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Abstract

Previous work on voter control, which refers to situations where a chair seeks to change
the outcome of an election by deleting, adding, or partitioning voters, takes for granted that
the chair knows all the voters’ preferences and that all votes are cast simultaneously. However,
elections are often held sequentially and the chair thus knows only the previously cast votes
and not the future ones, yet needs to decide instantaneouslywhich control action to take. We
introduce a framework that modelsonline voter control in sequential elections. We show that
the related problems can be much harder than in the standard (non-online) case: For certain
election systems, even with efficient winner problems, online control by deleting, adding, or
partitioning voters is PSPACE-complete, even if there are only two candidates. In addition,
we obtain (by a new characterization of coNP in terms of weight-bounded alternating Turing
machines) completeness for coNP in the deleting/adding cases with a bounded deletion/addition
limit, and we obtain completeness for NP in the partition cases with an additional restriction.
We also show that for plurality, online control by deleting or adding voters is in P, and for
partitioning voters is coNP-hard.
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1 Introduction

Elections are important not just in the human world. They also can function as an important way of
aggregating the preferences of (often electronic) agents,in our world that is increasingly networked
and in which people and institutions will increasingly be spoken for by automated agents.

In the field of multiagent systems, voting has been suggestedfor tasks as varied as, for exam-
ple, recommender systems, collaborative spam filtering, and planning [ER97, GMHS99, DKNS01].
And not surprisingly, the study of the computational properties of voting systems has been an ex-
ceedingly active area within computational social choice.

In particular, various types of manipulation, electoral control, and bribery in voting have been
classified in terms of their computational complexity (see [FHHR09b, FHH10]). This paper focuses
on voter control, a model introduced by Bartholdi, Tovey, and Trick [BTT92],where a chair at-
tempts to alter the outcome of an election via changing its structure by deleting, adding, or partition
of voters. These types of control seek to model such real-world behaviors as targeted vote sup-
pression, bring-out-the-vote drives, and districting/gerrymandering. Bartholdi, Tovey, and Trick’s
paper was in the bounded-rationality spirit of Simon [Sim69], and was in part making the point that
computational complexity is important in decision-making.

There have been many papers analyzing the (non-online) control complexity of election
systems, and seeking to find natural systems that make many types of control attack diffi-
cult (see the surveys [FHHR09b, FHH10], the book chapters [BR16, FR16, HHR16], and the
references therein). To the best of our knowledge, all previous work on control (see, e.g.,
[BTT92, HHR07, FHHR09a, HHR09, ENR09, EFRS15]) takes for granted that the chair has full
knowledge of all the voters’ preferences and that all votes are cast simultaneously.1 However, in
many settings voters vote sequentially and the chair’s taskin such a setting may often be quite dif-
ferent: Knowing only the already cast votes but not the future ones, the chair must decideonline
(i.e., in that moment) whether there exists a control actionthat guarantees success, no matter what
votes will be cast later on. We introduce a framework to modelonline voter control in sequential
elections. Our approach is inspired by the area of “online algorithms”[BE98]—algorithms running
and performing computational actions based only on the input data seen thus far.

In our framework of online voter control, the chair’s task stated above is based on a “maxi-min”
idea (although here, due to the time effects, that can involve more than two quantifiers), a typical
online-algorithmic theme; in that framing of the chair’s task we are following the approach that has
been used for online manipulation and online candidate control [HHR14, HHR12a]. Note that an-
other central online-algorithmic theme, a strictly numerical ratio approach to so-called “competitive
analysis,” would not apply very naturally here; the reason is that in its general setting, voting (in
social-choice theory) is most typically based on an ordinalnotion of preferences, and those don’t
convey cardinal strength-of-affinity information regarding the outcome. (For some specific voting
systems such as so-called scoring systems one can interpretthem as giving cardinal information, and
we commend as an interesting open issue a future, general control-complexity study for such sys-

1An exception is a paper by Fitzsimmons, Hemaspaandra, and Hemaspaandra [FHH13] that is, regarding their earliest
appearing versions, more recent than the present paper, andstudies a mixed model involving both a chair and manipula-
tors, in which the manipulative voters set their votes afteractions by the chair.
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tems in terms of a competitive-ratio analysis; see [OL14], which takes that approach for the issue of
selecting a bundle of goods.) Sequential (or otherwise “dynamic”) voting has been studied in other
contexts as well, e.g., from a game-theoretic perspective as “Stackelberg voting games” [XC10]
(see also [DE10, DP01, Slo93]), or using an axiomatic approach [Ten04] or Markov decision pro-
cesses [PP13]. None of this work has considered the issue of voter control.

What our results show is that such online control problems can be much harder than in the
standard (non-online) case. We show that for certain election systems, even with efficient winner
problems, online control by deleting, adding, or partitioning voters is PSPACE-complete, even if
there are only two candidates. In addition, we obtain completeness for coNP in the deleting/adding
cases with a bounded deletion/addition limit. We do this by establishing a complexity-theoretic
result (Theorem 4.3) that is of interest in its own right: Polynomial-time alternating Turing machines
that on each accepting path make a constant number of “Yes” guesses accept only coNP languages,
and in fact this completely characterizes coNP. We also showthat for plurality, online control by
deleting or adding voters is in P, and for partitioning voters is coNP-hard.

2 Motivation

The coming sections will give our definitions, results, and proofs. However, before that, the present
section will very informally present some motivation and examples. In particular, we give example
settings in which it is natural to study sequential action, in which the election’s “chair” has a use-
it-or-lose-it ability to do addition/deletion/partition-choice for each voter as the voter votes, and
the chair knows the votes of the voters seen so far, but not of future voters. Of course, theoretical
models don’t capture the many interactions and subtleties of the real world, and so our models don’t
perfectly capture the full richness of even these sample situations. Nonetheless, we feel that for
many cases, such as those we are about to mention, the theoretical models we develop in this paper
are far closer to capturing the real-world situation than are existing models of simultaneous voting
or even existing models where votes are sequential but all voters’ preferences are known ahead of
time.

As a concrete example (and let us for the moment not worry about what the particular election
system is), consider a College faculty meeting at which, going right around the room, the faculty
members hand their handwritten paper ballots to the Dean, who then passes them on to her admin-
istrative assistant, who quietly adds them to the totals he is keeping. But let us further assume that
the Dean is a shifty person, and can, for a certain number of ballots, slip the piece of paper into
her pocket after reading the vote, without that being noticed, and without the people in the room
being likely to notice that there aren’t quite enough votes in the totals (let’s suppose it is a big col-
lege). And the question is, given that we are at some particular point in going around the table (and
know what votes have been cast so far and what actions the Dean—or whoever was standing in for
her—has taken so far): Can the Dean ensure, using at most her remaining amount of vote-to-pocket
shifting, that the winner(s) of the election will include atleast one of the alternatives she favors?
This setting loosely corresponds to our sequential versionof control by deleting voters. For vivid-
ness, our examples are about humans voting and a human chair (in the above, the Dean), and in
the case just given, paper ballots. However, our model applies also to more electronically focused
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cases of preference aggregation, e.g., the “Dean” in the above example could be a doctored voting
machine that can only suppress so many ballots before seriously risking detection.

The above example is about deleting voters, but there are also natural examples for adding or
partitioning voters. For partitioning voters, imagine that a school’s undergraduate admissions office
is going to use a panel, whose members will each be assigned toone of two faculty committees, to
vet applying students (perhaps with the committees purportedly looking for different things, e.g.,
one is looking for traditional smartness and the other is looking for unusual levels of passion and
creativity), with all applicants’ folders given to both committees, and with each committee using
voting to select its favorite proposals, and then with only the winners of those two vetting elections
moving on to a final election in which all the panel members vote. Suppose a particular admissions
office staff member (who is the chair in this example), with all the faculty members lined up and
coming into the room, as each faculty member steps to the doorway briefly chats with the faculty
member well enough to discern the likely votes he or she will cast, and then right there assigns the
person to either the smartness committee or the passion committee. If the admissions staff member
does so with the goal of ensuring that at least one of a certainset of students (perhaps the students
who are great football quarterbacks, or the students whose parents might fund a new admissions
building) will be admitted, that very loosely put would be captured by our sequential version of
control by partition of voters.2 For adding voters, a natural model might be a political candidate
(who is the chair in this example) going door to door through her district in a preset order, and
knowing from public records which voters are registered voters and which are not, and at each door
meeting and learning the voter’s preferences among the candidates, and then for those voters who
are not registered deciding whether to use charisma to convince them to register and vote, with the
limitation that the candidate has only so much charisma to use.

The above are a few very informal examples of settings where sequential action is natural, and
one knows the votes cast so far but not those to be cast in the future (except who will be casting them
and in which order). Let us finish this informal section by briefly giving a mini-example of the flavor
of the goal we have for our chairs, and how that affects their actions. We are assuming that chairs
are very pessimistic: What a chair wants to know is whether there is some action she can take at the
given moment so that one of her preferred candidates will winno matter what the value is of all the
currently unknown-to-her future votes—but assuming that her own future decisions are (of course)
aimed at supporting her goal. To make this more concrete, letus discuss the most important real-
world election system: plurality. In our addition-of-voters example above, suppose the candidate
going door to door has only one preferred candidate in the election, namely, herself. Then it is
quite clear and simple what she should do. Until she runs out of charisma, she should for each
unregistered voter she meets for whom she is the favorite candidate expend her charisma to have
that person become a registered voter. That is an “operational” approach that would work perfectly.
But more must be said. The question our pessimistic candidate (and our decision problems) wants
answered at each point is whether, whatever the preferencesstill to come after the current point are,
that candidate will win. And it is also clear how to judge that. The candidate, as she starts speaking

2Actually, as our previous example suggested, our model is a bit more flexible and allows one to ask such questions
starting at an intermediate point at which some actions havealready been taken, potentially by a different admissions staff
member.
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with a given unregistered voter who likes our candidate the most (we can similarly describe how
to reason in the other cases), reasons as follows: I need to assume that all future voters (whose
preferences I don’t currently know!) concentrate their votes on a candidate other than me who
currently has the most votes (in the tally I have been building in my canvas so far), and that I use
my charisma to (if it is not expended) add the current unregistered voter, and then I suppress those
hypothetical, unregistered, against-me voters, and wouldthat leave me a winner of this election? If
the answer is yes, then the candidate should be very happy, asshe knows she can guarantee herself
victory as long as she doesn’t later do anything overtly stupid with her charisma. The example
we just gave is in effect explaining why it holds that (so-called constructive) control by adding
voters is in polynomial time for sequential plurality elections. Now, one might assume that plurality
is such a simple system that for all types of sequential control we will obtain polynomial-time
algorithms. However, as Theorem 5.2 we will show that that isnot the case (unless P= NP). The
proof of that result is in effect giving an example—althoughadmittedly a more complex one—in
which a coNP-hard problem, namely the complement of HittingSet, is transformed into an election
control instance about sequentially partitioning voters (the control setting we described above in our
example about college admissions).

3 Preliminaries

We assume familiarity with standard complexity-theoreticnotions such as the complexity classes P,
NP, coNP, and PSPACE, polynomial-time many-one reductions(≤p

m), ≤p
m-hardness, and≤p

m-
completeness [HU79, Pap94]. A standard NP-complete problem is the satisfiability problem (SAT)
from propositional logic, a standard coNP-complete problem is the tautology problem, and the
quantified boolean formula problem (QBF) is a standard PSPACE-complete problem.

This paper provides both polynomial-time algorithms and NP-completeness results. The latter
are worst-case results, and so it is possible that for certain distributions heuristics might do well
(see [RS13] for a survey of this in the context of elections).We commend this direction as an area for
future research. However, such studies are quite dependenton distributions, and by relatively recent
work, it is known that for the uniform distribution heuristic algorithms cannot asymptotically have
subexponential error frequency on any NP-hard problem unless the polynomial hierarchy collapses
to (and indeed, slightly further than) its third level [BH08, CCHO05, HW12]. (Note: An algorithm
is said to have subexponential error frequency if for everyε > 0 the number of errors the algorithm
makes at lengthn is O(2nε

); see [HW12] for a more detailed explanation.)

3.1 Voter Control Types in Simultaneous Elections

A pair (C,V) is called a(standard or simultaneous) electionif C is a set of candidates andV a list
of voters that all have cast their votes simultaneously. We assume that each vote inV has the form
(v, p), wherev is the name of this voter andp is v’s (total) preference order overC. For example, if
C = {c,d,e} then(Bob,d > e> c) ∈V indicates that Bob (strictly) prefersd to e ande to c (or, to
be more precise, it indicates that that is the ballot Bob has cast).

The standard types of (constructive) voter control in simultaneous elections are as follows.
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(These are as introduced by Bartholdi, Tovey, and Trick [BTT92], except here we will follow the
now more standard model—called the nonunique-winner model—of asking whether a candidate can
be madea winner, rather than their approach—called the unique-winner model—of asking whether
a candidate can be made the one and only winner.) An election system is a mapping from elections
(votes/candidates) to a winner set. LetE be a given election system. Incontrol by deleting voters
(E -CCDV), given an election(C,V), a distinguished candidatec ∈ C, and a nonnegative integer
k ≤ ‖V‖, we ask whether there exists a set of at mostk voters fromV such thatc is anE winner
of the election in which that set of voters is removed. Incontrol by adding voters(E -CCAV), we
are given a candidate setC, a list V of registered voters with preferences overC, a list V ′ of as
yet unregistered voters with preferences overC, a distinguished candidatec∈C, and a nonnegative
integerk≤ ‖V ′‖, and the question is whether there exists a set of at mostk voters fromV ′ such that
c is anE winner of the election where the voters are that set and all ofV. Finally, in control by
partition of voters, we are given an election(C,V) and a distinguished candidatec∈C, and we ask
whetherV can be partitioned into two sublists,V1 andV2, such thatc is anE winner of the election
(W1∪W2,V), whereWi for i ∈ {1,2} is the (possibly empty) set of winners of subelection(C,Vi) that
have survived the tie-handling rule used and byV here we implicitly meanV masked down to just
those candidates inW1∪W2. Of the two tie-handling models introduced by Hemaspaandra, Hema-
spaandra, and Rothe [HHR07] we focus on theties-promote (TP)model only, where all winners of
a subelection proceed to the runoff, since that model fits more naturally with the nonunique-winner
model in which we will define our online control problems. Theresulting problem is denoted by
E -CCPV.

The destructive variants of these three problems, denoted by E -DCDV, E -DCAV, andE -DCPV,
are obtained by requiring that the distinguished candidatec is not a winner of the election resulting
from the control action at hand [HHR07].

3.2 Online Voter Control in Sequential Elections

We studyonline voter control in sequential elections, where we assume that the voters vote in order,
one after the other, each expressing preferences over all the candidates. Ifu is the current voter and
C the given candidate set, anelection snapshot for C and uis specified by a tripleV = (V<u,u,Vu<),
where the earlier votersV<u have already cast their votes, each a preference order overC, and now
it is u’s turn to cast a vote, and the future votersVu< will cast their votes in the order listed. (V<u

andu of course list the votes cast and who cast them, butVu< just gives the order of the voters
following u.) This snapshot approach is natural for studying online attacks on elections, and was
used previously to study the different type of attack known as online manipulation in sequential
elections [HHR13, HHR14].

We now define our notions of online voter control for the standard voter control types stated
above, and the related problems. They all will start from a basic online voter control setting(an
OVCS, for short), augmented by appropriate additional information according to the control type
at hand. A basic OVCS(C,u,V,σ ,d) consists of a setC of candidates, the current voteru (which
isn’t strictly needed here, asu is clearly singled out withinV anyway), an election snapshotV for
C andu, the chair’s preference orderσ on C, and a distinguished candidated ∈ C. Let E be a
given election system and letWE (C,V) denote theE winner set of (standard) election(C,V). For
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each online voter control type we will define, the question the chair faces is: Does there exist a
control-action choice of our considered type regarding thecurrent voter (e.g., whether or not to
deleteu) such that if the chair takes that action, then no matter whatvotes the remaining voters after
u cast, the chair’s goal can be reached by the current decisionregardingu and by using the chair’s
future decisions (if any), each being made using the chair’sthen-in-hand knowledge about what
votes have been cast by then?3 By the chair’s goalwe mean to ensureWE (C,V ′)∩{c|c≥σ d} 6= /0
for each possible ultimate election(C,V ′) (i.e., eachV ′ is a possible vote list resulting from the
control type at hand after all decisions have been made by thechair and all voters have cast their
votes) in the constructive case, and to ensure thatWE (C,V ′)∩{c| d ≥σ c} = /0 in the destructive
case (i.e., that neitherd nor any candidate the chair likes even less thand is a winner).4 Note that the
conditionsWE (C,V ′)∩{c| c≥σ d} 6= /0 andWE (C,V ′)∩{c| d ≥σ c} = /0 defining the chair’s goal
have the flavor, give or take the fact that we are focusing on a top segment ofσ , of the nonunique-
winner model, e.g., as long asWE (C,V ′)∩{c|c≥σ d} 6= /0 we call it success even if more than one
candidate ties as winner. To formally define our problems, itremains to specify for each control
type the information by which the basic OVCS is augmented. What kind of decisions the chair is to
make in the course of a sequential election will always be clear from the control type at hand (e.g.,
whether or not to delete a voter in “online control by deleting voters”).

Let B= (C,u,V,σ ,d) be a given basic OVCS. Foronline control by deleting voters, B is aug-
mented by the following additional information: A nonnegative integerk (the deletion upper bound);
for each voterv beforeu, there is a flag saying whetherv was deleted and the vote cast byv (if not
deleted)—at mostk voters can be marked as deleted for the input to be syntactically legal; and

3Note that this maxi-min-inspired (but with more quantifiers) approach is really about alternating quantifiers. We are
asking if there exists a current action of the chair, such that for all potential revealed vote values that come between now
and the next time the chair has to decide on an action, there exists a next action by the chair, such that for all. . . . . . the
chair reaches her goal.

4Why do we provide an orderingσ rather than just providing as a list the set of candidates whoare good enough
to count as reaching our goal? For the decision-problem version of online voter control, which is our formulation here,
providing such a set would be just as good. But by makingσ a part of the input, we make the model compatible, for the
future, with the interesting optimization problem of trying to find the most preferred candidate withinσ for which the
chair can ensure that there is among the winner set one of the candidates in the segment from that candidate to the top
candidate inσ .

Also, to avoid any confusion, we note that in our “d chooses an upper (constructive case) or lower (destructivecase)
segment of the candidates” approach, the non-online version’s situation that the destructive goal “opposing” a constructive
goal is specified in the same way not longer holds (although wecould have defined things in a less natural way so that
that would hold). That is, in the non-online setting, the distinguished candidated in the constructive case is saying
who the chair wants to win, and in the destructive case is saying who the chair wants to not win;d in one case is
defined in the problem definition to denote the beloved candidate and in the other case is defined to denote the despised
candidate. However, in our case, we are giving an orderσ , and it would be perverse and confusing to have> mean one
thing for constructive and another for destructive. And so,as we have defined things, if the chair’s stated orderingσ is
v1 > v2 > v3 > v4 > v5 andd = v2, in the constructive case that means that the chair wants at least one ofv1 or v2 to win.
To state the destructive-case goal—which in some sense is the “flip” of that constructive-case goal—of having neitherv1
nor v2 be a winner, one would give as the chair’s orderingv5 > v4 > v3 > v2 > v1 andd = v2, since this specifies thatv2
andv1 are the chair’s two most despised candidates and are the onesthe chair wants to prevent from being winners.

These comments simply refer to the way various “opposite” goals happen to be expressed. None of the above is saying
that the constructiveproblem(viewed as a set) and the destructiveproblem(viewed as a set) are each other’s complements.
Due to the quantification involved regarding the actions being taken such as by the chair, that is not true.
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the vote the current voteru will cast (if not selected for deletion). We denote these problems by
online-E -CCDV (constructive) and online-E -DCDV (destructive). (We certainly could equivalently
formulate the problem in a way that masks out all earlier deleted voters, and so removes the need for
the flagging; but we prefer the above version since it allows the actual history of the voting situation
to be part of the instance.)

Foronline control by adding voters, B is augmented by the following additional information: A
nonnegative integerk (the addition upper bound); each voterv in V has a flag saying ifv is unreg-
istered (i.e., can be added) or registered—u must be unregistered; each unregistered voterv before
u has another flag saying ifv was added—at mostk voters may have that flag set in any syntac-
tically legal input; the vote cast is given for each registered or added unregistered voter beforeu;
and also given is the voteu will cast (if it is added). We denote these problems by online-E -CCAV
(constructive) and online-E -DCAV (destructive).

For online control by partition of voters, B is augmented by the following additional infor-
mation: Each voterv before u has a flag saying which part of the partitionv was assigned to
(“left” or “right”) and the vote cast byv, and alsou’s vote is given. We denote these problems
by online-E -CCPV (constructive) and online-E -DCPV (destructive). As a reminder, the two pre-
liminary elections are conducted under the convention that“ties promote” (i.e., all winners of the
preliminary elections move forward to the final election).

A natural worry about our maxi-min approach to online voter control is that it is always possible
that all the future voters are hostile to one’s goals. And in that case, one may be, depending on the
election system, powerless to reach one’s goal in the worst case, and so the maxi-min outcome is
easily seen to be failure to reach one’s goal. Although this worry exists in a weaker form for online
manipulation and online bribery, since for those if one is allowed almost no vote-changing one is in
many cases obviously in trouble, at least in those settings one can do whatever one wants to those
votes one does manipulate or bribe. In control, however, onedoesn’t get to set the value of a single
vote, and that is pretty extreme.

This is a valid worry, but there are some things that keep it inperspective. Primarily, our paper
is trying to find out the very greatest complexity that onlinecontrol in sequential elections can ever
have (when restricted to election systems having polynomial-time winner problems). And so we can
look at election systems that sidestep the above worry, due to their properties simply not matching
the intuition above (which assumed that we are using an election system in which having a lot of
bad-for-us votes results in a bad-for-us outcome). In effect, we are seeking to understand the limits
of behavior, in order to set a bounding box on the behaviors that can be realized. Of course, for
many natural election systems, the effect mentioned in the previous paragraph will hold, and for
many inputs that fact can be exploited to help achieve polynomial-time algorithms for the control
problem; indeed, in this paper itself, we give examples of achieving polynomial-time algorithms
for the most important of election systems: plurality. Of course, problems may start with some
votes already cast, and this may itself make for interesting“endgame” decision issues. We also very
much hope further studies will be conducted employing a range of models, including ones beyond
maxi-min.
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4 General Upper and Lower Bounds

Theorem 4.1 For each election systemE with a polynomial-time winner problem,5

online-E -CCDV, online-E -DCDV, online-E -CCAV, online-E -DCAV, online-E -CCPV, and
online-E -DCPVare in PSPACE.

PROOF. The upper bounds follow from the observation that each of these problems can be solved
by an alternating Turing machine in polynomial time, and thus by a deterministic polynomial-space
Turing machine, by the characterization due to Chandra, Kozen, and Stockmeyer [CKS81]. ❑

Theorem 4.1 settles all general (i.e., regarding any votingsystem for which winner determina-
tion is easy) upper bounds for our online voter control problems. We now turn to exploring their
lower bounds.

4.1 Control by Deleting and by Adding Voters

Theorem 4.2 There exist election systemsE and E ′ with polynomial-time winner problems such
that online-E -CCDV, online-E -CCAV, online-E ′-DCDV, and online-E ′-DCAV are PSPACE-
complete, even when limited to two candidates.

PROOF. Let (C,V) be an election. We define election systemE as follows.E interprets—in some
fixed, natural encoding—the lexicographically least candidate name inC as a boolean formula,Φ,
whose variable names must be the stringsx1,x2, . . . ,x2ℓ for someℓ, wherex2ℓ actually appears in
Φ (the other variables don’t have to; no variables other thanx1,x2, . . . ,x2ℓ are allowed). If these
syntactic requirements fail to hold, everyone loses inE . Otherwise, if any two voters inV have the
same name, everyone loses inE . Otherwise, order the voters inV lexicographically by name of the
voter, and letv1,v2, . . . ,vz be the voter names in this order. Ifz< 2ℓ or if there are less than two
candidates, everyone loses inE . Otherwise, if for some oddi, 1≤ i ≤ 2ℓ−1, the two lowest order
bits of vi are not 00 or 01, or if for some eveni, 2≤ i ≤ 2ℓ, the two lowest order bits ofvi are not
10 or 11, everyone loses inE . Otherwise, assign the variables ofΦ(x1,x2, . . . ,x2ℓ) as follows. For
each oddi, 1≤ i ≤ 2ℓ−1, setxi to true if the two lowest order bits ofvi are 01, and setxi to false
otherwise (i.e., the two lowest order bits ofvi are 00). For each eveni, 2≤ i ≤ 2ℓ, setxi to true if
the name of the least preferred candidate in the vote ofvi is lexicographically less than the name of
the next to least preferred candidate in the vote ofvi , and setxi to falseotherwise. If this assignment
satisfiesΦ, everyone wins inE , and otherwise everyone loses. This ends the specification of E .
Since a boolean formula whose variables have all been assigned can be evaluated in polynomial
time,E has a polynomial-time winner problem.

By Theorem 4.1, online-E -CCDV is in PSPACE. To show PSPACE-hardness of
online-E -CCDV, we ≤p

m-reduce the PSPACE-complete problem QBF′, a variant of QBF, to it.
QBF′ is the set of boolean formulas of the formF(x1,x2, . . . ,x2ℓ), for someℓ, such that the variable
x2ℓ appears inF, all variables appearing inF are from the variable name collection “x1”, “ x2”, . . . ,
“x2ℓ”, and

(∃b1)(∀b2) · · · (∃b2ℓ−1)(∀b2ℓ) [F(x1 := b1,x2 := b2, . . . ,x2ℓ := b2ℓ) evaluates totrue],

5The statement of Theorem 4.1 holds even for election systemswhose winner problems are in PSPACE.
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wherebi ∈ {0,1} andxi := bi means that variablexi is set totrue if bi = 1, and is set tofalse if
bi = 0, for 1≤ i ≤ 2ℓ.

Let F(x1,x2, . . . ,x2ℓ) be a given instance of QBF′, wherex2ℓ explicitly appears inF. (If our
input is syntactically incorrect, we map it to a fixed no-instance of online-E -CCDV.) We construct
from F an instance of online-E -CCDV, consisting of a basic OVCS(C,u,V,σ ,d), augmented by the
additional information of online control by deleting voters, as follows. DefineC = {a,b}, wherea
encodesF (in our fixed, natural encoding of boolean formulas) andb is the string lexicographically
immediately followinga; the current voter isu= v1; V will be specified below; the chair’s preference
order isa>σ b; for specificity, we letd = a be the distinguished candidate (though that does not
matter, as all candidates win or all lose inE ); the deletion limit isk = ℓ; and a votea> b to cast
for u if not deleted (again, the vote doesn’t matter, asu = v1 will specify an assignment tox1 by
her name, not by her vote). There are(3/2) ·2ℓ= 3ℓ voters inV such that the name of theith voter,
vi , is the binary stringuiwi, whereui is the binary representation ofi andwi = 00 if i ≡ 1 mod 3,
wi = 01 if i ≡ 2 mod 3, andwi = 10 if i ≡ 0 mod 3, 1≤ i ≤ 3ℓ. This completes the description
of our≤p

m-reduction from QBF′ to online-E -CCDV, which clearly can be computed in polynomial
time.

We claim thatF ∈ QBF′ if and only if the chair’s goal can be reached by at mostk deletions of
voters. Why? By the definition ofE , everyone loses unless ourk= ℓ deletions are used onexactly
one of v3i−2 and v3i−1, for eachi, 1≤ i ≤ ℓ. Nov3i , 1≤ i ≤ ℓ, can be deleted if there is to be a winner.
And the “exactly one ofv3i−2 andv3i−1” choices, 1≤ i ≤ ℓ, specify an assignment of truth values
to the odd-numbered variables: For eachi, 1≤ i ≤ ℓ, x2i−1 is set totrue if v3i−2 is deleted andv3i−1

is not, and is set tofalseif v3i−1 is deleted andv3i−2 is not. On the other hand, for eachi, 1≤ i ≤ ℓ,
the truth value ofx2i is specified by thevoteof voterv3i , since after theseℓ deletions,v3i will be the
2ith voter name in the lexicographic order. It follows that thechair’s goal can be reached by at most
k deletions of voters if and only if(∃b1)(∀b2) · · · (∃b2ℓ−1)(∀b2ℓ) [F(x1 := b1,x2 := b2, . . . ,x2ℓ :=
b2ℓ) evaluates totrue], which is true if and only ifF ∈ QBF′.

PSPACE-hardness of online-E -CCAV for the election systemE defined above can be shown via
essentially the same≤p

m-reduction from QBF′. The only difference is that we now map the given
QBF′ instanceF to an instance of online-E -CCAV, which is defined exactly as the online-E -CCDV
instance constructed above, except that all votersvi with i ≡ 0 mod 3 are specified as registered
voters, and all other voters are unregistered. The correctness argument is analogous.

The destructive cases can be shown analogously, by modifying the election systemE defined
above as follows, yielding our modified systemE ′: Whenever everyone loses (wins) inE , every-
one wins (loses) inE ′. It follows from Theorem 4.1 and the above≤p

m-reduction from QBF′ that
online-E ′-DCDV and online-E ′-DCAV are both PSPACE-complete. ❑

For control by deleting or adding voters, the deletion or addition limit k is—both in the non-
online case and in our online definition (which is what is usedin Theorem 4.2)—part of the prob-
lem instance. To better understand the source of the tremendous level of computational hardness
Theorem 4.2 showed that these problems can have, let us now consider restrictions of these problems
in which the deletion or addition limit is bounded by a constant. For a given election systemE and a
fixed k, let online-E -CCDV[k] be the restriction of online-E -CCDV to those inputs whose deletion
limit is at mostk, and define the problem variant online-E -CCAV[k] analogously. We will show in
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Theorem 4.4 that this change in the definition—bounding the deletion/addition bound—brings the
complexity of these problems from PSPACE down to coNP. (In contrast, limiting the number of
candidatesto two was shown by Theorem 4.2 to leave these two problems PSPACE-complete.)

The coNP upper bound follows immediately from the followingtheorem about restricted
polynomial-time alternating Turing machines, which is of interest in its own right. If we define the
weight of a path of an alternating Turing machine to be the number of 1’s in the existential guesses
along the path, what Theorem 4.3 says is that the class of languages accepted by polynomial-time
alternating Turing machines whose accepting paths are weight-bounded is precisely coNP.

Theorem 4.3 Let k≥ 0. The class of languages accepted by polynomial-time alternating Turing
machines that satisfy the property that on each accepting computation path the number of existential
guesses on which the bit is guessed as 1 is at most k is precisely coNP.

PROOF. We will show this by induction onk. It is immediate that thek = 0 case is precisely
coNP. To prove the inductive step, letk > 0 and letA be a language accepted by a polynomial-
time alternating Turing machine that satisfies the propertythat on each accepting computation path
the number of existential guesses on which the bit is guessedas 1 is at mostk. (That is, any path
that contains at leastk+1 guessed 1’s in its existential guesses must have as its (leaf) value Reject
rather than Accept. Recall that each path of a polynomial-time alternating Turing machine has as
its individual (leaf) value either Accept or Reject, and theoverall action of the Turing machine
is determined by the thought-experiment of applying the existential and universal node actions of
the machine to those leaf values, resulting in an Accept or Reject at the root that determines the
machine’s acceptance or rejection on the given input.) We will show thatA is in coNP.

Throughout this proof, allxi ’s andyi ’s are over{0,1}, i.e., are bits.
Let B be a polynomial-time computable ternary predicate and letℓ(n) be a polynomial such that

for all x, x∈ A if and only if

∀x1∃y1 ∀x2∃y2 . . .∀xℓ(|x|)∃yℓ(|x|)

(

B(x,x1 . . .xℓ(|x|),y1 . . .yℓ(|x|))∧
ℓ(|x|)

∑
i=1

yi ≤ k

)

.

Such a polynomial and predicate exist, since we can add extraquantifiers with dummy variables to
make the quantifiers alternating and we can always guess an existentially-quantified dummy variable
as 0.

We can rewrite the above as follows. For allx, x∈ A if and only if

∀x1 (∀x2∃y2 ∀x3∃y3 . . . ∀xℓ(|x|)∃yℓ(|x|)
(

B(x,x1 . . .xℓ(|x|),1y2 . . .yℓ(|x|))∧∑ℓ(|x|)
i=2 yi ≤ k−1

)

∨

∀x2 (∀x3∃y3 . . . ∀xℓ(|x|)∃yℓ(|x|)
(

B(x,x1 . . .xℓ(|x|),01y3 . . .yℓ(|x|))∧∑ℓ(|x|)
i=3 yi ≤ k−1

)

∨

∀x3 (. . . ∀xℓ(|x|)∃yℓ(|x|)
(

B(x,x1 . . .xℓ(|x|),001y4 . . .yℓ(|x|))∧∑ℓ(|x|)
i=4 yi ≤ k−1

)

∨

...

∀xℓ(|x|)
(

B(x,x1 . . .xℓ(|x|),0
ℓ(|x|)−11)∧∑ℓ(|x|)

i=ℓ(|x|)+1yi ≤ k−1
)

∨

B(x,x1 . . .xℓ(|x|),0
ℓ(|x|)) . . . ))).
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(Of course,∑ℓ(|x|)
i=ℓ(|x|)+1yi ≤ k−1 is true, sincek > 0 in the present case.) The long expression

above is not quite in the right form to apply the inductive hypothesis. In order to be able to do so,
define languageC such that〈x,x1 . . .xr〉 ∈C if and only if r ≤ ℓ(|x|) and

∀xr+1∃yr+1 . . .∀xℓ(|x|)∃yℓ(|x|)

(

B(x,x1 . . .xℓ(|x|),0
r−11yr+1 . . .yℓ(|x|))∧

ℓ(|x|)

∑
i=r+1

yi ≤ k−1

)

.

ClearlyC can be accepted by a polynomial-time alternating Turing machine that satisfies the prop-
erty that on each accepting computation path the number of existential guesses on which the bit is
guessed as 1 is at mostk−1. By the inductive hypothesis,C is in coNP. Sincex∈ A if and only if

∀x1(〈x,x1〉 ∈C∨∀x2(〈x,x1x2〉 ∈C∨∀x3(〈x,x1x2x3〉 ∈C∨

. . .∀xℓ(|x|)(〈x,x1x2x3 . . .xℓ(|x|)〉 ∈C)∨B(x,x1 . . .xℓ(|x|),0
ℓ(|x|)) . . . ))),

it follows thatA is in coNP. (Why is it in coNP? Note that its complement is in NPdue to having a
polynomial-length witnesses. LetN be a fixed NP Turing machine acceptingC. Our witness scheme
for membership inA is: Guess anx1, . . . ,xℓ(|x|) such thatB(x,x1 . . .xℓ(|x|),0

ℓ(|x|)) holds and also guess
for each of〈x,x1〉, 〈x,x1x2〉, . . ., 〈x,x1x2 . . .xℓ(|x|)〉 an accepting path ofN on that input.)

❑

Theorem 4.4 For each k≥ 0, the following hold:

1. (a) For each election systemE with a polynomial-time winner problem,online-E -CCDV[k] is
in coNP. (b) There exists an election systemE with a polynomial-time winner problem such
that online-E -CCDV[k] is coNP-complete, even when limited to two candidates.

2. (a) For each election systemE with a polynomial-time winner problem,online-E -CCAV[k] is
in coNP. (b) There exists an election systemE with a polynomial-time winner problem such
that online-E -CCAV[k] is coNP-complete, even when limited to two candidates.

PROOF SKETCH. Parts 1(a) and 2(a) follow immediately from Theorem 4.3.
Now consider part 1(b). Even fork = 0 (and in effect so for allk, as those have within them

k= 0 as subcases we can map to) we claim that there is an election systemE with a polynomial-time
winner problem such that online-E -CCDV[k] is easily shown to be coNP-hard, namely by a≤p

m-
reduction from the coNP-complete tautology problem. The mapping andE are inspired by the proof
of Theorem 4.2: We use the lexicographically least candidate name to be a proposed tautology and
we use the voters as tests of various assignments to it (if theassignment satisfies, everyone wins).
So the problem can force the chair’s top choice (candidatea, see the proof of Theorem 4.2) to win
exactly if the formula is a tautology. As in the statement andproof of Theorem 4.2, this reduction
maps to outputs having only two candidates.

The proof sketch for part 2(b) (online-E -CCAV[k]) is similar to that of part 1(b). The first
(and current) voter in our reduction is unregistered (but with k= 0 she obviously cannot be added),
and the remaining voters are testing assignments to a proposed tautology and we have only two
candidates, just as in the above proof sketch for online-E -CCDV[k]. ❑
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4.2 Control by Partition of Voters

Theorem 4.5 There exist election systemsE and E ′, whose winner problems can be solved in
polynomial time, such thatonline-E -CCPVandonline-E ′-DCPVarePSPACE-complete, even when
limited to two candidates.

PROOF. This proof is similar in flavor to the proof of Theorem 4.2, but since we now handle control
by partition of voters, there are some decisive differences.

The election systemE is now defined as follows.

Case 1: There is a candidate named RoundOne, and no voter is named Marker. In this case, every-
one loses.

Case 2: There is a candidate named RoundOne and a voter named Marker.In this case, interpret—
in our fixed, natural encoding—the lexicographically leastcandidate not named RoundOne
as a boolean formula,Φ, whose variable names must be the stringsx1,x2, . . . ,x2ℓ for someℓ,
and x2ℓ must actually appear inΦ (the others do not have to, but no variable other than
x1,x2, . . . ,x2ℓ can appear inΦ). If this candidate is not of the required syntactic form, exactly
RoundOne wins. If the candidate set does not consist of exactly RoundOne and the above
candidate, then exactly RoundOne wins. If the voter list consists of exactly 2ℓ+1 voters such
that one voter is named Marker, one voter is namedvyes

1 or vno
1 , one voter is namedv2, one

voter is namedvyes
3 or vno

3 , . . ., one voter is namedvyes
2ℓ−1 or vno

2ℓ−1, and one voter is namedv2ℓ,
where all subscripts are given in binary, then assign the 2ℓ variables ofΦ as follows. (If the
voter list is not exactly that then exactly RoundOne wins.) For each oddi, 1≤ i ≤ 2ℓ−1, setxi

to true if there is a voter namedvyes
i and tofalseif there is a voter namedvno

i . For each eveni,
2 ≤ i ≤ 2ℓ, setxi to true if the voter namedvi has the property that in her preference order
RoundOne is the top choice, and otherwise setxi to false. If this assignment makesΦ true,
then the candidate not named RoundOne is the only winner, otherwise (exactly) RoundOne
wins.

Case 3: There is no candidate named RoundOne. In this case, everyonewins.

This ends the specification ofE . Clearly,E has a polynomial-time winner problem, since it is just
evaluating a fully specified and assigned boolean formula, and doing various syntactic checks.

Our online control by partition of voters problems are all inPSPACE by Theorem 4.1. To prove
PSPACE-hardness, we again≤p

m-reduce from the PSPACE-complete problem QBF′ defined in the
proof of Theorem 4.2. LetF(x1, . . . ,x2ℓ) be a given QBF′ instance, wherex2ℓ actually occurs inF.
(If our input is syntactically incorrect, then map it to a fixed nonmember of our target problem.)
Our candidate set will beC = {RoundOne,a}, wherea will in her name encodeF (without loss
of generality, that will not form the string “RoundOne”),a will be our distinguished candidate, our
current voter will beu= ṽ0, the chair’s preference order will bea>σ RoundOne, and there will be
3ℓ+1 voters who vote in order ˜v0, ṽ1, . . . , ṽ3ℓ, where ˜v0 is named Marker, and the remaining voters
are named as follows:

voter ṽ1 ṽ2 ṽ3 ṽ4 ṽ5 ṽ6 · · · ṽ3ℓ−2 ṽ3ℓ−1 ṽ3ℓ

name vyes
1 vno

1 v2 vyes
3 vno

3 v4 · · · vyes
2ℓ−1 vno

2ℓ−1 v2ℓ
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This ends our statement of the reduction. Why does it work?
If F ∈ QBF′, then

(∃b1)(∀b2) · · · (∃b2ℓ−1)(∀b2ℓ) (1)

[F(x1 := b1,x2 := b2, . . . ,x2ℓ := b2ℓ) evaluates totrue],

where thebi ∈ {0,1} are truth assignments. So the partition that puts Marker andall votersvi , i
even, on one side, say intoVleft, and for eachvyes

i /vno
i pair, i odd, follows (1) by puttingvyes

i into
Vleft andvno

i intoVright if bi = 1, andvno
i into Vleft andvyes

i intoVright if bi = 0 (and crucially note that
the preference orders of thevi , i even, we will have seen in the future can (in the future) effect the
future partition choices), will by Case 2 have one first-round election (namely,(C,Vleft)) in which a
is the only winner. And in the other first-round election,(C,Vright), by Case 1 everyone, including
RoundOne, loses. Thus, onlya proceeds to the second-round runoff election, where by Case3
everyone wins, i.e., our distinguished candidatea wins.

In the other direction, supposeF is syntactically correct, and it is possible by some partition of
voters to force “a or better” (soa) to be a winner. Since RoundOne is in both first-round elections
(so Case 3 cannot occur), the only way candidatea can be guaranteed to even survive at least one
first-round election is if we can guarantee that Case 2 is satisfied. But that means thatF ∈ QBF′.

Since our reduction can be computed in polynomial time, thisshows that online-E -CCPV is
PSPACE-hard.

To show that online-E ′-DCPV is PSPACE-hard, we modify the election systemE defined above
as follows, yielding our modified systemE ′: Most crucially, Case 2 of the election system descrip-
tion changes to now making everyone lose ifΦ evaluates totrue under the specified assignment,
and if Φ evaluates tofalse (or there is any syntactic problem regarding who is in the voter list)
then everyone wins. Case 3 changes to now having everyone lose, and Case 1 stays the same. The
≤p

m-reduction from QBF′ remains the same, except that the chair’s preference order will now be
reversed to RoundOne>σ a, and with these changes the reduction can be shown to work correctly
by arguments analogous to those in the constructive case. ❑

The above proof establishes that there are election systems, with polynomial-time winner prob-
lems, for which constructive and destructive online control by partition of voters are PSPACE-
complete even when limited to two candidates. Can we make do with one candidate and still
have PSPACE-hardness? The following result shows that if wecould, then PSPACE would equal
NP∩coNP.6

Theorem 4.6 1. For each election systemE with a polynomial-time winner problem, the prob-
lemsonline-E -CCPVandonline-E -DCPVwhen limited to one candidate are inNP.

2. There exist election systemsE and E ′ with polynomial-time winner problems such that the
problemsonline-E -CCPVandonline-E ′-DCPV, even when restricted to one candidate, are
NP-complete.

6Are elections with just one candidate even ever interestingin the real world? We feel they sometimes are. For
example, a popular referendum—or for that matter a vote in a legislature on a bill—is essentially an up-or-down vote on
one “candidate.” So is a vote on whether to recall an elected official, or to impeach a judge, or to ratify a person who has
been nominated for a sports hall of fame.
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PROOF. We give the proof for the destructive case. For the first part, with one candidate,c, every
voter has the same preference as her full vote:c. So there is no sequentially revealed information,
as in our model we know the voter names (and their order but here that does not matter) as part of
our input. So we just in NP can guess every partition of the voters fromu, the current voter, onward,
and see if one of those meets the chair’s destructive goal, “c does not win.”

For the second part, membership in NP follows from the first part. As to NP-hardness, let us
≤p

m-reduce from SAT. The election system,E ′, is defined as follows:

Case 1: If there are two or more candidates, everyone wins.

Case 2: If there is one candidate and that candidate’s name gives a syntactically correct boolean
formula ϕ that has, say,k variables, and there are exactlyk voters, and if we set theith
variable ofϕ to true exactly if 1 is the lowest order bit of the voter whose name ranks ith in
lexicographic order among the voters’ names, thenϕ is satisfied either by that assignment or
by the bitwise complemented twin of that assignment, then everyone loses.

Case 3: In all other cases (including syntactical problems), everyone wins.

The reduction SAT≤p
m online-E ′-DCPV is defined as follows. Given a boolean formula

F(x1, . . . ,xk), where without loss of generality all variables actually appear inF , we construct an
online-E ′-DCPV instance with candidate setC= {c}, wherec encodesF, the voters are named (in
binary) 1,2, . . . ,2k and they vote in this order,u= 1 is the current voter, the distinguished candidate
is c, and the chair’s preference orderσ is c. Clearly,c can be made not a winner if and only ifF is
satisfiable. Why?

First, if F is satisfiable then we can determine a satisfying assignmentby the partition choices
we make among each voter pair(2i−1,2i), 1≤ i ≤ k, by choosing exactly one per pair for the right-
hand side of the partition, such that the left-hand side of the partition has the bit-wise complement
of that same satisfying assignment. So, by the definition ofE ′, c will not be a winner in either
first-round subelection, and so will not even be in the final runoff election, which will have zero
candidates, and soc will not be a winner.

Second, ifc loses, by the election rule that proves that (Case 2 in the definition of E ′), F is
satisfiable.

The constructive case can be shown analogously. ❑

Corollary 4.7 The following three statements are equivalent:

1. PSPACE= NP∩coNP.

2. There exists an election systemE with a polynomial-time winner problem such that
online-E -DCPV is PSPACE-hard when restricted to one candidate.

3. There exists an election systemE with a polynomial-time winner problem such that
online-E -CCPV is PSPACE-hard when restricted to one candidate.
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PROOF. To show equivalence of the first two statements, suppose PSPACE = NP∩ coNP. So
PSPACE= NP. The second statement now follows from the second part of Theorem 4.6. Con-
versely, by the second part’s hypothesis and the first part ofTheorem 4.6, we have PSPACE⊆ NP,
which (since PSPACE= coPSPACE) is equivalent to PSPACE= NP∩ coNP. The equivalence of
the first and the third statements is proven analogously. ❑

The analogues of the destructive cases of both parts of Theorem 4.6 also hold when “online”
is removed, i.e., for the problemE -DCPV. In contrast, theconstructive non-onlineanalogue of
Theorem 4.6’s first part can be strengthened to a P upper bound. (Why can we get a P result here
but not in Theorem 4.6? The proof of the following result doesnot apply if some voters are already
committed to sides of the partition—it is assuming (and truly using the fact) that we have full control
of whereall voters go. But in the online setting, the current voteru can be a voter who doesnot
come first and so some voters may already be assigned to sides of the partition. And why do we
get P for constructive but not destructive? The effect the following proof uses is specific to the
constructive case.)

Theorem 4.8 For each election systemE with a polynomial-time winner problem,E -CCPV, when
restricted to one candidate, is inP.

PROOF. For the one candidate to win, she certainly must win the runoff, in which all voters vote.
Also, if she does win when all voters vote, then she can easilybe made to survive the first round,
using the partition structure(V, /0). It follows from these two observations that constructive (non-
online) control by partition of voters is possible if and only if the one candidate wins in the election
with voter listV. ❑

5 Online Control for Plurality

We have seen in the previous section that online control can be very hard, namely PSPACE-
complete, even for voting systems whose winners can be determined in polynomial time. In this
section, we study online control for plurality voting. In this very simple yet popular voting system,
every voter gives one point to her most preferred candidate,and all candidates with the most points
win. It is known that non-online control by adding and by deleting voters can be done in polynomial
time, both in the constructive case (since the two relevant unique-winner-model results of [BTT92]
as noted in [FHH14] also hold in the nonunique-winner model)and in the destructive case (since we
have checked and here state as true that those unique-winner-model results of [HHR07] are easily
seen to also hold in the nonunique-winner model). We now showthat the corresponding types of
online control are also easy.

Theorem 5.1 The problems online-plurality-CCDV, online-plurality-CCAV,
online-plurality-DCDV, andonline-plurality-DCAV are inP.

PROOF. For online-plurality-CCDV, let(C,u,V,σ ,d) be a given basic OVCS, augmented by the
additional information of online control by deleting voters: a deletion upper boundk, for each voter
v beforeu a flag saying ifv was deleted and the vote cast byv (if not deleted), where at mostk
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voters can be marked as deleted, and a vote to cast foru (if u is not to be deleted). Ifd is the chair’s
bottom choice inσ , we are done, since the input then is trivially in online-plurality-CCDV (unless it
is syntactically illegal). If exactlyk voters have been marked as already deleted, we can do no more
deletions, sou and all later voters go in, and we assume (as this is the most challenging case) that
all later voters vote for one particular candidate inΛd = {c∈C|c<σ d} that among the candidates
in Λd has the most first place votes afteru is put in, and so we can easily answer the online control
question. If less thank voters have been selected already for deletion, then deleteu if and only if u’s
top choice is a highest scoring (with respect to the voters before u) candidate in{c∈ C| c<σ d}.
Then assume that all later voters vote for one particular candidate inΛd = {c ∈ C| c <σ d} that
among the candidates inΛd has the most first place votes afteru is put in. And assume we delete
as many of those as the deletion amount left (afteru) allows. It is easy to see whether this results
in “d or better” being a winner (in which case our algorithm answers “yes”) or not (in which case
our algorithm answers “no”). (One might comment that it would suffice, especially to just handle
the decision version, to follow the very simple “operational” approach mentioned on page 4 of
Section 2. However, we have given a more dynamic descriptionof the process both as we want to
make clear how the chair can decide what action to take at eachpoint and as the description above
is also helping establish the correctness of the actions taken.)

For online-plurality-CCAV, let(C,u,V,σ ,d) be a given basic OVCS, augmented by the addi-
tional information of online control by adding voters: an addition upper boundk, for each voter the
information of whether she is registered or not, and for eachunregistered voter beforeu the informa-
tion of whether she has been added or not, the vote of each registered or added voter beforeu, and
u’s potential vote. Again, the question is trivial ifd is the chair’s bottom choice inσ . Otherwise, we
can see whatu’s vote is and ifk has yet been reached. Ifk has not been reached yet, we addu if and
only if u’s top choice belongs to{c∈C|c≥σ d}.7 And in the worst case all future voters vote for
the same member of{c∈C|c<σ d}, which will be one that afteru votes has the most first-place
votes among those.

The two destructive cases can be handled analogously. The main differences are, in both cases,
that the question now is trivial to decide ifd is the chair’stop choice inσ ; in the deleting-voters
case, thatu is to be deleted (provided the deletion limitk has not been reached yet) if and only ifu’s
top choice is a highest scoring (with respect to the voters beforeu) candidate in{c∈C|c≤σ d}; and
in the adding-voters case, thatu is to be added (provided the addition limitk has not been reached
yet) if and only ifu’s top choice belongs to{c∈C|c>σ d}. And, in both cases, we again assume
that all future votes will belong to some particular member of {c∈C|c≤σ d} that afteru votes has
the most first-place votes among those candidates. ❑

Non-online control by partition of voters, in the model we feel is most natural and have adopted
in this paper (called “ties promote”), is NP-complete in both the constructive and destructive cases
([HHR07] showed this in the unique-winner model, and we havechecked and here state that NP-
completeness also holds for the nonunique-winner model analogues). In contrast, the corresponding
types of online control are both coNP-hard. This implies that these problems cannot be in NP, unless

7Sure enough,u’s top choice could be one of those candidates that end up having only few votes, so addingu could
be a wasted addition that will block some future good addition in some vote sequences, but in the worst case all future
voters put first a candidate disliked by the chair; so our action is fine within the quantifier structure of the problem.
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NP= coNP, which is considered to be highly unlikely. It remains open whether or not they are in
coNP; we conjecture that they are not.

Theorem 5.2 online-plurality-CCPVandonline-plurality-DCPVarecoNP-hard.

PROOF. We prove this by a reduction from the complement of the following NP-complete problem,
Hitting Set: Given a setB= {b1, . . . ,bm}, a nonempty collectionS = {S1, . . . ,Sn} of subsets ofB,
and a positive integerk≤ m, doesS have a hitting set of size at mostk, i.e., does there exist a set
B′ ⊆ B such that‖B′‖ ≤ k and for allSi ∈ S , Si ∩B′ 6= /0.

We turn an instance(B,S ,k) of Hitting Set into the following instance of online partition of
voters. The set of candidates is{c,w,b1, . . . ,bm} ∪A, whereA = {ai | 1 ≤ i ≤ 4mnk+ 1}. The
current voter isu. The votes beforeu that are on the left side of the partition are exactly the same
as the votes beforeu that are on the right side of the partition. Both sides of the partition consists of
the following votes.

• 4nk votesc> w> · · · , where· · · denotes that the remaining candidates follow in some arbi-
trary order.

• 4nk votesw> c> · · · .

• For everyi, 1≤ i ≤ n, 2k votesSi > c> · · · , whereSi denotes the candidates inSi in some
arbitrary order.

• For every j, 1≤ j ≤ m, as many votesb j > B−{b j} > c> w> · · · as needed to make the
score ofb j equal to 4nk−1 in this subelection.

• For everyi, 1≤ i ≤ 4mnk, one voteai > c> · · · and one voteai > w> · · · .

Voter u votesa4mnk+1 > w > · · · . And there arek voters afteru. The chair’s top choice isc and
the chair’s bottom choice isw, and the distinguished candidate isc in the constructive case (i.e., for
online-plurality-CCPV) andw in the destructive case (i.e., for online-plurality-DCPV).

A simple but crucial observation is that no candidatea∈ A will ever make it to the final round,
since her score in the first round in either subelection will be at most 2+ k, which is less thanc’s
score in that subelection. If bothc andw participate in the final round,c gains 8mnkpoints,w gains
8mnk+ 1 points, and no other candidate gains points from the votersspecified above whose top
choice was inA.

We will show thatS does not have a hitting set of size at mostk if and only if c can always
be made a winner in the constructed election, and we will showthatS does not have a hitting set
of sizek if and only if w can always be made to not be a winner in the constructed election. This
proves the theorem.

First suppose thatS has a hitting set of size at mostk. Let B′ be a hitting set of sizek. B′ exists,
sincek≤ m. Let thek voters afteru vote such that the top choice of theith voter is theith candidate
in B′. Then, no matter how we partition the voters, the set of candidates that participate in the
final round is{c,w}∪B′. The scores in the final round are as follows: (a)score(c) = 8nk+8mnk,
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(b) score(w) = 8nk+8mnk+1, and (c)∑b∈B′ score(b) = 8mnk−2m+ k. It follows thatc is not a
winner and thatw is a winner.

For the converse, suppose thatS does not have a hitting set of size at mostk. Partition by
putting u and all voters afteru in the same first-round election. Then the set of candidates in the
final round is{c,w}∪B′, whereB′ ⊆ B and‖B′‖ ≤ k. SinceB′ is not a hitting set, in the final round
c gains at least 4k points from voters votingSi > c > · · · such thatSi ∩B′ = /0. Thus in the final
election the following hold: (a)score(c) ≥ 8nk+ 8mnk+ 4k, (b) score(w) ≤ 8nk+ 8mnk+ 1+ k,
and (c)∑b∈B′ score(b)≤ 8mnk−2m+k. It follows thatc is the unique winner of this election.❑

6 Conclusions and Open Questions

Inspired by the maxi-min approach of online algorithms, we studied online voter control in sequen-
tial voting. We showed that for suitably constructed election systems with polynomial-time winner
problems, the resulting voter-control problems can be extremely hard, namely PSPACE-complete,
even for just two candidates. We additionally obtain coNP-completeness for the deleting/adding-
voter cases, even for just two candidates, when there is a bounded deletion/addition limit. For
plurality, things are easier still: Online control by deleting or adding voters is in polynomial time
for plurality, just as in the non-online case.

Attractive future directions include the study of additional natural election systems. Can one
obtain PSPACE-completeness results for highly natural, existing systems, for example? Another in-
teresting direction would be to investigate online controlthrough a typical-case analysis of heuristic
approaches (such as, for example, [MPS08, HH09] do rigorously in a winner-problem setting, see
also [RS13]).
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