the location that maximises each metric, where a win is defined as a
simulation run in which the dominant lexicon in the population has at most 2
different mappings from the IA lexicon. Results are averaged over each class of
network sample. We see significant gains across all four metrics, particularly in
the arXiv and Enron networks. With random placement, an agent is only able
to successfully influence the population 2 times in 100, but placing by metric
can increase this to 60 times in 100. There is no consistency in which metric
performs best across network samples, and this is likely to be due to unique network
structures in each class of network.

The synthetic networks show very few gains in influence using targeted place-
ment, and very few of the metrics significantly correlate with influence for these
networks. We believe that the networks generated by current synthetic generation
algorithms are too homogeneous for any given location to gain significant influence
over others, and our results demonstrate that, since the potential for influence is so
much lower, the synthetic networks used here are poor models of networks found
in the real world. Accordingly, we focus only on the real-world network samples
for the remainder of this paper.

7.2 Targeting IAs using learnt models

We subsequently apply our methodology by learning three models: (i) the Princi-
pal Component (PC) that most correlates with influence, (ii) a Linear Regression
(LR) model on all 14 metrics, and (iii) a linear regression model on Degree, EC,
HEE and HITS (4LR), which are the best 4 metrics as discussed above. We con-
sider 4LR in addition to a linear regression on all 14 metrics since we hypothesise
that the four best individual metrics contain sufficient information to have pre-
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Table 7: Correlation of each learnt model with measured influence in the language
coordination game, using separate training and test data, over each class of network
sample and learnt on both random and stratified sampling. Entries shown in bold
indicate the highest correlation for that network sample.

Random Stratified
Network PC LR 4LR PC LR 4LR
arXiv-SNS -0.08 0.164 0.19 0.71 0.91 0.90
arXiv-MHRW 0.018 0.10 0.11 0.67 0.93 0.92
arXiv-MHDA -0.03 0.34 0.08 0.75 0.88 0.86
Enron-SNS -0.03 0.16 0.13 0.69 0.80 0.85
Enron-MHRW -0.10 0.17 0.21 0.71 0.88 0.87
Enron-MHDA 0.08 0.06 -0.03 0.73 0.90 0.89
Gnutella-SNS -0.01 0.03 -0.10 0.33 0.67 0.58
Gnutella-MHRW 0.02 - - 0.44 0.75 0.65
Gnutella-MHDA 0.09 -0.15 0.06 0.36 0.73 0.52

diction performance that is comparable or approaching that obtained with the
full linear regression, while having reduced computational overhead. We consider
two sampling approaches for selecting a representative set of locations (i.e. Step
2 of our methodology): random and stratified location sampling (as described in
Section 3).

We trained our model as follows. For each combination of sampling technique
(i.e. SNS, MHRW and MHDA) and network (i.e. arXiv, Enron, Gnutella), there
are five network samples, from which 50 locations are selected for IA placement
either randomly or using stratification. We use a cross-fold validation approach by
dividing the data on how influential each location is in each network sample into
four network samples for training, and one network sample for testing, for each
possible combination of the five networks in each configuration. Once trained, we
measured the correlation between the predicted influence and measured influence
for the test data (to gain an estimation of the accuracy of our technique). Finally,
we train the model on all available data for a network sample, and use it to predict
which locations might be most influential. We evaluate this prediction by running
simulations with an IA at the location predicted as maximising influence.

Table 7 shows the average correlations between predicted influence and actual
influence for the test data, demonstrating that models learnt on randomly sampled
locations are particularly poor at predicting influence. Learning on stratified data
shows high correlations, indicating higher quality models. This corroborates our
hypothesis that there are relatively few locations of influence in a network, with
the majority having similar and low influence. Consequently, a random sample is
unlikely to select many high influence locations, which reduces the quality of learnt
prediction models. A random sample is therefore not representative in terms of
influence, and so the stratified sampling approach should be used. Figure 4 plots
the predicted influence in an arXiv-SNS network sample using the LR model on
a stratified sample, and we can clearly see that less than 10% of the locations
account for almost all the influence. The Gnutella-MHRW network sample does
not fit a linear regression model using randomly sampled data, since the majority
of locations are zero-valued for many of the metrics. This occurs for locations of
very low degree, and is an extreme example of the effect discussed above.
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Fig. 4: Predicted influence for each agent in an example SNS sample from the
arXiv network.

Table 8: Average lexicon similarity and normalised number of wins when placing
an IA at a location chosen by the predictive models in the language coordination
domain. The best performing placement strategies are shown in bold.

Network Average lexicon similarity Number of wins (normalised)
PC LR 4LR Random PC LR 4LR Random

arXiv-SNS 0.44 0.42 0.58 0.16 0.34 0.30 0.50 0.03
arXiv-MHRW 0.5 0.32 0.62 0.18 0.42 0.20 0.55 0.02
arXiv-MHDA 0.34 0.38 0.6 0.16 0.22 0.27 0.50 0.02
Enron-SNS 0.62 0.32 0.68 0.16 0.56 0 0.62 0.02
Enron-MHRW 0.2 0.5 0.58 0.16 0.30 0.36 0.53 0.02
Enron-MHDA 0.34 0.16 0.52 0.16 0.21 0.06 0.43 0.02
Gnutella-SNS 0.18 0.46 0.36 0.18 0.03 0.37 0.24 0.06
Gnutella-MHRW 0.4 0.4 0.24 0.16 0.27 0.29 0.10 0.02
Gnutella-MHDA 0.38 0.36 0.36 0.18 0.25 0.24 0.22 0.04

To evaluate the efficacy of each prediction model, we place an IA at the lo-
cation predicted as most influential by each model, and repeat the simulations.
Table 8 shows the average lexicon similarity and normalised number of wins using
models learnt on stratified location sampling. We have omitted results for mod-
els learnt using random location sampling, since they are less effective: across all
networks, the average lexicon distance is 0.35 (standard deviation 0.1) and the
average proportion of wins is 0.2 (standard deviation 0.12). Locations selected as
influential by the models learnt from random location sampling exhibit less than
half the influence of those selected by either individual metric or the models learnt
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from stratified sampling, indicating that random sampling of locations does not
give a sufficient range of influential locations to learn accurate models.

Targeting IAs using locations predicted as influential by learnt models based
on stratified data results in significant gains in influence. In the arXiv, Enron and
Gnutella-SNS network samples, these increases are roughly equal to that gained
through placing by single metric over random placement. In the arXiv and En-
ron network samples, the best performing model is 4LR, indicating that the other
metrics are unlikely to contribute significantly to influence prediction. We believe
that 4LR is learning which metric is best to place by, given the results in Table 6,
since the results from placing by 4LR are roughly equivalent to placing by the best

performing metric (out of the four) for each network sample. In Gnutella, 4LR
is always outperformed by PC or LR, indicating that metrics other than Degree,
EC, HEE and HITS are indicative of influence in these networks. Moreover, the
linear combination of metrics in each of these network samples outperforms place-
ment by single metrics. The Gnutella network samples show a reduced potential
for influence compared to the samples from the Enron and arXiv networks, and
exhibit lower edge counts, average degree, and clustering coefficients, and higher
diameters. All these properties reduce the ability of an agent to exert influence,
and may provide an indication of the likely efficacy of our methodology prior to
application.

Our results suggest that if computational expense is an issue, targeting by
Degree (or EC, HEE or HITS) will yield significant gains in influence, but if
computational expense is less important, then applying our methodology results in
further gains. If our methodology is applied using online measurements of influence
(i.e. not requiring repeated simulations), the computational cost is significantly
reduced.

7.3 Targeting IAs in the coordination game

The results given above suggest that agents can attain significant gains in influence
by exploiting knowledge of the topological structure connecting agents. However,
we have so far only considered results for the language coordination domain, and
to demonstrate generality it is necessary to test the extent to which agents can
gain influence from targeting placement according to a prediction model based
on topological characteristics in another agent interaction regime. Accordingly, in
this section we present results from targeting IAs within the coordination game
described in Section 6.2. We initially target locations predicted as influential by
each of the four single metrics previously identified in Section 7.1. We build new
prediction models with data generated from running coordination game simula-
tions for the same (stratified by degree) location sets as those used in Section 7.2.
This allows us to directly compare the quality of models learnt using different
agent interaction processes and metrics of influence. In contrast, in Section 7.4
we use the actual prediction models learnt in the language coordination domain
(Section 7.2) to predict influence in the coordination game domain, and vice versa,
to determine the extent to which these models predict influence across domains.

Table 9 shows the results from placing a single IA at the location determined
by maximising each single metric identified in Section 7.1. We can see roughly
similar trends, in that the arXiv and Enron network samples see significant gains
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Table 9: Normalised number of wins when placing an IA at a location selected
by maximising each of the four single metrics identified in Section 7.1 in the
coordination game. The best performing metrics are highlighted in bold.

Network Number of wins (normalised)
Degree HEE EC HITS Random

arXiv-SNS 0.43 0.33 0.41 0.40 0.11
arXiv-MHRW 0.39 0.35 0.40 0.36 0.10
arXiv-MHDA 0.43 0.42 0.38 0.33 0.09
Enron-SNS 0.38 0.40 0.33 0.38 0.10
Enron-MHRW 0.45 0.39 0.37 0.47 0.10
Enron-MHDA 0.42 0.38 0.48 0.48 0.09
Gnutella-SNS 0.28 0.23 0.23 0.35 0.09
Gnutella-MHRW 0.18 0.12 0.15 0.18 0.12
Gnutella-MHDA 0.12 0.23 0.25 0.18 0.08

Table 10: Normalised number of wins when placing an IA at a location chosen by
the predictive models using the coordination game. The best performing placement
strategies are shown in bold.

Network Number of wins (normalised)
PC LR 4LR Random

arXiv-SNS 0.13 0.16 0.25 0.11
arXiv-MHRW 0.18 0.14 0.26 0.10
arXiv-MHDA 0.17 0.12 0.22 0.09
Enron-SNS 0.10 0.13 0.23 0.10
Enron-MHRW 0.12 0.10 0.24 0.10
Enron-MHDA 0.11 0.14 0.23 0.09
Gnutella-SNS 0.13 0.17 0.15 0.09
Gnutella-MHRW 0.23 0.19 0.15 0.12
Gnutella-MHDA 0.19 0.16 0.13 0.08

in influence while the Gnutella samples exhibit relatively small gains. The gains in
influence are not as large as in the language coordination domain and this is likely
to be because the combination of multiple co-existing conventions with similar
numbers of adherents, agent exploration, and reduced size of the convention space
result in a domain in which influencing the population is more difficult. It may
also be that the scope for influence, as imbued purely by network structure, is
reduced in this domain simply due to its inherent mechanisms. Nonetheless, there
is still clearly potential for targeting individual locations for gains in influence.

Table 10 shows the normalised number of wins attained by applying the influ-
ence learning methodology in the coordination game domain. While increases in
influence are clearly evident, with similar trends as those observed in the language
coordination domain, the scale of influence gain is reduced, and is smaller than
the gain obtained when placing by single metrics compared to random placement.
As discussed above, there are a number of reasons for this (including agent ex-
ploration which introduces a significant level of noise, smaller convention space
and increased probability of similarly sized co-existing conventions). Accordingly,
the variance in IA efficacy is much higher between identically configured runs,
and there is more noise in the data learnt by the methodology. The predictions of
influence are consequently less likely to be accurate.
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Furthermore, there are only ten discrete strategies in the coordination game
domain, and switching strategies can involve non-trivial costs. In particular, given
that a number of conventions co-exist with similar membership sizes, an agent
being influenced to a given strategy can directly result in subsequent costs if that
agent interacts with a neighbour adhering to a different convention. In the language
coordination domain, the convention space is quasi-continuous and switching con-
vention is less likely to incur costs (consider that if an agent alters one mapping in
a lexicon, that mapping may not be used in a communication for some time). This
leads to two effects: (i) agents are less likely to incur costs as a result of altering
convention in the language coordination domain, leading to increased likelihood
of being successfully influenced (as opposed to being influenced, incurring a cost
and switching to another strategy), and (ii) in the coordination game domain
the methodology has to learn on the number of absolute wins, rather than the
more fine grained measure of lexicon distance. As a result of the second issue, the
learning algorithms have less detailed data on which to learn, further reducing the
efficacy of the methodology.

7.4 Using learnt models in other domains

A major component of our hypothesis regarding the poorer results in the coordi-
nation game domain is that the data available is less suitable for accurate learning.
To test this, we performed two sets of experiments. Firstly, we re-ran simulations
in the coordination game domain, but placed IAs at the position predicted as
most influential by the models learnt using data from the language coordination
domain, which had resulted in models that appeared to predict more influential
locations. Secondly, we ran simulations in the language coordination domain, with
IAs placed at locations predicted as most influential by the models learnt using
data from the coordination game domain.

Table 11 plots the normalised number of wins attained in the first set of ex-
periments (i.e. running simulations in the coordination game domain with models
learnt on data from the language coordination domain). We can clearly see that
using these models does result in gains in influence, despite using a model learnt
on data from a different domain. This suggests that (i) the models learn intrinsic
influence relating to the network structure itself, rather than as a result of the
specific behavioural patterns exhibited by agents situated on the network, and (ii)
that, to some extent, these models can be used to predict influence even when
the behaviour of agents in the targeted domain is significantly different to that
used to generate the data from which the model is built. Note that there is far
higher variation in the results, especially with respect to the Enron network sam-
ples. We believe this to be a result of the coordination game domain itself having
far higher variation in the outcomes of individual simulation runs. The Gnutella
network samples display inconsistent behaviour in terms of which learnt models
are best, and the learnt models appear to have fairly similar predictive power in
this context.

Table 12 shows the normalised number of wins and average lexicon similarity
for IAs in the language coordination domain targeted using models learnt on data
from the coordination game domain (i.e. our second set of experiments). The trends
here are much the same as shown in Table 8, which plots the results from IAs in the
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Table 11: Normalised number of wins gained by placing an IA at a location cho-
sen by the predictive models learnt on the language coordination data, using the
coordination game. The best performing placement strategies are shown in bold.

Network Number of wins (normalised)
PC LR 4LR Random

arXiv-SNS 0.3 0.21 0.37 0.11
arXiv-MHRW 0.16 0.19 0.35 0.10
arXiv-MHDA 0.16 0.15 0.30 0.09
Enron-SNS 0.40 0.14 0.76 0.10
Enron-MHRW 0.28 0.45 0.26 0.10
Enron-MHDA 0.15 0.15 0.55 0.09
Gnutella-SNS 0.11 0.1 0.36 0.09
Gnutella-MHRW 0.19 0.13 0.19 0.12
Gnutella-MHDA 0.19 0.21 0.20 0.08

language coordination domain targeted using models learnt on data from the same
domain. The average gain in lexicon similarity is statistically indistinguishable
whether IAs are targeted using models learnt on language coordination domain
data or coordination game domain data.

When using the coordination game domain, using predictive models trained on
data gathered in different agent-interaction models appears to incur a cost in terms
of IA efficacy. When using the language coordination domain, models trained on
data from different agent-interaction models are as effective as models trained on
data from the same agent-interaction model as that being tested. The mechanism
behind this discrepancy is unclear. There may be some property of an agent-
interaction model that imparts greater generality to the predictive models learnt
on their data, or features of a particular domain, such as a richer relationship
between conventions, may make it more amenable to influence. In future work,
we will extend these experiments to a wider set of agent-interaction models to
determine to what extent, in general, predictive models can be translated between
domains.

Overall, we can conclude that learnt models for predicting influence from topo-
logical metrics, for the large part, do translate between the different interaction
domains considered in this paper. If a target domain does not have easily defin-
able on-line influence metrics or off-line agent models, it may therefore be possible
to use a simple interaction domain, such as the language coordination setting,
to generate data on which to apply our methodology and still retain significant
efficacy.

7.5 Prediction comparison

One way to verify the accuracy of the predictive models is to use the data from
simulations with topologically-targeted IAs to train new models and determine
if they predict the same locations. We generated two sets of predictive models:
(i) those learnt on data using the language coordination domain and the original
50 locations selected using stratified selection, and (ii) the same dataset as in
(i), but with the additional data from 30 repeats of the language coordination
domain with an IA placed at the location predicted as most influential by the
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Table 12: Average lexicon similarity and normalised number of wins when placing
an IA, in the language coordination domain, at a location chosen by predictive
models learnt on data from the coordination game domain. The best performing
placement strategies are shown in bold.

Network Average lexicon similarity Number of wins (normalised)
PC LR 4LR Random PC LR 4LR Random

arXiv-SNS 0.46 0.46 0.52 0.16 0.36 0.33 0.42 0.03
arXiv-MHRW 0.52 0.32 0.68 0.18 0.41 0.18 0.59 0.02
arXiv-MHRWDA 0.50 0.32 0.61 0.16 0.41 0.19 0.53 0.02
Enron-SNS 0.64 0.63 0.51 0.16 0.46 0.5 0.51 0.02
Enron-MHRW 0.48 0.52 0.38 0.16 0.36 0.44 0.27 0.02
Enron-MHRWDA 0.14 0.24 0.6 0.16 0.0 0.08 0.51 0.02
Gnutella-SNS 0.16 0.4 0.36 0.18 0.02 0.29 0.25 0.06
Gnutella-MHRW 0.42 0.36 0.26 0.16 0.3 0.25 0.15 0.02
Gnutella-MHRWDA 0.4 0.34 0.2 0.18 0.24 0.24 0.07 0.04

Network Predictive model
PC LR 4LR

arXiv-SNS 0.0 1.0 0.6
arXiv-MHRW 0.6 1.0 1.0
arXiv-MHRWDA 0.0 0.0 1.0
Enron-SNS 1.0 0.0 0.0
Enron-MHRW 0.0 1.0 1.0
Enron-MHRWDA 0.0 0.8 0.8
Gnutella-SNS 0.0 1.0 1.0
Gnutella-MHRW 1.0 1.0 1.0
Gnutella-MHRWDA 0.0 1.0 0.6

Table 13: Table showing, for each class of networks and model type, the proportion
of networks for which the same location was predicted as most influential by (i) a
model learnt on results from 50 locations selected by stratified sampling and (ii)
a model learnt on the same results as (i) plus results from placing a single IA at
the location predicted as most influential by (i). If both models predict the same
location, then this strengthens the evidence supporting the accuracy of the first
model.

model from (i). If the models disagree, then the new data from the targeted IA
has altered the model sufficiently to change which location is predicted as most
influential, suggesting that the original model was not accurate. Conversely, if they
agree, then this suggests that the original model was a reasonably good model for
predicting influence.

Table 13 shows the proportion of network samples for which the most influ-
ential predicted location is the same between the two sets of models. Encourag-
ingly, there is agreement between the models for the majority of network samples.
The majority of inaccurate models come from the PC predictions, which tend to
perform weakest overall. These results suggest that the LR and 4LR models are
particularly accurate even given small initial data sets. Table 14 shows the av-
erage number of locations predicted by both models as being in the top 5 most
influential locations in a network (i.e. a value of 5.0 indicates that both models
predict exactly the same 5 locations as being most influential). Interestingly, there
are a number of network samples for which the two sets of models predict entirely



Learning Agent Influence in MAS with Complex Social Networks 29

Network Predictive model
PC LR 4LR

arXiv-SNS 1.6 5.0 3.6
arXiv-MHRW 3.0 5.0 4.8
arXiv-MHRWDA 0.0 4.4 5.0
Enron-SNS 5.0 0.0 0.0
Enron-MHRW 0.0 5.0 4.2
Enron-MHRWDA 0.0 3.0 4.4
Gnutella-SNS 0.6 5.0 4.6
Gnutella-MHRW 5.0 5.0 4.8
Gnutella-MHRWDA 0.2 5.0 3.6

Table 14: Table showing, for each class of networks and model type, the number
of locations that are predicted as being among the top 5 most influential by both
(i) a model learnt on results from 50 locations selected by stratified sampling and
(ii) a model learnt on the same results as (i) plus results from placing a single IA
at the location predicted as most influential by (i).

disjoint top 5 sets, indicating a significant inaccuracy in the original models. It
is also interesting to note that the majority of these cases occur with the Enron
network samples. Nonetheless, the vast majority still display very similar top 5
predictions, adding to our confidence in the accuracy of the original models. Note
that in practise, as a model is used to manipulate convention emergence in a given
population, observations of the effectiveness of the locations chosen could be fed
into subsequent iterations of refining the model. In cases where our methodology
is applied in an online manner, this gives opportunity for tuning the parameters.

7.6 Deriving the properties of an ideal influence metric

The results described above demonstrate the importance of choosing an appro-
priate metric of influence. The interaction domains evaluated in this paper both
show similar gains in influence for placement by single metrics but differing gains
in influence using learnt models. As discussed above, a major component of this
disparity is due to the influence metric in the coordination game (i.e. the num-
ber of exact “wins”) containing less information about the effect of the IA. We
can subsequently hypothesise the properties that an ideal influence metric would
exhibit, as follows.

1. Continuous: An ideal influence metric measures the extent of an agent’s influ-
ence, and not simply whether it has influenced the majority of the population.

2. Proportional: An ideal influence metric maps linearly to the influence that an
agent has exerted.

3. Ease of measurement: An ideal influence metric is easily measured. Both of the
metrics for influence described in this paper are measurable only with access
to data for repeated simulations, however in some cases influence metrics may
be easily measurable online (e.g. the number of re-tweets on Twitter).

4. Signal to noise ratio: The influence metric in the coordination game is subject
to much higher variance than the metric in the language coordination domain
since (i) agents explore, and (ii) the smaller convention space implies that
there is a higher probability of a win being the result of chance. An ideal
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metric should be particularly robust to noise and have a low variance in order
to increase the accuracy of the learnt models.

8 Conclusions and further work

In this paper, we have proposed a methodology for learning the influence of agents
according to their location in a network. We evaluated our methodology using two
representative domains of convention emergence on both synthetic networks and
networks sampled using a variety of techniques from three real-world datasets. We
corroborate results in the literature that degree is highly indicative of influence,
and show that Eigenvector Centrality, Highest Edge Embeddedness, and HITS
are also linked to influence. When placed at locations selected through application
of our methodology, agents gain significant influence compared to random place-
ment. In the arXiv and Enron network samples, the 4LR model, learnt on just
degree, EC, HEE, and HITS, gives gains in influence equivalent to targeting by
the individual metric (of those four) that best predicts influence in that network
sample. This indicates that the linear regression model learns which metric most
predicts influence in that network sample. In the Gnutella network samples, the
learnt models typically outperform single metric placement, and, in general, su-
pervised learning using linear regression almost always outperforms unsupervised
learning using PCA.

The models learnt on the arXiv and Enron network samples and on the Gnutella
network samples are significantly different, indicating that the structural charac-
teristics that imbue influence are, to some extent, unique to each class of network
samples (and, potentially, to each individual network sample). The Gnutella net-
work samples demonstrate that (i) using single metric heuristics does not guarantee
optimal influence, and (ii) different network structures exhibit significantly varied
ranges of potential influence. We believe that the important global network met-
rics (such as average degree, clustering coefficient, or diameter) may indicate the
potential for maximising influence in a given network, and we intend to explore
this in future work, along with other agent interaction domains to ensure that our
methodology generalises.

While our results suggest that our proposed methodology is effective at pre-
dicting influential nodes, we acknowledge a number of limitations with our work.
Firstly, in real-world applications of our work, network topologies are likely to
change over time as agents freely join or leave the population. As currently for-
mulated, our methodology cannot handle dynamic network topologies when gen-
erating prediction models. If the mechanisms that generate particular topological
structures in a domain persist over time, it may be that prediction models learnt
on a snapshot of the network remain accurate even as the network itself changes,
allowing a model to be built once and applied repeatedly. Conversely, if the char-
acteristics of a particular topology that imbue influence change over time, it would
be necessary to re-apply our methodology repeatedly to generate new models. Var-
ious approaches could reduce the expense of such re-applications, and it may be
possible to continuously gather data in real-time on a system and consequently use
a constantly updated and refined model. Unfortunately, our results so far do not
indicate which of these scenarios is more likely, and this requires further research.
Secondly, the calculation of metrics of topological location can be quite expensive.
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While the metrics predicted as influential here are largely either trivially com-
putable or have approximations, there may be network structures outside of those
that we have tested in which more computationally expensive metrics are better
predictors of influence.

As discussed in Section 5, the differences in important topological metrics
between different datasets is far greater than the differences in metrics in network
samples taken from a single dataset. This implies that each network, and the sub-
networks sampled from them, have unique structures that can be characterised
by structural analysis. In future work, it may be useful to determine if different
classes of network with similar influence characteristics exist (as appears to be
the case between sub-networks sampled from the Enron and arXiv datasets), and
learn influence models for each class to be applied as necessary. This would remove,
in many cases, the need to apply our full methodology repeatedly. Future work
will also include investigation of dynamic network topologies, in which the social
relationships between agents changes over time.
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