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Abstract

We consider the model of information diffusion in social networks from [21] which incorporates trust

(weighted links) between actors, and allows actors to actively participate in the spreading process, specif-

ically through the ability to query friends for additional information. This model captures how social

agents transmit and act upon information more realistically as compared to the simpler threshold and

cascade models. However, it is more difficult to analyze, in particular with respect to seeding strategies.

We present efficient, scalable algorithms for determining good seed sets – initial nodes to inject with the

information. Our general approach is to reduce our model to a class of simpler models for which provably

good sets can be constructed. By tuning this class of simpler models, we obtain a good seed set for the

original more complex model. We call this the projected greedy approach because you ‘project’ your

model onto a class of simpler models where a greedy seed set selection is near-optimal. We demonstrate

the effectiveness of our seeding strategy on synthetic graphs as well as a realistic San Diego evacuation

network constructed during the 2007 fires.

1 Introduction

Networks (social, computer, and physical) are replete with the flow of information, ideas, innovations, etc.,

and it is these flows which affect the way people think, act, and bind together in a society. Ideally, important

messages should disseminate quickly and reach the people who need to take action, and the diffusion of

malicious gossip should, if possible, be terminated. Since diffusion of both useful and malicious items is

at the core of our society, it is vital to understand the mechanisms of diffusion through dynamic networks.

A network can change as a result of the diffusion. For example, an evacuation message may not reach its

intended audience because certain important people (critical conduits of information) left the community

before the diffusion completed. In this paper, we study how to optimize a diffusion in realistic, large scale

1

ar
X

iv
:1

30
2.

54
55

v2
  [

cs
.S

I]
  2

5 
Fe

b 
20

13



(multi-million node) complex networks; in particular, how to select those actors to be initially seeded with

information so as to maximize the ultimate number of actors receiving the information and acting upon that

information. Of particular interest to us is the diffusion of high-value actionable information – information

which is asking the user to take some action – in particular diffusion of an evacuation warning. This will be

the context of our discussion, however our methods are general.

Figure 1: 2007 San Diego fires evacuation area.

The figure on the right shows the area which was

affected by fires in 2007 (shaded red), the mandatory

evacuation area (yellow boundary), and regions of un-

warned people (black dots). There are many unwarned

people in the mandated evacuation area with at least

6 reported deaths. This leaves the question, “How can

one improve the communication of such high value in-

formation?” The social network is important, and one

natural avenue (given that it is not feasible to commu-

nicate to everyone) is to try to optimize with respect to

a fixed budget of people who you can contact. That is,

can we choose the seeds of the information diffusion to

maximize the ultimate spread. This is the question we

address.

The study of emergency warnings and evacuation is a good context for diffusion. There is no universally

trusted news source, and even if there were, it is practically infeasible for such a news source to reach

everyone. Thus, it is essential to make use of the social communication network to diffuse a warning through

the network in such a way that people act. A person hearing the same information from multiple independent

sources is more likely to act on it. The notion of trust, which measures the likelihood that a message from

one person to another will be believed, plays an important role in such diffusions [11,12,26]. We will use the

model developed in [21] to approximate the process of social information diffusion. This model captures:

(i) the notion of trust and community structure;

(ii) an actor’s ability to query friends for more information (people often receive warning messages from

various sources such as their family and friends, the media or local authorities, through various channels

such as face-to-face or telephone, and may seek confirmation and/or additional information, [51,53]);

(iii) the existence of multiple sources of the same information, each source is trusted to a different level;

(iv) network dynamics as a result of the diffusion (for example nodes evacuating the network);
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(v) tunable thresholds and parameters that can model different types of diffusion, from gossip in online

media to evacuation warnings.

In short, we believe this model to be a reasonable model of general information diffusion on a social network.

We summarize the essential details of the model in Section 2.

The Need for Heuristics. Given a social network and an information diffusion model, even one that is

much simpler than the model hinted at above, there is no known procedure to efficiently1 compute a seed set

that results in a maximum number of actors taking the prescribed action. So, our general goal is to develop

efficient heuristics to compute good (not necessarily optimal) seed sets on population scale social networks.

This means that the heuristics should have sub-quadratic running time (ideally nearly linear running time).

1.1 Our Contribution

We give efficient heuristics to select a subset of the actors (the seed set) to initialize with the information with

the goal of trying to maximize the final set of actors who believe and act upon that information. We call this

a targeting algorithm. We introduce a new paradigm for developing such heuristics to construct seed sets

in complex and realistic diffusion models. Our approach works as follows. First we develop an appropriate

simplification of the general model (with certain tunable knobs) for which we can develop efficient, near-

optimal targeting algorithms. In contrast to the prior work, we develop the targeting algorithms for a

different, more efficient model, not the original general model. The key aspect of our approach is that the

simpler model has tunable parameters; these tunable parameters can be adjusted so as to optimize the

ultimate diffusion for the true general model. More specifically, there are many instances of the simpler

model, each specified by a particular setting of the tunable parameters. For any such instance of the simpler

model we can compute a near-optimal seed set. Since we do not know which instance of the simpler model

best represents the true model, we perform a guided search through all instances of the simpler model: each

instance of the simpler model gives a seed set and we pick the best one. The details are given in Section 4.

Intuitively, the optimal seed sets for the simpler model give a “smart” set of seed sets for the general model,

and one of these smart seeds is likely to be good.

Experimental Testing We demonstrate the effectiveness of our approach on several random graph mod-

els, as well as a model of the San Diego network during the 2007 fires that was created in [22]. In all

cases, and for various types of diffusions (settings of parameters within the true general diffusion model)

1Choosing a seed set to maximize a diffusion belongs to the class of NP-hard problems, a class for which there are no known

efficient procedures. A procedure is efficient if it runs in time that is polynomial in the size of the social network. For practical

purposes an algorithm that takes longer than the cube of the network size is already not feasible on population scale networks.

Since the only known algorithms that maximize a diffusion are exponential, such algorithms are far from feasible.
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our approach gives the best seeds when compared with two benchmark algorithms: random targeting and

high-degree targeting.

There is a tradeoff, however. Random targeting, though not very effective, is very easy and requires little

information regarding the network other than the nodes that are present. High degree targeting requires

more information, namely a measure of prominence of the nodes as well, and often, though not always,

does better than random seeding. Our algorithms require the most information, namely some model for the

connectivity in the network (who links to whom). Though this may not be known in practice, it can be

estimated as was done in [22] for the San Diego network (based on population densities and a geometric

community based random graph model that gives highest probability to links that are between geometrically

close nodes within the same community and lowest probability to links that are between geometrically distant

nodes within different communities).

1.2 Background and Related Work

In this section we give a brief summary of related work that forms a pertinent background for our research.

Social networks play an important role in the spread of ideas, information, products, diseases, etc. This

diffusion affects the way people think, act and make decisions in a society. Thus modeling the flow of

information is an important and active research area.

Infectious diseases are similar to infectious ideas and have dynamics similar to that of evacuation warnings.

Many studies use the homogeneous SIR model of Reed and Frost [40]. Both Markov chains (e.g., [10]) and

differential equations [4, 41] have been used. Most of these methods make homogeneity assumptions about

the underlying network, and thus do not take full advantage of the network topology.

Information diffusion is a long researched area [55], with work on online communities becoming a very

active topic recently, on account of innovation diffusion, viral marketing, and computer virus spread [18,19,24,

25,30,31,54,56]. Two fundamental types of models of information diffusion used in the literature are cascade

models and threshold models [17,27,28,57]. For example, in the Independent Cascade model each node gets

an opportunity to influence each of its inactive neighbors and is successful with a given probability. In the

Linear Threshold model, each node has a threshold which determines the number of neighbors that need

to be active for this node to become active itself. Such simple diffusion models often have mathematically

convenient properties, like submodularity, which do not hold in general diffusion models. Submodularity,

for instance, implies that efficient greedy algorithms can construct near-optimal seed sets [27]. Our work, in

part, is to use simpler models which are submodular in order to guide the search for good seed sets in the

general diffusion model.
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Warnings and Evacuation In order to study the diffusion of warnings and evacuation messages through a

population, we need to understand how various psychological, social, and economic factors drive the process.

Humans have a layered warning response process that goes through multiple stages [50]. Hence, any attempt

at realistically modeling this scenario must consider these factors. For this purpose we turn to work carried

out in Social sciences literature.

Much research has focused on employing advanced technology in detection and prediction, or optimizing

evacuation routes. Far less attention has been paid to early warning dissemination [16,33,34,49]. We conclude

from warning response behavior [37] and the decision making involved [32,42,44] that it is as much social as

it is about communication. The warning sequence process model [49,51,53] posits that there are six phases

extending from disseminating the warning to protective action. Social science theory suggests that people’s

response to warnings depends on the social, economic, demographic and physical/technological environment,

[1, 14, 16, 33, 50] as well as message content [32, 33, 44, 49, 51, 53]. People may seek additional information

and confirmation through observation and direct contact [37, 49, 51, 53]. Thus, special care should be taken

to incorporate these effects in any general model for diffusion of warnings. The warning time distribution

has two components: the official broadcast component [44, 47, 52] and the information contagion (diffusion)

component [14,47,51,53]. There has been considerable research in estimating warning time distributions by

modeling the warning network, however the contagion component is little understood [1,35,44,47], and needs

to be better understood for protective agencies to fully estimate warning times [33,34]. Any tool that wants

to analyze warning time distribution must incorporate the effects of inhomogeneities such as social groups,

ethnic groups, and in general differential trust in and access to warning systems [35,45,46,51,53]. The model

of diffusion we use captures trust as well as human reactivity and was built around these social considerations.

Our contribution is not the model, which we take as given from prior work [21]. Our contribution is to take

this social-science based model of diffusion and construct good targeting algorithms for it.

Agent based models In scenarios where individuals are influenced by their social environment, agent

based modeling is often used [13,18]. In such cases, decision making entities are represented by agents whose

behavior can be based on a set of rules. Such a model allows the agent to have intelligence and memory and

also exhibit complex behaviors like learning and adapting [8, 38]. In the context of diffusion, agent based

modeling has been used, for example, to study epidemic spread [6, 43]; to model information diffusion in

virtual marketplace [39]; and to simulate technological diffusion [3,36] and environmental innovations [7,48].

Our research is not in the development of such models but in the exploitation of such models in determining

optimal seed sets.
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1.3 Outline of the Paper

In the next section, we summarize the diffusion model from [21] and give some analysis of its complexity in

Section 3. We present our projected greedy heuristic in Section 4. In Section 5 we describe the experimental

design we used in extensively evaluating our projected greedy heuristic on both synthetic networks as well

as the San Diego network. We end in Section 6 where we give an overview of the results together with a

discussion.

2 The Diffusion Model

We summarize the diffusion model that was developed in [21]. This model was used to study propagation of

evacuation news through a population in [21]. We use it as our model of diffusion because it is general and

contains many other simpler models as sub-cases. The model takes into consideration the fact that agents

may act on information and leave the network; this means diffusion occurs on a network that is dynamic.

The model contains the concepts found in the widely studied SIR model of epidemiology, as well as standard

threshold and cascade models together with actions a social agent may perform, such as “querying for more

information” as well as notions of trust.

We have an initial graph G = (V,E) where V are individuals in the population and the edges (ui, uj) ∈ E

represent social connections between individuals ui and uj . There are K sources with information values

I1, I2, . . . , IK . Also, a source k ∈ {1, . . . ,K} can seed Bk ≥ 0 nodes. We will use k to index sources and i, j

to index nodes.

Associated with edge (ui, uj) ∈ E is a trust value 0 ≤ α(ui, uj) ≤ 1. It represents the amount of trust

node uj has on information provided by ui. The graph may be directed with different trust values on edges

(ui, uj) and (uj , ui) representing asymmetrical trust. Each node u ∈ V also has a similar trust value for each

source k ∈ {1, 2, . . . ,K} : α(u, k).

Each node u possesses an information-value set S(u) = {(s1, v1), . . . , (sK , vK)} for the K information

sources. It is made up of pairs (sk, vk), where vk is the information node u has from source sk. Based on its

information value set, a node calculates its information value as follows:

I(u) = λd

K∑
k=1

vk + (1− λd) · max
k=1,..,K

vk, (1)

where 0 ≤ λd ≤ 1 is a model parameter. The information value is a convex combination of the total

information the node has from all the sources and the maximum value the node has from any one source;

as such, I(u) is at most this total information, and at least the maximum (a node’s information is at least

the information of its best source and at most the sum of all its sources). The two extremes λd = 0 and

λd = 1 correspond to two different extremes of a diffusion. When λd = 0, a node ignores all information
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but its highest information value source; this corresponds to a very conservative choice and would be more

appropriate for something like a warning. When λd = 1, the information value is the sum, i.e., the different

sources reinforce each other. This is a more aggressive diffusion, appropriate for something like gossip or a

rumor.

Associated with each node u are two thresholds, a lower threshold tl(u) and an upper threshold th(u)

such that 0 ≤ tl(u) ≤ th(u). The thresholds determine how a node acts given its information set. Based on

its information value, a node u lies in one of the following states:

1. Disbelieved (low information value, less than the lower threshold): If I(u) < tl(u) then the

node does not believe it has any meaningful information. In this state, node u does not take any action

except for incorporating information-value sets that it (node u) receives from its neighbors.

2. Undecided (intermediate information value): If tl(u) ≤ I(u) < th(u) then node u believes it has

some information but is uncertain about acting (which in our case is to evacuate). In this state, node

u will query the information-value sets of its neighbors and incorporate any new information into its

own information set.

3. Believed (high information value, above the upper threshold): If I(u) ≥ th(u) then the node

has enough information to accept the information as correct and act upon it. In this state, node u

actively propagates its information-value set to its neighbors for τ time-steps before evacuating. Here

τ > 0 is a model parameter that determines the time it takes a believed node to evacuate the network

(in the case of a warning message). If τ = ∞, the node never leaves the network and propagates its

information forever.

4. Evacuated: τ time-steps after a node enters the Believed state, it evacuates resulting in its dis-

connection from the network. Hence the graph changes and a new graph G′ is obtained. The new

graph G′ is the induced subgraph on the vertices V \ u; that is G′ = (V ′, E′), where V ′ = V \ u and

E′ = E \ {(u, ui) |ui ∈ V ′, (u, ui) ∈ E}.

2.1 The Diffusion Process

Initially, all nodes have zero information, so vk = 0 ∀k ∈ {1, . . . ,K} and all nodes are in the disbelieved

state. Each node’s information set is zero,

S(u) = {(s1, 0), . . . , (sK , 0)}.

The diffusion process begins when some nodes are seeded with information from sources according to a

seeding strategy. Seeding entails transfer of information from sources to the information-value set of the
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selected seed nodes. This transfer of information gets attenuated by the trust between the node and the

source. So if source k seeds node u then the information transfer to node u has value α(u, k) · Ik and the

pair (sk, 0) in the node’s information-value set gets updated to (sk, α(u, k) · Ik). Each source seeds some

subset of the nodes in this way, and multiple sources can seed the same node. After seeding, each node

then computes its information value using e̊q:Iu, ascertains its state, and performs the required action at

the next step. At every consecutive step nodes take action depending on their state (which may involve

broadcasting its information-value set and/or receiving information-value sets from its neighbors); if any

new information is received, this information is merged into its current information-value set. In this way a

node’s information-value set evolves as the diffusion process proceeds.

We now describe the process of propagating and updating information sets. When node ui propagates

its information-value set to neighbor uj , the value of information gets similarly attenuated by a factor of

α(ui, uj). If

S(ui) = {(s1, v1), . . . , (sK , vK)},

then the information-value set that is received by uj is

α(ui, uj) · S(ui) = {(s1, α(ui, uj) · v1), . . . , (sK , α(ui, uj) · vK)}.

Consider a source k, and consider node ui. The node ui may receive information value originating from

source k either directly from source k or indirectly from one of its neighbors. Suppose that node ui has δ

neighbors. In principle ui can receive (either in the current step or in some prior step) information-value

v0
k (directly from the source) and information values v1

k, v
2
k, . . . , v

δ
k from each of its neighbors (each of these

information values will be the attenuated value that was propagated to ui; some or all of these values could

be zero). In order to determine its information value for this source k, the node needs to fuse all these

information values into a single value as follows

vk = λs ·
δ∑
j=0

vjk + (1− λs) · max
j=0,..,δ

vjk. (2)

Again λs is a model parameter such that 0 ≤ λs ≤ 1. This fusion of information happens for every source k

at every node ui. As with λd, λs impacts how aggressive a diffusion is. At the two extremes: λs = 0, a node

takes the maximum value it hears about the information from a source (the conservative case); and, when

λs = 1 a node takes all the information it hears about a source and adds (the aggressive diffusion). Thus,

at each consecutive time step, every node updates its information-value set based on the new information

that was propagated to it. A node calculates its new information value based on this updated set and this

updated information value will be used to determine the node’s state and possible action. The diffusion

process continues, i.e. information continues to propagate as described above, until either all nodes evacuate

or there is no change in the information value sets of the nodes.
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Instance G

Graph G = (V,E) specifying the network for the diffusion.

Source information values and budgets, (I1, B1), . . . , (IK , BK)

Trust values α(ui, uj) for all edges (ui, uj) ∈ E.

Trust values α(k, uj) between each source k and each node uj ∈ V .

Diffusion parameters λd, λs, τ

Lower and upper thresholds tl(u), th(u) for each node u ∈ V .

Desired output: seed sets ψ1, . . . , ψK for each source k = 1, . . . ,K.

Figure 2: An instance of the general diffusion model.

The graph G is typically given and chosen to model some social network, as for example the San Diego

network during the 2007 fires. The model parameters, (λs, λd), the evacuation time τ , the threshold param-

eters tl(u), th(u) at each node u and the edge trust values α(ui, uj) can be chosen to model various types

of diffusion settings. For example in a social network with strong communities, the trust values of edges

within a community would be high (close to 1) and the edges between communities would typically be low

(close to 0). In a network that has been “primed”, for example a community that has recently experienced

a tsunami, the community may be in a “panic” state, which could be modeled by very low upper thresholds

th(u). One would also set the thresholds to be low for low risk diffusions like gossip. However for actions that

incur significant cost, like a node evacuating, the lower threshold may be low but the upper threshold would

typically be high. Lastly the λ-parameters could be chosen to model fast or slow diffusing information. In

all cases, however, all these parameters are exogenously specified. An instance of the general diffusion model

G is summarized in Figure 2. Our goal is to optimally seed the diffusion given the graph and the parameter

settings.

2.2 Seeding the Diffusion

The goal of this study is to find a seeding strategy that maximizes the number of nodes that end up in their

Believed state, given the diffusion setting as described in the previous section, and a seeding budget, as we

describe here.

Each source k has a budget Bk of nodes which it can seed. Our task is to determine the seed sets

ψk ⊂ V , where |ψk| ≤ Bk. The seed set ψk specifies which nodes are seeded by source k. The objective is

to maximize the number of nodes that become believers. Thus, there is some function Γ, which we call the

coverage function, that computes the number of nodes which become believers, given the diffusion setting and

the seed sets ψ1, . . . , ψK . More generally, if there is some randomization in the communication (propagation
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of information-value sets)2, then the coverage function would compute the expected number of believers.

Thus, in general, the coverage function maps (ψ1, . . . , ψK) to R≥0.

One of the challenges is to efficiently compute the coverage function Γ for a given input seeding (ψ1, . . . , ψK).

The other, which is our main goal, is to find the seeding which maximizes Γ.

3 Analysis

It is useful to have a theoretical understanding of the diffusion process in order to identify where the potential

difficulties lie when choosing an optimal seed set. In fact, as we will soon see, the general model described in

the previous section is extremely difficult for theoretical analysis. As a result, we will consider a simplified

instance of the diffusion model in our theoretical analysis, and use the insight from this analysis to develop

a seeding algorithm for the general model. When testing the algorithm, however, we will use instances of

the general diffusion process (see Section 2).

3.1 Monotonicity and Submodularity

The complexity of seed selection for the general diffusion model results from the behavior of the coverage

function Γ when you perturb the seed set. If Γ behaves well when you perturb the seed set in certain ways,

then simple, iterative greedy algorithms are effective at selecting near-optimal seed sets.

Monotonicity. The coverage function Γ is monotone if adding nodes to a seed set can only increase the

coverage function’s value. Mathematically, if ψ ⊆ ψ′, then

Γ(ψ,ψ−i) ≤ Γ(ψ′, ψ−i). (3)

(We use the notation Γ(·, ψ−i) to denote the coverage function as a function of its ith set argument, keeping

all the other sets fixed.) It is intuitive that if you seed more nodes in an evacuation scenario, then more

people should evacuate.

Submodularity. Submodularity captures the intuitive notion of diminishing returns. As you seed more

and more, the additional benefit you get in terms of the increased coverage is decreasing. One of the

equivalent mathematical definitions of submodularity is as follows. Γ is submodular, if for all sets ψ ⊆ ψ′

and any A ⊆ V ,

Γ(ψ ∪A,ψ−i)− Γ(ψ,ψ−i) ≥ Γ(ψ′ ∪A,ψ−i)− Γ(ψ′, ψ−i), (4)

2For example if, when a node ui propagates an information-value set to uj , it is received at the other end with some

probability p(i, j) depending on the communication infrastructure, then the number of nodes which are ultimate believers is a

random variable.
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that is the increase in Γ from ψ′ → ψ′ ∪A is not more than its increase from ψ → ψ ∪A. Submodularity is

essentially the set-function version of concavity.

A coverage function that is submodular has the nice property that if you use a simple greedy strategy to

select a seed set, then the resulting seed set has a coverage which is within a small constant factor of optimal.

Unfortunately, as we are about to demonstrate, the coverage function for our general diffusion model is not

submodular. It is not even monotone. The next two examples illustrate why. In both examples we set

λd = λs = 0, so we are using the max function for both the computation of the information value and for

the fusion of information received from neighboring nodes on the same source; we sometimes call this the

max-max model. We have only one source (K = 1) and its information value is I1 = 1.

Example 1: non-monotonicity: The diffusion setting is shown in Figure 3. There is one low trust edge

(indicated in red) and a single “high strung” node c which has very low thresholds (also indicated in red);

we will soon see why we call this node high strung.

...a c

b

1


k

1 1

1

1

1

0.1

...a c

b

1


k

1 1

1

1

1

0.1

↓ ↓

...a c

b

1


k

1 1

1

1

1

0.1

...a c

b

1


k

1 1

1

1

1

0.1

(a) (b)

Figure 3: Non-monotonic diffusion setting. The blue nodes are the initial seed set. The black nodes are the evacuated

nodes in the final state. All thresholds are 0.5 except for the high strung node c with threshold 0.1. The number of

steps to evacuation is τ = 1.

Consider the coverage function for this diffusion setting and two different seed sets ψ = {a} (case (a) in

Figure 3) and ψ′ = {a, b} (case (b) in the Figure 3) – in Figure 3) the seed sets are shaded blue for both

cases. In case (a), the information value of 1 will propagate unattenuated to node c and beyond to the
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additional k nodes. All these nodes will evacuate. Only an information value of 0.1 propagates to node b

which will not evacuate. So, Γ(ψ) = k + 4. Now consider case (b) with seed set ψ′. Initially node c will

receive attenuated information of value 0.1 from node b. Since node c has very low thresholds, in a sense it

panics, and leaves the network almost immediately (τ = 1), after propagating its information value of 0.1.

Unfortunately, however, this value of 0.1 is not high enough to evacuate any of the k peripheral nodes, since

their thresholds are high. The nodes between a and c are fine, though, because they will eventually receive

an information value of 1 propagated from a. The important thing is that when c leaves, it cuts off the k

peripheral nodes from a which results in only 5 nodes evacuating. Hence, Γ(ψ′) = 5.

The high strung node c will leave if it gets only a small amount of information. If, as in this case, the

high strung node is crucial (is a “bridge” node in the network), then when the high strung node leaves, it

disconnects potentially large parts of the network from the information before the higher value information

has a chance to flow into those parts of the network. By increasing the seed set, one might increase the

chances that such a high strung node gets low-value information too early in the diffusion, and the ensuing

early evacuation of this high strung node is what leads to the non-monotonicity of the coverage function. In

fact, if nodes do not leave the network until all information propagation has occurred, then monotonicity is

guaranteed. As the next example will show, however, even if nodes do not leave the network, the coverage

function is still not submodular.

Example 2: non-submodularity. The diffusion setting is shown in Figure 4. We set the evacuation time

τ = 10 (i.e., large enough so that nodes only start leaving after all information has propagated).

Now consider the seed sets ψ = ∅, ψ′ = {a}. Clearly Γ(ψ) = 0. As for ψ′, if you seed a, an attenuated

information of 0.9 reaches d which is not enough to breach the threshold of 0.91. Hence only a evacuates

and so Γ(ψ′) = 1. We now consider ψ ∪ {b} and ψ′ ∪ {b}. We will see that

Γ(ψ ∪ {b})− Γ(ψ) < Γ(ψ′ ∪ {b})− Γ(ψ′), (5)

which contradicts submodularity, since ψ ⊆ ψ′. First consider ψ ∪ {b} = {b} which is case (a) in Figure 4.

An information value of 0.1 propagates to c which will therefore enter the undecided state since tl(c) is low.

However, the neighbors cannot provide any new information so nothing further will happen. Therefore, only

b evacuates.

Now consider ψ′ ∪ {b} = {a, b} which is case (b) in Figure 4. As before, 0.9 propagates to c and 0.9 to

d. But, because c is in the undecided state, it will query d and receive information of 0.9 which is enough to

push c to become a believer. Now, c will propagate its information value of 0.9 to e and beyond. Node d,

however, will always remain below its threshold of 0.91. Hence Γ(ψ′ ∪ {b}) = k + 4. So

Γ(ψ ∪ {b})− Γ(ψ) = 1 < k + 3 = Γ(ψ′ ∪ {b})− Γ(ψ′).
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Figure 4: Non-submodular diffusion setting. The blue nodes are the initial seed set. In the final state, the black

nodes are the evacuated and the light gray are undecided . All thresholds are 0.5 except for nodes c and d: for node

d, tl(d) = th(d) = 0.91 and for node c, tl(c) = 0.1, th(c) = 0.9. The number of steps to evacuation is τ = 10.

The fact that node c could query for information that d did not transmit is what resulted in the cascade

effect which converted node e and beyond to the Believed state. Though it is natural for humans in a

social diffusion process to query, it is precisely this ability to query that leads to non-submodularity and the

resulting complexity of the process.

3.2 A Simplified Model

Taking a cue from the examples above, we define a simplified model that is a strict subcase of the general

diffusion model defined earlier. Note that while doing experimental simulations we will use the general

diffusion model. We use the simplified model only to carry out theoretical analysis. Insights obtained for

this simplified model help us develop heuristics that we then apply to the general case.

In this simplified model λd = λs = 0. So, the information value at a node is the maximum value

among source-value pairs, i.e., I(u) = maxk=1,..,K vk; similarly, when fusing information arriving via different

neighbors regarding the same source we take the maximum; we call this the max-max model. We also assume

all nodes have a single threshold, so tl(u) = th(u) = t(u). This eliminates the Undecided state which, as we

saw, leads to non-submodularity in the coverage function. To ensure monotonicity, we choose the evacuation
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time τ to be sufficiently large (e.g., τ � |E|). This means that nodes do not leave the network until all

information propagation has occurred. For this simplified max-max model, we prove a simple lemma that

characterizes the nature of the coverage function. We are interested in

Γ(ψ1, . . . , ψK).

Define the singleton coverage (set) function γ(u, k) to be the set of nodes ultimately converted to the Believer

state when only one node u is seeded by a source k with information value Ik. Thus, Γ(ψ1, . . . , ψK) equals

|γ(u, k)| when ψi = ∅ for all i 6= k, and ψk = {u}. The next lemma characterizes the form of Γ(ψ1, . . . , ψK).

It basically says that to obtain the set of nodes converted to the Believer state, it suffices to consider each

source and let it just seed one of the nodes in its seed set, with no other source seeding any nodes. Some

set of nodes is converted to Believer in this process. We consider, in this way, all the (source,seed) pairs in

turn, computing the converted set when just this source seeds just this one node. By taking the union of all

these converted sets, we get the final set of nodes converted when all the sources simultaneously seed all the

nodes in their respective seed sets.

Lemma 1 The set of nodes converted to Believer with seed sets ψ1, . . . , ψK is

K⋃
k=1

⋃
x∈ψk

γ(x, k).

Proof. The lemma follows because we are using the max-max model. First, suppose that u ∈ γ(x, k).

Nodes receive information in time steps. Let Im(u) be the information value at node u after time step m of

information propagation using a single seed (x, k). Similarly let I ′m(u) be the information value at u after time

step m of information propagation using all sources and their respective seeds. We claim that I ′m(u) ≥ Im(u)

for all m ≥ 0 and all u. Indeed, suppose to the contrary that this does not hold for some m,u; in which case,

there is an earliest time step m for which it does not hold, i.e. I ′m(u) < Im(u) and for all ` < m and all v,

I ′`(v) ≥ I`(v). It means that Im(u) is different from Im−1(u). Since there is no querying, and since we are

using the max-max model, it means that some node v propagated information to node u in the previous time

step that resulted in information value Im(u) = α(v, u)Im−1(v). But by assumption, I ′m−1(v) ≥ Im−1(v) and

since we are using the max-max model, I ′m(u) ≥ α(v, u)I ′m−1(v) ≥ α(v, u)Im−1(v) = Im(u), a contradiction.

Thus, if a node is converted in any set γ(x, k), then it is also converted in the joint information propagation

using all the seed sets simultaneously.

Let Imax
m (u) denote the maximum value of Im(u) over all singleton (seed,source) pairs (x, k) where x ∈ ψk

and k ∈ {1, . . . ,K}. We now claim that I ′m(u) ≤ Imax
m (u). This means that if a node gets converted in the

joint information propagation, it gets converted in at least one of the singleton information propagations.

Indeed, suppose to the contrary that for some earliest m, I ′m(u) > Imax
m (u). Again this means that in the

joint propagation, I ′m(u) changed at step m, and so information was propagated from some node v to u
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with the result that I ′m(u) = α(v, u)I ′m−1(v) (max-max model). We also know that there is some singleton

propagation with Im−1(v) ≥ I ′m−1(v), by assumption, since m is the earliest time step when this fails. In

this singleton propagation, it must be that Im(u) ≥ α(v, u)Im−1(v) ≥ α(v, u)I ′m−1(v) = I ′m(u) (max-max

model), a contradiction.

An immediate consequence of Lemma 1 is that if all the source values are the same, so Ik = I for

k ∈ {1, . . . ,K}, and every node trusts all the sources equally, so α(k, u) is independent of k, then the

converted set is
K⋃
k=1

⋃
u∈ψk

γ(u, 1).

This converted set is exactly what it would be if there was just one source with value I seeding ψ = ∪Kk=1ψk.

Lemma 2 If all sources are identical and every node trusts all sources equally, then K sources with infor-

mation value I seeding sets ψ1, . . . , ψK results in the same converted set as one source with information value

I seeding the set ψ = ∪Kk=1ψk.

It is therefore immediate that finding the optimal seed sets for K identical sources with budgets B1, . . . , BK

is equivalent to finding the optimal single seed set for just a single one of these sources with budget
∑K
k=1Bk.

Thus, the K identical sources problem reduces to the single source problem.

A direct application of Lemma 1 gives the coverage function.

Lemma 3

Γ(ψ1, . . . , ψK) =

∣∣∣∣∣∣
K⋃
k=1

⋃
u∈ψk

γ(u, k)

∣∣∣∣∣∣ .
It follows from Lemma 3 that Γ(ψ1, . . . , ψK) is monotone. It is also easy to see that functions of this form

(that are the size of the union taken nodewise of a set function defined on a node) are submodular. We

therefore have the following theorem.

Theorem 1 For the max-max model, there is a greedy deterministic algorithm which computes seed sets

ψ1, . . . , ψK of sizes B1, . . . , BK for which

Γ(ψ1, . . . , ψK) ≥ 1
2 · Γ(ψ′1, . . . , ψ

′
K) ∀ψ′k with |ψ′k| ≤ Bk.

Moreover, when the individual budget constraints |ψk| ≤ Bk are replaced by a total budget constraint |ψ1|+

· · ·+ |ψK | ≤ B, then the deterministic greedy algorithm yields seed sets ψ1, . . . , ψK of total size equal to the

budget B such that

Γ(ψ1, . . . , ψK) ≥
(
1− 1

e

)
Γ(ψ′1, . . . , ψ

′
K) ∀ψ′k with |ψ′1|+ · · ·+ |ψ′K | ≤ B.
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1: Input: Instance of the max-max model with K sources and budgets

B1, . . . , BK .

2: Initiate converted nodes C = ∅ and selected nodes ψk = ∅.

3: Compute Cu,k = γ(u, k) for all nodes u ∈ V and sources k = 1, . . . ,K;

4: while |ψk| < Bk for any k and |C| < |V | do

5: Choose (u∗, k∗) with |ψk∗ | < Bk∗ that maximizes |Cu,k \ C| over (u, k);

6: Update ψk ← ψk ∪ u∗ and C = C ∪ Cu∗,k∗ ;

7: Output sets ψ1, . . . , ψK .

Algorithm 1: Greedy algorithm on instance of simplified model

Proof. The theorem follows from the monotonicity and submodularity of Γ implied by Lemma 3 and the

greedy deterministic algorithm for maximizing a monotone submodular function ( [15]). The case with a

total budget simply asks to find a set of (node,source) pairs of size at most B maximizing a submodular

monotone set function; for this case the greedy algorithm gives a 1− 1
e approximation. The case with multiple

sources asks to maximize a submodular monotone set function with respect to partition matroid constraints;

for this, the greedy algorithm from [15] gives a 1
2 -approximation.

Remark. When K = 1 (single source), the total budget constraint and the individual budget constraints

are equivalent and we get a (1− 1
e )-approximation.

Remark. Randomized algorithms guaranteeing a (1 − 1
e )-approximation exist for the case with multiple

sources as well as for a single source [9]. We choose to focus on the greedy algorithms due to their simplicity

and relative efficiency, as our goal is to find good seed sets for extremely large networks.

The greedy algorithm implied by Theorem 1 is an intuitive algorithm that at each greedy step selects the

node to add to the seed set that gives the largest increase in the size of the converted set. This algorithm is

summarized in Algorithm 1 for the case with individual budget constraints. When there is a total budget

constraint, the algorithm is exactly the same except that the while condition in step 4 checks that the total

budget constraint is not exceeded. Our projected greedy heuristic for the general model is based on this

greedy algorithm. Implementation of this algorithm is discussed in Section 4.
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4 The Projected Greedy Heuristic

We now describe the Projected Greedy heuristic which takes as input an instance G of the general diffusion

model (see Figure 2) with K sources and produces as output a seed set {ψ1, ψ2, . . . , ψK}. Given the seed

sets {ψ1, ψ2, . . . , ψK}, it is possible to compute the coverage set by simulating the information set updates

in the network; simulating a single time-step takes O(|E|). We will denote the time it takes to compute the

coverage set in the general model by TG = O(a|E|), where a is the number of timesteps that it takes for

the diffusion process to converge. While theoretically a can be large for the general model of diffusion we

consider, practically we have observed in our experiments that 30-50 timesteps is sufficient. Thus typically

TG is on the order of the number of links in the network, which for sparse social network graphs is O(|V |).

This is useful, because all our algorithms need to be able to evaluate a seeding in order to improve it. First,

for comparison, we describe two natural algorithms because our projected greedy algorithm has aspects of

both.

4.1 Brute Force

The brute force algorithm is extremely simple: try every possible distinct seeding, compute Γ for each

seeding and select the seeding which maximizes the coverage. The running time of this naive brute force

approach is O
(
TG
∏K
k=1

(
|V |
Bk

))
because there are

∏K
k=1

(
|V |
Bk

)
possible seed sets. Clearly, this algorithm

is not feasible, even for Bk = 1 (there are just too many possible seedings to test). However, if we could

somehow intelligently prune this collection of seedings to a small number, then it would become viable. This

is one aspect of the projected greedy approach: obtain plausible candidate seedings and pick one of them

using the brute force approach.

The way we will obtain these plausible candidate screenings is using a greedy approach. The natural

greedy algorithm is what we describe next, which we call Actual Greedy. Actual greedy deterministically

produces a single seed set.

4.2 The Actual Greedy Approach

The natural greedy seeding strategy is also simple. For every pair (u, k) where k is a source and u ∈ V a

node, we consider adding it to the seed set (as long as we do not violate the budget constraints |ψk| ≤ Bk).

We add the pair (u∗, k∗) which results in the largest increase in the coverage Γ(ψ1, . . . , ψK). Starting with

an empty seeding, in this way we build up the seeding to the final seeding one pair at a time. We call

this strategy Actual Greedy. While Actual Greedy is a plausible heuristic, because a general instance of the

diffusion model is non-monotone and non-submodular, there is no performance guarantee as compared with

using the greedy algorithm for the simplified model (Section 3.2).
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Running Time of Actual Greedy. Each step of Actual Greedy adds a node to the seeding. If the total

budget is B =
∑K
k=1Bk, then there are B steps in the algorithm. At each step, we need to consider O(K|V |)

pairs to determine which one is the best to add; and the time to test the seeding with that pair added is TG.

So the total running time is O(B ·K · |V | · TG). For sparse graphs, |E| = O(|V |), and when the total size of

the seed set is a fraction of the graph (B = Θ(|V |)), this means that the running time is typically O(K|V |3).

The general diffusion model for arbitrary settings of the parameters does not have any nice properties

that can be exploited to improve this running time, and so for large graphs, with millions of nodes, this

cubic running time is practically infeasible.

4.3 Projected Greedy

Given a general instance of the diffusion model G, the idea behind the Projected Greedy algorithm is to

construct an instance of the simplified model S (see Section 3.2) that closely approximates G. In a matter

of speaking, we are “projecting” G down to the simpler instance S that most “closely” approximates G. For

the simpler instance S, we can leverage Theorem 1 and use the greedy algorithm to obtain a constant factor

approximation to the optimal seeding in S. If the instance S is a close approximation to the instance G then

the near optimal seeding for S will also be a good seeding for G.

There are two advantages of Projected Greedy over Actual Greedy : (1) Since the simplified model is mono-

tone and submodular, we can use a more efficient algorithm than running the O(K|V |3) greedy algorithm

on the general instance G; (2) Neither Actual Greedy nor Projected Greedy give any performance guarantee

for the quality of the seeding. However, we do have some flexibility in the choice of the simplified instance S.

So, by exploring a variety of plausible simplified instances, we can generate several seedings (say c of them),

and we can choose one of these c as in the Brute Force approach, via simulation. One can view this as a

more intelligent sampling of the possible seedings to test in the Brute Force approach, where the choice of

seedings is guided by the various choices for the simplified instances S.

Although we cannot give a guarantee on the quality of the seeding produced by our heuristic, our

experimental evaluation demonstrates that Projected Greedy performs significantly better than widely used

simple seeding strategies.

4.4 Creating an Instance of the Simplified Model

Given an instance G of the general diffusion model (see Figure 2), we construct an instance S of the simplified

model by setting λd = λs = 0: an instance of the max-max model, and we set the evacuation time τ to be

sufficiently large so that there is no evacuation. We set the upper and lower thresholds to the same value,

tl(u) = th(u) = t(u) so that there is no Undecided state. We do not change any of the trust values along

any of the edges, or between sources and nodes.
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Instance S

Graph G = (V,E) specifying the network for the diffusion.

Source information values and budgets, (I1, B1), . . . , (IK , BK)

Trust values α(ui, uj) for all edges (ui, uj) ∈ E.

Trust values α(k, uj) between each source k and each node uj ∈ V .

Diffusion parameters λd = λs = 0, τ →∞

Lower and upper thresholds tl(u) = th(u) = t(u) for each node u ∈ V .

Desired output: seed sets ψ1, . . . , ψK .

Figure 5: The simplified instance S for general instance G.

When λs > 0 or λd > 0 the diffusion will generally be faster because taking the sum will tend to inflate

information values at the nodes. To compensate for this, we need to raise the thresholds, to get a better

approximation to G. We treat t(u) as tunable parameters in the simplified model, and we may alter the

values to get different instances of the simplified model. We will discuss how to choose these thresholds

shortly. An instance of the simplified model is summarized in Figure 5. We distinguish quantities in the

simplified model using a subscript S from quantities in the general model with a subscript G; for example,

ΓG(ψ1, . . . , ψK) is the coverage function for a seeding in the general instance, and ΓS(ψ1, . . . , ψK) is the

coverage function for the same seeding in the simplified instance.

Further Simplifying the Model We can further simplify the model by insisting on a single source with

information value I and budget equal to the total budget of the K sources, BS = B1 + · · · + BK . The

information value I is chosen as the weighted information value of the K sources, where the weights are the

number of seeds allocated to each source:

IS =
1

K∑
k=1

Bk

·
K∑
k=1

Ik ·Bk.

With K sources, every node u has a trust weight α(k, u) for each source. These are combined into a single

average trust weight with a single source:

αS(1, u) =
1

K

K∑
i=k

αG(k, u).

All trust values between two nodes in the graph are unchanged. We will discuss next how to select the

thresholds tS(u). By considering different thresholds at the nodes, we are able to generate a variety of

seedings, each of which is near optimal for a slightly different instance of the simplified model.
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In this further simplified model, a single source will seed BS nodes giving a seeding ψS. To convert it

into a seeding for the general instance G we need to assign each seeded node to one of the K sources in G,

so ψS → ψ1, . . . , ψK . In principle, one could try to optimize this assignment. For simplicity, we just pick

an arbitrary assignment (for example a random assignment) of the seeded vertices to the K sources that

respects the constraint |ψk| ≤ Bk.

4.5 Using Thresholds tS(u) to Generate Different Seedings

For different choices of tS(u) with u ∈ V , we get different instances of the simplified model:

{tS(u)} greedy−→ ψS
partition−→ ψ1, . . . , ψK

evaluate−→ ΓG(ψ1, . . . , ψK).

By evaluating according to ΓG in this way, we can use different settings of the thresholds in the simplified

model to explore different candidate seedings for the general instance G in a more intelligent way than the

pure Brute Force approach.

There are several ways to choose the thresholds in the simplified model to get different seedings for the

general instance. For simplicity and computational efficiency, we assume homogeneous thresholds, so every

node has the same upper and lower threshold, and so tS(u) becomes just tS. We choose tS from a set of

thresholds Ω = {t1, t2, . . . , tc} where 0 ≤ ti ≤ 1 to generate c simplified instances; this in turn will produce

c seedings to be evaluated with ΓG. We choose Ω and c as follows.

Homogeneous Approximation to Trust in Instance G. To construct Ω, we imagine all trust weights

in instance G are αavg, the average trust weight in the network for instance G (this is just for the intuition

on how we generate Ω). Let tGmin be the minimum lower threshold over all nodes in the general instance G;

similarly tGmax is the maximum upper threshold. All the thresholds in Ω will satisfy tmin ≤ t ≤ tmax. The

highest threshold we need to consider is αavg · I because no information value at a source can be higher than

I, so if the threshold is higher, no node can convert to Believer. Every next hop reduces the information

value by a factor of αavg so all thresholds which are in the interval [α2
avg · I , αavg · I) are equivalent, and

we only need consider one of them, α2
avg · I. We can continue this logic which implies that we only need to

consider thresholds (in the simplified model) of the form ti = αiavg · I. Further restricting the thresholds to

be in the range [tmin, tmax] results in our choice of the threshold set Ω:

Ω =
{
ti
∣∣ ti = αiavg · I; tmin ≤ ti ≤ tmax

}
∪ {tmin, tmax}.

The number of thresholds c ≈ 2 +O(log tmin/ logαavg).

Two-Level Approximation to Trust in Instance G. A better approximation to the trust values in G

can be obtained by clustering the trust weights into high values αhigh and low values αlow This leads to a
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larger set of thresholds in Ω for the simplified model. The general idea is the same. We choose thresholds

as the possible information values at the nodes. This set of information values is

{I; αhigh · I, αlow · I; α2
high · I, αhighαlow · I, α2

low · I; . . .}

In general, we can construct the set Ω iteratively as follows:

1: Ω← {I}.

2: while αhigh ·maxt∈Ω t ≥ tlow do

3: Ωadd ← ∅.

4: for every t ∈ Ω with αhigh · t ≥ tmin do

5: add t to Ωadd.

6: for every t ∈ Ω with αlow · t ≥ tmin do

7: add t to Ωadd.

8: Ω← Ω ∪ Ωadd

This algorithm easily generalizes to approximating the trust in the instance G by more than two trust levels.

The size c of the resulting set of thresholds Ω depends on how quickly information decays in the network;

faster information decay leads to smaller c.

4.6 Running Time of Projected Greedy

The basic methodology of Projected Greedy includes constructing c instances of the simplified model and

computing the near-optimal seeds in the simplified instance S, converting that solution to a seeding for the

general instance G and finally evaluating ΓG for the seeding. The running time is therefore

c ·O (Tgreedy + TG) ,

where Tgreedy is the time to construct the solution for the simplified instance using the greedy algorithm. Our

implementation of the greedy algorithm for the simplified instance exploits the monotone and submodular

nature of ΓS. We create a special data structure δ where δ(u) ⊆ V is the set of nodes that convert u when

they alone are added to the seed set. While calculating δ, we also create array N where N(u) is the number

of nodes that u (if added to the seed set) converts to the Believed state. For sparse graphs, building δ and

N takes O(n2 log n) time, where n = |V |. After selecting the node that gives the best improvement in ΓS,

we only need to update the array N using δ. This means we do not need to recalculate N at every step,

and the update takes only O(n) time. The process of updating array N depends on properties of ΓS, such

as monotonicity. Thus, for sparse graphs,

Tgreedy = O(n2 log n+Bn).
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When B = Θ(n), on sparse graphs, the total running time is typically c ·O(n2 log n). To give an idea about

how large the value of c is, consider an extreme case with homogenous trust values where tmin = 0.01,

tmax = 0.99 and αavg = 0.9. In this extreme scenario c = 44, which gives a running time that is orders of

magnitude better than Actual Greedy when n is in the millions.

Pre-calculating the data structure δ can have worst case space complexity of O(n2). To avoid this, we use

a hybrid strategy for computing seed sets in Projected Greedy. In this strategy δ is not stored initially and

the array N is recalculated each time the best node is to be selected. We use a technique in [29] according to

which array N is stored as a priority queue and each selection requires recalculation of N(u) for only a small

number of nodes u. Only after a certain threshold is breached do we switch to populating δ for all nodes.

Since nodes that convert the highest number of other nodes to Believed state have already been selected

at this stage, it helps in reducing the size of δ(u) for each of the remaining nodes. Not only does this help

reduce memory usage but it also does not affect the running time adversely. Ultimately, Projected Greedy

is more efficient by a factor of about n compared to Actual Greedy. In large graphs, this is a significant

improvement and can sometimes be the difference between feasibility and intractability.

5 Experiment Design

In order to compare the Greedy heuristic with other seeding strategies, we simulate the spread of evacuation

warnings in a social network. The simulation of diffusion is carried out on different types of networks with

several parameter values.

5.1 Networks

We used three different network structures, each with 100, 000 nodes with average degree approximately 4.

Frequently, in real world scenarios individuals form groups based on race, ethnicity, nationality, etc. Not

only are individuals within the same social group more likely to be acquainted with each other, they are

also inclined to place more trust with people in the same group as theirs. Since these connections and

trust disparities play an important role in the flow of information, we model social groups by dividing the

population into 2 groups in the following networks.

Scale-free Graphs: We use the Albert-Barabasi model for generating random scale-free networks using

the preferential attachment model [2, 5]. The graph thus produced follows a power law distribution with

exponent approximately −2.9, that is P (x) ∝ x−2.9 (P (x) is the fraction of nodes having degree x). Once

the graph is created, 50, 000 nodes are randomly assigned to one group and the rest to the other. Scale-free

graphs do not take into consideration the fact that nodes within a group are more likely to communicate
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with each other.

Random Group Model: Nodes are randomly assigned into 2 groups of size 50, 000 nodes. The probability

that 2 nodes are connected (edge probability) depends on whether they belong to the same group or not. If

two nodes belong to the same group then the edge probability is ps while if they belong to different groups,

the edge probability is pd. Here ps = 2 ∗ pd (more connections within a group as between groups). The

probability pd is chosen so that the average degree is 4.

San Diego Network: This is a random geometric graph that is constructed from actual demographic

data in the San Diego area [20, 23]. Since there is a large population of Hispanics, we consider two groups:

Hispanics and Non-hispanics. The population of nodes belonging to each group is based on the racial

demographics of the region. Also, the edge probability between two nodes depends not only on the group

they belong to, but also the physical distance between them. For example the edge probability between two

nodes belonging to the same group is larger if they live close to each other than if they live far apart. Again

the edge probabilities are chosen to have average degree 4. The details of this model are given in [20,23].

5.2 Node Characteristics

Since evacuation is a high cost action, nodes would not evacuate without a significant amount of information.

This can be modeled with high upper thresholds th(u). Also, with such a high risk situation as evacuation,

individuals may be proactive. That is to say, they may be willing to put more effort in collecting information.

This can be modeled by decreasing the lower thresholds tl(u).

In our experiments, we simulate 3 different threshold value pairs for all nodes: (tl = 0.2, th = 0.3),

(tl = 0.15, th = 0.55), and (tl = 0.4, th = 0.5). We set the evacuation time to τ = 5 time-steps (so, all nodes

leave the network 5 time steps after they are converted to their Believed state).

5.3 Trust Scenarios

Since nodes are split into 2 groups, there are 2 kinds of edges in the graph. The first type of edge is incident

on nodes from the same group (denoted type A edges) . The second type of edge is incident on nodes

from different groups (denoted type B edges). Based on the trust values on these edges we have two trust

scenarios. In each scenario, we set the average trust on the edges to be α.

Homogenous trust: All edges have the same trust value. This models situations when no social groups

exist. The trust value on every edge is α.
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Group Variable trust: The trust value on type A edges is α+ ε where ε > 0. The trust value on type B

edges is chosen so that the average trust is α. So the trust on type B edges will be less than type A edges,

which models social groups that are more trusting of their own group than outsiders. We used α = 0.7 and

ε = 0.05 for our simulations.

5.4 Seeding Algorithms

We have 5 trustworthy sources each with information value I = 0.95 and trust value α(k, u) = 0.9 for all

u ∈ V . We look at scenarios in which between 5% − 50% of nodes are seeded in total, with each source

seeding an equal number of nodes. We compare the following algorithms for generating the seeding of total

size B.

Random: Randomly select B nodes and arbitrarily assign these nodes to the K sources.

High Degree: Select the B highest degree nodes and arbitrarily assign them to the K sources. Here, the

degree for node u is the total outgoing trust weight:

degree(u) =
∑

(u,u′)∈E

α(u, u′)

Projected Greedy heuristic: Seeds are generated according to the Projected Greedy heuristic described

in Section 4.

5.5 Parameters

For all our experiments we use λs = 0. This means nodes always chose the maximum value while combining

information from the same source. We ran simulations for different choices of λd ∈ {0.0, 0.05, 0.1, 0.2}.

Lastly, in real life scenarios, communication between nodes is not likely to succeed every time. Hence,

when a node that is not a source, queries or propagates an information set to another node, it will succeed

with some probability p; we set p = 0.75 in our experiments.

6 Results and Discussion

We ran each simulation for 50 steps and repeat it 100 times. We observed that 50 steps are enough for the

diffusion process to conclude. Since the networks are generated randomly, we repeat the whole simulation

on at least 10 instances of the graph. We use the average number of nodes evacuated as our measure of

performance. The standard deviation (error bar) due to the randomness is extremely small; in fact the error

bars are not even visible in our plots.

24



Figure 6: Random Group network with group variable trust (high trust edges within a group). Thresholds are

tl = 0.15, th = 0.55; We show λd = 0.0 (left) versus λd = 0.2 (right) for various total seed budget. Note that for plot

on the right, the y-axis range is [0.0, 1.0] while for the right plot it is [0.3, 1.0]. The Projected Greedy dominates the

other algorithms.

6.1 Seed Size

We start with the performance of the three seeding strategies (random, high-degree and Projected Greedy)

as the total seeding budget increases. Figure 6 shows the random group model and Figure 7 the San Diego

network. Though we ran several different scenarios, we pick these two as both relevant and representative

of the typical nature of the results.

For both the random graph model and the San Diego network, the Projected Greedy heuristic performs

consistently better than both Random and High Degree seeding strategies. When λd = 0.0, Projected

Greedy and High Degree are comparable for a small seed budget, but as the seeding budget increases, so

does the gap between their performance. This is likely because there are two competing effects: one should

seed influential nodes, and one should spread out the seeds (i.e., not have the seed nodes be too close to

each other, so that they will convert more nodes in total). When you have a few seeds, influence is more

important, and Projected Greedy and high-degree are achieving that goal comparably. When you have

many seeds, it now becomes more important to spread the seeds out, and high-degree ignores how spread

out the seeds are, whereas Projected Greedy takes that into account. This also explains why, eventually,

even random seeding becomes better than high degree: with more seeds, the need to spread out the seeds

wins. This fact is even more pronounced when λd = 0.2 which makes sense because many spread out seeds

can have even more impact due to the summing effect present when λd > 0. This effect is even stronger in

the San Diego network (Figure 7), probably due to the structure of San Diego network. Such typical social

networks have a number of small dense clusters that weakly connect to each other. This makes selecting
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Figure 7: San Diego network, with group variable trust (high trust edges within a group). Thresholds are tl =

0.15, th = 0.55; We show λd = 0.0 (left) versus λd = 0.2 (right) for various total seed budget. Note that for plot on

the right, the y-axis range is [0.0, 1.0] while for the right plot it is [0.3, 1.0]. Projected Greedy clearly dominates the

other seeding strategies.

high degree nodes from the same cluster a bad idea.

The comparative advantage of Projected Greedy is higher with λd = 0 for two reasons. The first is that

the simplified instance S on which the seed set is near optimal is a better approximation to the true instance

G when λd = 0. Second, when you have some element of summing in the diffusion process, all algorithms

will improve, and hence their differences will diminish. Nevertheless, Projected Greedy still outperforms

even for λd = 0.2, managing to convert almost every node to believed state with seed set size as low as 20%;

even at 50% seeds, the other algorithms cannot achieve this.

6.2 Cross section of Results

We give a comprehensive cross section of the results in Table 1 for all three types of networks, both homoge-

neous and group-variable trust, and for a variety of trust thresholds. We quantify the performance in terms

of the regret: for a given scenario, the best performing algorithm has regret zero, and otherwise,

regret =
Γbest − Γ

Γbest
× 100%,

where Γbest is the number of nodes evacuated by the best algorithm for that scenario, and Γ is the number

of nodes evacuated by the algorithm whose regret is being computed. A good algorithm would always have

low regret. All results are for a total seeding size of 5%. The actual fraction of the network evacuated is

shown in Table 2 for a particular instance.

In general, we make the following observations. When the number of evacuated nodes is large, which

occurs either with low thresholds or a high value for λd (more information aggregation), the performance edge
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Homogenous Trust Variable Trust

R HD PG R HD PG

SF

tl = 0.2, th = 0.3
λd : 0.0 25.76 1.33 0.00 4.32 0.08 0.00

λd : 0.2 0.00 0.00 0.00 0.00 0.00 0.00

tl = 0.15, th = 0.55
λd : 0.0 70.76 3.23 0.00 71.00 3.20 0.00

λd : 0.2 25.75 1.33 0.00 14.39 0.63 0.00

RG

tl = 0.2, th = 0.3
λd : 0.0 31.85 11.16 0.00 16.21 3.87 0.00

λd : 0.2 2.40 2.03 0.00 2.77 2.30 0.00

tl = 0.15, th = 0.55
λd : 0.0 46.46 10.94 0.00 50.06 16.48 0.00

λd : 0.2 32.20 10.64 0.00 21.68 3.87 0.00

SD

tl = 0.2, th = 0.3
λd : 0.0 31.85 11.02 0.00 14.09 2.91 0.00

λd : 0.2 2.68 2.33 0.00 3.32 2.76 0.00

tl = 0.15, th = 0.55
λd : 0.0 47.28 11.39 0.00 52.14 15.60 0.00

λd : 0.2 32.19 10.52 0.00 18.16 2.41 0.00

Table 1: Cross section of results. The table shows the relative regret of an algorithm for a particular scenario, a regret

of 0 indicating the best performing algorithm. The Project Greedy heuristic significantly dominates all the other

algorithms in almost every scenario. SF=scale free network; RG=random group model; SD=San Diego network.

delivered by Projected Greedy is smallest. In fact when λd increases beyond 0.2, the effect of information

aggregation quickly takes over and there is little difference between the performance of the three algorithms

as almost all nodes are evacuated with ease. When the thresholds are high or λd ≈ 0 the performance

edge delivered by Projected Greedy is quite significant, in accordance to results shown in Figures 6 and 7.

Projected Greedy’s advantage increases with more seeds.

Note that in scale free graphs, high-degree is comparable to Projected Greedy but random significantly

underperforms. This is because in such networks there are a few extremely important nodes, and it is

essential to include these nodes in the seed set, which is unlikely to happen with random seeding.

27



Homogenous Trust Variable Trust

R HD PG R HD PG

tl = 0.15, th = 0.55 λd : 0.0

SF 20.82 68.89 71.19 20.65 68.92 71.20

RG 22.26 37.03 41.58 16.85 28.17 33.73

SD 22.19 37.30 42.09 16.72 29.48 34.93

Table 2: Fraction of the network evacuated for a particular scenario. Random has roughly the same performance on

all networks and is a significant under performer on scale free networks.

6.3 Threshold Selection

As described in Section 4, in order to select the best seed set we carry out simulations over a range of values

for threshold t in the simplified model. Specifically we repeat the simulation c times. It is interesting to

see how the coverage ΓG changes as we change the thresholds in the simplified model S. In particular, how

the best threshold topt in the simplified model (i.e. the threshold that gives the closest approximation to G)

depends on the parameters of the general model, in particular (λs, λd), the lower and upper node thresholds

(tl, tu) and transmission probability p.

Our simulation results show that there is an interesting relationship between topt (the best threshold

to choose in S and tu (the upper thresholds in G) under different values of λd. In order to observe this

relationship, we perform simulations on a generalized version of the San Diego network. In this generalized

version, edge trust values and node thresholds are selected uniformly at random from a range instead of

being fixed to specific values. Thus the generalized network tries to incorporate variations observed in real

networks. The network used for simulation has the following parameter values. For edges between nodes

belonging to the same group, trust values are selected uniformly at random from the range [0.7, 0.8]. For

edges between nodes belonging to different groups, trust values are selected uniformly at random from the

range [αlow−0.5, αlow+0.5]. Here alow is selected such that the expected value of edge trusts in the network

is 0.7. Similarly, for every u ∈ V , tl(u) is selected uniformly at random from range [0.1, 0.2] and tu(u) from

range [0.5, 0.6]. For the probability of transmission p = 0.75 and seed set size 5% of total nodes, Figure 8

shows the proportion of nodes evacuated with threshold values for Projected greedy in range [0.1, 0.6] and

λd = [0.0, 0.05, 0.1, 0.15, 0.2].

It is intuitive to expect that topt will be close to E[tu] since nodes get converted to Believed state only

after information value crosses tu. This is exactly what we see in the case where λd = 0.0. The optimal

threshold topt is very close to E[tu] = 0.55. But as λd increases we see a gradual decrease in the value of

topt. As λd increases, information gets aggregated and the fused information value becomes progressively
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Figure 8: Plots showing change in the coverage in the general instance G obtained from using different node thresholds

in the simplified instance S. We are interested in how the best threshold in the simplified instance S changes (the

threshold that gives the maximum coverage in G) as we increase λd. The x-axis shows the threshold in the simplified

instance S and the y-axis shows the proportion of nodes evacuated in the general input instance G. The plots are

labeled with the value of λd.

more successful at breaching tu. In other words, the general model starts behaving like a simple model with

a smaller tu value where, for the same amount of initial information, it is comparatively easier to convert

nodes. Table 3 shows how the value of topt reduces with increasing λd. The rate at which topt decreases

may depend upon factors such as the type of network (i.e. network structure), tl etc. These are interesting

questions for future work.
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