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Abstract

A central theme in computational social choice is to study the extent to which voting systems
computationally resist manipulative attacks seeking to influence the outcome of elections, such
as manipulation (i.e., strategic voting), control, and bribery. Bucklin and fallback voting are
among the voting systems with the broadest resistance (i.e., NP-hardness) to control attacks.
However, only little is known about their behavior regarding manipulation and bribery attacks.
We comprehensively investigate the computational resistance of Bucklin and fallback voting for
many of the common manipulation and bribery scenarios; we also complement our discussion
by considering several campaign management problems for Bucklin and fallback.

1 Introduction

A central theme in computational social choice (see, e.g., the bookchapter by Brandt et al. [BCE13])
is to study the extent to which voting systems computationally resist manipulative attacks that seek
to influence the outcome of elections, such as manipulation (i.e., strategic voting), control, and
bribery. Inmanipulation(introduced by Bartholdi et al. [BTT89, BO91] and, more generally, by
Conitzer et al. [CSL07]; see, e.g., the survey by Faliszewski and Procaccia [FP10]), voters try
to do so by casting insincere votes. Incontrol (introduced by Bartholdi et al. [BTT92], see also
Hemaspaandra et al. [HHR07]), an election chair tries to influence the election outcomeby changing
the structure of the election via adding/deleting/partitioning either candidates or voters. Inbribery
(introduced by Faliszewski [FHH09]), an external agent tries to influence the election outcome
by bribing certain voters without exceeding some given budget. Since these types of influence are
often possible in principle for many voting systems, it has been studied to what extent computational
hardness can provide some kind of protection.

Bucklin and fallback voting [BS09] are among the voting systems with the broadest resis-
tance (i.e., NP-hardness1) to control attacks (see the work of Erdélyi et al. [ER10, EPR11, EF10b,

∗This work was supported in part by DFG grant RO 1202/15-1, by aDAAD grant for a PPP project in the PROCOPE
program, by NCN grants 2012/06/M/ST1/00358, 2011/03/B/ST6/01393, and by the AGH University grant 11.11.230.015.

1Resistance to manipulative actions is most often meant to beNP-hardness in the literature. Being a worst-case
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EFRS12]).2 However, only little is known about the behavior of these twovoting systems regarding
manipulation and bribery attacks; Schlotter et al. [SFE11] have studied them with respect to cam-
paign management, focusing on shift bribery and support bribery. We comprehensively investigate
the computational resistance of Bucklin and fallback voting for many of the common manipulation
and bribery scenarios. We also complement the results of Schlotter et al. [SFE11] by studying two
other campaign-management problems, namely swap bribery and extension bribery.

2 Preliminaries

2.1 Bucklin and Fallback Elections

An electionis a pair(C,V), whereC = {c1, . . . ,cm} is a set ofm candidates andV = (v1, . . . ,vn) is
a list of votes (or ballots) specifying then voters’ preferences over the candidates inC. How these
preferences are represented depends on the voting system used. We allow voters to be weighted,
i.e., a nonnegative integer weightwi is associated with each votevi . For example, a votevi of a voter
with weightwi = 3 is counted as if three voters with unit weight would have cast the same ballot.
An unweighted election is the special case of a weighted election where each voter has unit weight.

A voting system is a rule for how to determine the winner(s) ofa given election. Here we focus
on Bucklin and fallback voting only. Both systems use the notion of (weighted) majority threshold
in V, which is defined bymaj(V) = ⌊W/2⌋+1, whereW = ∑n

i=1 wi is the total weight of the votes
in V. In Bucklin voting, votes are linear rankings of all candidates, denoted by, e.g., c2 > c3 > c1,
which means that this voter (strictly) prefersc2 to c3 andc3 to c1. We call the top position in a vote
level1, the next positionlevel2, and so on. Starting with the top position and proceeding level by
level through the votes inV, we determine the smallest levelℓ such that some candidate(s) occur(s)
in at leastmaj(V) votes up to this level.3 A bit more formally, for each candidatec∈C, theBucklin
score of c in(C,V), denoted byscorei(C,V)(c), is the smallest levelk such thatc occurs in at least
maj(V) votes within the firstk levels. Among the candidates fromC with smallest Bucklin score,
sayℓ, those occurring most often up to levelℓ are theBucklin winners. If a candidatec becomes a
Bucklin winner on levelℓ, we sometimes specifically callc a levelℓ Bucklin winner.

Fallback voting is a hybrid voting systems designed by Bramsand Sanver [BS09] to combine
Bucklin with approval voting. Let us first define approval voting, which was proposed by Brams
and Fishburn [BF78] (see also, e.g., [BF83, BEH+10] for more background). Inapproval voting,
votes in an election(C,V) are approval vectors from{0,1}‖C‖ indicating for each candidatec∈C
whetherc is approved (“1”) by this voter or not (“0”). Every candidatewith the highest approval
score is anapproval winner. For each votev ∈ V, let Sv denote theapproval strategy of v, i.e.,
Sv ⊆C contains the candidates approved byv. In fallback voting, voters first approve or disapprove

measure only, NP-hardness does have its limitations. Thereare also a number of other approaches that challenge such
NP-hardness results, surveyed in [RS]; for example, there are some experimental results on the control complexity of
Bucklin and fallback voting [RS12].

2Other voting systems whose control complexity has thoroughly been studied include plurality, Condorcet, and
approval voting [BTT92, HHR07], Llull and Copeland voting [FHHR09], a variant of approval voting known as
SP-AV [ENR09], and normalized range voting [Men11].

3In simplified Bucklin voting, all these candidates win. However, we considerBucklin votingin the unsimplified
version where winners are determined by a slightly more involved procedure. Note that every Bucklin winner, as defined
in the main text, also wins in simplified Bucklin voting, but not necessarily the other way round.
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of all candidates and then they provide a linear ranking of all approved candidates. For example,
some voter might disapprove ofc1 andc4, but approve ofc2 andc3, preferringc2 to c3; this vote is
denoted byc2 > c3 | {c1,c4}. To determine the winners in fallback voting, we first try to find the
Bucklin winners when they exist. If so, all Bucklin winners are fallback winners. However, due to
disapprovals it might happen that there is no Bucklin winner, and in that case all approval winners
arefallback winners. A bit more formally, given a fallback election(C,V), letA(c)= {v∈V |c∈Sv}
denote the set of voters that approve of candidatec∈C, letA j(c) denote the set of voters that approve
of candidatec up to the jth level, and define

score(C,V)(c) = ∑
vi∈A(c)

wi and scorej
(C,V)(c) = ∑

vi∈A j (c)

wi.

Thefallback score of c in(C,V) is the smallest levelk such thatscorek(C,V)(c)≥ maj(V). Among the
candidates fromC with smallest fallback score, sayℓ, those occurring most often up to levelℓ are
the (levelℓ) fallback winners. Otherwise (i.e., if no candidate inC satisfiesscorek(C,V)(c) ≥ maj(V)

for anyk≤ m), all candidatesc with maximumscore(C,V)(c) are thefallback winners.
It is clear from the definition above that Bucklin elections are special fallback elections where

all voters approve of all candidates. In other scenarios modeling tampering with election results
(e.g., in control scenarios where the chair changes the structure of the election without changing the
voters’ preferences), this implies that NP-hardness results for control problems in Bucklin elections
can be directly transferred to the same control problems in the more general fallback elections. In
manipulation and bribery scenarios, however, such a directtransformation is not possible because
the preferences of certain voters are changed, and we will show our results separately for both voting
systems.

2.2 Basics from Complexity Theory

We assume the reader is familiar with the basic notions from complexity theory such as the com-
plexity classes P and NP, the polynomial-time many-one (≤p

m) and Turing (≤p
T) reducibility, and

with hardness and completeness with respect to≤p
m. For more background on complexity theory,

see, e.g., the textbooks [Pap95, Rot05].

3 Manipulation in Bucklin and Fallback Voting

3.1 Definitions and Overview of Results

Conitzer et al. [CSL07] introduced the following decision problem to model manipulation by a
coalition of weighted voters. For a given election systemE , define:

E -CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION (E -CCWM)

Given: A setC of candidates, a listV of nonmanipulative votes overC each having a
nonnegative integer weight, whereWV is the list of these weights, a listWS of
the weights ofk manipulators inS(whose votes overC are still unspecified) with
V ∩S= /0, and a designated candidatec∈C.

Question: Can the votes inSbe set such thatc is the uniqueE winner of(C,V ∪S)?
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Table 1: Overview of results for manipulation in Bucklin andfallback voting

Bucklin voting fallback voting
complexity reference complexity reference

E -CCUM P Thm.3.4 P Prop.3.2
E -DCUM P Cor.3.5 P Prop.3.2
E -CCWM NP-complete Thm.3.7 P Prop.3.6
E -DCWM P Thm.3.9 P Prop.3.6

The unweighted caseE -CCUM is the special case ofE -CCWM where all voters and manip-
ulators have unit weight. By changing the question to “. . . such thatc is not a unique winner in
(C,V ∪S)?,” we obtain the destructive variants,E -DCWM andE -DCUM. If there is only one ma-
nipulator, we denote the corresponding problems byE -CUM, E -CWM, E -DUM, andE -DWM;
these problems were first studied by Bartholdi et al. [BTT89, BO91].

The following proposition follows immediately from the definitions.

Proposition 3.1 1. E -CUM≤p
m E -CCUM≤p

m E -CCWM.

2. E -DUM ≤p
m E -DCUM≤p

m E -DCWM.

3. E -DUM ≤p
T E -CUM, E -DWM≤p

T E -CWM.

4. E -DCUM≤p
T E -CCUM.

5. E -DCWM≤p
T E -CCWM.

Table1 gives an overview of our results for manipulation in Bucklinand fallback voting.

3.2 Results for Unweighted Manipulation

In fallback elections, manipulators that try to make a certain candidate the winner by changing their
votes can follow a simple strategy: They can limit their approval strategy to only this candidate
and thus preclude all other candidates from gaining points from their votes. It is easy to see that if
this attempt is not successful, no other way of constructingthe manipulators’ votes can make their
designated candidate win. This means that fallback-CCUM isin P, which implies P-membership
for fallback-CUM, fallback-DCUM, and fallback-DUM as well(with Proposition3.1). We state
this observation in the following proposition.

Proposition 3.2 Fallback-CCUM, fallback-CUM, fallback-DCUM, and fallback-DUM are inP.

In Bucklin elections, however, the argumentation is more involved, since the manipulators do
not have the possibility to preclude any candidate from gaining points from their votes. So the
manipulators’ votes have to be carefully constructed to ensure that no other candidate than the
designated candidate gains too much points on the relevant levels.

Nevertheless, we can show that Bucklin-CCUM is in P by adapting an algorithm forsimplified-
Bucklin-CCUM that is due to Xia et al. [XZP+09], see Algorithm1.

4



Algorithm 1: Algorithm for Bucklin-CCUM
input : C set of candidates

V list of voters
k number of manipulators
p designated candidate

output: “YES” if (C,V,k, p) ∈ Bucklin-CCUM
“NO” if (C,V,k, p) /∈ Bucklin-CCUM

1 if k> ‖V‖ then
2 return “YES”;
3 let rem, rem2, num, num2 be arrays of length m;

4 maj= ⌊ ‖V‖+k
2 ⌋+1;

5 rmin = min{i |scorei(C,V)(p)+ k≥ maj};

6 S= list of manipulators;
7 foreachc∈C−{p} do
8 if min{i |scorei(C,V)(c)≥ maj}< rmin ORscorermin

(C,V)
(c)≥ scorermin

(C,V)
(p)+ k then

9 return “NO”;
10 rem[c] = scorermin

(C,V)
(p)+ k− scorermin

(C,V)
(c)−1;

11 rem2[c] = maj− scorermin−1
(C,V)

(c)−1;

12 num[c] = min{rem2[c], rem[c],k};
13 num2[c] = min{rem[c],k};

14 if ∑c∈C−{p}min{rem2[c], rem[c],k}< (rmin−2)k OR ∑c∈C−{p}min{rem[c],k}< (rmin−1)k then
15 return “NO”;
16 let tmp1, . . . , tmpk represent the manipulators’ votes (empty at the beginning);
17 put p on the first position in all the votes of the manipulators;
18 i = 1;
19 j = 2;
20 foreachc∈C−{p} do
21 while num[c]> 0 AND j ≤ rmin−1 do
22 tmpi = tmpi + c;
23 num[c]−−;
24 num2[c]−−;
25 i ++;
26 if i == k+1 then
27 i = 1;
28 j ++;
29

30 foreachc∈C−{p} do
31 while num2[c]> 0 AND j == rmin do
32 tmpi = tmpi + c;
33 fill the remaining positions oftmpi arbitrarily;
34 S= S+ tmpi;
35 num2[c]−−;
36 i ++;
37 if i == k+1 then
38 j ++;
39

40 return “YES”;
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Before we prove that the presented algorithm is correct and in P, we show the following useful
lemma.

Lemma 3.3 Considering the notation C, V , k, p, rem, rem2, num, num2, rmin, S, and maj as in
Algorithm1, it holds that:

1. If k> ‖V‖ then(C,V,k, p) ∈ Bucklin-CCUM.

2. If there is a candidate c∈C−{p} with

(a) min{i |scorei(C,V)(c)≥ maj}< rmin or

(b) scorermin
(C,V)(c)≥ scorermin

(C,V)(p)+k,

then(C,V,k, p) /∈ Bucklin-CCUM.

3. (C,V,k, p) /∈ Bucklin-CCUM if and only if

(a) ∑c∈C−{p} min{rem[c], rem2[c],k} < (rmin−2)k or

(b) ∑c∈C−{p} min{rem[c],k} < (rmin−1)k.

Proof. Note thatrmin denotes the smallest level on which candidatep reaches the majority thresh-
old maj in the manipulated election assuming that all manipulatorsposition p on the first place. So
rmin is the smallest level on whichp can win. This implies thatscorermin

(C,V)(p)+ k is the number of
pointsp has to win the election with. Now we can show the three claims.

1. If the number of manipulators is bigger than the number of truthful voters, a successful ma-
nipulation is always possible. The manipulators simply position p on the first place in their
vote andp reaches the majority threshold already on the first level. So(C,V,k, p) ∈ Bucklin-
CCUM trivially holds.

2. Letc∈C−{p} be an arbitrary candidate.

(a) It holds that min{i |scorei(C,V)(c)≥ maj}< rmin: That means that we have a candidatec
that reachesmaj votes on an earlier level thanp andc does so even without the manip-
ulators’ votes. Thus(C,V,k, p) /∈ Bucklin-CCUM.

(b) It holds thatscorermin
(C,V)(c) ≥ scorermin

(C,V)(p)+ k: This means thatc gets at least as many
points from the truthful voters on the exact levelp would have to win the manipulated
election asp gains in the election where the manipulators’ votes have already been
added. That means thatp cannot be made the unique winner of the manipulated election
and thus(C,V,k, p) /∈ Bucklin-CCUM holds.

3. The arrayrem indicates for every candidatec how many further pointsc can gain without
exceedingscorermin

(C,V)(p) on level rmin. The arrayrem2, on the other hand, indicates for ev-
ery candidatec how many further pointsc may gain without exceedingmaj on the levels 1
to (rmin − 1). For all candidates,rem and rem2 contain positive numbers. Since every can-
didate can gaink points from the manipulators’ votes,num[c] = min{rem[c], rem2[c],k} is

6



the number of manipulators that may have candidatec in the first(rmin−1) positions of their
votes without preventingp from winning. Analogously,num2[c] =min{rem[c],k} is the num-
ber of manipulators that can placec among their toprmin positions without preventingp from
winning. We have thatnum2[c]≥ num[c] for all c∈C−{p}. We now show the equivalence.

From right to left:

(a) Suppose that∑c∈C−{p} min{rem[c], rem2[c],k} < (rmin−2)k. In this case, it is not pos-
sible to fill the remaining(rmin−2)k positions (positions 2 to(rmin−1)) in the manipu-
lators’ votes without having for at least one candidated ∈C−{p} that either

rem2[d]−scorermin−1
(C,S) (d)< 0 or

rem[d]−scorermin
(C,S)(d)< 0

holds. That is equivalent to either

maj−scorermin−1
(C,V) (d)−1−scorermin−1

(C,S) (d)< 0 or

scorermin
(C,V)(p)+k−scorermin

(C,V)(d)−1−scorermin
(C,S)(d)< 0,

which in turn is equivalent to either

scorermin−1
(C,V∪S)(d) = scorermin−1

(C,V) (d)+scorermin−1
(C,S) (d)> maj−1 or

scorermin
(C,V∪S)(d) = scorermin

(C,V)(d)+scorermin
(C,S)(d)> scorermin

(C,V)(p)+k−1.

So we have that eitherd is a Bucklin winner in the manipulated election on a smaller
level thanrmin, or it holds that on levelrmin candidated might have at least as many
points asp. Thus(C,V,k, p) /∈ Bucklin-CCUM.

(b) Suppose that∑c∈C−{p} min{rem[c],k} < (rmin − 1)k. In this case, it is not possible to
fill the remaining(rmin− 1)k positions (positions 2 tormin) in the manipulators’ votes
without having for at least one candidated ∈C−{p}:

rem[d]−scorermin
(C,S)(d)< 0

⇔ scorermin
(C,V)

(p)+k−scorermin
(C,V)

(d)−1−scorermin
(C,S)(d)< 0

⇔ scorermin
(C,V∪S)(d) = scorermin

(C,V)(d)+scorermin
(C,S)(d)> scorermin

(C,V)(p)+k−1.

So we have thatd can have at least as many points asp on levelrmin. So(C,V,k, p) /∈
Bucklin-CCUM.

From left to right: We show the contrapositive. Assume that both

(a) ∑c∈C−{p} min{rem[c], rem2[c],k} ≥ (rmin−2)k and

(b) ∑c∈C−{p} min{rem[c],k} ≥ (rmin−1)k

hold. Then we can fill positions 2 tormin of the manipulators’ votes in a way that for all
candidatese∈C−{p} the following holds:

rem2[e]−scorermin−1
(C,S) (e)≥ 0 and

rem[e]−scorermin
(C,S)(e)≥ 0,

7



which is equivalent to

scorermin−1
(C,V∪S)(e) = scorermin−1

(C,V) (e)+scorermin−1
(C,S) (e)≤ maj−1 and

scorermin
(C,V∪S)(e) = scorermin

(C,V)(e)+scorermin
(C,S)(e)≤ scorermin

(C,V)(p)+k−1.

So we have that(C,V,k, p) ∈ Bucklin-CCUM.

This completes the proof. ❑

Now we are ready to show that Algorithm1 is in P and correctly solves Bucklin-CCUM.

Theorem 3.4 Algorithm1 has a runtime ofO(m2+nm) and decides Bucklin-CCUM, and thus this
problem is inP.

Proof. It follows immediately from Lemma3.3 that Algorithm1 is correct. It is also clear that it
always terminates. To compute the needed scoresscorei(C,V)(c) for all candidatesc and every leveli,

O(m2+nm) steps are needed. The for-loop in line 7 needsO(m) steps, while the other two for-loops
in lines 20 and 30 needO(km) steps. Since the loops are only run through whenk ≤ n, we have a
runtime ofO(nm) for the loops, which implies that the algorithm has a runtimeof O(m2+nm) in
total. ❑

With Theorem3.4and Proposition3.1we have the following corollary.

Corollary 3.5 Bucklin-CUM, Bucklin-DUM, Bucklin-CCUM, and Bucklin-DCUM are inP.

3.3 Results for Weighted Manipulation

In this section we analyze the complexity of weighted manipulation in Bucklin and fallback voting.
With the same argumentation as that given at the beginning ofSection3.2, it is easy to see

that in fallback elections the weighted manipulation problems can be decided efficiently, namely in
deterministic polynomial time: In the constructive, coalitional, weighted case, all the manipulators
need to do is to approve of the designated candidate—if this attempt does not lead to the desired
result, no other way of changing the manipulators’ votes will. Again, with Proposition3.1, the result
for this case directly transfers to the constructive, weighted case with only one manipulator, and
from these two constructive cases to the corresponding destructive cases. We state this observation
in the following proposition.

Proposition 3.6 Fallback-CCWM, fallback-CWM, fallback-DCWM, and fallback-DWM are
in P.

In weighted Bucklin elections, on the other hand, a coalition of manipulators trying to make a
certain candidate win is faced with a harder challenge, as the following result shows.

Theorem 3.7 Bucklin-CCWM is NP-complete.

8



Proof. It is easy to see that Bucklin-CCWM is in NP. We show NP-hardness of this problem by
a reduction from the problem PARTITION: Given a setA= {1, . . . ,k} and a sequence(a1, . . . ,ak)
of nonnegative integers with∑k

i=1 ai = 2K for a positive integerK, is there a setA′ ⊆ A such that
∑i∈A′ ai = ∑i 6∈A′ ai = K? PARTITION is well-known to be NP-complete (see, e.g., [GJ79]).

Let an instance of PARTITION be given byA= {1,2, . . . ,k} and(a1, . . . ,ak) with ∑k
i=1ai = 2K.

Without loss of generality, we may assume thatai ≥ 2 for eachi ∈ A. We construct the following
instance of Bucklin-CCWM. The candidate set isC= {b,c,d, p} andp is the designated candidate.
In V we have three voters of the following form with a total weightof 6K −2:

1. c> p> d > b with weight 2K,

2. c> d > p> b with weightK−1,

3. b> d > p> c with weight 3K −1,

so the majority threshold in(C,V) is reached with⌊(6K−2)/2⌋+ 1 = 3K. For the first two levels,
the scores of the candidates are given in Table2, and the unique level 2 Bucklin winner in(C,V)
is d. Furthermore, there arek manipulators inSwith weightsa1,a2, . . . ,ak, which are given in our
Bucklin-CCWM instance.

Table 2: Leveli scores in(C,V) for i ∈ {1,2} and the candidates inC

b c d p

score1 3K−1 3K−1 0 0
score2 3K−1 3K−1 4K−2 2K

We claim that(A,(a1,a2, . . . ,ak))∈ PARTITION if and only if p can be made the unique Bucklin
winner in(C,V ∪S).

From left to right: Assume that there is a subsetA′ ⊆A with ∑i∈A′ ai =K. The majority threshold
in (C,V ∪S) is ⌊(6K−2+2K)/2⌋+1= 4K. Let the votes of the manipulators be of the following form

• p> c> b> d for all manipulators with weightai for i ∈ A′, and

• p> b> c> d for the remaining manipulators.

For the first two levels, the scores of the candidates in(C,V ∪S) are given in Table3. It follows
that p is the unique level 2 Bucklin winner in(C,V ∪S).

From right to left: Assume that there are votes for the manipulators inSthat makep the unique
winner of (C,V ∪S). Without loss of generality, assume thatp is on the first position in all votes

Table 3: Leveli scores in(C,V ∪S) for i ∈ {1,2} and the candidates inC

b c d p

score1 3K−1 3K−1 0 2K
score2 4K−1 4K−1 4K−2 4K

9



in S. Note thatp cannot win the manipulated election on the first level, sop has to be the unique
level 2 winner withscore2(C,V∪S)(p) = 4K. This implies thatscore2(C,V∪S)(e) < 4K has to hold for
all e∈ {b,c,d}. Sinceai ≥ 2, candidated cannot be on the second position in any manipulator’s
vote. Thus, the manipulators’ votes can be only of the form(p > c > b > d), (p > c > d > b),
(p > b > c > d), or (p > b > d > c). The candidatesb and c have already 3K − 1 points on
the second level in(C,V), so they each cannot gain more thanK points on the second level from
the votes inS. Since all votes inS have eitherb or c on the second position, the weights of the
manipulators have to be of the form that a subsetA′ ⊆ A can be found such that those manipulators
with weightai , i ∈A′, have a total weight ofK and put one ofb andc (sayb) on the second position,
and the remaining manipulators (those with weightai for i 6∈ A′) put the other candidate,c, on the
second position and have a total weight ofK as well. Thus,(A,(a1,a2, . . . ,ak)) is a yes-instance of
PARTITION. ❑

We now turn to the desctructive variant of coalitional weighted manipulation and give a deter-
ministic polynomial-time algorithm for this problem in Bucklin voting.

Algorithm 2: Algorithm for Bucklin-DCWM
input : C set of candidates

V list of voters
WV weights of the voters
WS weights of the manipulators
p designated candidate

output: “YES” if (C,V,WV ,WS, p) ∈ Bucklin-DCWM
“NO” if (C,V,WV ,WS, p) /∈ Bucklin-DCWM

1 if ∑w∈WS
w> ∑w∈WV

w then
2 return “YES”;
3 foreach c∈C−{p} do
4 put p on the last position in the manipulators’ votes;
5 put c on the first position in the manipulators’ votes;
6 fill the remaining positions in the manipulators’ votes arbitrarily;
7 let Sbe the list of the manipulators’ votes
8 if (p not a unique winner of(C,V ∪S) with weights WV ∪WS) then
9 return “YES”;

10

11 return “NO”;

Before proving the runtime and correctness of the above algorithm, we state the following useful
lemma, which is easily seen to hold.

Lemma 3.8 Let (C,V) be a weighted Bucklin election with weights W and c, p ∈ C. Then the
following holds.

1. Assume that c is not a winner in(C,V) and that the votes in V are changed in a way such that
only the position of c is made worse. Then c is still not a winner.

10



2. Assume that c is a winner of the election and that the votes in V are changed in a way such
that only the position of c is improved. Then c remains a winner.

3. Assume that c is a winner of the election and that p is not a winner. If in some votes the
positions of candidates are swapped without changing the positions of c and p, then p is still
not a winner.

We now analyze Algorithm2 for Bucklin-DCWM.

Theorem 3.9 Algorithm2 has a runtime inO(m2(n+‖WS‖)) and decides Bucklin-DCWM.

Proof. We begin with analyzing the runtime. Obviously, the algorithm always terminates and the
input size is inO( m

︸︷︷︸

‖C‖

+ nm
︸︷︷︸

‖V‖

+ n
︸︷︷︸

‖WV‖

+‖WS‖+ 1
︸︷︷︸

‖p‖

) = O(nm+‖WS‖).

The most costly part of the algorithm is the for-loop. To construct the manipulators’ votes,
O(‖WS‖m) steps are needed. The winner-determination procedure for Bucklin can be implemented
with a runtime ofO(nm), so the if-statement in line 8 can be computed in timeO(m(n+ ‖WS‖).
Thus, the whole for-loop runs in timeO(m2(n+‖WS‖)).

To prove the correctnes of the algorithm, we show that it gives the output “YES” if and only if
(C,V,WV ,WS, p) ∈ Bucklin-DCWM.

From left to right: If the algorithm outputs “YES” in line 2 then we have∑w∈WS
w> ∑w∈WV

w,
i.e., the sum of the manipulators’ weights is greater than the sum of the weights of the nonmanip-
ulative voters. In this case, any of the candidatesc 6= p can be made the unique level 1 Bucklin
winner in(C,V ∪S) by puttingc on the first position in all the manipulators’ votes and filling the re-
maining positions arbitrarily. Hence,(C,V,WV ,WS, p) ∈ Bucklin-DCWM. If the algorithm outputs
“YES” in line 9, the manipulators’ votes have been constructed such thatp is not a unique winner
in (C,V ∪S). Thus, we have that(C,V,WV ,WS, p) is a yes-instance of Bucklin-DCWM.

From right to left: Assume that(C,V,WV ,WS, p) ∈ Bucklin-DCWM. If ∑w∈WS
w > ∑w∈WV

w,
then the algorithm correctly outputs “YES.” Otherwise, thefollowing holds: Since the given in-
stance is a yes-instance of Bucklin-DCWM, the votes of the manipulators inScan be set such that
p is not a winner of the election(C,V ∪S). We know from Lemma3.8that successively swappingp
with her neighbor untilp is on the last position in all votes inSdoes not change the fact thatp is not
a winner in(C,V∪S′) (whereS′ are the new manipulative votes withp on the last position). Assume
thatc∈C−{p} is a winner in(C,V ∪S). Then swap her position successively with her neighbor in
the votes inS′ until c is on the first position in all manipulative votes. LetS′′ denote the accordingly
changed list of manipulative votes. Again, from Lemma3.8we know thatc still wins in (C,V ∪S′′).
Let S′′′ be the list of manipulative votes that the algorithm constructs. We can transformS′′ into S′′′

by swapping the corresponding candidatesc′,c′′ ∈C−{c, p} accordingly. Since the positions ofc
andp remain unchanged, we have with Lemma3.8that p is still not a winner in(C,V ∪S′′′). Thus,
the algorithm outputs “YES” in line 9. ❑
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4 Bribery in Bucklin and Fallback Voting

4.1 Definition of Bribery Problems and Overview of Results

We begin with defining the standard bribery scenarios proposed by Faliszewski et al. [FHH09] (see
also [FHHR09]) that will be applied here to fallback and Bucklin elections. LetE be a given election
system.

E -CONSTRUCTIVE UNWEIGHTED BRIBERY (E -CUB)

Given: An E election(C,V), a designated candidatep, and a nonnegative integerk.
Question: Is it possible to makep the uniqueE winner by changing the votes of at mostk

voters?

This basic bribery scenario can be extended by either considering voters with different weights,
or allowing that each voter has a different price for changing her vote, or both. These three scenarios
are formally defined by the following problems:

E -CONSTRUCTIVE WEIGHTED BRIBERY (E -CWB)

Given: An E election (C,V) with each votervi ∈ V having a nonnegative integer
weightwi , a designated candidatep, and a positive integerk.

Question: Is it possible to makep the uniqueE winner by changing the votes of at mostk
voters?

E -CONSTRUCTIVE UNWEIGHTED PRICED BRIBERY (E -CUB-$)

Given: An E election(C,V) with each votervi ∈V having a nonnegative integer priceπi ,
1≤ i ≤ n, a designated candidatep, and a positive integerk.

Question: Is there a setB⊆ {1, . . . ,n} such that∑
i∈B

πi ≤ k and the votersvi with i ∈ B can

be bribed so thatp is the uniqueE winner in the resulting election?

E -CONSTRUCTIVE WEIGHTED PRICED BRIBERY (E -CWB-$)

Given: An E election(C,V) with each votervi ∈ V having nonnegative integer weight
wi and priceπi , 1≤ i ≤ n, a designated candidatep, and a positive integerk.

Question: Is there a setB⊆ {1, . . . ,n} such that∑
i∈B

πi ≤ k and the votersvi with i ∈ B can

be bribed so thatp is the uniqueE winner in the resulting election?

By changing the question in the above four problems to ask whether p can be prevented from
being a unique winner of the election by bribing some of the voters, we obtain the destructive
variants of these bribery scenarios, and we denote the corresponding problems byE -DUB, E -
DWB, E -DUB-$, andE -DWB-$. The problems related to the general bribery scenarios without
explicitly specifying the constructive or destructive case are denoted byE -UB, E -WB, E -UB-$,
andE -WB-$.

Table4 gives an overview of our complexity results for bribery in Bucklin and fallback voting.
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Table 4: Overview of results for bribery in Bucklin and fallback voting

Bucklin voting fallback voting
complexity reference complexity reference

E -CUB NP-complete Thm.4.1 NP-complete Thm.4.3
E -DUB P Cor.4.6 P Thm.4.7
E -CUB-$ NP-complete Cor.4.2 NP-complete Cor.4.4
E -DUB-$ P Thm.4.5 P Thm.4.7
E -CWB NP-complete Cor.4.2 NP-complete Cor.4.4
E -DWB P Thm.4.5 P Thm.4.7
E -CWB-$ NP-complete Cor.4.2 NP-complete Cor.4.4
E -DWB-$ NP-complete Thm.4.8 NP-complete Thm.4.9

4.2 Results for Bribery

We start with the constructive cases of the standard briberyscenarios.

Theorem 4.1 CUB is NP-complete for Bucklin voting.

Proof. Membership of Bucklin-CUB in NP is obvious. We show NP-hardness by a reduction
from EXACT COVER BY THREE-SETS (X3C): Given a setB = {b1,b2, . . . ,b3m}, m≥ 1, and a
collection S = {S1,S2, . . . ,Sn} of subsetsSi ⊆ B with ‖Si‖ = 3 for eachi, 1 ≤ i ≤ n, is there a
subcollectionS ′ ⊆ S such that each element ofB occurs in exactly one set inS ′? X3C is a
well-known NP-complete problem (see, e.g., [GJ79]).

Let (B,S ) be an instance of X3C withB= {b1,b2, . . . ,b3m} andS = {S1,S2, . . . ,Sn}. Without
loss of generality, we may assume thatn≥ 2m. We construct a Bucklin-CUB instance((C,V), p,k),
where(C,V) is a Bucklin election with the candidatesC= B∪{c,d}∪G∪{p}, p is the designated
candidate, andk = m. G is a set of “padding candidates,” which are used to ensure that certain
candidates do not gain points up to a certain level. Padding candidates are positioned in the votes
such that, up to a certain level, they do not gain enough points (e.g., at most one) to be relevant for
the central argumentation of the proof. Thus, their scores are not listed in tables giving the scores
of the relevant candidates.

For everyb j ∈ B, defineℓ j to be the number of setsSi ∈ S candidateb j is contained in.V
consists of the following 2n voters (i.e., a strict majority is reached withn+1 votes):

• The first voter group consists ofn voters. For eachi, 1≤ i ≤ n, we have one voter of the form

c> d > Si > G1 > {C− ({c,d}∪Si ∪G1)},

whereG1 ⊆ G is a set of 3m−3 padding candidates. When a setX of candidates is giving in
such a ranking, the order of the candidates fromX can be fixed arbitrarily in this ranking.

• The second voter group consists ofn voters as well. We will present the preferences level by
level from the first to the(3m+2)nd position in Table5.

Note that the padding candidates inG are positioned in the votes such that everygk ∈ G gains at
most one point up to level 3m+2. Table6(a)shows the scores of the relevant candidates in(C,V)
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Table 5: Construction of Bucklin election(C,V) in the proof of Theorem4.1

position # voters candidate

1
m c
m d

n−2m gk

2
n+1− ℓ1 b1

ℓ1−1 from G2

3
n+1− ℓ2 b2

ℓ2−1 from G2

...
...

...

3m+1
n+1− ℓ3n b3m

ℓ3n−1 from G2

3m+2
n−m+1 p

m−1 from G2

Table 6: Leveli scores fori ∈ {1,2,3m,3m+1,3m+2} and the candidates inC−G

(a) Original election(C,V)

bi ∈ B c d p

score1 0 n+m m 0
score2 ≤ n+1 n+m m+n 0
score3m ≤ n+1 n+m m+n 0
score3m+1 ≤ n+1 n+m m+n 0
score3m+2 n+1 n+m m+n n−m+1

(b) Modified election(C,V ′)

bi ∈ B c d p

score1 0 n m m
score2 ≤ n n n m
score3m ≤ n n n m
score3m+1 ≤ n n n m
score3m+2 ≤ n n n n+1

(namely,c, d, p, and eachb j ∈ B) for the relevant levels (namely, 1, 2, 3m, 3m+1, and 3m+2) and,
in particular, thatc is the unique level 1 Bucklin winner in(C,V).

We claim thatS has an exact coverS ′ for B if and only if p can be made the unique Bucklin
winner by changing at mostmvotes inV.

From left to right: LetS ′ be an exact cover forB and letI ⊆ {1, . . . ,n} be the set of indices of
them elements inS ′. To makep the unique Bucklin winner, we only have to change votes in the
first voter group: For eachi ∈ I , change the corresponding vote

c> d > Si > G1 > {C− ({c,d}∪Si ∪G1)}

to
p> G1 > g′1 > g′2 > g′3 > g′4 > {C− ({g′1,g

′
2,g

′
3,g

′
4, p}∪G1)},

where eachg′j , 1≤ j ≤ 4, is fromG but not inG1.
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With these new votes,c andd both losempoints on the first two levels from the first voter group
andp gainsm points on the first level. Every candidatebi ∈ B loses exactly one point on one of the
levels 3, 4, or 5. The scores in the resulting election(C,V ′) are shown in Table6(b). As one can
see,p is the first candidate to reach a strict majority ofn+1 votes (namely, on level 3m+2) and is
thus the unique level 3m+2 Bucklin winner in the new election.

From right to left: Assume thatp is the unique Bucklin winner of the election(C,V ′), where
V ′ is the new voter list containing them changed votes. Since onlym votes can be changed and
p did not score any points prior to level 3m+2 in the original election,p has to be a level 3m+2
Bucklin winner in(C,V ′). Candidatesc andd originally reach the majority threshold already on,
respectively, the first and the second level, so all votes that can be changed must placec andd on
the first two positions. The only votes doing so are those in the first voter group. Finally, to prevent
the candidates inB from reaching a strict majority on level 3m+2, each of the 3m candidates has
to lose at least one point by changing at mostm votes. This, again, can only be done by changing
votes from the first voter group and there has to be an exact cover S ′ for B whose corresponding
voters from the first voter group have to be changed. ❑

The following corollary follows immediately from Theorem4.1.

Corollary 4.2 In Bucklin elections,CWB, CUB-$, andCWB-$ are NP-complete.

Based on the corresponding proof for approval voting that isdue to Faliszewski et al. [FHH09],
we can show NP-completeness for unweighted bribery in fallback elections as well.

Theorem 4.3 CUB is NP-complete for fallback voting.

Proof. Fallback-CUB obviously is in NP. To show NP-hardness, we give a reduction from X3C.
Let (B,S ) be an instance of X3C withB= {b1,b2, . . . ,b3m} andS = {S1,S2, . . . ,Sn}. We define
the fallback election(C,V) with the candidate setC = B∪E ∪ {p}, where p is the designated
candidate andE is a set ofn+m padding candidates. For everyj ∈ {1, . . . ,3m}, we defineℓ j as
the number of subsetsSi ∈ S candidateb j ∈ B is contained in. Using this notation, we define the
subsetsBi = {b j ∈ B | i ≤ n− ℓ j} for i ∈ {1, . . . ,n}. V consists of the 4n voters whose preferences
are given in Table7.

Table 7: Construction of fallback election(C,V) in the proof of Theorem4.3

# For each. . . number of votes ranking of candidates

1 i ∈ {1, . . . ,n} 1 Si | (B−Si)∪E∪{p}
2 i ∈ {1, . . . ,n} 1 Bi | (B−Bi)∪E∪{p}
3 n−m p | B∪E
4 ℓ ∈ {1, . . . ,n+m} 1 eℓ | B∪ (E−{eℓ}∪{p}

In this election, we have thatscore(p) = n−m, score(b j) = n for all j ∈ {1, . . . ,3m}, and
score(eℓ) = 1 for all ℓ ∈ {1, . . . ,n+m}. Since no candidate reaches a strict majority (at least 2n+1
points), all candidatesb j ∈ B are fallback winners of this election.
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We claim thatS has an exact coverS ′ for B if and only if p can be made the unique fallback
winner by bribing at mostmvoters.

From left to right: Suppose thatS has an exact coverS ′ for B. We change the vote of those
voters in the first voter group whereSi ∈S ′ from Si | (B−Si)∪E∪{p} to p | B∪E. In the resulting
election(C,V ′) only the scores of the candidates inB and the score ofp change:p gainsm points,
whereas eachb j ∈ B loses exactly one point. Thus, with an overall score ofn, candidatep is the
unique fallback winner of the resulting election.

From right to left: Suppose thatp can be made the unique fallback winner by changing at most
mvotes inV. That means thatp can gain at mostmpoints, so the maximum overall score thatp can
reach isn. Since eachb j ∈ B has an overall score ofn, every candidate inB has to lose at least one
point by changing at mostm votes (otherwise, there would be at least one candidate inB that ties
with p). This is possible only if inm votes of the first voter group the candidates inSi are removed
from the approval strategy such that thesemsetsSi form an exact cover forB. ❑

This result immediately implies NP-hardness for the remaining constructive bribery scenarios
in fallback elections as well.

Corollary 4.4 In fallback elections,CWB, CUB-$, andCWB-$ are NP-complete.

We now turn to the destructive cases. The following result generalizes a result due to Xia [Xia12]
who showed that DUB is in P for simplified Bucklin voting.

Theorem 4.5 In Bucklin elections,DWB and DUB-$ are inP.

Proof. Both problems, Bucklin-DWB and Bucklin-DUB-$, can be solved by deterministic
polynomial-time algorithms that use Algorithm2, which was designed in Section3 to solve the de-
structive coalitional weighted manipulation problem for Bucklin elections, Bucklin-DCWM. The
main difference between a bribery and a manipulation instance is that in the latter only the prefer-
ences of the manipulators have to be found, whereas in the former both the votes that will be bribed
and the new preferences for these voters have to be found. If we have the set of votes we want to
change, we can use the algorithm for the manipulation problem to construct the preferences. Thus,
for the runtime of the algorithm the determination of these voter sets is crucial, and we show that in
Bucklin elections the number of voter sets whose modification might actually lead to a successful
bribery is bounded by a polynomial in both the number of voters and the number of candidates.

Consider Algorithm3 and a given input(C,V,WV , p,k) to it. In particular,p is the designated
candidate that we want to prevent from winning and assume that we have a yes-instance, i.e., our
bribery action is successful. We denote by(C,V ′′) the election resulting from(C,V) where thek
votes that can be changed have already been changed. Then there is a candidatec∈ C−{p} that
reaches a strict majority on leveli, and it holds thatscorei(C,V ′′)(c) ≥ scorei(C,V ′′)(p), which means
that p is not a unique winner in(C,V ′′). To reach that, for eachi < m, there are only five types of
preferences that might have been changed inV, and they can be grouped into the following subsets
Ti, j ⊆V, 1≤ j ≤ 5:

Ti,1: p is among the topi −1 position andc is among the topi positions (when changing:p loses
points,c does neither lose nor win points up to leveli).
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Ti,2: p is among the topi − 1 position andc is not among the topi positions (when changing:p
loses points,c wins points up to leveli).

Ti,3: p is on positioni andc is among the topi positions (when changing:p loses points,c does
neither lose nor win points up to leveli).

Ti,4: p is on positioni andc is not among the topi positions (when changing:p loses points,c wins
points up to leveli).

Ti,5: both p andc are not among the topi positions (when changing:p does neither lose nor win
points,c wins points up to leveli).

For a sublist of votersV ′ ⊆V, denote their total weight byW′
V . Algorithm 3 for Bucklin-DWB

works as follows.

Algorithm 3: Algorithm for Bucklin-DWB
input : C set of candidates

V list of voters
WV list of weights of voters
k number of votes that may be changed
p designated candidate

output: “YES” if (C,V,WV ,k, p) ∈ Bucklin-DWB
“NO” if (C,V,WV ,k, p) /∈ Bucklin-DWB

1 let A= {(a1,a2, . . . ,a5) |ai ∈ {0,1, . . . ,k}}, V ′ = /0;
2 foreachc∈C−{p} do
3 foreach i < m do
4 foreach(a1,a2, . . . ,a5) ∈ A do
5 if ∑5

ℓ=1aℓ ≤ k then
6 foreach j ∈ {1,2, . . . ,5} do
7 add thea j heaviest votes inTi, j to V ′;

8 run Algorithm2 on input(C,V −V′,WV−V′ ,WV ′ , p);
9 if Bucklin-DCWM(C,V −V′,WV−V′ ,WV′ , p)= “YES” then

10 return “YES”;
11

12

13 return “NO”;

It is easy to see that Algorithm3 runs in deterministic polynomial time: the two outer for-loops
iterate up tom times, whereas the inner loop tests up tok5 variations of the vector(a1,a2, . . . ,a5).
Sincek≤ n, we have that the number of executions of Algorithm2 is in O(m2n5).

For the proof of correctnes, we show that given a bribery instance(C,V,WV ,k, p), the output of
Algorithm 3 is “YES” if and only if (C,V,WV ,k, p) ∈ Bucklin-DWB.

From left to right: If the algorithm returns “YES” in line 10,then Algorithm2 could find a
successful destructive manipulation regardingp for k manipulators with total weightWV ′ . So p is
not a unique Bucklin winner in the election(C,V ′′), whereV ′′ is the list of voters withk changed
votes. That means that(C,V,WV ,k, p) ∈ Bucklin-DWB.
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From right to left: Assume that(C,V,WV ,k, p) ∈ Bucklin-DWB. Thus, there exists a set of
k votersV ′ with total weightWV ′ such that changing these votes preventsp from being a unique
Bucklin winner in(C,V ′′), whereV ′′ is the new voter list containing thek changed votes. We want to
show that such aV ′′ can always be transformed to the list of votesV ′ that is changed in Algorithm3.
From our assumptions it follows that we have a candidatec∈C−{p} and a leveli < msuch thatc
is a leveli Bucklin winner that preventsp from being a unique winner.

Assume that inV ′′ are voters whose preferences were not in one of theTi before the changes
were made, i.e., votes were changed that not necessarily needed to be changed to preventp from
being the only winner. Undo these changes and change the samenumber of votes in the listsTi that
were not changed before. We then have that all changed votes are in one of theTi.

Since Bucklin is monotonic, we can always exchange votes with higher weight with votes of
lower weight (in oneTi) without risking thatp would win due to this exchange. So we know that
we can transform any given list of bribed votes to a list that the algorithm would construct and this
would still preventp from winning alone. So if there is a list ofk voters that can be successfully
bribed to preventp from being the unique winner, the algorithm will find it.

For the Bucklin-DUB-$ problem the same algorithm can be used. The only difference is that
all weights have to be set to one, the cheapest instead of the heaviest votes (i.e., those votes with the
least price instead of the greatest weight) are added toV ′ in line 7, and it has to be tested whether
the sum of the chosen votes does not exceed the budget. ❑

From Theorem4.5we have the following corollary.

Corollary 4.6 In Bucklin elections,DUB is in P.

This algorithm can be easily adapted for fallback elections. Due to the fact that in fallback
elections the voters do not have to rank all candidates, it ispossible that a candidate wins on levelm.
So by making the following changes in Algorithm2:

• change “i < m” in line 3 to “i ≤ m,”

• use the fallback analogue of Algorithm2 in line 8,4 and

• change “Bucklin-DCWM” in line 9 to “Fallback-DCWM,”

we can decide DWB for fallback elections as well.

Theorem 4.7 In fallback elections,DWB, DUB, andDUB-$ are in P.

It remains to show the complexity of the destructive variantof priced bribery in weighted Buck-
lin and fallback elections. We begin with showing NP-hardness of this problem for Bucklin voting.

Theorem 4.8 Bucklin-DWB-$ is NP-complete.

4In Section3.3, we refrained from explicitly stating the algorithm for fallback-DCWM that is based on the following
simple idea: For every candidatec 6= p, try to makec win by setting the manipulators’ votes toc | C−{c}. If such a
candidate can be found,p has been successfully prevented from being the unique winner of the election; otherwise, it is
impossible to do so.
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Proof. That Bucklin-DWB-$ is in NP is again easy to see. We show NP-hardness by a reduction
from PARTITION. Let (A,(a1, . . . ,ak)) with A = {1, . . . ,k} and ∑k

i=1ai = 2K be an instance of
PARTITION. We construct the following Bucklin election(C,V) with C = {c, p} andk votes inV:
For eachi ∈ {1, . . . ,k}, we have one voter with weightwi = ai , priceπi = ai , and preferencep> c.

The total weight in(C,V) is 2K. Let K be the budget that may not be exceeded and letp be the
designated candidate. Obviously,p is the unique level 1 Bucklin winner in(C,V).

We claim that(A,(a1, . . . ,ak)) ∈ PARTITION if and only if p can be prevented from being the
unique Bucklin winner by changing votes inV without exceeding the budgetK.

From left to right: Let(A,(a1, . . . ,ak))∈ PARTITION with A′ ⊆A such that∑i∈A′ ai =K. Change
the votes of those voters withwi = ai for i ∈ A′ from p> c to c> p. With these changes we have
that on the first level, bothp andc have exactlyK points, so no strict majority. On the second level,
both candidates have 2K points and thus are both level 2-Bucklin winners. Hence,p is not a unique
Bucklin winner in the bribed election.

From right to left: Assume thatp is not a unique Bucklin winner in the bribed election. Since
there are only two levels, eitherc is the unique level 1 winner, orp andc both win on the second
level. The price and weight of every voter is the same, so voters with a total weight ofK can
be changed. Candidatec has 0 points in the original election, so it is not possible tomakec a
unique level 1 winner without exceeding the budgetK. To preventp from remaining the unique
winner on the first level, the budget has to be fully exhaustedand votes with a total weight ofK
must be changed fromp > c to c > p. Thus, there is a subsetA′ ⊆ A such that∑i∈A′ ai = K, so
(A,(a1, . . . ,ak)) ∈ PARTITION. ❑

Theorem4.9states the corresponding result for fallback voting using asimilar proof idea.

Theorem 4.9 Fallback-DWB-$ is NP-complete.

Proof. Obviously, fallback-DWB-$ is in NP. NP-hardness is shown bya reduction from PAR-
TITION. To this end, let(A,(a1, . . . ,ak)) with A = {1, . . . ,k} and∑k

i=1ai = 2K be an instance of
PARTITION. We construct a fallback election(C,V) with the candidate setC = {c, p} and the des-
ignated candidatep. Let V consist ofk votersv1, . . . ,vk, each having preferencep | {c}, weight
wi = ai , and priceπi = ai . The total weight in(C,V) is 2K and p is the unique fallback winner in
this election. Let the briber’s budget beK.

We claim that(A,(a1, . . . ,ak)) ∈ PARTITION if and only if p can be prevented from being the
unique fallback winner by changing votes inV without exceeding the budgetK.

From left to right: Assume that there is a setA′ ⊆ A such that∑i∈A′ ai = K. We change the votes
of each votervi with i ∈ A′ from p | {c} to c | {p}. Then both candidates,p andc, have an overall
score ofK and are both fallback winners of the resulting election.

From right to left: Assume thatp can be prevented from being the unique fallback winner by
changing votes inV without exceeding the budgetK. This is possible only if candidatec at least
ties with p after the changes in the votes have been made. Since each voter’s weight and price are
the same,c can gain at mostK points without exceeding the budgetK. To preventp from being the
unique fallback winner,c has to gain at leastK points, so together with the budget restrictionc has
to gain exactlyK points. Thus, there has to be a setA′ ⊆ A such that∑i∈A′ ai = K. ❑
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5 Campaign Management

In the discussion so far, we have focused on bribery and manipulation as means of attacking Bucklin
and fallback elections. However, it is also quite natural toconsider bribery scenarios through the
lenses of running a political campaign. After all, in a successful campaign, the candidates spend
their effort (measured in terms of time, in terms of financialcost of organizing promotional activi-
ties, and even in terms of the difficulty of convincing particular voters) to change the minds of the
voters. Thus, formally, a campaign preceding an election can be seen as exchanging some resources
for voters’ support. Formally, this idea is very close to bribery (indeed, this view of campaign
management was first presented in a paper whose focus was on a bribery problem [EFS09]).

5.1 Definitions and Overview of Results

We start by discussing one of the most general campaign management problems, namely the SWAP

BRIBERY problem introduced by Elkind et al. [EFS09]. This problem models a situation where a
campaign manager, who is interested in the victory of a givencandidatep, can organize meetings
with specific voters (the unweighted variant of the problem)or with groups of like-minded voters
(the weighted variant) and convince them to change their preference orders. However, the difficulty
(or, as we will say from now on, the cost) of changing the voters’ preference orders depends both
on the voter and on the extent of the change (for example, it might be expensive to swap a voter’s
most preferred candidate with this voter’s least preferredone, but it might be very cheap to swap
the voter’s two least preferred candidates). Formally, Elkind et al. [EFS09] define so-calledswap-
bribery price functionsthat for each voter and for each pair of candidates give the cost of swapping
these two candidates in the voter’s preference order (provided the candidates are adjacent in this
order).

Definition 5.1 (Elkind et al. [EFS09]) A swap-bribery price functionfor voter vi is a functionπi :
C×C → N that specifies for any ordered pair(ci ,c j) of candidates the price for changing vi ’s
preference order from· · · > ci > c j > · · · to · · · > c j > ci > · · · . Only candidates that are adjacent
in a vote can be swapped.

In theE -CONSTRUCTIVE SWAP BRIBERY problem we ask if there exists a sequence of swaps of
adjacent candidates that lead to a given candidate being a winner (note that the swaps are performed
in sequence; even if some candidates are not adjacent at first, they may become adjacent in the
course of performing the swaps and, then, can be swapped themselves).5

E -CONSTRUCTIVE UNWEIGHTED SWAP BRIBERY (E -CUSB)

Given: An E -election(C,V), whereV = (v1, . . . ,vn), a designated candidatep, a list
(π1, . . . ,πn) of swap bribery price functions, and a nonnegative integerk.

Question: Canp be made the uniqueE winner of an election resulting from the input elec-
tion by conducting a sequence of swaps of adjacent candidates in the voters’
ballots such that the total cost of the swaps does not exceed the budgetk?

5We mention that Elkind et al. [EFS09] defined the problem for the nonunique-winner model. Here weadopt the
unique-winner model to stay in sync with the rest of the paper. However, it will be easy to see that all the results from
this section hold in the nonunique-winner model as well.
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We define the weighted variant of the problem,E -CWSB, in the standard way (as far as we can
tell, the weighted variant of the problem has not been studied before). However, it will soon become
clear why the weighted variant is not particularly interesting and so we omit the easy modification
of the definition. We also define the destructive variants of the swap bribery problems (E -DUSB-$
andE -DWSB-$) in the usual way, by changing the question to ask whetherp can be prevented from
being a unique winner.

Swap bribery is a very difficult problem—it is NP-complete for almost all natural voting rules
(and, in particular, in the next section we will see a very strong hardness result for the Bucklin
and fallback rules). Thus Elkind et al. [EFS09] defined its much-simplified variant, shift-bribery,
where every swap has to involve the designated candidatep (that is, the designated candidate can be
“shifted” forward in selected votes). The complexity of this problem was studied for a number of
voting rules [EFS09, EF10a, DS12], including Bucklin and fallback voting [SFE11]. Interestingly,
even though we will see strong hardness results for swap bribery under Bucklin and fallback, shift
bribery for these rules is in P.

The definitions of swap bribery and shift bribery are very natural for voting rules where each
voter ranks all the candidates; for the case of fallback, where the ballots consist of the approved
part (where the candidates are ranked) and of the disapproved part (where the candidates are not
ranked), we need to extend the definitions. In our approach, we define swap bribery under fallback
to allow the swaps within the approved parts of the votes only. Naturally, one could also define costs
for including given disapproved candidates in the approvedpart and, indeed, Elkind et al. [EFS09]
did so for SP-AV (SP-AV is a variant of the approval system).6 However, following Schlotter
et al. [SFE11], we believe that it is more informative to study the complexity of modifying the
rankings within the approved parts and the complexity of modifying the sets of approved candidates
separately.

Regarding the latter type of problems, Schlotter et al. [SFE11] defined the support bribery prob-
lem for the fallback rule (and other hybrid rules), where each voter has a complete preference order
over the whole set of candidates, but also has an approval threshold, a number of top candidates
that this voter approves of. For each voter we have a price function that gives the cost of increas-
ing/decreasing the approval threshold; the goal is to change the voters’ approval thresholds in such
a way as to ensure the victory of a given candidate. Schlotteret al. [SFE11] show that this problem
is NP-complete for fallback.7 However, in our model the disapproved candidates are not ranked
and, thus, it is much more natural to study the extension bribery problem introduced by Baumeister
et al. [BFLR12]. The idea of extension bribery is to capture very non-invasive campaign actions,
where we try to convince some voters to include the designated candidate at the end of the ranking
of approved candidates.

Definition 5.2 (Baumeister et al. [BFLR12]) Theextension bribery price functionδi : N → N of
a voter vi defines the price for extending the approved part of vi ’s vote with a given number of

6Like fallback voting, SP-AV is a hybrid variant of approval voting. It has been introduced by Brams and San-
ver [BS06] and slightly modified by Erdélyi et al. [ENR09] to cope with certain control actions (see also the chapter by
Baumeister et al. [BEH+10] for a through discussion of this voting system).

7They also show that the problem is hard in the sense of parametrized complexity for two natural parameters describing
the extent of change to the approval thresholds. Interestingly, they show the problem to be fixed-parameter tractable if
the thresholds can either only increase or only decrease.
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Table 8: Overview of results for swap bribery and extension bribery in Bucklin and fallback voting

Bucklin voting fallback voting
complexity reference complexity reference

E -CUSB NP-complete Thm.5.4 NP-complete Cor.5.5
E -DUSB NP-complete Cor.5.5 NP-complete Cor.5.5
E -CWSB NP-complete Thm.5.3 NP-complete Thm.5.3
E -DWSB NP-complete Thm.5.3 NP-complete Thm.5.3
E -CUEB – P Thm.5.8
E -DUEB – P Thm.5.8
E -CWEB – NP-complete Thm.5.7
E -DWEB – NP-complete Thm.5.7

so-far-disapproved candidates (these new candidates are ranked below the previously-approved
candidates, but among themselves are ranked as the briber requests).

We define the following related problem.

FV-CONSTRUCTIVE UNWEIGHTED EXTENSION BRIBERY (FV-CUEB)

Given: A fallback election(C,V), whereV = (v1, . . . ,vn), a designated candidatep, a
list (δ1, . . . ,δn) of extension bribery price functions, and a nonnegative integerk.

Question: Can p be made the unique fallback winner by extending the approvedparts of
the the voters’ ballots without exceeding the budgetk?

Again, the weighted variant (E -CWEB) is defined in the natural way and so are the destructive
variants (E -DUEB andE -DWEB).

Table8 summarizes the results of this section.

5.2 Results for Swap Bribery

We start by quickly observing that weighted swap bribery is NP-complete for both Bucklin and
fallback rules.

Theorem 5.3 BV-CWSB, BV-DWSB, FV-CWSB, andFV-DWSB are NP-complete.

Proof. The proof for Bucklin is a direct consequence of the fact thatCWB-$ is NP-complete for
plurality, even for just two candidates [FHH09] (the result holds both for the uniqe-winner case and
for the nonunique-winner case). For two candidates, the Bucklin rule is identical to the plurality rule.
Further, for two candidates CWB-$ is, in essence, identicalto CWSB (the only possible bribery is to
swap the only two candidates), and the nonunique-winner variant of CWB-$ is, in essence, identical
to DWSB.

For fallback, membership of the problems in NP is clear, and NP-hardness follows by the
same arguments as for Bucklin, by considering the setting where every voter approves of all candi-
dates. ❑
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For the unweighted case, NP-completeness of BV-CUSB follows immediately from the fact
that the possible winner problem for Bucklin is NP-complete(see the papers of Konczak and
Lang [KL05], for the definition of the possible winner problem, and of Xia and Conitzer [XC11],
for the result regarding Bucklin) and the fact that, for a given voting rule, the possible winner prob-
lem reduces to the swap bribery problem [EFS09]. However, on the one hand, the hardness of the
possible winner problem was established for the simplified variant of Bucklin’s rule only, and on
the other hand, we can show that BV-CUSB is NP-complete even for elections with just two voters.

Theorem 5.4 BV-CUSB is NP-complete, even for elections with two voters.

Proof. It is easy to see that BV-CUSB is in NP. We show NP-hardness by areduction from
the following problem (which we will refer to as SINGLE-VOTE SWAP BRIBERY): Given a vote
v (expressed as a preference order over some candidate setC), a swap-bribery price functionπ
for v, a designated candidatep ∈ C, and two nonnegative integersℓ andk, is there a sequence of
swaps of adjacent candidates, of total cost at mostk, that ensures thatp is ranked among the topℓ
positions inv. (Elkind et al. [EFS09] studied this problem as a variant of the swap bribery problem
for k-approval elections, wherek is part of the input and the election consists of a single vote; they
established NP-completeness of the problem in their Theorem 6.)

Let I = (C,v,π, p, ℓ,k) be an instance of SINGLE-VOTE SWAP BRIBERY. We form a Bucklin
electionE = (A,V) as follows. LetC′ be a collection of some‖C‖−1 dummy candidates. We set
A=C∪C′∪{d}. We partitionC′ into two sets,C′

1 andC′
2, such that‖C′

1‖= ℓ and‖C′
2‖= ‖C′‖− ℓ.

(We pick any easily computable partition.) We letV be a collection of two voters,v1 andv2, with
price functionsπ1 andπ2:

1. v1 has preference orderd > v>C′ (i.e.,v1 ranksd on the top position, then all the candidates
from C in the same order asv, and then all the candidates fromC′, in some arbitrary-but-
easy-to-compute order). For each two candidatesx,y∈ A, if both x andy are inC then we set
π1(x,y) = π(x,y), and otherwise we setπ1(x,y) = k+1.

2. v2 has preference orderp>C′
1 > d >C′

2 >C−{p} (that is,v2 ranksp first, thenℓ candidates
fromC′

1 followed byd, followed by the remaining candidates fromC′, and, then, followed by
the candidates fromC−{p}). For each two candidatesx,y∈ A, we setπ2(x,y) = k+1.

Note that in our electionmaj(V) = 2 and, ifp is not among the topℓ positions withinv, d is a winner
with Bucklin scoreℓ+ 2 (we cannot say thatd is the unique winner because we do not know on
what positionp is ranked inv). We claim thatp can become a unique Bucklin winner of electionE
through a swap bribery of cost at mostk if and only if I is a yes-instance of SINGLE-VOTE SWAP

BRIBERY.
Assume thatI is a yes-instance of SINGLE-VOTE SWAP BRIBERY. This means that there is a

sequence of swaps withinv after whichp is ranked among the topℓ positions inv. Applying the
same swaps tov1 would cost the same and would putp among topℓ+1 positions inv1, makingp
the unique Bucklin winner.

On the other hand, assume that there is a cost-at-most-k sequence of swaps withinV that make
p a unique Bucklin winner. Since any swap that is not in thev part of v1 costsk+ 1, we have
that d’s Bucklin score is stillℓ+ 2, and, thus, after the swaps,p’s Bucklin score is in{2, . . . , ℓ+
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1}. Executing the same swaps withinv shows thatI is a yes-instance of SINGLE-VOTE SWAP

BRIBERY. ❑

To establish that BV-DUSB also is NP-complete for the case oftwo voters, it suffices to use
the same construction as above, with the exception that now (a)d is the designated candidate whose
victory we want to preclude, and (b)v2 ranksd on positionℓ+1 (and notℓ+2). Analogous results
for the fallback rule follow immediately.

Corollary 5.5 BV-DUSB, FV-CUSB, andFV-DUSB areNP-complete even for the cases of two
voters.

5.3 Results for Extension Bribery

Let us now move on to the study of extension bribery. The following observation will simplify our
discussion.

Observation 5.6 In (constructive) extension bribery problems for the fallback rule it is never prof-
itable to extend any vote in any other way than by asking the voter to include the designated candi-
date on the last unranked position.

Thus we will often specify the extension bribery price functions by simply giving the cost of ex-
tending the vote by just one candidate (we will refer to this number asextension costof the vote).

Not surprisingly, the weighted variants of extension bribery are NP-complete.

Theorem 5.7 BothFV-CWEB andFV-DWEB areNP-complete.

Proof. Obviously, FV-CWEB is in NP. To show NP-hardness, we use a reduction from PAR-
TITION. Let ({1, . . . ,k},(a1, . . . ,ak)) be an instance of PARTITION. We define a fallback election
(C,V) with the candidate setC = {b,c, p}, the designated candidatep, andV consisting of the
following k+2 voters:

1. There is one voterv0 with the ballotp | {b,c}, with weightK+1 and extension costK+1.

2. For eachi,1≤ i ≤ k, there is a votervi who casts the ballotc | {b, p}, has weightwi = ai , and
has extension costai .

3. There is one votervk+1 who casts the ballotb | {c, p} with weight 2K and extension cost
K +1.

The total sum of the voter’s weights in this election is 5K +1, somaj(V) > 2K. The weighted
scores of the candidates in(C,V) are shown in Table9(a). Both c andb are fallback winners in
(C,V) and they win by approval, thusp is not a (unique) fallback winner in(C,V).

We claim that there is a setA′ ⊆ A= {1, . . . ,k} such that∑i∈A′ ai = ∑i 6∈A′ ai = K if and only if p
can be made the unique fallback winner by extension-bribingsome of the voters without exceeding
the budgetK.

From left to right: Suppose that there is a setA′ ⊆ A such that∑i∈A′ ai = ∑i 6∈A′ ai = K. Change
the votes of those votersvi with i ∈ A′ from c | {b, p} to c> p | {b}. Each of these changes costsai ,
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Table 9: Scores in the election constructed in the proof of Theorem5.7

(a) Total scores in(C,V)

b c p

score1 2K 2K K+1

(b) Total scores in(C,V ′)

b c p

score1 2K 2K K+1
score2 2K 2K 2K +1

so the total cost isK. The candidates’ scores in the resulting election(C,V ′) are shown in Table9(b).
We see thatp is the unique fallback winner in the bribed election.

From right to left: Suppose thatp is the unique fallback winner in the election(C,V ′), whereV ′

is the changed voter set and the corresponding changes cost at mostK. Hence, the only changes that
can be made (and that follow Observation5.6) are adding the candidatep to the approval strategies
of some of the votersv1, . . . ,vk. The scores of the candidatesb andc cannot be decreased, sop has
to gainK points to have strictly more points thanb andc. Thus, there exists a setA′ ⊆ A such that
∑i∈A′ ai = ∑i 6∈A′ ai = K andp has to be added to the approval strategies of those votersvi with i ∈ A′.

The destructive case can be proven by changing the role of candidatesp andc and changing the
weights of bothv0 andvk+1 to K. ❑

On the other hand, the unweighted variant of the problem is inP. This is a nice complement
to the hardness results of Schlotter et al. [SFE11] regarding support bribery. The main difference
regarding support bribery and extension bribery is that under the former we assume the voters to
rank all the candidates but declare as approved only some of their top candidates, whereas in the
latter (and, in general, in our model) we assume the voters torank only the approved candidates and
completely disregard the disapproved candidates.

Algorithm 4: Algorithm for Bucklin-CUEB
input : C set of candidates

V list of voters
∆ = (δ1, . . . ,δn) list of extension bribery price functions
k budget
p designated candidate

output: “YES” if (C,V,∆,k, p) ∈ fallback-CUEB
“NO” if (C,V,∆,k, p) /∈ fallback-CUEB

1 foreachs∈ {1, . . . ,‖C‖} do
2 let (v′1, . . . ,v

′
r) be a sublist ofV containing votes that approve at mosts−1 candidates and do not

approvec, sorted by extension costs in ascending order;
3 foreacht ∈ {0, . . . , r} do
4 if changing v′1, . . .v

′
t to approve p makes p the unique winnerthen

5 if the sum of extension costs of v′
1, . . . ,v

′
t is less thank kthen

6 return “YES”;
7

8

9 return “NO”;
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Theorem 5.8 FV-CUEB and FV-DUEB are in P.

Proof. Let us consider FV-CUEB first. We claim that Algorithm4 solves the problem in poly-
nomial time. The algorithm considers each rounds in which p could possibly become the unique
winner and tries the cheapest bribery that might achieve it.The algorithm clearly runs in polynomial
time and its correctness follows by Observation5.6.

It is clear how to adapt Algorithm4 to the case of nonunique winners. Then, to solve the
destructive variant of the problem it suffices to check if anycandidate other thanp can be made a
nonunique winner within the budget. ❑
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