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Abstract

We consider the optimal pricing problem for a model of the rich media advertisement market, as
well as other related applications. In this market, there are multiple buyers (advertisers), and items
(slots) that are arranged in a line such as a banner on a website. Each buyer desires a particular
number of consecutive slots and has a per-unit-quality value vi (dependent on the ad only) while
each slot j has a quality qj (dependent on the position only such as click-through rate in position
auctions). Hence, the valuation of the buyer i for item j is viqj . We want to decide the allocations
and the prices in order to maximize the total revenue of the market maker.

A key difference from the traditional position auction is the advertiser’s requirement of a fixed
number of consecutive slots. Consecutive slots may be needed for a large size rich media ad. We
study three major pricing mechanisms, the Bayesian pricing model, the maximum revenue market
equilibrium model and an envy-free solution model. Under the Bayesian model, we design a polyno-
mial time computable truthful mechanism which is optimum in revenue. For the market equilibrium
paradigm, we find a polynomial time algorithm to obtain the maximum revenue market equilibrium
solution. In envy-free settings, an optimal solution is presented when the buyers have the same
demand for the number of consecutive slots. We conduct a simulation that compares the revenues
from the above schemes and gives convincing results.
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1 Introduction

Ever since the pioneering studies on pricing protocols for sponsored search advertisement, especially
with the generalized second price auction (GSP), by Edelman, Ostrovsky, and Schwarz [9], as well as
Varian [18], market making mechanisms have attracted much attention from the research community in
understanding their effectiveness for the revenue maximization task facing platforms providing Internet
advertisement services. In the traditional advertisement setting, advertisers negotiate ad presentations
and prices with website publishers directly. An automated pricing mechanism simplifies this process
by creating a bidding game for the buyers of advertisement space over an IT platform. It creates a
complete competition environment for the price discovery process. Accompanying the explosion of the
online advertisement business, there is a need to have a complete picture on what pricing methods to
use in practical terms for both advertisers and Ad space providers.

In addition to search advertisements, display advertisements have been widely used in webpage
advertisements. They have a rich format of displays such as text ads and rich media ads. Unlike
sponsored search, there is a lack of systematic studies on its working mechanisms for decision makings.
The market maker faces a combinatorial problem of whether to assign a large space to one large rich
media ad or multiple small text ads, as well as how to decide on the prices charged to them. We present
a study of the allocation and pricing mechanisms for displaying slots in this environment where some
buyers would like to have one slot and others may want several consecutive slots in a display panel.
In addition to webpage ads, another motivation of our study is TV advertising where inventories of a
commercial break are usually divided into slots of a few seconds each, and slots have various qualities
measuring their expected number of viewers and the corresponding attractiveness.

We discuss three types of mechanisms and consider the revenue maximization problem under these
mechanisms, and compare their effectiveness in revenue maximization under a dynamic setting where
buyers may change their bids to improve their utilities. Our results make an important step toward
the understanding of the advantages and disadvantages of their uses in practice. Assume the ad
supplier divides the ad space into small enough slots (pieces) such that each advertiser is interested in
a position with a fixed number of consecutive pieces. In modelling values to the advertisers, we modify
the position auction model from the sponsored search market [9, 18] where each ad slot is measured
by the Click Through Rates (CTR), with users’ interest expressed by a click on an ad. Since display
advertising is usually sold on a per impression (CPM) basis instead of a per click basis (CTR), the
quality factor of an ad slot stands for the expected impression it will brings in unit of time. Unlike in
the traditional position auctions, people may have varying demands (need different spaces to display
their ads) in a rich media ad auction for the market maker to decide on slot allocations and their prices.

We will lay out the the specific system parameters and present our results in the following subsec-
tions.

1.1 Our Modeling Approach

We have a set of buyers (advertisers) and a set of items to be sold (the ad slots on a web page). We
address the challenge of computing prices that satisfy certain desirable properties. Next we describe
the elements of the model in more detail.

• Items. Our model considers the geometric organization of ad slots, which commonly has the
slots arranged in some sequence (typically, from top to bottom in the right-hand side of a web
page). The slots are of variable quality. In the study of sponsored search auctions, a standard
assumption is that the quality (corresponding to click-through rate) is highest at the beginning
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of the sequence and then monotonically decreases. Here we consider a generalization where the
quality may go down and up, subject to a limit on the total number of local maxima (which we
call peaks), corresponding to focal points on the web page. As we will show later, without this
limit the revenue maximization problem is NP-hard.

• Buyers. A buyer (advertiser) may want to purchase multiple slots, so as to display a larger
ad. Note that such slots should be consecutive in the sequence. Thus, each buyer i has a fixed
demand di, which is the number of slots she needs for her ad. Two important aspects of this are

⋄ sharp multi-unit demand, referring to the fact that buyer i should be allocated di items, or
none at all; there is no point in allocating any fewer

⋄ consecutiveness of the allocated items, in the pre-existing sequence of items.

These constraints give rise to a new and interesting combinatorial pricing problem.

• Valuations. We assume that each buyer i has a parameter vi representing the value she assigns
to a slot of unit quality. Valuations for multiple slots are additive, so that a buyer with demand
di would value a block of di slots to be their total quality, multiplied by vi. This valuation model
has been considered by Edelman et al. [9] and Varian [18] in their seminal work for keywords
advertising.

Pricing mechanisms. Given the valuations and demands from the buyers, the market maker
decides on a price vector for all slots and an allocation of slots to buyers, as an output of the market.
The question is one of which output the market maker should choose to achieve certain objectives. We
consider two approaches:

• Truthful mechanism whereby the buyers report their demands (publicly known) and values
(private) to the market maker; then prices are set in such a way as to ensure that the buyers
have the incentive to report their true valuations. We give a revenue-maximizing approach (i.e.,
maximizing the total price paid), within this framework.

• Competitive equilibrium whereby we prescribe certain constraints on the prices so as to
guarantee certain well-known notions of fairness and envy-freeness.

• Envy-free solution whereby we prescribe certain constraints on the prices and allocations so
as to achieve envy-freeness, as explained below.

The mechanisms we exhibit are computationally efficient. We also performed experiments to com-
pare the revenues obtained from these three mechanisms.

1.2 Related Works

The theoretical study of position auctions (of a single slot) under the generalized second price auction
was initiated in [9, 18]. There has been a series of studies of position auctions in deterministic settings
[14]. Our consideration of position auctions in the Bayesian setting fits in the general one dimensional
auction design framework. Our study considers continuous distributions on buyers’ values. For dis-
crete distributions, [4] presents an optimal mechanism for budget constrained buyers without demand
constraints in multi-parameter settings and very recently they also give a general reduction from rev-
enue to welfare maximization in [5]; for buyers with both budget constraints and demand constraints,
2-approximate mechanisms [1] and 4-approximate mechanisms [3] exist in the literature.
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There are extensive studies on multi-unit demand in economics, see for example [2, 6, 10]. In an
earlier paper [7] we considered sharp multi-unit demand, where a buyer with demand d should be
allocated d items or none at all, but with no further combinatorial constraint, such as the consecu-
tiveness constraint that we consider here. The sharp demand setting is in contrast with a “relaxed”
multi-unit demand (i.e., one can buy a subset of at most d items), where it is well known that the set of
competitive equilibrium prices is non-empty and forms a distributive lattice [13, 17]. This immediately
implies the existence of an equilibrium with maximum possible prices; hence, revenue is maximized.
Demange, Gale, and Sotomayor [8] proposed a combinatorial dynamics which always converges to a
revenue maximizing (or minimizing) equilibrium for unit demand; their algorithm can be easily gener-
alized to relaxed multi-unit demand. A strongly related work to our consecutive settings is the work
of Rothkopf et al. [16], where the authors presented a dynamic programming approach to compute
the maximum social welfare of consecutive settings when all the qualities are the same. Hence, our
dynamic programming approach for general qualities in Bayesian settings is a non-trivial generalization
of their settings.

1.3 Organization

This paper is organized as follows. In Section 2 we describe the details of our rich media ads model
and the related solution concepts. In Section 3, we study the problem under the Bayesian model
and provide a Bayesian Incentive Compatible auction with optimal expected revenue for the special
case of the single peak in quality values of advertisement positions. Then in Section 4, we extend
the optimal auction to the case with limited peaks/valleys and show that it is NP-hard to maximize
revenue without this limit. Next, in Section 5, we turn to the full information setting and propose an
algorithm to compute the competitive equilibrium with maximum revenue. In Section 6, NP-hardness
of envy-freeness for consecutive multi-unit demand buyers is shown. We also design a polynomial time
solution for the special case where all advertisers demand the same number of ad slots. The simulation
is presented in Section 7.

2 Preliminaries

In our model, a rich media advertisement instance consists of n advertisers and m advertising slots.
Each slot j ∈ {1, . . . ,m} is associated with a number qj which can be viewed as the quality or the
desirability of the slot. Each advertiser (or buyer) i wants to display her own ad that occupies di
consecutive slots on the webpage. In addition, each buyer has a private number vi representing her
valuation and thus, the i-th buyer’s value for item j is vij = viqj.

Throughout this thesis, we will often say that slot j is assigned to a buyer set B to denote that
j is assigned to some buyer in B. We will call the set of all slots assigned to B the allocation to B.
In addition, a buyer will be called a winner if he succeeds in displaying his ad and a loser otherwise.
We use the standard notation [s] to denote the set of integers from 1 to s, i.e. [s] = {1, 2, . . . , s}. We
sometimes use

∑

i instead of
∑

i∈[n] to denote the summation over all buyers and
∑

j instead of
∑

j∈[m]

for items, and the terms Ev and Ev−i
are short for Ev∈V and Ev−i∈V−i

.
The vector of all the buyers’ values is denoted by ~v or sometimes (vi; v−i) where v−i is the joint

bids of all bidders other than i. We represent a feasible assignment by a vector ~x = (xij)i,j, where
xij ∈ {0, 1} and xij = 1 denotes item j is assigned to buyer i. Thus we have

∑

i xij ≤ 1 for every
item j. Given a fixed assignment x, we use ti to denote the quality of items that buyer i is assigned,
precisely, ti =

∑

j qjxij . In general, when x is a function of buyers’ bids ~v, we define ti to be a function
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of ~v such that ti(~v) =
∑

j qjxij(~v).
When we say that slot qualities have a single peak, we mean that there exists a peak slot k such

that for any slot j < k on the left side of k, qj ≥ qj−1 and for any slot j > k on the right side of k,
qj ≥ qj+1.

2.1 Bayesian Mechanism Design

Following the work of [15], we assume that all buyers’ values are distributed independently according to
publicly known bounded distributions. The distribution of each buyer i is represented by a Cumulative
Distribution Function (CDF) Fi and a Probability Density Function (PDF) fi. In addition, we assume
that the concave closure or convex closure or integration of those functions can be computed efficiently.

An auction M = (~x, ~p) consists of an allocation function ~x and a payment function ~p. ~x specifies
the allocation of items to buyers and ~p = (pi)i specifies the buyers’ payments, where both ~x and ~p
are functions of the reported valuations ~v. Our objective is to maximize the expected revenue of the
mechanism is Rev(M) = E~v [

∑

i pi(~v)] under Bayesian incentive compatible mechanisms.

Definition 2.1. A mechanism M is called Bayesian Incentive Compatible (BIC) iff the following
inequalities hold for all i, vi, v

′
i.

Ev−i
[viti(~v)− pi(~v)] ≥ Ev−i

[
viti(v

′
i; v−i)− pi(v

′
i; v−i)

]
(1)

Besides, we say M is Incentive Compatible if M satisfies a stronger condition that viti(~v) − pi(~v) ≥
viti(v

′
i; v−i)− pi(v

′
i; v−i), for all ~v, i, v′i,

To put it in words, in a BIC mechanism, no player can improve her expected utility (expectation
taken over other players’ bids) by misreporting her value. An IC mechanism satisfies the stronger
requirement that no matter what the other players declare, no player has incentives to deviate.

2.2 Competitive Equilibrium and Envy-free Solution

In Section 5, we study the revenue maximizing competitive equilibrium and envy-free solution in the
full information setting instead of the Bayesian setting. An outcome of the market is a pair ( ~X, ~p),
where ~X specifies an allocation of items to buyers and ~p specifies prices paid. Given an outcome ( ~X, ~p),
recall vij = viqj, let ui( ~X, ~p) denote the utility of i.

Definition 2.2. A tuple ( ~X, ~p) is a consecutive envy-free pricing solution if every buyer is consecutive
envy-free, where a buyer i is consecutive envy-free if the following conditions are satisfied:

• if Xi 6= ∅, then (i) Xi is di consecutive items. ui( ~X, ~p) =
∑

j∈Xi

(vij − pj) ≥ 0, and (ii) for any

other subset of consecutive items T with |T | = di, ui( ~X, ~p) =
∑

j∈Xi

(vij − pj) ≥
∑

j∈T
(vij − pj);

• if Xi = ∅ (i.e., i wins nothing), then, for any subset of consecutive items T with |T | = di,∑

j∈T
(vij − pj) ≤ 0.

In the literature, there have been two other types of envy-free concepts, namely, sharp item envy-
free [7] and bundle envy-free [11]. Sharp item envy-free requires that each buyer would not envy a
bundle of items with the number of her demand while bundle envy-free illustrates that no one would
envy the bundle bought by any other buyer. From the definition of those three envy-free concepts, we
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have the following inclusive relations:
sharp item envy-free ⇒ (sharp) bundle envy-free,
consecutive envy-free⇒ (consecutive) bundle envy-free

Example 2.1 (Three types of envy-freeness). Suppose there are two buyers i1 and i2 with per-unit-
quality vi1 = 10, vi2 = 8 and di1 = 1, di2 = 2. The item j1, j2, j3 with quality as qj1 = qj3 = 1 and
qj2 = 3. The optimal solution of the three types of envy-freeness are as follows:

• The optimal consecutive envy-free solution, Xi1 = {j3}, Xi2 = {j1, j2} and pj1 = pj3 = 6 and
pj2 = 26 with total revenue 38;

• Optimal sharp item envy-free solution, Xi1 = {j2}, Xi2 = {j1, j3} and pj1 = pj3 = 8 and pj2 = 28
with total revenue 44;

• Optimal (relaxed) bundle envy-free solution, Xi1 = {j2}, Xi2 = {j1, j3} and pj1 = pj3 = 8 and
pj2 = 30 with total revenue 46;

Definition 2.3. (Competitive Equilibrium) We say an outcome of the market ( ~X, ~p) is a competitive
equilibrium if it satisfies two conditions.

• ( ~X, ~p) must be consecutive envy-free.

• The unsold items must be priced at zero.

We are interested in the revenue maximizing competitive equilibrium and envy-free solutions.
It is well known that a competitive equilibrium always exists for unit demand buyers (even for

general vij valuations) [17]. For our consecutive multi-unit demand model, however, a competitive
equilibrium may not always exist as the following example shows.

Example 2.2 (Competitive equilibrium may not exist). There are two buyers i1, i2 with values vi1 = 10
and vi2 = 9, respectively. Let their demands be di1 = 1 and di2 = 2, respectively. Let the seller have two
items j1, j2, both with the unit quality qj1 = qj2 = 1. If i1 wins an item, without loss of generality, say
j1, then j2 is unsold and pj2 = 0; by envy-freeness of i1, we have pj1 = 0 as well. Thus, i2 envies the
bundle {j1, j2}. On the other hand, if i2 wins both items, then pj1 + pj2 ≤ vi2j1 + vi2j2 = 18, implying
that pj1 ≤ 9 or pj2 ≤ 9. Therefore, i1 is not envy-free. Hence, there is no competitive equilibrium in
the given instance.

In the unit demand case, it is well-known that the set of equilibrium prices forms a distributive
lattice; hence, there exist extremes which correspond to the maximum and the minimum equilibrium
price vectors. In our consecutive demand model, however, even if a competitive equilibrium exists,
maximum equilibrium prices may not exist.

Example 2.3 (Maximum equilibrium need not exist). There are two buyers i1, i2 with values vi1 =
10, vi2 = 1 and demands di1 = 2, di2 = 1, and two items j1, j2 with unit quality qj1 = qj2 = 1. It
can be seen that allocating the two items to i1 at prices (19, 1) or (1, 19) are both revenue maximizing
equilibria; but there is no equilibrium price vector which is at least both (19, 1) and (1, 19).

Because of the consecutive multi-unit demand, it is possible that some items are ‘over-priced’; this
is a significant difference between consecutive multi-unit and unit demand models. Formally, in a
solution ( ~X, ~p), we say an item j is over-priced if there is a buyer i such that j ∈ Xi and pj > viqj.
That is, the price charged for item j is larger than its contribution to the utility of its winner.
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Example 2.4 (Over-priced items). There are two buyers i1, i2 with values vi1 = 20, vi2 = 10 and
demands di1 = 1 and di2 = 2, and three items j1, j2, j3 with qualities qj1 = 3, qj2 = 2, qj3 = 1. We can
see that the allocations Xi1 = {j1},Xi2 = {j2, j3} and prices (45, 25, 5) constitute a revenue maximizing
envy-free solution with total revenue 75, where item j2 is over-priced. If no items are over-priced, the
maximum possible prices are (40, 20, 10) with total revenue 70.

3 Optimal Auction for the Single Peak Case

The goal of this section is to present our optimal auction for the single peak case that serves as an
elementary component in the general case later. En route, several principal techniques are examined
exhaustively to the extent that they can be applied directly in the next section. By employing these
techniques, we show that the optimal Bayesian Incentive Compatible auction can be represented by a
simple Incentive Compatible one. Furthermore, this optimal auction can be implemented efficiently.
Let Ti(vi) = Ev−i

[ti(~v)], Pi(vi) = Ev−i
[pi(~v)] and φi(vi) = vi −

1−Fi(vi)
fi(vi)

. From Myerson’ work [15], we
obtain the following three lemmas.

Lemma 3.1 (From [15]). A mechanism M = (x, p) is Bayesian Incentive Compatible if and only if:
a) Ti(x) is monotone non-decreasing for any agent i.
b) Pi(vi) = viTi(vi)−

∫ vi
v
i

Ti(z)dz

Lemma 3.2 (From [15]). For any BIC mechanism M = (x, p), the expected revenue E~v[
∑

i Pi(vi)] is
equal to the virtual surplus E~v[

∑

i φi(vi)ti(~v)].

The following lemma is the direct result of Lemma 3.1 and 3.2.

Lemma 3.3. Suppose that x is the allocation function that maximizes E~v[φi(vi)ti(~v)] subject to the
constraints that Ti(vi) is monotone non-decreasing for any bidders’ profile ~v, any agent i is assigned
either di consecutive slots or nothing. Suppose also that

pi(~v) = viti(~v)−

∫ vi

v
i

ti(v−i, si)dsi (2)

Then (x, p) represents an optimal mechanism for the rich media advertisement problem in single-peak
case.

We will use dynamic programming to maximize the virtual surplus in Lemma 3.2. Suppose all the
buyers are sorted in a no-increasing order according to their virtual values. We will need the following
two useful lemmas. Lemma 3.4 states that all the allocated slots are consecutive.

Lemma 3.4. There exists an optimal allocation x that maximizes
∑

i φi(vi)ti(~v) in the single peak
case, and satisfies the following condition. For any unassigned slot j, it must be that either ∀j′ > j,
slot j′ is unassigned or ∀j′ < j, slot j′ is unassigned.

Proof. We pick an arbitrary optimal allocation x that maximizes the summation of virtual values. If
x satisfies the property, it is the desired allocation and we are done. Otherwise, we do the following
modification on x. Let slot j (1 < j < m) be the unassigned slot between buyers’ allocated slots.
Since the quality function are single peaked, we have qj ≥ qj+1 or qj ≥ qj−1. We only prove the lemma
for the case qj ≥ qj+1 and the proof for the other case is symmetric. Let slot j′ > j be the leftmost
assigned slot on the right side of j. We modify x by assigning the buyer i who got the slot j′ the
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di consecutive slots from j. It is easy to check the resulting allocation is still feasible and optimal.
Moreover, the slot j becomes assigned now. By keep doing this, we can eliminate all unassigned slots
between buyers’ allocations. Thus, the resulting allocation must be consecutive.

Next, we prove that this consecutiveness even holds for all set [s] ⊆ [n]. That is, there exists an
optimal allocation that always assigns the first s buyers consecutively for all s ∈ [n]. For convenience,
we say that a slot is “out of” a set of buyers if the slot is not assigned to any buyers in that set. Then
the consecutiveness can be formalized in the following lemma.

Lemma 3.5. There exists an optimal allocation x in the single peak case, that satisfies the following
condition. For any slot j out of [s], it must be either ∀j′ > j, slot j′ is out of [s] or ∀j′ < j, slot j′ is
out of [s].

Proof. The idea is to pick an arbitrary optimal allocation x and modify it to the desired one. Suppose
x does not satisfy the property on a subset [s]. By Lemma 3.4, there is no unassigned slots in the
middle of allocations to set [s]. Then there must be a slot assigned to a buyer i out of the set [s] that
separates the allocations to [s] We use Wi to denote the allocated slots of buyer i. Suppose slot k is
the peak. There are two cases to be considered:

Case 1. k /∈Wi.
Let j and j′ be the leftmost and rightmost slot in Wi respectively. We consider two cases qj ≥ qj′

and qj < qj′ . We only prove for the first case and the proof for the other case is symmetric.
If qj ≥ qj′, we find the leftmost slot j1 > j′ assigned to [s] and the rightmost slot j2 < j1 not
assigned to [s]. In addition, let i1 ∈ [s] be the buyer that j1 is assigned to and i2 > s be the
buyer that j2 is assigned to. In single peak case, it is easy to check qj ≥ qj′ implies that all the
slots assigned to i2 have higher quality than i1’s. Thus swapping the positions of i1 and i2 will
always increase the virtual surplus,

∑

i φi(vi)ti(~v). By keep doing this, we can eliminate all slots
out of [s] in the middle of allocation to [s] and attain the desired optimal solution.

Case 2. k ∈Wi

Suppose Wi = {j
i
1, j

i
2, · · · , j

i
ui
} with ji1 < ji2 < · · · < jiui

and there exists 1 ≤ e ≤ ui such that
k = jie. Let a and b be the left and right neighbour buyers of i winning slots next to Wi. As we
know a, b ∈ [s], hence, va ≥ vi and vb ≥ vi. Let Wa = {ja1 , j

a
2 , · · · , j

a
ua
} and Wb = {j

b
1, j

b
2, · · · , j

b
ui
}

denote the allocated slots of buyer a and b respectively, where ja1 < ja2 < · · · < jaua
and jb1 < jb2 <

· · · < jbub
. As k ∈ Wi, then qji

1
≥ qjaua and qjiui

≥ qjb
1
(noting that jaua

and jb1 are the indices of

slots with the largest qualities in Wa and Wb respectively). We will show that either swapping
winning slots of i with a or with b will increase the virtual surplus. To prove this, there four cases
needed to be considered: (1). ui ≥ ua and ui ≥ ub; (2). ui ≥ ua and ui < ub; (3). ui < ua and
ui ≥ ub; (4). ui < ua and ui < ub. We only prove the case (1) since the other cases can be proved
similarly. Now, suppose ui ≥ ua and ui ≥ ub, then we must have either (i).

∑ub

k=1 qji
k

≥
∑ub

k=1 qjb
k

or (ii).
∑ua

k=1 qji
ui−k+1

≥
∑ua

k=1 qjak . Suppose (i) is not true, that is
∑ub

k=1 qji
k

<
∑ub

k=1 qjb
k

, if ub ≤ e,

then we have qji
1
≤ qjiu

b

, as a result,

ubqji
1
≤

ub∑

k=1

qji
k

<

ub∑

k=1

qjb
k

≤ ubqjb
1
≤ ubqjiui

,

thus, qji
1
< qjiui

; otherwise ub > e, then it must also hold that qji
1
≤ qjiub

(otherwise, for any

1 ≤ ℓ ≤ ub, qji
ℓ

≥ qjiu
b

≥ qjb
1
implying that

∑ub

k=1 qji
k

≥ ubqjb
1
≥

∑ub

k=1 qjb
k

, contradiction), hence,
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for any 1 ≤ ℓ ≤ ub, qji
ℓ

≥ qji
1
, it follows,

ubqji
1
≤

ub∑

k=1

qji
k

<

ub∑

k=1

qjb
k

≤ ubqjb
1
≤ ubqjiui

,

in both cases, it is obtained that qji
1
< qjiui

, therefore,

ua∑

k=1

qji
ui−k+1

> uaqji
1
≥

ua∑

k=1

qja
k

implying (ii) is true. Thus, if (i) is true, by simple calculations, swapping winning slots of i with
b will increase the virtual value (since vb ≥ vi), otherwise swapping winning slots of i with a will
increase the virtual surplus (since va ≥ vi). Then keep doing it by the method of Case 1 until
eliminating all slots out of [s] in the middle of allocation to [s] and attaining the desired optimal
solution.

Since the optimal solution always assigns to [s] consecutively (Lemma 3.5), we can boil the allo-
cations to [s] down to an interval denoted by [l, r]. Let g[s, l, r] denote the maximized value of our
objective function

∑

i φi(vi)ti(~v) when we only consider first s buyers and the allocation of s is exactly
the interval [l, r]. Then we have the following transition function.

g[s, l, r] = max







g[s − 1, l, r]

g[s − 1, l, r − ds] + φs(vs)
∑r

j=r−ds+1 qj

g[s − 1, l + ds, r] + φs(vs)
∑l+ds−1

j=l qj

(3)

Our summary statement is as follows.

Theorem 3.1. The mechanism that applies the allocation rule according to Dynamic Programming (3)
and payment rule according to Equation (2) is an optimal mechanism for the banner advertisement
problem with single peak qualities.

Proof. To complete the proof, it suffices to prove that Ti(vi) is monotone non-decreasing. More specif-
ically, we prove a stronger fact, that ti(vi, v−i) is non-decreasing as vi increases. Given other buyers’
bids v−i, the monotonicity of ti is equivalent to ti(vi, v−i) ≤ ti(v

′
i, v−i) if v

′
i > vi. Assuming that v′i > vi,

the regularity of φi implies that φi(vi) ≤ φi(v
′
i). If φi(vi) = φi(v

′
i), then ti(vi, v−i) = ti(v

′
i, v−i) and we

are done.
Consider the case that φi(vi) < φi(v

′
i). Let Q and Q′ denote the total quantities obtained by all

the other buyers except buyer i in the mechanism when buyer i bids vi and v′i respectively.

φi(v
′
i)ti(v

′
i, v−i) +Q′ ≥ φi(v

′
i)ti(vi, v−i) +Q

φi(vi)ti(vi, v−i) +Q ≥ φi(vi)ti(v
′
i, v−i) +Q′.

Above inequalities are due to the optimality of allocations when i bids vi and v′i respectively. It follows
that

φi(v
′
i)(ti(vi, v−i)− ti(v

′
i, v−i)) ≤ Q′ −Q

φi(vi)(ti(vi, v−i)− ti(v
′
i, v−i)) ≥ Q′ −Q

By the fact that φi(vi) < φi(v
′
i), it must be ti(vi, v−i) ≤ ti(v

′
i, v−i).
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4 Multiple Peaks Case

Suppose now that there are only h peaks (local maxima) in the qualities. Thus, there are at most h−1
valleys (local minima). Since h is a constant, we can enumerate all the buyers occupying the valleys.
After this enumeration, we can divide the qualities into at most h consecutive pieces and each of them
forms a single-peak. Then using similar properties as those in Lemma 3.4 and 3.5, we can obtain a
larger size dynamic programming (still runs in polynomial time) similar to dynamic programming (3)
to solve the problem.

Theorem 4.1. There is a polynomial algorithm to compute revenue maximization problem in Bayesian
settings where the qualities of slots have a constant number of peaks.

Proof. Our proof is based on the single peak algorithm. Assume there are h peaks, then there must
be h− 1 valleys. Suppose these valleys are indexed j1, j2, · · · , jh−1. In optimal allocation, for any jk,
k = 1, 2, · · · , h − 1, jk must be allocated to a buyer or unassigned to any buyer. If jk is assigned to
a buyer, say, buyer i, since i would buy di consecutive slots, jk may appear in ℓth position of this di
consecutive slots. Hence, by this brute force, each jk will at most have

∑

i di + 1 ≤ mn + 1 possible
positions to be allocated. In all, all the valleys have (mn+1)h possible allocated positions. For each of
this allocation, the slots is broken into h single peak slots. We can obtain similar properties as those
in Lemma 3.4 and 3.5. Without loss of generality, suppose the rest buyers are still the set [n], with
non-increasing virtual value. Since the optimal solution always assigns to [s] consecutively, we can
boil the allocations to [s] down to intervals denoted by [li, ri], i = 1, 2, · · · , d, where [li, ri] lies in the
i-th single peak slot. Let g[s, l1, r1, · · · , ld, rd] denote the maximized value of our objective function
∑

i φi(vi)ti(~v) when we only consider first s buyers and the allocations of [s] are exactly intervals [li, ri],
i = 1, 2, · · · , d. Then we have the following transition function.

g[s, l1, r1, · · · , ld, rd] = max
i∈[d]







g[s − 1, l1, r1, · · · , ld, rd]

g[s − 1, l1, r1, · · · , li, ri − ds, · · · , ld, rd] + φs(vs)
∑ri

j=ri−ds+1 qj

g[s − 1, l1, r1, · · · , li + ds, ri, · · · , ld, rd] + φs(vs)
∑li+ds−1

j=li
qj

Now we consider the case without the constant peak assumption and prove the following hardness
result.

Theorem 4.2. (NP-Hardness) The revenue maximization problem for rich media ads with arbitrary
qualities is NP-hard.

Proof. We prove the NP-hardness by reducing the 3 partition problem that is to decide whether a
given multi-set of integers can be partitioned into certain number of subsets that all have the same
sum. More precisely, given a multi-set S of 3n positive integers, can S be partitioned into n subsets
S1, . . . , Sn such that the sum of the numbers in each subset is equal? The 3 partition problem has
been proven to be NP-complete in a strong sense in [12], meaning that it remains NP-complete even
when the integers in S are bounded above by a polynomial in n.

Given a instance of 3 partition (a1, a2, . . . , a3n), we construct a instance for advertising problem
with 3n advertisers and m = n+

∑

i ai slots. It should be mentioned that m is polynomial of n due to
the fact that all ai are bouned by a polynomial of n. In the advertising instance, the valuation vi for

9



each advertiser i is 1 and his demand di is defined as ai. Moreover, for any advertiser, his valuation
distribution is that vi = 1 with probability 1. Then everyone’s virtual value is exactly 1. To maximize
revenue is equivalent to maximize the simplified function

∑

i

∑

j xijqj.
Let B =

∑

i ai/n. We define the quality of slot j is 0 if j is times of B +1, otherwise qj = 1. That
can be illustrated as follows.

1 1 · · · 1
︸ ︷︷ ︸

B

0 1 1 · · · 1
︸ ︷︷ ︸

B

0 . . . 1 1 · · · 1
︸ ︷︷ ︸

B

0

It is not hard to see that the optimal revenue is
∑

i ai iff there is a solution to this 3 partition
instance.

5 Competitive Equilibrium

In this section, we study the revenue maximizing competitive equilibrium in the full information setting.
To simplify the following discussions, we sort all buyers and items in non-increasing order of their values,
i.e., v1 ≥ v2 ≥ · · · ≥ vn.

We say an allocation ~Y = (Y1, Y2, · · · , Yn) is efficient if ~Y maximizes the total social welfare e.g.
∑

i

∑

j∈Yi
vij is maximized over all the possible allocations. We call ~p = (p1, p2, · · · , pm) an equilibrium

price if there exists an allocation ~X such that ( ~X, ~p) is a competitive equilibrium. The following lemma
is implicitly stated in [13], for completeness, we give a proof below.

Lemma 5.1. Let allocation ~Y be efficient, then for any equilibrium price ~p, (~Y , ~p) is a competitive
equilibrium.

Proof. Since ~p is an equilibrium price, there exists an allocation ~X such that ( ~X, ~p) is a competitive
equilibrium. As a result, by envy-freeness, ui( ~X, ~p) ≥ ui(~Y , ~p) for any i ∈ [n]. Let T = [m]\∪i Yi, then
we have

∑

i

∑

j∈Yi

vij −
m∑

j=1

pj ≥
∑

i

∑

j∈Xi

vij −
m∑

j=1

pj =
∑

i

∑

j∈Xi

vij −
∑

i

∑

j∈Xi

pj

=
∑

i

ui( ~X, ~p) ≥
∑

i

ui(~Y , ~p) =
∑

i

∑

j∈Yi

vij −
∑

i

∑

j∈Yi

pj

=
∑

i

∑

j∈Yi

vij −
m∑

j=1

pj +
∑

j∈T

pj (4)

where the first inequality is due to ~Y being efficient and first equality due to ui( ~X, ~p) being competitive
equilibrium (unallocated item priced at 0). Therefore,

∑

j∈T pj = 0 and the above inequalities are all

equalities. ∀i : ui( ~X, ~p) = ui(~Y , ~p). Further, because the price is the same,
∀i a loser ∀Z consecutive items and |Z| = di, we have ui(Z) ≤ 0.
∀i a winner ∀Z consecutive items and |Z| = di, we have

ui(Yi) = ui(Xi) ≥ ui(Z).

Therefore, (~Y , ~p) is a competitive equilibrium.

By Lemma 5.1, to find a revenue maximizing competitive equilibrium, we can first find an efficient
allocation and then use linear programming to settle the prices. We develop the following dynamic
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programming to find an efficient allocation. We first only consider there is one peak in the quality
order of items. The case with constant peaks is similar to the above approaches, for general peak case,
as shown in above Theorem 4.2, finding one competitive equilibrium is NP-hard if the competitive
equilibrium exists, and determining existence of competitive equilibrium is also NP-hard. This is be-
cause that considering the instance in the proof of Theorem 4.2, it is not difficult to see the constructed
instance has an equilibrium if and only if 3 partition has a solution.

Recall that all the values are sorted in non-increasing order e.g. v1 ≥ v2 ≥ · · · ≥ vn. g[s, l, r]
denotes the maximized value of social welfare when we only consider first s buyers and the allocation
of s is exactly the interval [l, r]. Then we have the following transition function.

g[s, l, r] = max







g[s − 1, l, r]

g[s − 1, l, r − ds] + vs
∑r

j=r−ds+1 qj

g[s − 1, l + ds, r] + vs
∑l+ds−1

j=l qj

(5)

By tracking procedure 5, an efficient allocation denoted by ~X∗ = (X∗
1 ,X

∗
2 , · · · ,X

∗
n) can be found. The

price ~p∗ such that ( ~X∗, ~p∗) is a revenue maximization competitive equilibrium can be determined from
the following linear programming. Let Ti be any consecutive number of di slots, for all i ∈ [n].

max
∑

i∈[n]

∑

j∈X∗
i

pj

s.t. pj ≥ 0 ∀ j ∈ [m]

pj = 0 ∀ j /∈ ∪i∈[n]X
∗
i

∑

j∈X∗
i

(viqj − pj) ≥
∑

j′∈Ti

(viqj′ − pj′) ∀ i ∈ [n]

∑

j∈X∗
i

(viqj − pj) ≥ 0 ∀i ∈ [n]

Clearly there is only a polynomial number of constraints. The constraints in the first line represent
that all the prices are non negative (no positive transfers). The constraint in the second line means
unallocated items must be priced at zero (market clearance condition). And the constraint in the third
line contains two aspects of information. First for all the losers e.g. loser k with Xk = ∅, the utility
that k gets from any consecutive number of dk is no more than zero, which makes all the losers envy-
free. The second aspect is that the winners e.g. winner i with Xi 6= ∅ must receive a bundle with di
consecutive slots maximizing its utility over all di consecutive slots, which together with the constraint
in the fourth line (winner’s utilities are non negative) guarantees that all winners are envy-free.

Theorem 5.1. Under the condition of a constant number of peaks in the qualities of slots, there is
a polynomial time algorithm to decide whether there exists a competitive equilibrium or not and to
compute a revenue maximizing revenue market equilibrium if one does exist. If the number of peaks in
the qualities of the slots is unbounded, both the problems are NP-complete.

Proof. Clearly the above linear programming and procedure (5) run in polynomial time. If the linear
programming output a price ~p∗, then by its constraint conditions, ( ~X∗, ~p∗) must be a competitive
equilibrium. On the other hand, if there exist a competitive equilibrium ( ~X, ~p) then by Lemma 5.1,
( ~X∗, ~p) is a competitive equilibrium, providing a feasible solution of above linear programming. By
the objective of the linear programming, we know it must be a revenue maximizing one.
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6 Consecutive Envy-freeness

We first prove a negative result on computing the revenue maximization problem in general demand
case. We show it is NP-hard even if all the qualities are the same.

Theorem 6.1. The revenue maximization problem of consecutive envy-free buyers is NP-hard even if
all the qualities are the same.

Proof. We prove the NP-hardness by reducing the 3 partition problem that is to decide whether a
given multi-set of integers can be partitioned into certain number of subsets that all have the same
sum. More precisely, given a multi-set S of 3n positive integers, can S be partitioned into n subsets
S1, . . . , Sn such that the sum of the numbers in each subset is equal? The 3 partition problem has
been proven to be NP-complete in a strong sense in [12], meaning that it remains NP-complete even
when the integers in S are bounded above by a polynomial in n.

Given a instance of 3 partition (a1, a2, . . . , a3n). Let B =
∑

i ai/n. we construct a instance for
advertising problem with 3n+ 1 advertisers and m = B + 1+ n+

∑

i ai slots. It should be mentioned
that m is polynomial of n due to the fact that all ai are bounded by a polynomial of n. In the
advertising instance, the valuation vi for each advertiser i is 1 and his demand di is defined as ai and
there is another buyer with valuation 2 for each slot and with demand B +1. The quality of each slot
j is 1. It is not hard to see that the optimal revenue is nB+ 2(B + 1) if and only if there is a solution
to this 3 partition instance, the optimal solution is illustrated as follows.

1 1 · · · 1
︸ ︷︷ ︸

B+1

1
︸︷︷︸

unassigned

1 1 · · · 1
︸ ︷︷ ︸

B

1
︸︷︷︸

unassigned

1 1 · · · 1
︸ ︷︷ ︸

B

1
︸︷︷︸

unassigned

. . . 1 1 · · · 1
︸ ︷︷ ︸

B

Although the hardness in Theorem 6.1 indicates that finding the optimal revenue for general demand
in polynomial time is impossible , however, it doesn’t rule out the very important case where the
demand is uniform, e.g. di = d. We assume slots are in a decreasing order from top to bottom, that
is, q1 ≥ q2 ≥ · · · ≥ qm . The result is summarized as follows.

Theorem 6.2. There is a polynomial time algorithm to compute the consecutive envy-free solution
when all the buyers have the same demand and slots are ordered from top to bottom.

The proof of Theorem 6.2 is based on bundle envy-free solutions, in fact we will prove the bundle
envy-free solution is also a consecutive envy-free solution by defining price of items properly. Thus, we
need first give the result on bundle envy-free solutions. Suppose d is the uniform demand for all the
buyers. Let Ti be the slot set allocated to buyer i, i = 1, 2, · · · , n. Let Pi be the total payment of buyer
i and pj be the price of slot j. Let ti denote the total qualities obtained by buyer i, e.g. ti =

∑

j∈Ti
qj

and αi = ivi − (i− 1)vi−1, ∀i ∈ [n].

Theorem 6.3. The revenue maximization problem of bundle envy-freeness is equivalent to solving the
following LP.

Maximize:

n∑

i=1

αiti

s.t. t1 ≥ t2 ≥ · · · ≥ tn

Ti ⊂ [m], Ti ∩ Tk = ∅ ∀i, k ∈ [n]

(6)
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of Theorem 6.3. Recall Pi denote the payment of buyer i, we next prove that the linear programming
(6) actually gives optimal solution of bundle envy-free. By the definition of bundle envy-free, where
buyer i would not envy buyer i+ 1 and versus, we have

viti − Pi ≥ viti+1 − Pi+1 (7)

vi+1ti+1 − Pi+1 ≥ vi+1ti − Pi (8)

Plus above two inequalities gives us that (vi − vi+1)(ti − ti+1) ≥ 0. Hence, if vi > vi+1, then ti ≥ ti+1.
From (7), we could get Pi ≤ vi(ti − ti+1) + Pi+1. The maximum payment of buyer i is

Pi = vi(ti − ti+1) + Pi+1, (9)

together with ti ≥ ti+1, implying (7) and (8). Besides the maximum payment of n is Pn = tnvn. (9)
together with ti ≥ ti+1 and Pn = tnvn would make everyone bundle envy-free, the arguments are as
follows.

• All the buyers must be bundle envy free. By (9), we have Pi − Pi+1 = vi(ti − ti+1), hence
Pi =

∑n−1
k=i vk(tk − tk+1) + Pn. Noticing that if ti = 0, then Pi = 0, which means i is loser.

For any buyer j < i, we have Pj − Pi =
∑i−1

k=j vk(tk − tk+1) ≤
∑i−1

k=j vj(tk − tk+1) = vj(tj − ti).
rewrite Pj − Pi ≤ vj(tj − ti) as vjti − Pi ≤ vjtj − Pj , which means buyer j would not envy
buyer i. Similarly, Pj − Pi =

∑i−1
k=j vk(tk − tk+1) ≥

∑i−1
k=j vi(tk − tk+1) = vi(tj − ti), rewrite

Pj − Pi ≥ vi(tj − ti) as viti − Pi ≥ vitj − Pj , which means i would not envy buyer j.

Now let’s calculate
∑n

i=1 Pi based on (9) using notation tn+1 = 0, one has

n∑

i=1

Pi =
n∑

i=1

[
n−1∑

k=i

vk(tk − tk+1) + Pn

]

=
n∑

i=1

n∑

k=i

vk(tk − tk+1)

=

n∑

k=1

k∑

i=1

vk(tk − tk+1) =

n∑

k=1

kvk(tk − tk+1)

=

n∑

k=1

kvktk −
n∑

k=1

(k − 1)vk−1tk =

n∑

i=1

αiti

We know the revenue maximizing problem of bundle envy-freeness can be formalized as (6).

Since consecutive envy-free solutions are a subset of (sharp) bundle envy-free solutions, hence the
optimal value of optimization (6) gives an upper bound of optimal objective value of consecutive envy-
free solutions. Noting optimization LP (6) can be solved by dynamic programming. Let g[s, j] denote
the optimal objective value of the following LP with some set in [j] allocated to all the buyers in [s]:

Maximize:
s∑

i=1

αiti

s.t. t1 ≥ t2 ≥ · · · ≥ ts

Ti ⊂ [j], Ti ∩ Tk = ∅ ∀i, k ∈ [s]

(10)

Then

g[s, j] = max







g[s, j − 1]

g[s− 1, j − d] + αs

∑j
u=j−d+1 qu
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Next, we show how to modify the (sharp) bundle envy-free solution to consecutive envy-free solutions
by properly defining the slot price of Ti, for all i ∈ [n]. Suppose the optimal winner set of bundle
envy-free solution is [L]. Assume the optimal allocation and price of bundle envy-free solution are
Ti = {j

i
1, j

i
2, · · · , j

i
d} with ji1 ≥ ji2 ≥ · · · ≥ jid and Pi respectively, for all i ∈ [L].

of Theorem 6.2. Define the price of Ti iteratively as follows:
pjL

k

= vLqjL
k

, for all k ∈ [d];

pji
k

= vi(qji
k

− q
ji+1

k

) + p
ji+1

k

for k ∈ [d] and i ∈ [n]

Now we could see that the price defined by above procedure is still a bundle envy-free solution. This
is because by induction, we have Pi =

∑d
k=1 pji

k

. Hence, we need only to check the prices defined as
above and allocations Ti constitute a consecutive envy-free solution. In fact, we prove a strong version,
suppose Tis are consecutive from top to down in a line S, we will show each buyer i would not envy
any consecutive sub line of S comprising d slots. For any i,
Case 1, buyer i would not envy the slots below his slots.
for any consecutive line T below i with size d, suppose T comprises of slots won by buyer k (denoted
such slot set by Uk) and k + 1 (denoted such slot set by Uk+1 and let ℓ = |Uk+1|) where k ≥ i. Recall
that ti =

∑

j∈Ti
qj, then

∑

j∈Ti

pj −
∑

j∈T

pj = vi(ti − ti+1) + Pi+1 −
∑

j∈Uk∪Uk+1

pj

= vi(ti − ti+1) + vi+1(ti+1 − ti+2) + · · ·+ Pk −
∑

j∈Uk∪Uk+1

pj

= vi(ti − ti+1) + vi+1(ti+1 − ti+2) + · · ·+
∑

j∈Tk\Uk

pj −
∑

j∈Uk+1

pj

= vi(ti − ti+1) + vi+1(ti+1 − ti+2) + · · ·+
ℓ∑

u=1

vk(qjku − q
jk+1
u

)

≤ vi(ti − ti+1) + vi(ti+1 − ti+2) + · · ·+
ℓ∑

u=1

vi(qjku − q
jk+1
u

)

= viti − vi
∑

j∈T

qj. (11)

Rewrite
∑

j∈Ti
pj −

∑

j∈T pj ≤ viti − vi
∑

j∈T qj
as viti −

∑

j∈Ti
pj ≥ vi

∑

j∈T qj −
∑

j∈T pj
we get the desired result.
Case 2, buyer i would not envy the slots above his slots.
for any consecutive line T above i with size d, suppose T comprises of slots won by buyer k (denoted
such slot set by Uk) and k − 1 (denoted such slot set by Uk−1 and let ℓ = |Uk−1|) where k ≤ i. Recall
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that ti =
∑

j∈Ti
qj, then

∑

j∈T

pj −
∑

j∈Ti

pj =
∑

j∈Uk−1∪Uk

pj −
∑

j∈Ti

pj

=
d∑

u=d−ℓ+1

vk−1(qjk−1
u
− qjku) +

∑

j∈Tk

pj −
∑

j∈Ti

pj

=

d∑

u=d−ℓ+1

vk−1(qjk−1
u
− qjku) + vk(tk − tk+1) + · · · + vi−1(ti−1 − ti)

≥
d∑

u=d−ℓ+1

vi(qjk−1
u
− qjku) + vi(tk − tk+1) + · · · + vi(ti−1 − ti)

= vi
∑

j∈T

qj − viti. (12)

Rewrite
∑

j∈T pj −
∑

j∈Ti
pj ≥ vi

∑

j∈T qj − viti
as viti −

∑

j∈Ti
pj ≥ vi

∑

j∈T qj −
∑

j∈T pj
we get the desired result.

7 Simulation

Since the consecutive model has a direct application for rich media advertisement, the simulation for
comparing the schemes e.g. Bayesian optimal mechanism (Bayesian for simplicity in this chapter),
consecutive CE (CE for simplicity in this chapter), consecutive EF (EF for simplicity in this chapter),
generalized GSP, will be presented in this chapter. Our simulation shows a convincing result for
these schemes. We did a simulation to compare the expected revenue among those pricing schemes.
The sampling method is applied to the competitive equilibrium, envy-free solution, Bayesian truthful
mechanism, as well as the generalized GSP, which is the widely used pricing scheme for text ads in
most advertisement platforms nowadays.

The value samples v come from the same uniform distribution U [20, 80]. With a random number
generator, we produced 200 group samples {V1, V2, · · · , V200}, they will be used as the input of our
simulation. Each group contains n samples, e.g. Vk = {v1k, v

2
k, · · · , v

n
k }, where each vik is sampled from

uniform distribution U [20, 80]. For the parameters of slots, we assume there are 6 slots to be sold, and
fix their position qualities:

Q = {q1, q2, q3, q4, q5, q6}

= {0.8, 0.7, 0.6, 0.5, 0.4, 0.3}

(13)

The actual ads auction is complicated, but we simplified it in our simulation, we do not consider
richer conditions, such as set all bidders’ budgets unlimited, and there is no reserve prices in all
mechanisms. We vary the group size n from 5 to 12, and observe their expected revenue variation.
From j = 1 to j = 200, at each j, invoke the function EF (Vj ,D,Q), GSP (Vj ,D,Q), CE (Vj ,D,Q) and
Bayesian (Vj,D,Q) respectively. Thus, those mechanisms use the same data from the same distribution
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as inputs and compare their expected revenue fairly. Finally, we average those results from different
mechanisms respectively, and compare their expected revenue at sample size n.

The generalized GSP mechanism for rich ads in the simulation was not introduced in the previous
sections. Here, in our simulation, it is a simple generalization of the standard GSP which is used in
keywords auction. In our generalization of GSP, the allocations of bidders are given by maximizing
the total social welfare, which is compatible with GSP in keywords auction, and each winner’s price
per quality is given by the next highest bidder’s bid per quality. Since the real generalization of GSP
for rich ads is unknown and the generalization form may be various, our generalization of GSP for rich
ads may not be a revenue maximizing one, however, it is a natural one. The pseudo-codes are listed
in Appendix 9.

Incentive analysis is also considered in our simulation, except Bayesian mechanism (it is truthful
bidding, bi = vi). Since the bidding strategies in other mechanisms (GSP, CE, EF) are unclear,
we present a simple bidding strategy for bidders to converge to an equilibrium. We try to find the
equilibrium bids by searching the bidder’s possible bids (bi < vi) one by one, from top rank bidders to
lower rank bidders iteratively, until reaching an equilibrium where no one would like to change his bid.
If any equilibrium exists, we count the expected revenue for this sample; if not, we ignore this sample.
All the pseudo-codes are listed in Appendix 9.

Since the Envy-Free solution in our paper only works for the condition that all the bidders have
the same demand, thus, we did the simulation in 2 separate ways:

1. Simulation I is for bidders with a fixed demands, we set di = 2, for all i and compares expected
revenues obtained by GSP, CE, EF, Bayesian.

2. Simulation II is for bidders with different demands and compares expected revenues obtained by
GSP, CE, Bayesian.
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Figure 1: Simulation results from different mechanisms, all bidders’ demand fixed at di = 2

Figure 1 shows I’s results when all bidders’ demand fixed at 2. Obviously, the expected revenue is
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increasing when more bidders involved. When the bidders’ number rises, the rank of expected revenue
of different mechanisms remains the same in the order Bayesian > EF > CE > GSP.

Simulation II is for bidders with various demands. With loss of generality, we assume that bidder’s
demand D = {d1, d2, · · · , di}, di ∈ {1, 2, 3}, we assign those bidders’ demand randomly, with equal
probability.
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Figure 2: Simulation results from different mechanisms, bidders’ demand varies in {1,2,3}

Figure 2 shows our simulation results for II when bidders’ demand varies in {1,2,3}, the rank of
expected revenue of different mechanisms remains the same as simulation I, From this chart, we can
see that Bayesian truthful mechanism and competitive equilibrium get more revenues than generalized
GSP.

8 Conclusion and Discussion

The rich media pricing models for consecutive demand buyers in the context of Bayesian truthfulness,
competitive equilibrium and envy-free solution paradigm are investigated in this paper. As a result,
an optimal Bayesian incentive compatible mechanism is proposed for various settings such as single
peak and multiple peaks. In addition, to incorporate fairness e.g. envy-freeness, we also present a
polynomial-time algorithm to decide whether or not there exists a competitive equilibrium or and to
compute a revenue maximized market equilibrium if one does exist. For envy-free settings, though
the revenue maximization of general demand case is shown to be NP-hard, we still provide optimal
solution of common demand case. Besides, our simulation shows a reasonable relationship of revenues
among these schemes plus a generalized GSP for rich media ads.

Even though our main motivation arises from the rich media advert pricing problem, our models
have other potential applications. For example TV ads can also be modeled under our consecutive
demand adverts where inventories of a commercial break are usually divided into slots of fixed sizes,
and slots have various qualities measuring their expected number of viewers and corresponding attrac-
tiveness. With an extra effort to explore the periodicity of TV ads, we can extend our multiple peak
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model to one involved with cyclic multiple peaks. Besides single consecutive demand where each buyer
only have one demand choice, the buyer may have more options to display his ads, for example select
a large picture or a small one to display them. Our dynamic programming algorithm (3) can also be
applied to this case (the transition function in each step selects maximum value from 2k + 1 possible
values, where k is the number of choices of the buyer).

Another reasonable extension of our model would be to add budget constraints for buyers, i.e.,
each buyer cannot afford the payment more than his budget. By relaxing the requirement of Bayesian
incentive compatible (BIC) to one of approximate BIC, this extension can be obtained by the recent
milestone work of Cai et al. [5]. It remains an open problem how to do it under the exact BIC
requirement. It would also be interesting to handle it under the market equilibrium paradigm for our
model.
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Appendix

9 Pseudo-code of Simulation

9.1 Expected Revenue for Bayesian Truthful Mechanism

Suppose with loss of generality, b1 > b2 > . . . > bn > 10, and q1 > q2 > . . . > qn, let φi(vi) =
2vi − bi − 10.

ALGORITHM 1: Bayesian Expected Revenue

Input: Demands di, qualities(CTR) qj and bids bi, number of samples K
Output: Expected Revenue R
Generate uniform distribution for bi as Ii uniformly distributed on Ii = [bi − 10, bi + 10];
Repeat ;
for r = 1, 2, · · · ,K do

Generate vri from Ii independently, i = 1, 2, · · · , n;
Calculate φi(v

r
i ) and sort it decreasing order as φ′

i(v
r
i ) > φ′

i+1(v
r
i ), i = 1, 2, · · · , n;

Use dynamic programming

g[s, r] = max







g[s− 1, r]

g[s− 1, r − ds] + φ′
s(v

r
s)

∑r
j=r−ds+1 qj

(14)

By tracking dynamic programming find allocation Xi;
Calculate Rr =

∑

i φi(v
r
i )

∑

j∈Xi
qj

end

return R = 1
K

∑K
r=1 R

r;
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The following the sub algorithm for finding the allocations Xi when φi, i = 1, 2, · · · , n are known.

ALGORITHM 2: sharp

Input: virtual surplus φi qualities qj
Output: Allocation xij
Sort buyers i in decreasing order of φi;
g[i, j] ← −∞; g[0, 0] ← 0;
u[i, j]← 0; xij ← 0;
for each buyer i with positive φi do

for each item j do

tmp← g[i − 1, j − di] +
∑j

k=j−di+1 φiqk;

g[i, j] ← g[i − 1, j];
if g[i, j] < tmp then

u[i, j]← 1;
g[i, j] ← tmp;

end

end

end

g[i∗, j∗] = maxi,j{g[i, j]};
while i∗ > 0 do

if u[i∗, j∗] = 1 then

for each item k from j∗ − di∗ + 1 to j∗ do

xi∗,k ← 1;
end

j∗ ← j∗ − di∗ ;

end

i∗ ← i∗ − 1;

end

return x;
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9.2 Revenue from Competitive Equilibrium

Suppose q1 ≥ q2 ≥ q3 ≥ · · · ≥ qn

ALGORITHM 3: Sub-algorithm for CE denoted by CE(d,q,b)

Input: Demands di, qualities(CTR) qj and bids bi
Output: Equilibrium (X,p)
Sort the bids bi in decreasing order e.g. b1 > b2 > · · · > bn;
Use dynamic programming

g[s, r] = max







g[s − 1, r]

g[s − 1, r − ds] + bs
∑r

j=r−ds+1 qj

(15)

By tracking dynamic programming find allocation X;
Using following LP to settle price p;
Let Ti be any consecutive number of di slots, for all i ∈ [n];

max
∑

i∈[n]

∑

j∈Xi

pj

s.t. pj ≥ 0 ∀ j ∈ [m]

pj = 0 ∀ j /∈ ∪i∈[n]Xi
∑

j∈Xi

(viqj − pj) ≥
∑

j′∈Ti

(viqj′ − pj′) ∀ i ∈ [n]

∑

j∈Xi

(viqj − pj) ≥ 0 ∀i ∈ [n]

if LP has a feasible solution then
return (X,p)

end

else

return null;
end
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ALGORITHM 4: Main Algorithm for CE

Input: Demands di, qualities(CTR) qj and bids bi, Accuracy ǫ, biding times K
Output: R revenue
b1i = bi, vi = bi i = 1, 2, · · · , n.
invoke Sub-algorithm for CE on (d, q, b1),
if output is not null then

Suppose the output is (X,p)
calculate the utility for all i. e.g. ui = vi

∑

j∈Xi
qj −

∑

j∈Xi
pj

end

for r = 1, 2, · · · ,K do

for i = 1, 2, · · · , n do
let M r

i = ⌊bri /ǫ⌋;
for tri = ǫ, 2ǫ, · · · ,M r

i ∗ ǫ do
invoke Sub-algorithm for CE on input (d, q, (tri , b

r
−i))

if the output is not null then
Suppose the output is (X,p)
Calculate the current utility u = vi

∑

j∈Xi
qj −

∑

j∈Xi
pj

if u > ui then

let ui = u and br+1
i = tri , b

r
i = tri .

end

else

br+1
i = bri ;

end

end

end

end

Rr =
∑

j pj
end
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9.3 Revenue from generalized GSP

ALGORITHM 5: Algorithm GSP

Input: Demands di, qualities(CTR) qj and bids bi, Accuracy ǫ, biding times K
Output: R revenue
b1i = bi, vi = bi i = 1, 2, · · · , n.
Suppose the allocation of GSP is X = sharp(b, q);
calculate the utility for all i. e.g. ui = vi

∑

j∈Xi
qj −

∑

j∈Xi
pj

for r = 1, 2, · · · ,K do

for i = 1, 2, · · · , n do
let M r

i = ⌊bri /ǫ⌋;
for tri = ǫ, 2ǫ, · · · ,M r

i ∗ ǫ do
Suppose the output of GSP on (d, q, (tri , b

r
−i)) is (X,p)

Calculate the current utility u = vi
∑

j∈Xi
qj −

∑

j∈Xi
pj of bidder i

if u > ui then

let ui = u and br+1
i = tri bri = tri .

end

else

br+1
i = bri ;

end

end

end

return Rr =
∑

j pj
end
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9.4 Revenue from Envy-free Solution

Suppose q1 ≥ q2 ≥ q3 ≥ · · · ≥ qn

ALGORITHM 6: Sub-algorithm for EF denoted by EF(d,q,b)

Input: Demands d, qualities(CTR) qj and bids bi
Output: Equilibrium (X,p)
Sort the bids bi in decreasing order e.g. b1 > b2 > · · · > bn;
Use dynamic programming(similar as sharp)(initial values g[0, 0] = 0, g[1, r] = −∞, r ≤ d)

g[s, r] = max







g[s, r − 1]

g[s − 1, r − d] + bs
∑r

j=r−d+1 qj

(16)

By tracking dynamic programming find allocation X;
The payment of buyers are P, where Pi is the payment of buyer i ;
Pn = bn

∑

j∈Xn
qj, and Pi = bi(

∑

j∈Xi
qj −

∑

j∈Xi+1
qj) + Pi+1 for i = 1, 2, · · · , n − 1
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ALGORITHM 7: Main Algorithm for EF

Input: Demands d, qualities(CTR) qj and bids bi, Accuracy ǫ, true value vi, biding times K
Output: R revenue
b1i = bi, i = 1, 2, · · · , n.
invoke Sub-algorithm for EF on (d, q, b1),
if output is not null then

Suppose the output is (X,P)
calculate the utility for all i. e.g. ui = vi

∑

j∈Xi
qj − Pi

end

for r = 1, 2, · · · ,K do

for i = 1, 2, · · · , n do
let M r

i = ⌊bri /ǫ⌋;
for tri = ǫ, 2ǫ, · · · ,M r

i ∗ ǫ do
invoke Sub-algorithm for EF on input (d, q, (tri , b

r
−i))

if the output is not null then
Suppose the output is (X,P)
Calculate the current utility u = vi

∑

j∈Xi
qj − Pi

if u > ui then

let ui = u and br+1
i = tri , b

r
i = tri .

end

else

br+1
i = bri ;

end

end

else

br+1
i = bri ;

end

end

end

Rr =
∑

i Pi

end
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