arXiv:1307.7322v1 [cs.GT] 28 Jul 2013

Complexity of Manipulation, Bribery, and Campaign
Management in Bucklin and Fallback Voting

Piotr Faliszewski Yannick Reisch, Jorg Rothe, and Lena Schend
AGH University Heinrich-Heine-Universitat Dusseldorf
Krakow, Poland Dusseldorf, Germany
July 27, 2013
Abstract

A central theme in computational social choice is to stu@yektent to which voting systems
computationally resist manipulative attacks seeking tilmé@mce the outcome of elections, such
as manipulation (i.e., strategic voting), control, andbry. Bucklin and fallback voting are
among the voting systems with the broadest resistance Nizhardness) to control attacks.
However, only little is known about their behavior regaglmanipulation and bribery attacks.
We comprehensively investigate the computational rasigtaf Bucklin and fallback voting for
many of the common manipulation and bribery scenarios; @ @dmplement our discussion
by considering several campaign management problems fckliBiand fallback.

1 Introduction

A central theme in computational social choice (see, éng.bbokchapter by Brandt et dBCE13)
is to study the extent to which voting systems computatlgnakist manipulative attacks that seek
to influence the outcome of elections, such as manipulatien, &trategic voting), control, and
bribery. Inmanipulation(introduced by Bartholdi et alBTT89, BO91] and, more generally, by
Conitzer et al. CSL0O7; see, e.qg., the survey by Faliszewski and ProcadeRll), voters try
to do so by casting insincere votes. dantrol (introduced by Bartholdi et alBTT92], see also
Hemaspaandra et aHHRO7]), an election chair tries to influence the election outctayehanging
the structure of the election via adding/deleting/pamiing either candidates or voters. bribery
(introduced by FaliszewskiFHHO09), an external agent tries to influence the election outcome
by bribing certain voters without exceeding some given ktd&ince these types of influence are
often possible in principle for many voting systems, it hestbstudied to what extent computational
hardness can provide some kind of protection.

Bucklin and fallback voting BS09 are among the voting systems with the broadest resis-
tance (i.e., NP-hardné9sto control attacks (see the work of Erdélyi et &§1Q EPR11 EF10h

*This work was supported in part by DFG grant RO 1202/15-1, BAAD grant for a PPP project in the PROCOPE
program, by NCN grants 2012/06/M/ST1/00358, 2011/03/B/8T393, and by the AGH University grant 11.11.230.015.
IResistance to manipulative actions is most often meant thidardness in the literature. Being a worst-case

http://arxiv.org/abs/1307.7322v1

EFRS12).2 However, only little is known about the behavior of these twting systems regarding
manipulation and bribery attacks; Schlotter et 8EE1] have studied them with respect to cam-
paign management, focusing on shift bribery and suppdoebyi We comprehensively investigate
the computational resistance of Bucklin and fallback \@fior many of the common manipulation
and bribery scenarios. We also complement the results dbtsehet al. SFE1] by studying two
other campaign-management problems, namely swap brilbergxension bribery.

2 Preliminaries

2.1 Bucklin and Fallback Elections

An electionis a pair(C,V), whereC = {cy,...,Cn} is a set ofm candidates and = (v,...,Vy) IS
a list of votes (or ballots) specifying threvoters’ preferences over the candidate€irHow these
preferences are represented depends on the voting syseein \We allow voters to be weighted,
i.e., a nonnegative integer weighitis associated with each voie For example, a vote of a voter
with weightw; = 3 is counted as if three voters with unit weight would have das same ballot.
An unweighted election is the special case of a weightediefewhere each voter has unit weight.

A voting system is a rule for how to determine the winner(si given election. Here we focus
on Bucklin and fallback voting only. Both systems use theamof (weighted) majority threshold
in V, which is defined bynaj(V) = [W/2| + 1, whereW = S, w; is the total weight of the votes
in V. In Bucklin voting votes are linear rankings of all candidates, denoted by, ®.> c3 > ¢y,
which means that this voter (strictly) prefexsto cz andcs to ¢;. We call the top position in a vote
level 1, the next positioevel 2, and so on. Starting with the top position and proceediagl ley
level through the votes M, we determine the smallest levesuch that some candidate(s) occur(s)
in at leastmaj(V) votes up to this level. A bit more formally, for each candidatec C, theBucklin
score of ¢ in(C,V), denoted bpcorQ'C7V>(c), is the smallest levelt such thatc occurs in at least
maj(V) votes within the firsk levels. Among the candidates frathwith smallest Bucklin score,
say/, those occurring most often up to leviedre theBucklin winners If a candidatec becomes a
Bucklin winner on level, we sometimes specifically callalevel ¢ Bucklin winner

Fallback voting is a hybrid voting systems designed by Bramg SanverBS09 to combine
Bucklin with approval voting. Let us first define approval imgt which was proposed by Brams
and Fishburn BE7§ (see also, e.g.HF83 BEH'10] for more background). lmpproval voting
votes in an electioiC,V) are approval vectors froff0, 1}/°ll indicating for each candidatee C
whetherc is approved (“1”) by this voter or not (*0”). Every candidatgth the highest approval
score is ampproval winner For each voter € V, let S, denote theapproval strategy of vi.e.,
S, C C contains the candidates approvedvbyn fallback voting voters first approve or disapprove

measure only, NP-hardness does have its limitations. Tdreralso a number of other approaches that challenge such
NP-hardness results, surveyed RY; for example, there are some experimental results on th&r@ocomplexity of
Bucklin and fallback votinglRS13.

20ther voting systems whose control complexity has thorbudeen studied include plurality, Condorcet, and
approval voting BTT92, HHROQ7], Llull and Copeland voting FHHRQ9, a variant of approval voting known as
SP-AV [ENRQY, and normalized range votini/len11].

3In simplified Bucklin votingall these candidates win. However, we consiBercklin votingin the unsimplified
version where winners are determined by a slightly morelimgprocedure. Note that every Bucklin winner, as defined
in the main text, also wins in simplified Bucklin voting, budtmecessarily the other way round.

of all candidates and then they provide a linear ranking lo&pgproved candidates. For example,
some voter might disapprove of andc,, but approve o€, andcs, preferringc, to cs; this vote is
denoted byc, > c3 | {c1,¢c4}. To determine the winners in fallback voting, we first try tadithe
Bucklin winners when they exist. If so, all Bucklin winnengdallback winners However, due to
disapprovals it might happen that there is no Bucklin winaed in that case all approval winners
arefallback winners A bit more formally, given a fallback electiqi€,V), letA(c) = {veV|ce S}
denote the set of voters that approve of candidat€, letAl (c) denote the set of voters that approve
of candidatec up to thejth level, and define

scorgey) (C) = Z w; and scor#cqv)(c): Z Wi
vieA(c) ' vieAl(c)

Thefallback score of ¢ iffC,V) is the smallest leved such thaScoré(<c7v)(c) > majV). Among the
candidates fron€ with smallest fallback score, sdythose occurring most often up to leveare
the (level ¢) fallback winners Otherwise (i.e., if no candidate (hsatisfiesscoré{qv)(c) >majV)
for anyk < m), all candidates with maximumscoregcvv) (c) are thefallback winners

It is clear from the definition above that Bucklin electiome apecial fallback elections where
all voters approve of all candidates. In other scenarioseiiugl tampering with election results
(e.g., in control scenarios where the chair changes thetsteuof the election without changing the
voters’ preferences), this implies that NP-hardness te$ai control problems in Bucklin elections
can be directly transferred to the same control problemkemtore general fallback elections. In
manipulation and bribery scenarios, however, such a diransformation is not possible because
the preferences of certain voters are changed, and we will slar results separately for both voting
systems.

2.2 Basics from Complexity Theory

We assume the reader is familiar with the basic notions frompiexity theory such as the com-
plexity classes P and NP, the polynomial-time many-onR)(and Turing (g?) reducibility, and
with hardness and completeness with respectffo For more background on complexity theory,
see, e.g., the textbookB4§p95 Rot0g.

3 Manipulation in Bucklin and Fallback Voting

3.1 Definitions and Overview of Results

Conitzer et al. CSLO7 introduced the following decision problem to model mardgion by a
coalition of weighted voters. For a given election syst&nuefine:

&-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION (£-CCWM)

Given: A setC of candidates, a lis¢¥ of nonmanipulative votes ovél each having a
nonnegative integer weight, whevd, is the list of these weights, a li¥ts of
the weights ok manipulators irs (whose votes ovet are still unspecified) with
VNS=0, and a designated candidate C.

Question: Can the votes iis be set such thatis the unique$ winner of (C,V U S)?

3

Table 1: Overview of results for manipulation in Bucklin afadlback voting

Bucklin voting fallback voting
complexity reference complexity reference
&-CCUM P Thm34 P Prop.3.2
&-DCUM P Cor35 P Prop3.2
&-CCWM NP-complete ThnB.7 P Prop3.6
&-DCWM P Thm39 P Prop3.6

The unweighted cas&-CCUM is the special case af-CCWM where all voters and manip-
ulators have unit weight. By changing the question to “. .chsthatc is not a unique winner in
(C,VUS)?,” we obtain the destructive variants;DCWM and&-DCUM. If there is only one ma-
nipulator, we denote the corresponding problem&bg€UM, &-CWM, &-DUM, and &£-DWM,;
these problems were first studied by Bartholdi etBIL.T89, BO91].

The following proposition follows immediately from the dafions.

Proposition 3.1 1. £&-CUM <}, £&-CCUM <}, £-CCWM.
2. £-DUM <}, £-DCUM <f, £-DCWM.
3. £-DUM <P £-CUM, £-DWM <} &-CWM.
4. £-DCUM <} £-CCUM.
5. £-DCWM<? £-CCwM.

Tablel gives an overview of our results for manipulation in Bucldimd fallback voting.

3.2 Results for Unweighted Manipulation

In fallback elections, manipulators that try to make a é¢ertandidate the winner by changing their
votes can follow a simple strategy: They can limit their awalt strategy to only this candidate
and thus preclude all other candidates from gaining ponot® ftheir votes. It is easy to see that if
this attempt is not successful, no other way of construdtiggmanipulators’ votes can make their
designated candidate win. This means that fallback-CCUM B, which implies P-membership
for fallback-CUM, fallback-DCUM, and fallback-DUM as wevith Proposition3.1). We state
this observation in the following proposition.

Proposition 3.2 Fallback-CCUM, fallback-CUM, fallback-DCUM, and fallbackbUM are inP.

In Bucklin elections, however, the argumentation is mox@lved, since the manipulators do
not have the possibility to preclude any candidate from iggimpoints from their votes. So the
manipulators’ votes have to be carefully constructed taienshat no other candidate than the
designated candidate gains too much points on the relexegls|

Nevertheless, we can show that Bucklin-CCUM is in P by adaein algorithm fosimplified-
BucklinCCUM that is due to Xia et al¥ZP*09], see Algorithml.

4

Algorithm 1: Algorithm for Bucklin-CCUM

w N

g b

© 00 N o

10

11

12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40

input : C set of candidates
V list of voters
k number of manipulators
p designated candidate
output: “YES” if (C,V,k, p) € Bucklin-CCUM
“NO”if (C,V,k,p) ¢ Bucklin-CCUM
if k> ||V|| then
| return“YES”;
let rem remp, num num be arrays of length m;
maj= | M| 41
I'min = Min{i |sc0ré(~C‘V> (p) + k> maj};

S= list of manipulators;
foreachce C— {p} do
if min{i| scorqcv) > maj} < rmin OR scorg(m'n) > scorg(m'n) +k then
| return“NO”;
rem(c| = scorém'")+ k— scort—%m'" -1,
remp[c] = maj— scorc%m'n Yo -1,

nunic] = min{renmy[c|,rem(c],k};
| nunp[c] = min{rem(c|,k};

if ¥ cec—gpy min{remp|c], remc],k} < (rmin —2)k OR ¥ cec—qpy Min{remic],k} < (rmin—

| return“NO”;
lettmpy,...,.tmp represent the manipulators’ votes (empty at the beginning)
put p on the first position in all the votes of the manipulators;
i=1,
=2
foreachce C— {p} do
while numc] > 0 AND j < rpyjn—1do
tmp =tmp +c;
numnic] — —;
nuny(c] — —;
i++;
if i ==k+1then
i=1,
J++

foreachce C— {p} do
while nurmp[c] > 0 AND j == ryj, do
tmp =tmp +c;
fill the remaining positions afmp arbitrarily;
S=S+tmp;
nuny[c] — —
i++;
if i ==k+1then
| i++

return “YES”;

1)k then

Before we prove that the presented algorithm is correct am] ive show the following useful
lemma.

Lemma 3.3 Considering the notation C, V, k, p, rem, renmum, num, rmin, S, and maj as in
Algorithm , it holds that:

1. Ifk>||V| then(C,V,k, p) € Bucklin-CCUM.
2. If there is a candidate € C — {p} with

(@) min{i |scor<%CV) > maj} < min OF
(b) scoré("“”) > scon%"“n p) +K,

then(C,V,k, p) ¢ BucklinCCUM.
3. (C,V,k, p) ¢ Bucklin-CCUM if and only if

(@) Ycec—{p} min{remic|,rem|c|,K} < (rmin —2)k or
(b) 3 cec—qpy min{remic],k} < (rmin — 1)k.

Proof. Note thatrn,j, denotes the smallest level on which candidateaches the majority thresh-
old majin the manipulated election assuming that all manipulgbostion p on the first place. So
I'min IS the smallest level on which can win. This implies thad;coré“““)(p) + k is the number of

points p has to win the election with. Now we can show the three claims.

1. If the number of manipulators is bigger than the numberwhful voters, a successful ma-
nipulation is always possible. The manipulators simplyitgms p on the first place in their
vote andp reaches the majority threshold already on the first level(CS¥, k, p) € Bucklin-
CCUM trivially holds.

2. Letc € C—{p} be an arbitrary candidate.

(a) It holds that mii | scoré(CV)(c) > maj} < rmin: That means that we have a candidate
that reachesnajvotes on an earlier level thgmandc does so even without the manip-
ulators’ votes. Thu$C,V,k, p) ¢ Bucklin-CCUM.

(b) It holds thatscor%m'") > scor%m'")(p) + k: This means that gets at least as many
points from the truthful voters on the exact leyelvould have to win the manipulated
election asp gains in the election where the manipulators’ votes haveadly been
added. That means thpttannot be made the unique winner of the manipulated election
and thug(C,V,k, p) ¢ Bucklin-CCUM holds.

3. The arrayrem indicates for every candidatehow many further pointg can gain without
exceedmgscort%m'“ (p) on levelrymin. The arrayremp, on the other hand, indicates for ev-
ery candidate how many further pointg may gain without exceedingnaj on the levels 1
to (rmin— 1). For all candidatessem andrem, contain positive numbers. Since every can-
didate can gairk points from the manipulators’ votesunic| = min{remc|,remp[c],k} is

the number of manipulators that may have candidatethe first(rmin — 1) positions of their
votes without preventing from winning. Analogouslynun[c] = min{rem[c],k} is the num-
ber of manipulators that can placemong their topmin positions without preventing from
winning. We have thatuny|c] > nunc| for all c € C — { p}. We now show the equivalence.

From right to left:

(@) Suppose thgf ccc_qp min{remic|,reny[c|,k} < (rmin —2)k. In this case, it is not pos-
sible to fill the remainindrmin — 2)k positions (positions 2 t@rmin — 1)) in the manipu-
lators’ votes without having for at least one candiddteC — { p} that either

remp[d] —scorézy (d) <0 or
remld] — scoré"“” (d)<0

holds. That is equivalent to either

maj— scorg?, *(d) 1-scordpit(d) <0 or
scoré”"n p)+k— scorém'" —1- scor§"“n) <0,

which in turn is equivalent to either

min—1 min— 1 min— l I
scon%cvUS d)_scon% +scor§ d)>maj—-1 or

scorég‘@us (d) = scon%’“'n)+ scoré’“'n) > scon%’“'n p)+k—1.

So we have that eithat is a Bucklin winner in the manipulated election on a smaller
level thanrmin, or it holds that on levelnin, candidated might have at least as many
points asp. Thus(C,V,k, p) ¢ Bucklin-CCUM.

(b) Suppose tha¥ ccc_(p min{remc],k} < (rmin — 1)k. In this case, it is not possible to
fill the remaining(rmin — 1)k positions (positions 2 tomiy) in the manipulators’ votes
without having for at least one candidate: C — { p}:

remid] — scor(%m'“)<0
& scon%m'” p)+k— scorém'“(-1- scon%”"n) <0

& scorég‘@us (d) = scon%’“'n (d) Jrscorém'n >scor(§m'n p)+k—1.

So we have thatl can have at least as many pointspasn levelryin. So(C,V,k, p) ¢
Bucklin-CCUM.

From left to right: We show the contrapositive. Assume tlahb
(@) Y cec—qpy Min{remic|,reny|c|,k} > (rmin — 2)k and
(b) Feec—py min{remic],k} > (rmin — 1)k

hold. Then we can fill positions 2 tqy,i, of the manipulators’ votes in a way that for all
candidate® € C — { p} the following holds:

remp[e] — scorézy Y(e) >0 and
reme] — scoré”"n) >0,

7

which is equivalent to

AV
scorég‘@us (e) = scon%’“'n) + scon%”"n) < scoré’“'n p)+k—1.

scordny s, (€) = scorda, % (e) + scorény *(e) < maj— and

So we have thatC,V, k, p) € Bucklin-CCUM.
This completes the proof. O
Now we are ready to show that Algorithiris in P and correctly solves Bucklin-CCUM.

Theorem 3.4 Algorithm. has a runtime of’(m? +nm) and decides BuckliGCUM, and thus this
problem is inP.

Proof. It follows immediately from Lemma.3that Algorithml1 is correct. It is also clear that it
always terminates. To compute the needed scsnes%cv c) for all candidates and every level,

O (P +nm) steps are needed. The for-loop in line 7 ne€ds) steps, while the other two for-loops
in lines 20 and 30 need'(km) steps. Since the loops are only run through wkefin, we have a
runtime of &(nm) for the loops, which implies that the algorithm has a runthe’ (m? + nm) in
total. 0

With Theorem3.4 and Propositior8.1 we have the following corollary.

Corollary 3.5 Bucklin-CUM, BucklinDUM, BucklinCCUM, and BucklinbCUM are inP.

3.3 Results for Weighted Manipulation

In this section we analyze the complexity of weighted malaifpen in Bucklin and fallback voting.

With the same argumentation as that given at the beginningecfion3.2, it is easy to see
that in fallback elections the weighted manipulation peot can be decided efficiently, namely in
deterministic polynomial time: In the constructive, ctiahal, weighted case, all the manipulators
need to do is to approve of the designated candidate—if ttesnat does not lead to the desired
result, no other way of changing the manipulators’ votes Wigjain, with Propositior8.1, the result
for this case directly transfers to the constructive, wibdhcase with only one manipulator, and
from these two constructive cases to the correspondinguidise cases. We state this observation
in the following proposition.

Proposition 3.6 Fallback-CCWM, fallback-CWM, fallbackDCWM, and fallbackbWM are
in P.

In weighted Bucklin elections, on the other hand, a coalitd manipulators trying to make a
certain candidate win is faced with a harder challenge, e@$alfowing result shows.

Theorem 3.7 Bucklin-CCWM is NP-complete.

Proof. Itis easy to see that Bucklin-CCWM is in NP. We show NP-hasdn# this problem by
a reduction from the problemaARTITION: Given a setA = {1,...,k} and a sequencgy,...,a)
of nonnegative integers witgik:la; = 2K for a positive integekK, is there a sef’ C A such that
Yiea @ = Yign & = K? PARTITION is well-known to be NP-complete (see, e.§J[9).

Let an instance of ARTITION be given byA={1,2,... k} and(ay,...,a) with z}‘:la =2K.
Without loss of generality, we may assume that 2 for eachi € A. We construct the following
instance of Bucklin-CCWM. The candidate seCis- {b,c,d, p} andpis the designated candidate.
InV we have three voters of the following form with a total weightK — 2:

1. ¢> p>d > bwith weight X,
2. ¢>d> p> bwith weightK — 1,
3. b>d> p> cwith weight X —1,

so the majority threshold ifC,V) is reached with (6K-2)/2| + 1 = 3K. For the first two levels,
the scores of the candidates are given in Tablend the unique level 2 Bucklin winner {€,V)
is d. Furthermore, there atemanipulators irS with weightsas, ay, ..., ax, which are given in our
Bucklin-CCWM instance.

Table 2: Level scores in(C,V) fori € {1,2} and the candidates @

b c d

scord 3K-1 3K-1 0
scoré 3K-1 3K-1 4K-2

Xolo

We claim that(A, (a3, a2, ...,a)) € PARTITION if and only if p can be made the unique Bucklin
winner in(C,VUS).

From left to right: Assume that there is a sub&et Awith ¥ & = K. The majority threshold
in (C,VUYS) is |(6K-2+2K)/2| +1 = 4K. Let the votes of the manipulators be of the following form

e p>c> b>dfor all manipulators with weigh#; fori € A’, and
e p> b > c>dforthe remaining manipulators.

For the first two levels, the scores of the candidatg€iv U S) are given in Tabl&. It follows
that p is the unique level 2 Bucklin winner i(C,V U S).

From right to left: Assume that there are votes for the mdaipts inSthat makep the unique
winner of (C,V U S). Without loss of generality, assume thats on the first position in all votes

Table 3: Level scores iNC,VUS) fori € {1,2} and the candidates @

b c d

scord 3K-1 3K-1 0
scoré 4K—-1 4K-—-1 4K-2

%o

in S. Note thatp cannot win the manipulated election on the first levelpdtas to be the unique
level 2 winner Withscorefqvus)(p) = 4K. This implies thaiscore(?CNUs)(e) < 4K has to hold for

all ee {b,c,d}. Sincea > 2, candidated cannot be on the second position in any manipulator’s
vote. Thus, the manipulators’ votes can be only of the fopm>c>b > d), (p>c>d > b),
(p>b>c>d), or(p>b>d>c). The candidateb andc have already R — 1 points on
the second level iiC,V), so they each cannot gain more tharpoints on the second level from
the votes inS. Since all votes irs have eithelb or ¢ on the second position, the weights of the
manipulators have to be of the form that a sul#set A can be found such that those manipulators
with weighta;, i € A, have a total weight dk and put one ob andc (sayb) on the second position,
and the remaining manipulators (those with weighfior i ¢ A’) put the other candidate, on the
second position and have a total weighkoés well. Thus(A, (a;,a,...,a)) is a yes-instance of
PARTITION. O

We now turn to the desctructive variant of coalitional weagghmanipulation and give a deter-
ministic polynomial-time algorithm for this problem in Bkl voting.

Algorithm 2: Algorithm for Bucklin-DCWM

input : C set of candidates
V list of voters
W, weights of the voters
Ws weights of the manipulators
p designated candidate

output: “YES”if (C,V,W,,Ws, p) € Bucklin-DCWM
“NO”if (C,V,W,,Ws, p) ¢ Bucklin-DCWM

1If Y e W > 3 wew, Wthen
2 | return “YES";

3 foreachce C— {p} do

put p on the last position in the manipulators’ votes;

putc on the first position in the manipulators’ votes;

fill the remaining positions in the manipulators’ votes adily;

let Sbe the list of the manipulators’ votes

if (p not a unique winner ofC,V US) with weights W UWs) then
| return “YES”;

© 00 N o 0o b

10

11 return “NO”;

Before proving the runtime and correctness of the aboveithgo, we state the following useful
lemma, which is easily seen to hold.

Lemma 3.8 Let (C,V) be a weighted Bucklin election with weights W ang € C. Then the
following holds.

1. Assume that c is not a winner (@,V) and that the votes in V are changed in a way such that
only the position of ¢ is made worse. Then c is still not a winne

10

2. Assume that c is a winner of the election and that the vot®sare changed in a way such
that only the position of ¢ is improved. Then ¢ remains a winne

3. Assume that c is a winner of the election and that p is notraevi If in some votes the
positions of candidates are swapped without changing tisitipas of ¢ and p, then p is still
not a winner.

We now analyze Algorithn2 for Bucklin-DCWM.
Theorem 3.9 Algorithm 2 has a runtime inZ(m?(n+ ||Ws||)) and decides BucklidCWM.

Proof. We begin with analyzing the runtime. Obviously, the alduritalways terminates and the
input size is in(m_+ nm+ _n_+|Wsf + 1) = &(nm-+ [Wl]).
Ich IV vl lIpll

The most costly part of the algorithm is the for-loop. To domst the manipulators’ votes,
O(||Ws||m) steps are needed. The winner-determination procedureuickli can be implemented
with a runtime of&(nm), so the if-statement in line 8 can be computed in tiengn(n+ |Ws||).
Thus, the whole for-loop runs in tim&(m?(n+ |[Ws||)).

To prove the correctnes of the algorithm, we show that itgie output “YES” if and only if
(C,V,.W,,Ws, p) € Bucklin-DCWM.

From left to right: If the algorithm outputs “YES” in line 2 ém we havey yew W > ¥ wew, W,
i.e., the sum of the manipulators’ weights is greater thanstim of the weights of the nonmanip-
ulative voters. In this case, any of the candidaies p can be made the unique level 1 Bucklin
winner in(C,V U S) by puttingc on the first position in all the manipulators’ votes and fdlitne re-
maining positions arbitrarily. HencéC,V,.W,,Ws, p) € Bucklin-DCWM. If the algorithm outputs
“YES” in line 9, the manipulators’ votes have been const&dcuch thap is not a unique winner
in (C,VUS). Thus, we have thdC,V,W,,Ws, p) is a yes-instance of Bucklin-DCWM.

From right to left: Assume thalC,V,W,,Ws, p) € Bucklin-DCWM. If 5 cpW > 5 e, W,
then the algorithm correctly outputs “YES.” Otherwise, tfo#owing holds: Since the given in-
stance is a yes-instance of Bucklin-DCWM, the votes of thaimdators inS can be set such that
p is not a winner of the electiofC,V US). We know from Lemm@.8that successively swappingy
with her neighbor untip is on the last position in all votes Bdoes not change the fact thais not
awinner in(C,V US) (whereS are the new manipulative votes wipton the last position). Assume
thatc € C—{p} is a winner in(C,V US). Then swap her position successively with her neighbor in
the votes irS until c is on the first position in all manipulative votes. L$tdenote the accordingly
changed list of manipulative votes. Again, from Lem&&we know that still wins in (C,VUS’).
Let S” be the list of manipulative votes that the algorithm coresuWe can transfor8’ into S”
by swapping the corresponding candidates” € C — {c, p} accordingly. Since the positions of
andp remain unchanged, we have with Lem@8that p is still not a winner in(C,V US”). Thus,
the algorithm outputs “YES” in line 9. O

11

4 Bribery in Bucklin and Fallback Voting

4.1 Definition of Bribery Problems and Overview of Results

We begin with defining the standard bribery scenarios pregpdy Faliszewski et alHHHQO9 (see
also FHHRQ9) that will be applied here to fallback and Bucklin electsoh.et& be a given election
system.

&-CONSTRUCTIVE UNWEIGHTED BRIBERY (&-CUB)

Given: An & election(C,V), a designated candidapeand a nonnegative integler
Question: Is it possible to make the uniques winner by changing the votes of at mdst
voters?

This basic bribery scenario can be extended by either censglvoters with different weights,
or allowing that each voter has a different price for chagdjiar vote, or both. These three scenarios
are formally defined by the following problems:

&-CONSTRUCTIVEWEIGHTED BRIBERY (&-CWB)

Given: An & election (C,V) with each voterv; € V having a nonnegative integer
weightw;, a designated candidapeand a positive intege.

Question: Is it possible to make the uniques winner by changing the votes of at madst
voters?

&-CONSTRUCTIVE UNWEIGHTED PRICED BRIBERY (&-CUB-$)

Given: An & election(C,V) with each voter; € V having a nonnegative integer priog
1<i < n, adesignated candidapeand a positive integek.
Question: Is there a seB C {1,...,n} such thaty 75 <k and the voters; with i € B can

icB
be bribed so thap is the uniques winner in the resulting election?

&-CONSTRUCTIVEWEIGHTED PRICED BRIBERY (£-CWB-$)

Given: An & election(C,V) with each votew; € V having nonnegative integer weight
w; and pricerg, 1 <i < n, a designated candidapeand a positive integék.

Question: IsthereaseB C {1,...,n} such thaty 15 <k and the voters; with i € B can
ieB
be bribed so thap is the uniques” winner in the resulting election?

By changing the question in the above four problems to askivéin@ can be prevented from
being a unique winner of the election by bribing some of theerg we obtain the destructive
variants of these bribery scenarios, and we denote thespameing problems by’-DUB, &-
DWB, &-DUB-$, and&-DWB-$. The problems related to the general bribery scenasiithout
explicitly specifying the constructive or destructive eage denoted by’-UB, &£-WB, &-UB-$,
and&-WB-$.

Table4 gives an overview of our complexity results for bribery ind&lin and fallback voting.

12

Table 4: Overview of results for bribery in Bucklin and faltk voting

Bucklin voting

fallback voting

complexity reference complexity reference
&-CUB NP-complete Thnmd.l NP-complete Thm4.3
&-DUB P Cor46 P Thm.4.7
&-CUB-$ NP-complete Co#.2 NP-complete Co#.4
&-DUB-$ P Thm4sS P Thm.4.7
&-CWB NP-complete Co#.2 NP-complete Co#.4
&-DWB P Thm4sS P Thm.4.7
&-CWB-$ NP-complete Co#.2 NP-complete Co#.4
&-DWB-$ NP-complete Thm4.8 NP-complete Thnd.9

4.2 Results for Bribery
We start with the constructive cases of the standard bribegparios.
Theorem 4.1 CUB is NP-complete for Bucklin voting.

Proof. Membership of Bucklin-CUB in NP is obvious. We show NP-hasi by a reduction
from EXACT COVER BY THREE-SETS (X3C): Given a seB = {by,by,...,bsn}, m> 1, and a
collection. = {S,S,...,S} of subsetsS C B with ||S|| = 3 for eachi, 1 <i <n, is there a
subcollection.”” C . such that each element Bf occurs in exactly one set i¥’’? X3C is a
well-known NP-complete problem (see, e.@6J[79).

Let (B,.”) be an instance of X3C witB = {bs,by,...,bsyn} and” ={S, S, ..., S }. Without
loss of generality, we may assume that 2m. We construct a Bucklin-CUB instan¢éC,V), p, k),
where(C,V) is a Bucklin election with the candidat€s=BU {c,d} UGU {p}, pis the designated
candidate, antt = m. G is a set of “padding candidates,” which are used to ensurectréain
candidates do not gain points up to a certain level. Paddingidates are positioned in the votes
such that, up to a certain level, they do not gain enough pdagy., at most one) to be relevant for
the central argumentation of the proof. Thus, their scoresat listed in tables giving the scores
of the relevant candidates.

For everyb; € B, define/; to be the number of se§ € .’ candidateb; is contained in.V
consists of the following 2 voters (i.e., a strict majority is reached with- 1 votes):

e The first voter group consists ofvoters. For each 1 <i < n, we have one voter of the form
c>d>S§>G;>{C—({c,d}uSUGy)},

whereG; C Gis a set of 31— 3 padding candidates. When a ¥ebdf candidates is giving in
such a ranking, the order of the candidates fd¢rwan be fixed arbitrarily in this ranking.

e The second voter group consistsrofoters as well. We will present the preferences level by
level from the first to thé3m+ 2)nd position in Tablé&.

Note that the padding candidatesGrare positioned in the votes such that evgry¥ G gains at
most one point up to level3+ 2. Table6(a)shows the scores of the relevant candidate€iv)

13

Table 5: Construction of Bucklin electidi€, V) in the proof of Theorerd.1

position #voters candidate
m C
1 m d
n—2m &
2 n+1—/; by
(-1 fromG,
3 n+1-—1/4 b,
lr—1 from G,
3m-+1 f3n—1 from G,
n—m+1 p
3m-+2 m—1 fromG,

Table 6: Level scores foii € {1,2,3m,3m+ 1,3m—+ 2} and the candidates @— G

(a) Original electior(C,V) (b) Modified electionC,V’)

b B c d p bheB ¢ d p
scoré 0 n+m m 0 scoré 0 n m m
scoré <n+1 n+m m+n 0 scoré <n n n m
scorem <n+1 n+m m+n 0 scorem <n n n m
scoré™! <n4+1 n+m m+n 0 score™l <n n n m
score™2 n+1 n+m m+n n-m+1 scoré™2 <n n n n+1

(namely,c, d, p, and eacli; < B) for the relevant levels (namely, 1, 2n33m+-1, and 3n+2) and,
in particular, that is the unique level 1 Bucklin winner ifC,V).

We claim that¥ has an exact cove#” for B if and only if p can be made the unique Bucklin
winner by changing at moshvotes inV.

From left to right: Lets” be an exact cover fd8 and letl C {1,...,n} be the set of indices of
them elements in¥”’. To makep the unique Bucklin winner, we only have to change votes in the
first voter group: For eache I, change the corresponding vote

c>d>S>G;>{C—({c,d}USUG)}

to
p>G1>0; >0 >05>0ds>{C—({01,02,03, 0, P} UG},
where eacly, 1 < j < 4, is fromG but not inG;.

14

With these new votes, andd both losem points on the first two levels from the first voter group
andp gainsm points on the first level. Every candiddiec B loses exactly one point on one of the
levels 3, 4, or 5. The scores in the resulting elec{ior\v’) are shown in Tabl&(b). As one can
see,p is the first candidate to reach a strict majoritynef 1 votes (namely, on leveln3+ 2) and is
thus the unique levelr8+ 2 Bucklin winner in the new election.

From right to left: Assume thap is the unique Bucklin winner of the electiq,V’), where
V'’ is the new voter list containing th@ changed votes. Since only votes can be changed and
p did not score any points prior to levelrB+ 2 in the original electionp has to be a levelr8+ 2
Bucklin winner in(C,V’). Candidates andd originally reach the majority threshold already on,
respectively, the first and the second level, so all votesdaia be changed must placeandd on
the first two positions. The only votes doing so are thoseaerfitist voter group. Finally, to prevent
the candidates iB from reaching a strict majority on leveh8+ 2, each of the B candidates has
to lose at least one point by changing at mostotes. This, again, can only be done by changing
votes from the first voter group and there has to be an exaetr &V for B whose corresponding
voters from the first voter group have to be changed. O

The following corollary follows immediately from Theoregnl
Corollary 4.2 In Bucklin electionsCWB, CUB-$, and CWB-$ are NP-complete.

Based on the corresponding proof for approval voting thdtiesto Faliszewski et alFHHQ9,
we can show NP-completeness for unweighted bribery indaktelections as well.

Theorem 4.3 CUB is NP-complete for fallback voting.

Proof. Fallback-CUB obviously is in NP. To show NP-hardness, we giveduction from X3C.
Let (B,.#) be an instance of X3C witB = {by,by,...,bsn} and. = {S,,S,...,S}. We define
the fallback electionC,V) with the candidate s&€ = BUE U {p}, wherep is the designated
candidate andE is a set ofn+ m padding candidates. For evejye {1,...,3m}, we define/; as
the number of subse§ € . candidateb; € B is contained in. Using this notation, we define the
subsets3; = {b; e B|i <n—¢;} fori e {1,...,n}. V consists of the Avoters whose preferences
are given in Tablg.

Table 7: Construction of fallback electid@,V) in the proof of Theorerd.3

Foreach.. number of votes ranking of candidates
1 ie{1,...,n} 1 S| (B-S)UEU{p}
2 ie{l,...,n} 1 Bi | (B—B)UEU{p}
3 n—m p| BUE

4 (e{l,....,n+m} 1 e | BU(E—{e}U{p}

In this election, we have thacorgp) = n—m, scorgbj) = n for all j € {1,...,3m}, and
scordey) = 1forall ¢ € {1,...,n+m}. Since no candidate reaches a strict majority (at least®?
points), all candidatels; c B are fallback winners of this election.

15

We claim that¥ has an exact cove?” for B if and only if p can be made the unique fallback
winner by bribing at mosin voters.

From left to right: Suppose tha¥ has an exact cove?” for B. We change the vote of those
voters in the first voter group wheee .’ fromS | (B—S)UEU{p} to p | BUE. In the resulting
election(C,V’) only the scores of the candidatesBrand the score op change:p gainsm points,
whereas each; € B loses exactly one point. Thus, with an overall scor@,ofandidatep is the
unique fallback winner of the resulting election.

From right to left: Suppose thagtcan be made the unique fallback winner by changing at most
mvotes inV. That means thgt can gain at mosn points, so the maximum overall score tigatan
reach isn. Since eaclb; € B has an overall score of every candidate iB has to lose at least one
point by changing at mosh votes (otherwise, there would be at least one candidaBetivat ties
with p). This is possible only if irm votes of the first voter group the candidatesimre removed
from the approval strategy such that thessetsS form an exact cover foB. O

This result immediately implies NP-hardness for the retingirtonstructive bribery scenarios
in fallback elections as well.

Corollary 4.4 In fallback electionsCWB, CUB-$, and CWB-$ are NP-complete.

We now turn to the destructive cases. The following resuibgalizes a result due to XiXial2]
who showed that DUB is in P for simplified Bucklin voting.

Theorem 4.5 In Bucklin electionsPWB and DUB-$ are inP.

Proof. Both problems, Bucklin-DWB and Bucklin-DUB-$, can be salvby deterministic
polynomial-time algorithms that use AlgorithB which was designed in Secti@to solve the de-
structive coalitional weighted manipulation problem fardglin elections, Bucklin-DCWM. The
main difference between a bribery and a manipulation icgtas that in the latter only the prefer-
ences of the manipulators have to be found, whereas in theefdooth the votes that will be bribed
and the new preferences for these voters have to be founde Ifawe the set of votes we want to
change, we can use the algorithm for the manipulation pnoliteconstruct the preferences. Thus,
for the runtime of the algorithm the determination of thestev sets is crucial, and we show that in
Bucklin elections the number of voter sets whose modificatioght actually lead to a successful
bribery is bounded by a polynomial in both the number of \®#erd the number of candidates.

Consider Algorithm3 and a given inputC,V,W, p,K) to it. In particular,p is the designated
candidate that we want to prevent from winning and assunteatbédave a yes-instance, i.e., our
bribery action is successful. We denote (V") the election resulting froniC,V) where thek
votes that can be changed have already been changed. Therstlaecandidate € C — {p} that
reaches a strict majority on leveland it holds thaScorQ'CN,,)(c) > scort%c7v,,)(p), which means
that p is not a unique winner iiC,V”). To reach that, for each< m, there are only five types of
preferences that might have been changéd,iand they can be grouped into the following subsets
TjCV,1< <5

Ti1: pis among the top— 1 position anct is among the top positions (when changingp loses
points,c does neither lose nor win points up to level

16

Ti2: pis among the top — 1 position andc is not among the top positions (when changingp
loses points¢ wins points up to level).

Tis: pis on positioni andc is among the top positions (when changingp loses pointsc does
neither lose nor win points up to levil

Ti4: pison position andcis not among the toppositions (when changing loses points¢ wins
points up to level).

Tis: both p andc are not among the toppositions (when changingp does neither lose nor win
points,c wins points up to levei).

For a sublist of voter¥’ C V, denote their total weight by,. Algorithm 3 for Bucklin-DWB
works as follows.

Algorithm 3: Algorithm for Bucklin-DWB

input : C set of candidates
V list of voters
W, list of weights of voters
k number of votes that may be changed
p designated candidate

output: “YES” if (C,V,W,k, p) € Bucklin-DWB
“NO”if (C,V,W,k, p) ¢ Bucklin-DWB

1 letA={(aq,az,....a5)|a € {0,1,...,k}}, V' = 0;

2 foreachce C—{p} do

3 foreachi < mdo

4 foreach(ay,a,...,as) € Ado

5 if 52 &, <kthen

6 foreachj € {1,2,...,5} do

7 | add thea; heaviest votes iff; j toV';

8 run Algorithm2 on input(C,V — V' W, _y/, W/, p);
9 if Bucklin-DCWM(C,V —V’' W, _y/, W/, p)=“YES” then
10 | return“YES”;

11

12

13 return “NO”;

It is easy to see that Algorith@runs in deterministic polynomial time: the two outer foojis
iterate up tom times, whereas the inner loop tests ugkovariations of the vectofay, ay, .. ., as).
Sincek < n, we have that the number of executions of AlgoritBris in &(nm?n®).

For the proof of correctnes, we show that given a bribenamsg(C,V,W,, k, p), the output of
Algorithm 3is “YES” if and only if (C,V,W,,k, p) € Bucklin-DWB.

From left to right: If the algorithm returns “YES” in line 1@hen Algorithm2 could find a
successful destructive manipulation regardmfpr k manipulators with total weight,,. Sopis
not a unique Bucklin winner in the electid,V”), whereV” is the list of voters withk changed
votes. That means thé&E,V,W,,k, p) € Bucklin-DWB.

17

From right to left: Assume thafC,V,.W,,k, p) € Bucklin-DWB. Thus, there exists a set of
k votersV’ with total weightW,, such that changing these votes prevemfsom being a unique
Bucklin winner in(C,V"), whereV"” is the new voter list containing thechanged votes. We want to
show that such ®” can always be transformed to the list of vot#ghat is changed in Algorithr8.
From our assumptions it follows that we have a candidateC — { p} and a level < msuch that
is a leveli Bucklin winner that preventp from being a unique winner.

Assume that in/” are voters whose preferences were not in one offtheefore the changes
were made, i.e., votes were changed that not necessarifiedid¢e be changed to preveptrom
being the only winner. Undo these changes and change thersami@er of votes in the lisf§ that
were not changed before. We then have that all changed va@s ane of theT;.

Since Bucklin is monotonic, we can always exchange votel kigher weight with votes of
lower weight (in oneT;) without risking thatp would win due to this exchange. So we know that
we can transform any given list of bribed votes to a list thatalgorithm would construct and this
would still preventp from winning alone. So if there is a list &fvoters that can be successfully
bribed to prevenp from being the unique winner, the algorithm will find it.

For the Bucklin-DUB-$ problem the same algorithm can be uddte only difference is that
all weights have to be set to one, the cheapest instead oétwdst votes (i.e., those votes with the
least price instead of the greatest weight) are add&d io line 7, and it has to be tested whether
the sum of the chosen votes does not exceed the budget. O

From Theoren#.5we have the following corollary.
Corollary 4.6 In Bucklin electionsDUB is in P.

This algorithm can be easily adapted for fallback electiobsie to the fact that in fallback
elections the voters do not have to rank all candidatespitgsible that a candidate wins on lewel
So by making the following changes in Algorith2n

e changef<m’inline3to“i <m,”

e use the fallback analogue of Algorith#in line 82 and

e change “Bucklin-DCWM” in line 9 to “Fallback-DCWM,"
we can decide DWB for fallback elections as well.

Theorem 4.7 In fallback electionsPWB, DUB, andDUB-$are inP.

It remains to show the complexity of the destructive variariced bribery in weighted Buck-
lin and fallback elections. We begin with showing NP-hastnef this problem for Bucklin voting.

Theorem 4.8 Bucklin DWB-$ is NP-complete.

4In Section3.3, we refrained from explicitly stating the algorithm for fadck-DCWM that is based on the following
simple idea: For every candidate# p, try to makec win by setting the manipulators’ votes ¢o| C — {c}. If such a
candidate can be foung,has been successfully prevented from being the unique wafriee election; otherwise, it is
impossible to do so.

18

Proof. That Bucklin-DWB-$ is in NP is again easy to see. We show NiHmess by a reduction
from PARTITION. Let (A, (ay,...,a)) with A= {1,....k} andT¥ ;& = 2K be an instance of
PARTITION. We construct the following Bucklin electiof@€,V) with C = {c, p} andk votes inV:
For each € {1,...,k}, we have one voter with weight; = &, price 15 = &, and preference > c.

The total weight in(C,V) is 2K. LetK be the budget that may not be exceeded ang bt the
designated candidate. Obviouspyis the unique level 1 Bucklin winner i(C,V).

We claim that(A, (a1, ...,ak)) € PARTITION if and only if p can be prevented from being the
unique Bucklin winner by changing votesVhwithout exceeding the budgkt

From left to right: Let(A, (ay, ..., a)) € PARTITION with A’ C Asuch thaty;x & = K. Change
the votes of those voters withy = a; for i € A’ from p > cto ¢ > p. With these changes we have
that on the first level, botp andc have exacthK points, so no strict majority. On the second level,
both candidates havekZpoints and thus are both level 2-Bucklin winners. Heris, not a unique
Bucklin winner in the bribed election.

From right to left: Assume tha is not a unique Bucklin winner in the bribed election. Since
there are only two levels, eitheris the unique level 1 winner, gu andc both win on the second
level. The price and weight of every voter is the same, sorsotdth a total weight ofK can
be changed. Candidatehas 0 points in the original election, so it is not possiblenakec a
unique level 1 winner without exceeding the budiet To preventp from remaining the unique
winner on the first level, the budget has to be fully exhausted votes with a total weight d€
must be changed from > c to ¢ > p. Thus, there is a subsét C A such thaty;.n a = K, so
(A (ag,...,8)) € PARTITION. O

Theoremd.9 states the corresponding result for fallback voting usisgralar proof idea.
Theorem 4.9 Fallback-DWB-$ is NP-complete.

Proof. Obviously, fallback-DWB-$ is in NP. NP-hardness is shownaoeduction from RR-
TITION. To this end, letA, (ay,...,a)) with A= {1,...,k} and T¥ ;& = 2K be an instance of
PARTITION. We construct a fallback electidi€, V) with the candidate s& = {c, p} and the des-
ignated candidatg. LetV consist ofk votersvy, ..., v, each having preferenge | {c}, weight
w; = &, and pricert = g. The total weight iC,V) is 2K and p is the unique fallback winner in
this election. Let the briber’s budget e

We claim that(A, (a1, ...,a)) € PARTITION if and only if p can be prevented from being the
unique fallback winner by changing votes\Winwithout exceeding the budgit

From left to right: Assume that there is a #é{C A such thaty.x & = K. We change the votes
of each votew; withi € A' from p | {c} toc | {p}. Then both candidateg,andc, have an overall
score ofK and are both fallback winners of the resulting election.

From right to left: Assume thgb can be prevented from being the unigue fallback winner by
changing votes iv without exceeding the budg&t. This is possible only if candidateat least
ties with p after the changes in the votes have been made. Since eack weght and price are
the same¢ can gain at mos points without exceeding the buddét To preventp from being the
unique fallback winnerg has to gain at lea$ points, so together with the budget restrictmhas
to gain exactlyK points. Thus, there has to be a 86t_ A such thatyjcx & = K. O

19

5 Campaign Management

In the discussion so far, we have focused on bribery and mkatipn as means of attacking Bucklin
and fallback elections. However, it is also quite naturatdasider bribery scenarios through the
lenses of running a political campaign. After all, in a swesfel campaign, the candidates spend
their effort (measured in terms of time, in terms of financia$t of organizing promotional activi-
ties, and even in terms of the difficulty of convincing pautar voters) to change the minds of the
voters. Thus, formally, a campaign preceding an electiorbesseen as exchanging some resources
for voters’ support. Formally, this idea is very close toblery (indeed, this view of campaign
management was first presented in a paper whose focus wagibey [problem EESQ9).

5.1 Definitions and Overview of Results

We start by discussing one of the most general campaign reem&g problems, namely thev&p
BRIBERY problem introduced by Elkind et alEFS09. This problem models a situation where a
campaign manager, who is interested in the victory of a goeamidatep, can organize meetings
with specific voters (the unweighted variant of the problemyvith groups of like-minded voters
(the weighted variant) and convince them to change thefemace orders. However, the difficulty
(or, as we will say from now on, the cost) of changing the \&tpreference orders depends both
on the voter and on the extent of the change (for example,ghtrie expensive to swap a voter's
most preferred candidate with this voter’s least prefemed, but it might be very cheap to swap
the voter’s two least preferred candidates). Formallyjrigllet al. EFSQ9 define so-calledwap-
bribery price functionghat for each voter and for each pair of candidates give teeafeswapping
these two candidates in the voter’s preference order (peovihe candidates are adjacent in this
order).

Definition 5.1 (Elkind et al. [EESQ9) A swap-bribery price functiofor voter \ is a functionrs :

C x C — N that specifies for any ordered pafc;,cj) of candidates the price for changing's/
preference order from-- > ¢ >c¢j > --- to--- > ¢j > ¢ > ---. Only candidates that are adjacent
in a vote can be swapped.

In the £-CONSTRUCTIVE SWAP BRIBERY problem we ask if there exists a sequence of swaps of
adjacent candidates that lead to a given candidate beingreew{note that the swaps are performed
in sequence; even if some candidates are not adjacent atliest may become adjacent in the
course of performing the swaps and, then, can be swappedéhesa)

&-CONSTRUCTIVEUNWEIGHTED SWAP BRIBERY (£-CUSB)

Given: An &-election(C,V), whereV = (vi,...,Vvn), a designated candidate a list
(mm,...,) of swap bribery price functions, and a nonnegative intéger

Question: Canp be made the uniqu& winner of an election resulting from the input elec-
tion by conducting a sequence of swaps of adjacent candidiatéhe voters’
ballots such that the total cost of the swaps does not exbedulidgek?

5We mention that Elkind et al HFS09 defined the problem for the nonunique-winner model. Hereadept the
unique-winner model to stay in sync with the rest of the paptawever, it will be easy to see that all the results from
this section hold in the nonunique-winner model as well.

20

We define the weighted variant of the probleffCWSB, in the standard way (as far as we can
tell, the weighted variant of the problem has not been stldéfore). However, it will soon become
clear why the weighted variant is not particularly inteiegtand so we omit the easy modification
of the definition. We also define the destructive varianthefdwap bribery problemg¥DUSB-$
and&’-DWSB-$) in the usual way, by changing the question to askifadrgy can be prevented from
being a unique winner.

Swap bribery is a very difficult problem—it is NP-complete &dmost all natural voting rules
(and, in particular, in the next section we will see a verprsir hardness result for the Bucklin
and fallback rules). Thus Elkind et aEFS09 defined its much-simplified variant, shift-bribery,
where every swap has to involve the designated candp@tet is, the designated candidate can be
“shifted” forward in selected votes). The complexity ofghiroblem was studied for a number of
voting rules EES09 EF10a DS17, including Bucklin and fallback voting3FE1]. Interestingly,
even though we will see strong hardness results for swapyrinder Bucklin and fallback, shift
bribery for these rules is in P.

The definitions of swap bribery and shift bribery are veryunait for voting rules where each
voter ranks all the candidates; for the case of fallback, revtiiee ballots consist of the approved
part (where the candidates are ranked) and of the disappiuweet (where the candidates are not
ranked), we need to extend the definitions. In our approaelgefine swap bribery under fallback
to allow the swaps within the approved parts of the votes.déturally, one could also define costs
for including given disapproved candidates in the apprqued and, indeed, Elkind et aEFS09
did so for SP-AV (SP-AV is a variant of the approval systémHowever, following Schlotter
et al. [SFE1], we believe that it is more informative to study the comitlexof modifying the
rankings within the approved parts and the complexity of ifyotjy the sets of approved candidates
separately.

Regarding the latter type of problems, Schlotter et2EE1] defined the support bribery prob-
lem for the fallback rule (and other hybrid rules), whereheaater has a complete preference order
over the whole set of candidates, but also has an approwshbid, a number of top candidates
that this voter approves of. For each voter we have a pricetiimthat gives the cost of increas-
ing/decreasing the approval threshold; the goal is to ohdimg voters’ approval thresholds in such
a way as to ensure the victory of a given candidate. Schlettak. [SFE1] show that this problem
is NP-complete for fallback. However, in our model the disapproved candidates are néedan
and, thus, it is much more natural to study the extensiorebyiproblem introduced by Baumeister
et al. BELR1Z. The idea of extension bribery is to capture very non-im@agampaign actions,
where we try to convince some voters to include the designzdadidate at the end of the ranking
of approved candidates.

Definition 5.2 (Baumeister et al. BELR12]) Theextension bribery price functiod : N — N of
a voter y defines the price for extending the approved part;&f wote with a given number of

6Like fallback voting, SP-AV is a hybrid variant of approvabting. It has been introduced by Brams and San-
ver [BS0§ and slightly modified by Erdeélyi et alHNRQY to cope with certain control actions (see also the chapter b
Baumeister et al BEH'10] for a through discussion of this voting system).

"They also show that the problem is hard in the sense of paraegtomplexity for two natural parameters describing
the extent of change to the approval thresholds. Inteiggtithey show the problem to be fixed-parameter tractable if
the thresholds can either only increase or only decrease.

21

Table 8: Overview of results for swap bribery and extensinbdny in Bucklin and fallback voting

Bucklin voting fallback voting
complexity reference complexity reference

&-CUSB NP-complete Thnb.4 NP-complete Cok.5
&-DUSB NP-complete Cob.5 NP-complete Cok.5
&-CWSB NP-complete Thnk.3 NP-complete Thmb.3
&-DWSB NP-complete Thnb.3 NP-complete Thmb.3

&-CUEB - P Thm5.8
&-DUEB - P Thms.8
&-CWEB - NP-complete Thnk.7
&-DWEB - NP-complete Thnb.7

so-far-disapproved candidates (these new candidates am&ed below the previously-approved
candidates, but among themselves are ranked as the brigaests).

We define the following related problem.

FV-CONSTRUCTIVEUNWEIGHTED EXTENSION BRIBERY (FV-CUEB)

Given: A fallback election(C,V), whereV = (v1,...,v,), a designated candidafe a
list (41,...,0n) Of extension bribery price functions, and a nonnegativegatk.

Question: Can p be made the unique fallback winner by extending the apprpeets of
the the voters’ ballots without exceeding the budget

Again, the weighted varians(-CWEB) is defined in the natural way and so are the destructive
variants ¢-DUEB and&-DWEB).
Table8 summarizes the results of this section.

5.2 Results for Swap Bribery

We start by quickly observing that weighted swap bribery B-ddmplete for both Bucklin and
fallback rules.

Theorem 5.3 BV-CWSB, BV-DWSB, FV-CWSB, and FV-DWSB are NP-complete.

Proof. The proof for Bucklin is a direct consequence of the fact @atB-$ is NP-complete for
plurality, even for just two candidateBHHHOQ9 (the result holds both for the unige-winner case and
for the nonunique-winner case). For two candidates, thé&lBuaile is identical to the plurality rule.
Further, for two candidates CWB-$ is, in essence, identec@&WSB (the only possible bribery is to
swap the only two candidates), and the nonunique-winnéanvanf CWB-$ is, in essence, identical
to DWSB.

For fallback, membership of the problems in NP is clear, afdhdrdness follows by the
same arguments as for Bucklin, by considering the settingrevbvery voter approves of all candi-
dates. 0

22

For the unweighted case, NP-completeness of BV-CUSB fallommediately from the fact
that the possible winner problem for Bucklin is NP-compléiee the papers of Konczak and
Lang [KLO5], for the definition of the possible winner problem, and ofénd ConitzerXC11],
for the result regarding Bucklin) and the fact that, for aegiwoting rule, the possible winner prob-
lem reduces to the swap bribery probleEFES09. However, on the one hand, the hardness of the
possible winner problem was established for the simplifiadawnt of Bucklin’s rule only, and on
the other hand, we can show that BV-CUSB is NP-complete emegiéctions with just two voters.

Theorem 5.4 BV-CUSB is NP-complete, even for elections with two voters.

Proof. It is easy to see that BV-CUSB is in NP. We show NP-hardness igdaction from
the following problem (which we will refer to asiSGLE-VOTE SwAP BRIBERY): Given a vote
v (expressed as a preference order over some candida®®), setswap-bribery price functiom
for v, a designated candidafec C, and two nonnegative integefsandk, is there a sequence of
swaps of adjacent candidates, of total cost at rkptat ensures thai is ranked among the top
positions inv. (Elkind et al. EESQ09 studied this problem as a variant of the swap bribery proble
for k-approval elections, wheleis part of the input and the election consists of a single;\ubiey
established NP-completeness of the problem in their The6rg

Letl = (C,v, 1, p,/,k) be an instance of IRGLE-VOTE SwAP BRIBERY. We form a Bucklin
electionE = (A,V) as follows. LetC’' be a collection of somgC|| — 1 dummy candidates. We set
A=CuUC'U{d}. We partitionC’ into two setsC; andC,, such that|C}|| = ¢ and||C;|| = ||C'|| — .
(We pick any easily computable partition.) We étbe a collection of two votersj; andv,, with
price functionsry and7s:

1. v; has preference order> v > C’ (i.e.,v; ranksd on the top position, then all the candidates
from C in the same order ag and then all the candidates fro@, in some arbitrary-but-
easy-to-compute order). For each two candidatgs A, if both x andy are inC then we set
m(x,y) = 1(x,y), and otherwise we set (x,y) = k+ 1.

2. v, has preference ordgr> C; > d > C, > C— {p} (that is,v» ranksp first, then/ candidates
from C; followed byd, followed by the remaining candidates fra@h and, then, followed by
the candidates fro®@ — {p}). For each two candidatesy € A, we setr(x,y) = k+ 1.

Note that in our electiomaj(V) = 2 and, ifp is not among the top positions withinv, d is a winner
with Bucklin scoref + 2 (we cannot say that is the unique winner because we do not know on
what positionp is ranked inv). We claim thatp can become a unique Bucklin winner of electien
through a swap bribery of cost at mdsif and only if | is a yes-instance ofISGLE-VOTE SwWAP
BRIBERY.

Assume that is a yes-instance ofISGLE-VOTE SwAP BRIBERY. This means that there is a
sequence of swaps withinafter whichp is ranked among the toppositions inv. Applying the
same swaps t@; would cost the same and would puamong topl + 1 positions invy, makingp
the unique Bucklin winner.

On the other hand, assume that there is a cost-at-kn@stjuence of swaps within that make
p a unique Bucklin winner. Since any swap that is not in ¥heart of v; costsk+ 1, we have
that d’s Bucklin score is stilll 4+ 2, and, thus, after the swapss Bucklin score is in{2,...,¢+

23

1}. Executing the same swaps withinshows thatl is a yes-instance of ISGLE-VOTE SwAP
BRIBERY. O

To establish that BV-DUSB also is NP-complete for the casevofvoters, it suffices to use
the same construction as above, with the exception that apavi$ the designated candidate whose
victory we want to preclude, and () ranksd on position/ + 1 (and not/ + 2). Analogous results
for the fallback rule follow immediately.

Corollary 5.5 BV-DUSB, FV-CUSB, and FV-DUSB are NP-complete even for the cases of two
voters.

5.3 Results for Extension Bribery

Let us now move on to the study of extension bribery. The ¥alhg observation will simplify our
discussion.

Observation 5.6 In (constructive) extension bribery problems for the fatlb rule it is never prof-
itable to extend any vote in any other way than by asking tlervo include the designated candi-
date on the last unranked position.

Thus we will often specify the extension bribery price fuos by simply giving the cost of ex-
tending the vote by just one candidate (we will refer to thismber asextension cosbf the vote).
Not surprisingly, the weighted variants of extension bmjtb@re NP-complete.

Theorem 5.7 BothFV-CWEB and FV-DWEB are NP-complete.

Proof. Obviously, FV-CWEB is in NP. To show NP-hardness, we use aatéah from RAR-
TITION. Let ({1,...,k},(a1,...,&)) be an instance of ARTITION. We define a fallback election
(C,V) with the candidate set = {b,c, p}, the designated candidate andV consisting of the
following k+ 2 voters:

1. There is one voter with the ballotp | {b,c}, with weightK + 1 and extension cost + 1.

2. Foreach,1<i <Kk, there is a votey; who casts the ballat | {b, p}, has weightv, = &, and
has extension cost.

3. There is one votev,.1 who casts the balldb | {c, p} with weight ZK and extension cost
K+ 1.

The total sum of the voter’s weights in this election -5 1, somaj(V) > 2K. The weighted
scores of the candidates {@,V) are shown in Tabl®(a). Both c andb are fallback winners in
(C,V) and they win by approval, thysis not a (unique) fallback winner ifC,V).

We claim that there is a sé&f C A= {1,...,k} such thatycn & = Jizn & = K ifand only if p
can be made the unique fallback winner by extension-bribomge of the voters without exceeding
the budgekK.

From left to right: Suppose that there is a 86C A such thatyj.n & = Yizn & = K. Change
the votes of those votewswith i € A’ fromc | {b, p} toc> p | {b}. Each of these changes coats

24

Table 9: Scores in the election constructed in the proof @orems.7

(a) Total scoresirfiC,V) (b) Total scores iriC,V’)
b c p b C p
scord 2K 2K K+1 scord 2K 2K K+1

scoré 2K 2K 2K+1

so the total cost iK. The candidates’ scores in the resulting elecfi©rV’) are shown in Tabl8(b).
We see thap is the unique fallback winner in the bribed election.
From right to left: Suppose thatis the unique fallback winner in the electi¢@, V'), whereV’
is the changed voter set and the corresponding changes cossék. Hence, the only changes that
can be made (and that follow Observatim®) are adding the candidafeto the approval strategies
of some of the voters, ..., v. The scores of the candidatesndc cannot be decreased, pdas
to gainK points to have strictly more points thémandc. Thus, there exists a sAt C A such that
Yiea @ = Yign & = K andp has to be added to the approval strategies of those wgteith i € A'.
The destructive case can be proven by changing the role dfdzesp andc and changing the
weights of bothvg andvi; to K. O

On the other hand, the unweighted variant of the problem R.ifhis is a nice complement
to the hardness results of Schlotter et SIEE1] regarding support bribery. The main difference
regarding support bribery and extension bribery is thateurtde former we assume the voters to
rank all the candidates but declare as approved only someewoftop candidates, whereas in the
latter (and, in general, in our model) we assume the votaatioonly the approved candidates and
completely disregard the disapproved candidates.

Algorithm 4: Algorithm for Bucklin-CUEB

input : C set of candidates
V list of voters
A= (d,...,0n) list of extension bribery price functions
k budget
p designated candidate
output: “YES” if (C,V,A,k, p) € fallback-CUEB
“NO”if (C,V,Ak, p) ¢ fallback-CUEB

1 foreachse {1,...,||C]|} do
let (v4,...,v;) be a sublist o¥ containing votes that approve at mest 1 candidates and do not
approvec, sorted by extension costs in ascending order;
foreacht € {0,...,r} do
if changing ,...\{ to approve p makes p the unique wintieen
if the sum of extension costs §f v,V is less thank khen
| return“YES”;

N

0 N o o~ W

©

return “NO”;

25

Theorem 5.8 FV-CUEB and FV-DUEB are inP.

Proof. Let us consider FV-CUEB first. We claim that Algorithnsolves the problem in poly-
nomial time. The algorithm considers each rowid which p could possibly become the unique
winner and tries the cheapest bribery that might achieviehie. algorithm clearly runs in polynomial
time and its correctness follows by Observatto6.

It is clear how to adapt Algorithrd to the case of nonunigue winners. Then, to solve the
destructive variant of the problem it suffices to check if aapdidate other thap can be made a
nonunique winner within the budget. O

References

[BCE13] F. Brandt, V. Conitzer, and U. Endriss. Computadicsocial choice. In G. Weil3, editor,
Multiagent Systemgpages 213—-283. MIT Press, second edition, 2013.

[BEH'10] D. Baumeister, G. Erdélyi, E. Hemaspaandra, L. Hemasra, and J. Rothe. Compu-
tational aspects of approval voting. In J. Laslier and R.v8areditors,Handbook on
Approval Voting chapter 10, pages 199-251. Springer, 2010.

[BF78] S. Brams and P. Fishburn. Approval votingdmerican Political Science Review
72(3):831-847, 1978.

[BF83] S. Brams and P. FishburApproval Voting Birkhauser, Boston, 1983.

[BFLR12] D.Baumeister, P. Faliszewski, J. Lang, and J. BotBampaigns for lazy voters: Trun-
cated ballots. IfProceedings of the 11th International Joint Conference otoAomous
Agents and Multiagent Systenpmges 577-584. IFAAMAS, June 2012.

[BO91] J. Bartholdi Ill and J. Orlin. Single transferableteaesists strategic votingSocial
Choice and WelfareB(4):341-354, 1991.

[BS06] S. Brams and R. Sanver. Critical strategies underogppvoting: Who gets ruled in
and ruled outElectoral Studies25(2):287-305, 2006.

[BS09] S. Brams and R. Sanver. \oting systems that combipeospl and preference. In
S. Brams, W. Gehrlein, and F. Roberts, editditse Mathematics of Preference, Choice,
and Order: Essays in Honor of Peter C. Fishbupages 215-237. Springer, 2009.

[BTT89] J. Bartholdi Ill, C. Tovey, and M. Trick. The comptitanal difficulty of manipulating
an election.Social Choice and Welfay&(3):227—-241, 1989.

[BTT92] J. Bartholdi lll, C. Tovey, and M. Trick. How hard isto control an election™athe-
matical and Computer Modellind.6(8/9):27-40, 1992.

[CSLO7] V. Conitzer, T. Sandholm, and J. Lang. When are mlestwith few candidates hard to
manipulate?Journal of the ACM54(3):Article 14, 2007.

26

[DS12]

[EF10a]

[EF10b]

B. Dorn and I. Schiotter. Multivariate complexityaysis of swap briberyAlgorith-
mica 64(1):126-151, 2012.

E. Elkind and P. Faliszewski. Approximation al¢fums for campaign management. In
Proceedings of the 6th International Workshop On Internetl Aletwork Economics
pages 473-482. Springer-Verlagcture Notes in Computer Science #64Bécember
2010.

G. Erdélyi and M. Fellows. Parameterized contiainplexity in Bucklin voting and

in fallback voting. In V. Conitzer and J. Rothe, editoRroceedings of the 3rd In-
ternational Workshop on Computational Social Choipages 163—-174. Universitat
Dusseldorf, September 2010.

[EFRS12] G. Erdélyi, M. Fellows, J. Rothe, and L. Schendnat@i complexity in Bucklin and fall-

[EFS09]

[ENRO9]

[EPR11]

[ER10]

[FHHO9]

back voting. Technical Report arXiv:1103.2230 [cs.CC]npaiting Research Repos-
itory, arXiv.org/corr/, March 2012. March, 2011. Revisedghist, 2012. Extends the
AAMAS-2011 paper EPR11.

E. Elkind, P. Faliszewski, and A. Slinko. Swap briben Proceedings of the 2nd In-
ternational Symposium on Algorithmic Game The@ages 299-310. Springer-Verlag
Lecture Notes in Computer Science #580Q4tober 2009.

G. Erdélyi, M. Nowak, and J. Rothe. Sincere-stggtpreference-based approval voting
fully resists constructive control and broadly resiststidesive control. Mathematical
Logic Quarterly 55(4):425-443, 2009.

G. Erdélyi, L. Piras, and J. Rothe. The complexitywater partition in Bucklin and
fallback voting: Solving three open problems. Rmoceedings of the 10th Interna-
tional Joint Conference on Autonomous Agents and Multie§gstemspages 837-844.
IFAAMAS, May 2011.

G. Erdélyi and J. Rothe. Control complexity in faltik voting. InProceedings of
Computing: the 16th Australasian Theory Symposipages 39—48. Australian Com-
puter SocietyConferences in Research and Practice in Information TeldgyoSeries
vol. 32, no. 8, January 2010.

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaamtbw hard is bribery in elec-
tions? Journal of Artificial Intelligence ResearcB5:485-532, 2009.

[FHHRO9] P. Faliszewski, E. Hemaspaandra, L. HemaspaaaddhJ. Rothe. Llull and Copeland

[FP10]

[GJT79]

voting computationally resist bribery and constructiventcol. Journal of Artificial
Intelligence Researct85:275-341, 2009.

P. Faliszewski and A. Procaccia. Al's war on manipaia Are we winning? Al
Magazing 31(4):53-64, 2010.

M. Garey and D. JohnsorComputers and Intractability: A Guide to the Theory of
NP-CompletenesdV. H. Freeman and Company, 1979.

27

[HHRO7] E. Hemaspaandra, L. Hemaspaandra, and J. Rotheon&nyut him: The complexity
of precluding an alternativeéArtificial Intelligence 171(5-6):255-285, 2007.

[KLO5] K. Konczak and J. Lang. Voting procedures with incdetp preferences. IRroceed-
ings of the Multidisciplinary IJCAI-05 Workshop on Advasi@e Preference Handling
pages 124-129, July/August 2005.

[Menl1l] C. Menton. Normalized range voting broadly resistsitrol. Technical Report
arXiv:1005.5698v2 [cs.GT], Computing Research RepaogitarXiv.org/corr/, April
2011. Revised June, 2012. To appearimory of Computing Systems

[Pap95] C. PapadimitriouComputational ComplexityAddison-Wesley, second edition, 1995.

[Rot05] J. Rothe. Complexity Theory and Cryptology. An Introduction to Cogatmplexity
EATCS Texts in Theoretical Computer Science. Springefager2005.

[RS] J. Rothe and L. Schend. Challenges to complexity shitidt are supposed to pro-
tect elections against manipulation and control: A surveynals of Mathematics and
Artificial Intelligence To appear.

[RS12] J. Rothe and L. Schend. Control complexity in Bugkiailback, and plurality voting:
An experimental approach. IRroceedings of the 11th International Symposium on
Experimental Algorithmspages 356—-368. Springer-Verlagcture Notes in Computer
Science #7276&une 2012.

[SFE11] |I. Schlotter, P. Faliszewski, and E. Elkind. Cargpamanagement under approval-
driven voting rules. IrProceedings of the 25th AAAI Conference on Artificial Intell
gence pages 726—731, August 2011.

[XC11] L. Xia and V. Conitzer. Determining possible and resagy winners given partial or-
ders.Journal of Artificial Intelligence Research1:25-67, 2011.

[Xial2] L. Xia. Computing the margin of victory for variousting rules. InProceedings of the
13th ACM Conference on Electronic Commeigages 982-999. ACM Press, 2012.

[XZP*09] L. Xia, M. Zuckerman, A. Procaccia, V. Conitzer, and JsRaschein. Complexity of
unweighted coalitional manipulation under some commomygatules. InProceedings
of the 21st International Joint Conference on Artificialdiigence pages 348-353.
[JCAI, July 2009.

28

	1 Introduction
	2 Preliminaries
	2.1 Bucklin and Fallback Elections
	2.2 Basics from Complexity Theory

	3 Manipulation in Bucklin and Fallback Voting
	3.1 Definitions and Overview of Results
	3.2 Results for Unweighted Manipulation
	3.3 Results for Weighted Manipulation

	4 Bribery in Bucklin and Fallback Voting
	4.1 Definition of Bribery Problems and Overview of Results
	4.2 Results for Bribery

	5 Campaign Management
	5.1 Definitions and Overview of Results
	5.2 Results for Swap Bribery
	5.3 Results for Extension Bribery

