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Abstract

Previous work on voter control, which refers to situatiortseve a chair seeks to change
the outcome of an election by deleting, adding, or partitigrnvoters, takes for granted that
the chair knows all the voters’ preferences and that alls/ate cast simultaneously. However,
elections are often held sequentially and the chair thusvkrmanly the previously cast votes
and not the future ones, yet needs to decide instantaneahgt control action to take. We
introduce a framework that modedsline voter control in sequential electiang/e show that
the related problems can be much harder than in the standandopline) case: For certain
election systems, even with efficient winner problems, reniontrol by deleting, adding, or
partitioning voters is PSPACE-complete, even if there arly two candidates. In addition,
we obtain (by a new characterization of coNP in terms of welghunded alternating Turing
machines) completeness for coNP in the deleting/addirgsoaith a bounded deletion/addition
limit, and we obtain completeness for NP in the partitionesawith an additional restriction.
We also show that for plurality, online control by deletingamding voters is in P, and for
partitioning voters is coNP-hard.
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1 Introduction

Elections are important not just in the human world. Thep abn function as an important way of
aggregating the preferences of (often electronic) agantsjr world that is increasingly networked
and in which people and institutions will increasingly belsgn for by automated agents.

In the field of multiagent systems, voting has been suggdetetdisks as varied as, for exam-
ple, recommender systems, collaborative spam filtering) ptamning [ER97, GMHS99, DKNS01].
And not surprisingly, the study of the computational prdjgsrof voting systems has been an ex-
ceedingly active area within computational social choice.

In particular, various types of manipulation, electorahtrol, and bribery in voting have been
classified in terms of their computational complexity (§ediHR09b FHH10]). This paper focuses
on voter contro] a model introduced by Bartholdi, Tovey, and Trick [BTT92Jhere a chair at-
tempts to alter the outcome of an election via changingiitsgire by deleting, adding, or partition
of voters. These types of control seek to model such realdwmehaviors as targeted vote sup-
pression, bring-out-the-vote drives, and districting/gmandering. Bartholdi, Tovey, and Trick’s
paper was in the bounded-rationality spirit of Simon [Siilp@&d was in part making the point that
computational complexity is important in decision-making

There have been many papers analyzing the (non-onlineyatoowmplexity of election
systems, and seeking to find natural systems that make mam®s tgf control attack diffi-
cult (see the surveys [FHHRO9b, FHH10], the book chapteRIB FR16) HHR16], and the
references therein). To the best of our knowledge, all presiwork on control (see, e.g.,
[BTT92,[HHRO7,FHHR094, HHR09, ENRD9, EFR$15]) takes fanged that the chair has full
knowledge of all the voters’ preferences and that all votescast simultaneousiﬂl.However, in
many settings voters vote sequentially and the chair'sitaskich a setting may often be quite dif-
ferent: Knowing only the already cast votes but not the fitomes, the chair must decidaline
(i.e., in that moment) whether there exists a control adii@at guarantees success, no matter what
votes will be cast later on. We introduce a framework to manhdine voter control in sequential
elections Our approach is inspired by the area of “online algorithfE#298]—algorithms running
and performing computational actions based only on thetidata seen thus far.

In our framework of online voter control, the chair’s tasktet! above is based on a “maxi-min”
idea (although here, due to the time effects, that can ievotere than two quantifiers), a typical
online-algorithmic theme; in that framing of the chair'skave are following the approach that has
been used for online manipulation and online candidatercbffiHR14,[HHR12a]. Note that an-
other central online-algorithmic theme, a strictly nuroatiratio approach to so-called “competitive
analysis,” would not apply very naturally here; the reasothat in its general setting, voting (in
social-choice theory) is most typically based on an ordir@ion of preferences, and those don't
convey cardinal strength-of-affinity information regamglithe outcome. (For some specific voting
systems such as so-called scoring systems one can intéwpnets giving cardinal information, and
we commend as an interesting open issue a future, generablcoomplexity study for such sys-

1An exception is a paper by Fitzsimmons, Hemaspaandra, amésfsandra [FHH13] that is, regarding their earliest
appearing versions, more recent than the present papestuadids a mixed model involving both a chair and manipula-
tors, in which the manipulative voters set their votes at#ions by the chair.



tems in terms of a competitive-ratio analysis; see [OL14iicl takes that approach for the issue of
selecting a bundle of goods.) Sequential (or otherwise ddyin”) voting has been studied in other
contexts as well, e.g., from a game-theoretic perspecsvé&Stackelberg voting games” [XCI10]
(see also [DE10, DPOL, Slo93]), or using an axiomatic apgrd@en04] or Markov decision pro-
cessed [PP13]. None of this work has considered the issusafcontrol.

What our results show is that such online control problenrs lm&a much harder than in the
standard (non-online) case. We show that for certain eledystems, even with efficient winner
problems, online control by deleting, adding, or partitignvoters is PSPACE-complete, even if
there are only two candidates. In addition, we obtain cotepkess for coNP in the deleting/adding
cases with a bounded deletion/addition limit. We do this btaklishing a complexity-theoretic
result (Theorerh 413) that is of interest in its own right: yyaimial-time alternating Turing machines
that on each accepting path make a constant number of “Yes'sgis accept only coNP languages,
and in fact this completely characterizes coNP. We also ghawfor plurality, online control by
deleting or adding voters is in P, and for partitioning vetisrcoNP-hard.

2 Motivation

The coming sections will give our definitions, results, anolofs. However, before that, the present
section will very informally present some motivation anéeples. In particular, we give example
settings in which it is natural to study sequential actionwhich the election’s “chair” has a use-
it-or-lose-it ability to do addition/deletion/partitiechoice for each voter as the voter votes, and
the chair knows the votes of the voters seen so far, but nattofd voters. Of course, theoretical
models don’t capture the many interactions and subtlefidseaeal world, and so our models don’t
perfectly capture the full richness of even these samplatiins. Nonetheless, we feel that for
many cases, such as those we are about to mention, the tbalomabdels we develop in this paper
are far closer to capturing the real-world situation thaexisting models of simultaneous voting
or even existing models where votes are sequential but wts/goreferences are known ahead of
time.

As a concrete example (and let us for the moment not worrytalbbat the particular election
system is), consider a College faculty meeting at whichngeight around the room, the faculty
members hand their handwritten paper ballots to the Deaa,tivdn passes them on to her admin-
istrative assistant, who quietly adds them to the totalslikeeping. But let us further assume that
the Dean is a shifty person, and can, for a certain number liaftbaslip the piece of paper into
her pocket after reading the vote, without that being ndti@d without the people in the room
being likely to notice that there aren’t quite enough votethe totals (let's suppose it is a big col-
lege). And the question is, given that we are at some paati@dint in going around the table (and
know what votes have been cast so far and what actions the-B@amhoever was standing in for
her—has taken so far): Can the Dean ensure, using at mogrhaining amount of vote-to-pocket
shifting, that the winner(s) of the election will include lagst one of the alternatives she favors?
This setting loosely corresponds to our sequential versiaontrol by deleting voters. For vivid-
ness, our examples are about humans voting and a human ichtie (@bove, the Dean), and in
the case just given, paper ballots. However, our model eppliso to more electronically focused



cases of preference aggregation, e.g., the “Dean” in theeadxample could be a doctored voting
machine that can only suppress so many ballots before srinsking detection.

The above example is about deleting voters, but there apenalsiral examples for adding or
partitioning voters. For partitioning voters, imaginetthaschool’s undergraduate admissions office
is going to use a panel, whose members will each be assigratetof two faculty committees, to
vet applying students (perhaps with the committees puediyrtiooking for different things, e.qg.,
one is looking for traditional smartness and the other ikilop for unusual levels of passion and
creativity), with all applicants’ folders given to both camttees, and with each committee using
voting to select its favorite proposals, and then with ohky winners of those two vetting elections
moving on to a final election in which all the panel membergv&uppose a particular admissions
office staff member (who is the chair in this example), withtlaé faculty members lined up and
coming into the room, as each faculty member steps to theadgobriefly chats with the faculty
member well enough to discern the likely votes he or she was8kcand then right there assigns the
person to either the smartness committee or the passion ic@@anif the admissions staff member
does so with the goal of ensuring that at least one of a cestinf students (perhaps the students
who are great football quarterbacks, or the students whasmts might fund a new admissions
building) will be admitted, that very loosely put would beptared by our sequential version of
control by partition of voter8. For adding voters, a natural model might be a political caaiei
(who is the chair in this example) going door to door through tlistrict in a preset order, and
knowing from public records which voters are registerecr®and which are not, and at each door
meeting and learning the voter’s preferences among thedzted, and then for those voters who
are not registered deciding whether to use charisma to mwoevthem to register and vote, with the
limitation that the candidate has only so much charisma¢o us

The above are a few very informal examples of settings whegaential action is natural, and
one knows the votes cast so far but not those to be cast intilme fi@xcept who will be casting them
and in which order). Let us finish this informal section byeffisi giving a mini-example of the flavor
of the goal we have for our chairs, and how that affects theipas. We are assuming that chairs
are very pessimistic: What a chair wants to know is whethexetis some action she can take at the
given moment so that one of her preferred candidates willneimatter what the value is of all the
currently unknown-to-her future votes—but assuming tleatdwn future decisions are (of course)
aimed at supporting her goal. To make this more concreteisleliscuss the most important real-
world election system: plurality. In our addition-of-voteexample above, suppose the candidate
going door to door has only one preferred candidate in thetiete namely, herself. Then it is
quite clear and simple what she should do. Until she runs baharisma, she should for each
unregistered voter she meets for whom she is the favoritdidate expend her charisma to have
that person become a registered voter. That is an “opeedtiapproach that would work perfectly.
But more must be said. The question our pessimistic carel{@aid our decision problems) wants
answered at each point is whether, whatever the preferastittés come after the current point are,
that candidate will win. And it is also clear how to judge thBhe candidate, as she starts speaking

2Actually, as our previous example suggested, our model isradye flexible and allows one to ask such questions
starting at an intermediate point at which some actions bleady been taken, potentially by a different admissidaif$ s
member.



with a given unregistered voter who likes our candidate tlstnjwe can similarly describe how
to reason in the other cases), reasons as follows: | needstonasthat all future voters (whose
preferences | don't currently know!) concentrate theiregobn a candidate other than me who
currently has the most votes (in the tally | have been bujdmmy canvas so far), and that | use
my charisma to (if it is not expended) add the current untergsl voter, and then | suppress those
hypothetical, unregistered, against-me voters, and wihialtleave me a winner of this election? If
the answer is yes, then the candidate should be very happkiedenows she can guarantee herself
victory as long as she doesn't later do anything overtly igtugth her charisma. The example
we just gave is in effect explaining why it holds that (solke@lconstructive) control by adding
voters is in polynomial time for sequential plurality elecis. Now, one might assume that plurality
is such a simple system that for all types of sequential obmte will obtain polynomial-time
algorithms. However, as Theorédm15.2 we will show that thaioisthe case (unlessPNP). The
proof of that result is in effect giving an example—althowsgimittedly a more complex one—in
which a coNP-hard problem, namely the complement of HitBeg is transformed into an election
control instance about sequentially partitioning voténg Control setting we described above in our
example about college admissions).

3 Prdiminaries

We assume familiarity with standard complexity-theoretitions such as the complexity classes P,
NP, coNP, and PSPACE, polynomial-time many-one reductigtly), <h-hardness, and}-
completeness [HU79, Pap94]. A standard NP-complete proisi¢he satisfiability problem (SAT)
from propositional logic, a standard coNP-complete pnabis the tautology problem, and the
guantified boolean formula problem (QBF) is a standard P$R&a@mplete problem.

This paper provides both polynomial-time algorithms andddefpleteness results. The latter
are worst-case results, and so it is possible that for cedisitributions heuristics might do well
(see[[RS13] for a survey of this in the context of electioh¥® commend this direction as an area for
future research. However, such studies are quite depeadetistributions, and by relatively recent
work, it is known that for the uniform distribution heuristalgorithms cannot asymptotically have
subexponential error frequency on any NP-hard problemssritee polynomial hierarchy collapses
to (and indeed, slightly further than) its third level [BH@BCHOO% HW1P]. (Note: An algorithm
is said to have subexponential error frequency if for exeery0 the number of errors the algorithm
makes at length is O(2"); see [HW12] for a more detailed explanation.)

3.1 Voter Control Typesin Simultaneous Elections

A pair (C,V) is called a(standard or simultaneous) electi@nC is a set of candidates aida list
of voters that all have cast their votes simultaneously. ¥¢aime that each vote Yhhas the form
(v, p), wherev is the name of this voter anglis Vs (total) preference order ovéx. For example, if
C ={c,d,e} then(Bob,d > e > c) € V indicates that Bob (strictly) prefedsto e andeto c (or, to
be more precise, it indicates that that is the ballot Bob ha$) c

The standard types of (constructive) voter control in standous elections are as follows.



(These are as introduced by Bartholdi, Tovey, and Tiick [BA]] except here we will follow the
now more standard model—called the nonunique-winner medéhasking whether a candidate can
be madea winner, rather than their approach—called the unique-ainmodel—of asking whether
a candidate can be made the one and only winner.) An elecgt&iar is a mapping from elections
(votes/candidates) to a winner set. l&ebe a given election system. @ontrol by deleting voters
(€-CCDV), given an electior{C,V), a distinguished candidatec C, and a nonnegative integer
k < ||V||, we ask whether there exists a set of at mogbters fromV such thatc is an& winner
of the election in which that set of voters is removed.cémtrol by adding voter$&’-CCAV), we
are given a candidate s€t a listV of registered voters with preferences o@ra listV’ of as
yet unregistered voters with preferences dvea distinguished candidate= C, and a nonnegative
integerk < ||V’||, and the question is whether there exists a set of at knsters fromV'’ such that
cis an& winner of the election where the voters are that set and all.oFinally, in control by
partition of voters we are given an electiofC,V) and a distinguished candidate= C, and we ask
whetheV can be partitioned into two sublistg, andV,, such that is an& winner of the election
(WLUWL,V), whereW for i € {1,2} is the (possibly empty) set of winners of subelecti@nV;) that
have survived the tie-handling rule used andvblgere we implicitly mearvy masked down to just
those candidates Wy UW,. Of the two tie-handling models introduced by Hemaspaaridema-
spaandra, and Rothe [HHRO07] we focus ontilee-promote (TPjnodel only, where all winners of
a subelection proceed to the runoff, since that model fiteematurally with the nonunique-winner
model in which we will define our online control problems. Tiesulting problem is denoted by
&-CCPV.

The destructive variants of these three problems, dengtédDCDV, £-DCAV, and&-DCPV,
are obtained by requiring that the distinguished candid&eot a winner of the election resulting
from the control action at hand [HHRO7].

3.2 OnlineVoter Control in Sequential Elections

We studyonline voter control in sequential electignshere we assume that the voters vote in order,
one after the other, each expressing preferences oveeathbtididates. Ifi is the current voter and

C the given candidate set, afection snapshot for C andisi specified by a tripl¥ = (Vy,u,Vi< ),
where the earlier voteM._, have already cast their votes, each a preference ordeCoaerd now

it is U's turn to cast a vote, and the future vot®s will cast their votes in the order listedV.{,
andu of course list the votes cast and who cast them Mautjust gives the order of the voters
following u.) This snapshot approach is natural for studying onlinec&tt on elections, and was
used previously to study the different type of attack knowroaline manipulation in sequential
elections[[HHR1B, HHR14].

We now define our notions of online voter control for the staddvoter control types stated
above, and the related problems. They all will start from sidanline voter control settingan
OVCS for short), augmented by appropriate additional infoioraticcording to the control type
at hand. A basic OVCS®C,u,V, 0,d) consists of a set of candidates, the current voteqwhich
isn't strictly needed here, asis clearly singled out withiv anyway), an election snapshétfor
C andu, the chair's preference order on C, and a distinguished candidatiec C. Let & be a
given election system and ¢ (C,V) denote thes winner set of (standard) electide,V). For

6



each online voter control type we will define, the questioa ¢hair faces is: Does there exist a
control-action choice of our considered type regardingdheent voter (e.g., whether or not to
deleteu) such that if the chair takes that action, then no matter wbigs the remaining voters after
u cast, the chair's goal can be reached by the current dedisgardingu and by using the chair’s
future decisions (if any), each being made using the ch#igs-in-hand knowledge about what
votes have been cast by thﬁrﬁy the chair's goalwe mean to ensuM/s(C,V')N{c|c>5d} #0

for each possible ultimate electid®,V’) (i.e., eachV’ is a possible vote list resulting from the
control type at hand after all decisions have been made bghhe and all voters have cast their
votes) in the constructive case, and to ensure\WWdC,V') N {c|d >, c} = 0 in the destructive
case (i.e., that neithernor any candidate the chair likes even less tthaa Winnerﬂ Note that the
conditionsWg (C,V') N {c|c >4 d} # 0 andWg(C,V') N {c|d >, c} = 0 defining the chair's goal
have the flavor, give or take the fact that we are focusing @mpaégment ofr, of the nonunique-
winner model, e.g., as long ®¢:(C,V') N {c|c >, d} # 0 we call it success even if more than one
candidate ties as winner. To formally define our problemsertains to specify for each control
type the information by which the basic OVCS is augmenteda¥¥md of decisions the chair is to
make in the course of a sequential election will always bardi®@m the control type at hand (e.qg.,
whether or not to delete a voter in “online control by delgtimters”).

LetB = (C,u,V,0,d) be a given basic OVCS. Fanline control by deleting voters is aug-
mented by the following additional information: A nonnegaitntegerk (the deletion upper bound);
for each votew beforeu, there is a flag saying whethewas deleted and the vote cast\bfif not
deleted)—at mosk voters can be marked as deleted for the input to be synthgtiegal; and

SNote that this maxi-min-inspired (but with more quantifjempproach is really about alternating quantifiers. We are
asking if there exists a current action of the chair, suchftiraall potential revealed vote values that come between no
and the next time the chair has to decide on an action, théstsexnext action by the chair, such that for.all... the
chair reaches her goal.

4Why do we provide an ordering rather than just providing as a list the set of candidates areogood enough
to count as reaching our goal? For the decision-probleniorersf online voter control, which is our formulation here,
providing such a set would be just as good. But by makirgy part of the input, we make the model compatible, for the
future, with the interesting optimization problem of trgito find the most preferred candidate witldnfor which the
chair can ensure that there is among the winner set one ofti@idates in the segment from that candidate to the top
candidate iro.

Also, to avoid any confusion, we note that in oar ¢hooses an upper (constructive case) or lower (destrucise)
segment of the candidates” approach, the non-online véssiguation that the destructive goal “opposing” a canstive
goal is specified in the same way not longer holds (althouglcoudd have defined things in a less natural way so that
that would hold). That is, in the non-online setting, thetidiguished candidatd in the constructive case is saying
who the chair wants to win, and in the destructive case isngawiho the chair wants to not wird in one case is
defined in the problem definition to denote the beloved cadiend in the other case is defined to denote the despised
candidate. However, in our case, we are giving an oadeand it would be perverse and confusing to havenean one
thing for constructive and another for destructive. Andasowe have defined things, if the chair’s stated ordedirig
V1 > Vo > V3 > V4 > Vs andd = o, in the constructive case that means that the chair wanesast dne of; or v, to win.
To state the destructive-case goal—which in some sense {§lithi’ of that constructive-case goal—of having neitiver
nor v, be a winner, one would give as the chair’s ordengg- v4 > v3 > v, > v; andd = v», since this specifies thag
andv; are the chair’'s two most despised candidates and are thalmekair wants to prevent from being winners.

These comments simply refer to the way various “oppositelgbappen to be expressed. None of the above is saying
that the constructivproblem(viewed as a set) and the destrucfiveblem(viewed as a set) are each other's complements.
Due to the quantification involved regarding the actionsigeaken such as by the chair, that is not true.



the vote the current votar will cast (if not selected for deletion). We denote thesebfams by
online4-CCDV (constructive) and onling=DCDV (destructive). (We certainly could equivalently
formulate the problem in a way that masks out all earliertéel@oters, and so removes the need for
the flagging; but we prefer the above version since it alldwesatctual history of the voting situation
to be part of the instance.)

Foronline control by adding voter8 is augmented by the following additional information: A
nonnegative integek (the addition upper bound); each votein V has a flag saying ¥ is unreg-
istered (i.e., can be added) or registeradmust be unregistered; each unregistered votezfore
u has another flag saying Wwas added—at most voters may have that flag set in any syntac-
tically legal input; the vote cast is given for each registeor added unregistered voter before
and also given is the votewill cast (if it is added). We denote these problems by orRERECAV
(constructive) and onling=DCAV (destructive).

For online control by partition of votersB is augmented by the following additional infor-
mation: Each votewr beforeu has a flag saying which part of the partitierwas assigned to
(“left” or “right”) and the vote cast by, and alsou's vote is given. We denote these problems
by online<-CCPV (constructive) and onlin&-DCPV (destructive). As a reminder, the two pre-
liminary elections are conducted under the convention ‘tieeg promote” (i.e., all winners of the
preliminary elections move forward to the final election).

A natural worry about our maxi-min approach to online votantcol is that it is always possible
that all the future voters are hostile to one’s goals. Andat tase, one may be, depending on the
election system, powerless to reach one’s goal in the wasst,cand so the maxi-min outcome is
easily seen to be failure to reach one’s goal. Although tlueyvexists in a weaker form for online
manipulation and online bribery, since for those if one isvaéd almost no vote-changing one is in
many cases obviously in trouble, at least in those settingscan do whatever one wants to those
votes one does manipulate or bribe. In control, howeverdomsn't get to set the value of a single
vote, and that is pretty extreme.

This is a valid worry, but there are some things that keep jieirspective. Primarily, our paper
is trying to find out the very greatest complexity that onlgoatrol in sequential elections can ever
have (when restricted to election systems having polynietiniee winner problems). And so we can
look at election systems that sidestep the above worry, @tieetr properties simply not matching
the intuition above (which assumed that we are using anietesystem in which having a lot of
bad-for-us votes results in a bad-for-us outcome). In &ffge are seeking to understand the limits
of behavior, in order to set a bounding box on the behaviaas ¢an be realized. Of course, for
many natural election systems, the effect mentioned in theiqus paragraph will hold, and for
many inputs that fact can be exploited to help achieve palyabtime algorithms for the control
problem; indeed, in this paper itself, we give examples diiexing polynomial-time algorithms
for the most important of election systems: plurality. Oticge, problems may start with some
votes already cast, and this may itself make for interestnglgame” decision issues. We also very
much hope further studies will be conducted employing aeasfgnodels, including ones beyond
maxi-min.



4 General Upper and Lower Bounds

Theorem 4.1 For each election system& with a polynomial-time winner probleﬁ1,
online-&-CCDV, online-&-DCDV, online-&-CCAV, online-&-DCAV, online-&-CCPV, and
online-&-DCPV are in PSPACE

PrROOF The upper bounds follow from the observation that each edehproblems can be solved
by an alternating Turing machine in polynomial time, andstby a deterministic polynomial-space
Turing machine, by the characterization due to ChandragKpand Stockmeyer [CKSB1]. [

Theoren 411 settles all general (i.e., regarding any vatysiem for which winner determina-
tion is easy) upper bounds for our online voter control peois. We now turn to exploring their
lower bounds.

4.1 Control by Deleting and by Adding Voters

Theorem 4.2 There exist election systerdsand &’ with polynomial-time winner problems such
that online-&-CCDV, online-&-CCAV, online-&’-DCDV, and online-&’-DCAV are PSPACE
complete, even when limited to two candidates.

PROOF Let (C,V) be an election. We define election systéhas follows. & interprets—in some
fixed, natural encoding—the lexicographically least cdatd name iiC as a boolean formulab,
whose variable names must be the strirgso, ..., Xy for somel, wherexy, actually appears in
@ (the other variables don’t have to; no variables other thary,...,xy, are allowed). If these
syntactic requirements fail to hold, everyone lose& irOtherwise, if any two voters i have the
same name, everyone losessinOtherwise, order the voters Vhlexicographically by name of the
voter, and letv1,v»,...,V, be the voter names in this order. 2k 2¢ or if there are less than two
candidates, everyone losesdh Otherwise, if for some odd 1 <i < 2¢— 1, the two lowest order
bits of v; are not 00 or 01, or if for some evan2 < i < 2/, the two lowest order bits of; are not
10 or 11, everyone loses #i. Otherwise, assign the variables®fx;, xy,...,xy) as follows. For
each odd, 1 <i <2/ —1, setx to true if the two lowest order bits of; are 01, and se§ to false
otherwise (i.e., the two lowest order bitswfare 00). For each evan2 <i < 2/, setx; to true if
the name of the least preferred candidate in the votg isflexicographically less than the name of
the next to least preferred candidate in the vote ,aind sek; to falseotherwise. If this assignment
satisfies®, everyone wins ing’, and otherwise everyone loses. This ends the specificatigh o
Since a boolean formula whose variables have all been &skigen be evaluated in polynomial
time, & has a polynomial-time winner problem.

By Theorem[4ll, onling?-CCDV is in PSPACE. To show PSPACE-hardness of
online<-CCDV, we <p}-reduce the PSPACE-complete problem QBi variant of QBF, to it.
QBF is the set of boolean formulas of the foffiixy, Xo, . .., X2 ), for some?, such that the variable
Xo¢ appears irf, all variables appearing iR are from the variable name collectior,", “x,", ...,
“Xo0", and

(Fby) (Vbg) - (Fbgr—1) (Vboy) [F (X1 := by, X2 := by, ..., %o 1= byy) evaluates tarue],

5The statement of Theordm #.1 holds even for election systemse winner problems are in PSPACE.



whereb; € {0,1} andx; := b; means that variablg is set totrue if b = 1, and is set tdalseif
bj=0, for1<i<2/.

Let F(xq,X%2,...,X) be a given instance of QBRwherexy, explicitly appears irF. (If our
input is syntactically incorrect, we map it to a fixed no-arste of online£-CCDV.) We construct
from F an instance of onling-CCDV, consisting of a basic OVCE,u,V, g,d), augmented by the
additional information of online control by deleting vateas follows. Defin€ = {a, b}, wherea
encodes- (in our fixed, natural encoding of boolean formulas) &rislthe string lexicographically
immediately followingg; the current voter issi=vy; V will be specified below; the chair’s preference
order isa > b; for specificity, we letd = a be the distinguished candidate (though that does not
matter, as all candidates win or all losedt); the deletion limit isk = ¢; and a votea > b to cast
for u if not deleted (again, the vote doesn’'t matter,uas v; will specify an assignment te; by
her name, not by her vote). There &8&) - 2¢ = 3¢ voters inV such that the name of thth voter,

Vi, is the binary stringsw;, whereu; is the binary representation ohndw; =00 if i = 1 mod 3,
wi =01ifi=2mod3, andy; =10 if i =0 mod 3, 1< i < 3¢. This completes the description
of our <F-reduction from QBFto online<-CCDV, which clearly can be computed in polynomial
time.

We claim thatF € QBF if and only if the chair's goal can be reached by at nfodeletions of
voters. Why? By the definition of’, everyone loses unless dkie= ¢ deletions are used axactly
one of ¥j_» and i_1, foreachi, 1 <i </. Novsj, 1 <i </, can be deleted if there is to be a winner.
And the “exactly one of/3_» andvs_1" choices, 1< i < ¢, specify an assignment of truth values
to the odd-numbered variables: For each<i </, Xi_1 is set totrue if v5_» is deleted andsj_1
is not, and is set téalseif v3_1 is deleted andsi_» is not. On the other hand, for eaghl <i </,
the truth value oky; is specified by theoteof votervs;, since after thesédeletionsys will be the
2ith voter name in the lexicographic order. It follows that thair's goal can be reached by at most
k deletions of voters if and only if3by) (Vby) --- (Fbop—1) (Vbor) [F (X1 := b1, X2 := by, ... Xop :=
bys) evaluates tdrue], which is true if and only i € QBF.

PSPACE-hardness of onling-CCAV for the election systerd defined above can be shown via
essentially the samef-reduction from QBE The only difference is that we now map the given
QBF instanceF to an instance of onliné~CCAV, which is defined exactly as the onlid@&CCDV
instance constructed above, except that all votersith i = 0 mod 3 are specified as registered
voters, and all other voters are unregistered. The comsstargument is analogous.

The destructive cases can be shown analogously, by moglifiig election systerd’ defined
above as follows, yielding our modified systefft Whenever everyone loses (wins)dh every-
one wins (loses) i”. It follows from Theoreni 4]l and the abowé-reduction from QBFthat
online<£”-DCDV and online&”’-DCAV are both PSPACE-complete. 0

For control by deleting or adding voters, the deletion oritmid limit k is—both in the non-
online case and in our online definition (which is what is used@heoreni4.R)—part of the prob-
lem instance. To better understand the source of the treonsndvel of computational hardness
Theoreni 4.2 showed that these problems can have, let us msideorestrictions of these problems
in which the deletion or addition limit is bounded by a constéor a given election systeiand a
fixedk, let online<-CCDVI[K| be the restriction of onling-CCDV to those inputs whose deletion
limit is at mostk, and define the problem variant onlide CCAV k] analogously. We will show in
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Theoreni 4.4 that this change in the definition—bounding letibn/addition bound—brings the
complexity of these problems from PSPACE down to coNP. (Intrast, limiting the number of
candidatego two was shown by Theorem 4.2 to leave these two problema®BSRomplete.)

The coNP upper bound follows immediately from the followittgeorem about restricted
polynomial-time alternating Turing machines, which ismtieirest in its own right. If we define the
weight of a path of an alternating Turing machine to be thelmemof 1's in the existential guesses
along the path, what Theordm ¥.3 says is that the class ofidayeg accepted by polynomial-time
alternating Turing machines whose accepting paths arehivbmunded is precisely coNP.

Theorem 4.3 Let k> 0. The class of languages accepted by polynomial-time altgrg Turing
machines that satisfy the property that on each acceptingpeation path the number of existential
guesses on which the bit is guessed as 1 is at most k is pyeceP.

ProoFk We will show this by induction ork. It is immediate that thé& = O case is precisely
coNP. To prove the inductive step, let- 0 and letA be a language accepted by a polynomial-
time alternating Turing machine that satisfies the propidy on each accepting computation path
the number of existential guesses on which the bit is guegsddis at mosk. (That is, any path
that contains at leagt+ 1 guessed 1's in its existential guesses must have as it \(fdae Reject
rather than Accept. Recall that each path of a polynommaétalternating Turing machine has as
its individual (leaf) value either Accept or Reject, and theerall action of the Turing machine
is determined by the thought-experiment of applying thetexitial and universal node actions of
the machine to those leaf values, resulting in an Accept ¢gedRat the root that determines the
machine’s acceptance or rejection on the given input.) ileshvow thatA is in coNP.

Throughout this proof, al’s andy;’s are over{0,1}, i.e., are bits.

Let B be a polynomial-time computable ternary predicate ané{letbe a polynomial such that
for all x, x € Aiif and only if

(X))
Vxa3yr VXo3Y2 .. VX)) 3Ye(ix) (B(X7X1---Xz(x|),Y1---yg(|x)) A Zl Vi < k) :
I=

Such a polynomial and predicate exist, since we can add guaatifiers with dummy variables to
make the quantifiers alternating and we can always guesssiargially-quantified dummy variable
as 0.

We can rewrite the above as follows. Foralk € A if and only if

Vxe  (VXedyz  WXadys oo WX ex)  ( BOGCXT- - Xe(x)s Y2 Yegx) A zfﬁé‘)yi <k-— 1) %
4
VXo (VXgEyg e VX/(\X\)Hy/(\X\) B(X7 X1.. .Xg(‘x‘),Olyg .. yp(‘XD) A zli‘g‘) yi <k-— 1) V
4
VX3 (... VX[(‘XDHy/(‘XD B(val'"XZ(\X\)5001y4"'yﬁ(\x\))/\ZiSleyi < k—l) \%

_ 14
VXE(\X\) (B(X7 X1.. .X[(‘XD,OZ(‘XD 11) A zigz‘(fx\)Jrlyi <k- 1) \%
B(X,Xl .. Xg(‘x‘),of(‘x‘)) e )))
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(Of course,zfﬂ?‘&x‘)ﬂyi < k—1is true, sincek > 0 in the present case.) The long expression

above is not quite in the right form to apply the inductive bipesis. In order to be able to do so,
define languag€ such thatx,x; ...x) € Cif and only ifr < ¢(|x|) and

£(]x])
V% 1131+ - VX V() (B(X>Xl---Xé(x|)aor_11yr+l---yf(x|)) Ay Yisk— 1) :
i=r+1

ClearlyC can be accepted by a polynomial-time alternating Turinghimecthat satisfies the prop-
erty that on each accepting computation path the numberisteexial guesses on which the bit is
guessed as 1 is at mdst- 1. By the inductive hypothesi§, is in coNP. Since € A if and only if

Vx1((X,X1) € CV ¥x2((X,X1%2) € CV Vx3((X,X1X2X3) € CV
.. .VXK(‘XD((X, X1X2X3 . . .Xg(‘x|)> eC)VB(xX,xz.. .xf(‘xh,oé("")) c)))s

it follows thatAis in coNP. (Why is it in coNP? Note that its complement is in N to having a
polynomial-length witnesses. Litbe a fixed NP Turing machine accepti@gOur witness scheme
for membership i is: Guess am, . .., Xy, such thaB(x, s ... X,(x). 0°*)) holds and also guess
for each of(x,x1), (X,X1%2), ..., (X,X1Xz2. .. X(x)) @an accepting path df on that input.)

O

Theorem 4.4 For each k> 0, the following hold:

1. (a) For each election systegwith a polynomial-time winner probleronline-&-CCDV[K| is
in coNP. (b) There exists an election systéhwith a polynomial-time winner problem such
that online-&-CCDVIK| is coNRcomplete, even when limited to two candidates.

2. (a) For each election systeghwith a polynomial-time winner probleronline-&-CCAV[K] is
in coNP. (b) There exists an election systéhwith a polynomial-time winner problem such
thatonline-&-CCAV[K] is coNP-complete, even when limited to two candidates.

PROOFSKETCH. Parts 1(a) and 2(a) follow immediately from Theofeni 4.3.

Now consider part 1(b). Even fdr= 0 (and in effect so for alk, as those have within them
k=0 as subcases we can map to) we claim that there is an elegsitamg?” with a polynomial-time
winner problem such that onling-CCDV[K] is easily shown to be coNP-hard, namely by -
reduction from the coNP-complete tautology problem. Thempirag ands” are inspired by the proof
of Theoreni4.R: We use the lexicographically least candidame to be a proposed tautology and
we use the voters as tests of various assignments to it (dighignment satisfies, everyone wins).
So the problem can force the chair’s top choice (candidasee the proof of Theoreim 4.2) to win
exactly if the formula is a tautology. As in the statement prabf of Theoreni 4]2, this reduction
maps to outputs having only two candidates.

The proof sketch for part 2(b) (onling-CCAV[K]) is similar to that of part 1(b). The first
(and current) voter in our reduction is unregistered (buhWwi= 0 she obviously cannot be added),
and the remaining voters are testing assignments to a pdpasitology and we have only two
candidates, just as in the above proof sketch for ordir€ CDVK]. O
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4.2 Control by Partition of Voters

Theorem 4.5 There exist election systerds and &/, whose winner problems can be solved in
polynomial time, such thamnline-&-CCPVandonline-&’-DCPVare PSPACEcomplete, even when
limited to two candidates.

PROOF. This proof is similar in flavor to the proof of Theorém 1.2 bince we now handle control
by partition of voters, there are some decisive differences
The election systenf is now defined as follows.

Case 1. There is a candidate named RoundOne, and no voter is namde Mg this case, every-
one loses.

Case 2. There is a candidate named RoundOne and a voter named Markigis case, interpret—
in our fixed, natural encoding—the lexicographically leesbdidate not named RoundOne
as a boolean formulab, whose variable names must be the strirgso, ..., Xy, for some/,
and xoy must actually appear i (the others do not have to, but no variable other than
X1,Xo,...,Xo¢ CAN appear iP). If this candidate is not of the required syntactic formaety
RoundOne wins. If the candidate set does not consist of lgxRaundOne and the above
candidate, then exactly RoundOne wins. If the voter lissigia of exactly 2+ 1 voters such
that one voter is named Marker, one voter is namgdor Vi°, one voter is nameut,, one
voter is named”> or vi°, ..., one voter is named,;°, or 3% ,, and one voter is namegy,
where all subscripts are given in binary, then assign theafiables of® as follows. (If the
voter list is not exactly that then exactly RoundOne wing) éach odd, 1 <i <2/ —1, setx
to trueif there is a voter nameq *°and tofalseif there is a voter nameg'. For each even
2 <i <24, setx to true if the voter nameds; has the property that in her preference order
RoundOne is the top choice, and otherwisexs¢d false If this assignment make® true,
then the candidate not named RoundOne is the only winneznwibe (exactly) RoundOne
wins.

Case 3. There is no candidate named RoundOne. In this case, evenjiore

This ends the specification &f. Clearly,& has a polynomial-time winner problem, since it is just
evaluating a fully specified and assigned boolean formuld,dming various syntactic checks.

Our online control by partition of voters problems are alPi8PACE by Theorein 4.1. To prove
PSPACE-hardness, we agaif-reduce from the PSPACE-complete problem QB&fined in the
proof of Theoreni 4]2. LeE (X, ...,X) be a given QBFinstance, wherey, actually occurs irF.

(If our input is syntactically incorrect, then map it to a fikaonmember of our target problem.)
Our candidate set will b€ = {RoundOnea}, wherea will in her name encodé& (without loss

of generality, that will not form the string “RoundOneg will be our distinguished candidate, our
current voter will beu =V, the chair’'s preference order will lze>5 RoundOne, and there will be
3¢+ 1 voters who vote in ordery.Vy, ..., V3, Wherevp is named Marker, and the remaining voters
are named as follows:

voter Vi W V3 V4 Vs Vg - Vo Vg1 Vg
es o yes o es o
name Vi Vi vp V3T v va o VR VBP g vy
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This ends our statement of the reduction. Why does it work?
If F € QBF, then

(Hbl) (ng) cee (Hbgg,]_) (ng[g) (l)
[F(x1:=Db1,X :=bo,... X := by) evaluates tdrue],

where theb; € {0,1} are truth assignments. So the partition that puts Markeradingbtersyv, i
even, on one side, say inti, and for each?*>/v'° pair, i odd, follows [1) by putting#® into
Vet andvi® into Vsignt if by = 1, andv™® into Vie andv?**into Viignt if bi = 0 (and crucially note that
the preference orders of the i even, we will have seen in the future can (in the future) ¢ffiee
future partition choices), will by Case 2 have one first-efection (namelyC, Viet)) in which a

is the only winner. And in the other first-round electig@, Viignt), by Case 1 everyone, including
RoundOne, loses. Thus, ondyproceeds to the second-round runoff election, where by Gase
everyone wins, i.e., our distinguished candidateins.

In the other direction, supposeis syntactically correct, and it is possible by some pantitbf
voters to force a or better” (soa) to be a winner. Since RoundOne is in both first-round elastio
(so Case 3 cannot occur), the only way candidatan be guaranteed to even survive at least one
first-round election is if we can guarantee that Case 2 isfiadi But that means th&tc QBF.

Since our reduction can be computed in polynomial time, shisws that onlines-CCPV is
PSPACE-hard.

To show that onlines’-DCPV is PSPACE-hard, we modify the election syst€mefined above
as follows, yielding our modified syste#i: Most crucially, Case 2 of the election system descrip-
tion changes to now making everyone losa&ifevaluates tdrue under the specified assignment,
and if @ evaluates tdalse (or there is any syntactic problem regarding who is in thesvdist)
then everyone wins. Case 3 changes to now having everyoagdond Case 1 stays the same. The
<P-reduction from QBFremains the same, except that the chair's preference oriflenow be
reversed to RoundOne, a, and with these changes the reduction can be shown to worr&atiyr
by arguments analogous to those in the constructive case. O

The above proof establishes that there are election systeithgoolynomial-time winner prob-
lems, for which constructive and destructive online cdnhby partition of voters are PSPACE-
complete even when limited to two candidates. Can we make itto ame candidate and still
have PSPACE-hardness? The following result shows that ifaudd, then PSPACE would equal
NP coNP

Theorem 4.6 1. For each election syste#iwith a polynomial-time winner problem, the prob-
lemsonline-&-CCPVandonline&-DCPV when limited to one candidate are NP.

2. There exist election systerfsand & with polynomial-time winner problems such that the
problemsonline-&-CCPV and online-&’-DCPV, even when restricted to one candidate, are
NP-complete.

6Are elections with just one candidate even ever interestinie real world? We feel they sometimes are. For
example, a popular referendum—or for that matter a vote egsslature on a bill—is essentially an up-or-down vote on
one “candidate.” So is a vote on whether to recall an eledfigdad, or to impeach a judge, or to ratify a person who has
been nominated for a sports hall of fame.

14



PROOF We give the proof for the destructive case. For the first, paith one candidates, every
voter has the same preference as her full voteSo there is no sequentially revealed information,
as in our model we know the voter names (and their order bt theit does not matter) as part of
our input. So we just in NP can guess every partition of thengotromu, the current voter, onward,
and see if one of those meets the chair’s destructive godipés not win.”

For the second part, membership in NP follows from the first. pAs to NP-hardness, let us
<P-reduce from SAT. The election systet, is defined as follows:

Case 1. If there are two or more candidates, everyone wins.

Case 2: If there is one candidate and that candidate’s name givestactically correct boolean
formula ¢ that has, sayk variables, and there are exackyoters, and if we set thih
variable of¢ to true exactly if 1 is the lowest order bit of the voter whose nameksath in
lexicographic order among the voters’ names, tlhea satisfied either by that assignment or
by the bitwise complemented twin of that assignment, themy@ne loses.

Case 3. In all other cases (including syntactical problems), evagywins.

The reduction SAT<F, online<’-DCPV is defined as follows. Given a boolean formula
F(x1,...,X), where without loss of generality all variables actuallpear inF, we construct an
online4”-DCPV instance with candidate <et= {c}, wherec encoded-, the voters are named (in
binary) 12,...,2k and they vote in this ordet,= 1 is the current voter, the distinguished candidate
is ¢, and the chair’s preference ordeiis c. Clearly,c can be made not a winner if and onlyFfis
satisfiable. Why?

First, if F is satisfiable then we can determine a satisfying assignhetite partition choices
we make among each voter pédi —1,2i), 1 <i <k, by choosing exactly one per pair for the right-
hand side of the partition, such that the left-hand side efgéartition has the bit-wise complement
of that same satisfying assignment. So, by the definitio#”pfc will not be a winner in either
first-round subelection, and so will not even be in the finaloftielection, which will have zero
candidates, and sowill not be a winner.

Second, ifc loses, by the election rule that proves that (Case 2 in thaitefi of &’), F is
satisfiable.

The constructive case can be shown analogously. O

Corollary 4.7 The following three statements are equivalent:
1. PSPACE= NPNcoNP.

2. There exists an election systefh with a polynomial-time winner problem such that
online-&-DCPV is PSPACEhard when restricted to one candidate.

3. There exists an election systefh with a polynomial-time winner problem such that
online-&-CCPVis PSPACEhard when restricted to one candidate.
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PROOF To show equivalence of the first two statements, suppos@&®SPE- NP1 coNP. So
PSPACE= NP. The second statement now follows from the second parhebfeni 46. Con-
versely, by the second part’'s hypothesis and the first parhebreni 4.6, we have PSPACENP,
which (since PSPACE: coPSPACE) is equivalent to PSPAGENPN coNP. The equivalence of
the first and the third statements is proven analogously. O

The analogues of the destructive cases of both parts of &hddré also hold when “online”
is removed, i.e., for the proble@#-DCPV. In contrast, theonstructive non-onlin@nalogue of
Theorenl 4.6’s first part can be strengthened to a P upper bduidy can we get a P result here
but not in Theoreri 416? The proof of the following result doesapply if some voters are already
committed to sides of the partition—it is assuming (andytuding the fact) that we have full control
of whereall voters go. But in the online setting, the current vaiezan be a voter who doeasot
come first and so some voters may already be assigned to ditles partition. And why do we
get P for constructive but not destructive? The effect tHiiang proof uses is specific to the
constructive case.)

Theorem 4.8 For each election syste#i with a polynomial-time winner probler#,-CCPV, when
restricted to one candidate, is i

PrROOF For the one candidate to win, she certainly must win theffumowhich all voters vote.
Also, if she does win when all voters vote, then she can easiljnade to survive the first round,
using the partition structur@/,0). It follows from these two observations that constructimer(-
online) control by partition of voters is possible if and wiflthe one candidate wins in the election
with voter listV. 0

5 Online Control for Plurality

We have seen in the previous section that online control eawdny hard, namely PSPACE-
complete, even for voting systems whose winners can berdigied in polynomial time. In this
section, we study online control for plurality voting. Irnigtvery simple yet popular voting system,
every voter gives one point to her most preferred candideie all candidates with the most points
win. It is known that non-online control by adding and by dielg voters can be done in polynomial
time, both in the constructive case (since the two relevaigue-winner-model results df [BTT92]
as noted in[FHH14] also hold in the nonunique-winner modet) in the destructive case (since we
have checked and here state as true that those unique-vmoaiai results of [HHRQ7] are easily
seen to also hold in the nonunique-winner model). We now datvthe corresponding types of
online control are also easy.

Theorem 5.1 The problems online-plurality-CCDV, online-plurality-CCAV,
online-plurality-DCDV, andonline-plurality-DCAV are in P.

PROOF For online-plurality-CCDV, letC,u,V, 0,d) be a given basic OVCS, augmented by the
additional information of online control by deleting vader deletion upper bourd for each voter
v beforeu a flag saying ifv was deleted and the vote cast byif not deleted), where at mo&t
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voters can be marked as deleted, and a vote to cast(fbu is not to be deleted). M is the chair's
bottom choice ino, we are done, since the input then is trivially in onlinefglity-CCDV (unless it

is syntactically illegal). If exactlk voters have been marked as already deleted, we can do no more
deletions, sa and all later voters go in, and we assume (as this is the ma#ienlging case) that
all later voters vote for one particular candidate\ip= {c € C|c <, d} that among the candidates
in A\g has the most first place votes afteis put in, and so we can easily answer the online control
guestion. If less thak voters have been selected already for deletion, then deieéad only if u's

top choice is a highest scoring (with respect to the votefsrbel) candidate in{c € C|c <, d}.
Then assume that all later voters vote for one particuladidate inAy = {c € C|c <, d} that
among the candidates &y has the most first place votes afters put in. And assume we delete
as many of those as the deletion amount left (afjeallows. It is easy to see whether this results
in “d or better” being a winner (in which case our algorithm ansages”) or not (in which case
our algorithm answers “no”). (One might comment that it websiffice, especially to just handle
the decision version, to follow the very simple “operatiir@pproach mentioned on pagé 4 of
Sectio 2. However, we have given a more dynamic descriftighe process both as we want to
make clear how the chair can decide what action to take atgaiohand as the description above
is also helping establish the correctness of the actiorntak

For online-plurality-CCAV, let(C,u,V, 0,d) be a given basic OVCS, augmented by the addi-
tional information of online control by adding voters: ardaan upper bound, for each voter the
information of whether she is registered or not, and for eachgistered voter beforethe informa-
tion of whether she has been added or not, the vote of eacttesgl or added voter befoneand
u's potential vote. Again, the question is trivialdfis the chair’s bottom choice ia. Otherwise, we
can see what's vote is and itk has yet been reached.khas not been reached yet, we adéfland
only if U's top choice belongs tfc € C|c >4 d}E And in the worst case all future voters vote for
the same member dit € C|c <, d}, which will be one that aften votes has the most first-place
votes among those.

The two destructive cases can be handled analogously. Timediffarences are, in both cases,
that the question now is trivial to decidedfis the chair'stop choice ing; in the deleting-voters
case, thati is to be deleted (provided the deletion lirkihas not been reached yet) if and only’g
top choice is a highest scoring (with respect to the voteiwrbe) candidate ifc e C|c <, d}; and
in the adding-voters case, thats to be added (provided the addition limkihas not been reached
yet) if and only ifu's top choice belongs tfc € C|c >4 d}. And, in both cases, we again assume
that all future votes will belong to some particular membfefoc C|c <, d} that afteru votes has
the most first-place votes among those candidates. O

Non-online control by partition of voters, in the model welfes most natural and have adopted
in this paper (called “ties promote”), is NP-complete intbtite constructive and destructive cases
([HHRQ7] showed this in the unique-winner model, and we hetvecked and here state that NP-
completeness also holds for the nonunique-winner modébgnes). In contrast, the corresponding
types of online control are both coNP-hard. This implies thase problems cannot be in NP, unless

"Sure enough's top choice could be one of those candidates that end updnavily few votes, so addingcould
be a wasted addition that will block some future good additirosome vote sequences, but in the worst case all future
voters put first a candidate disliked by the chair; so ouoads fine within the quantifier structure of the problem.
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NP = coNP, which is considered to be highly unlikely. It remaipi whether or not they are in
coNP; we conjecture that they are not.

Theorem 5.2 online-plurality-CCPVandonline-plurality-DCPV are coNP-hard.

PrROOFE We prove this by a reduction from the complement of the ity NP-complete problem,
Hitting Set: Given a seB = {by,...,bm}, a nonempty collectiot’” = {S, ..., S} of subsets 0B,
and a positive integet < m, does. have a hitting set of size at mdsti.e., does there exist a set
B’ C B such tha{|B'|| < kand for all§ € .7, SNB' # 0.

We turn an instancéB,.” k) of Hitting Set into the following instance of online parbiti of
voters. The set of candidates{is,w,bs,...,bn} UA, whereA= {g | 1 <i <4mnk+ 1}. The
current voter iau. The votes before that are on the left side of the partition are exactly the same
as the votes beforethat are on the right side of the partition. Both sides of theifion consists of
the following votes.

e 4nkvotesc >w > ---, where--- denotes that the remaining candidates follow in some arbi-
trary order.

e 4dnkvotesw>c> ---,

e For everyi, 1<i<n, 2kvotesS > c > ---, whereS denotes the candidates $nhin some
arbitrary order.

e Foreveryj, 1< j <m, as many votes; > B— {b;} > c>w> ... as needed to make the
score ofb; equal to 4k— 1 in this subelection.

e Foreveryi, 1<i <4mnk one voteg; > c> --- and one vot& >w> ---.

\oter u votesaymnkr1 > W > ---. And there arek voters afteru. The chair’s top choice is and
the chair’s bottom choice s, and the distinguished candidatecim the constructive case (i.e., for
online-plurality-CCPV) andv in the destructive case (i.e., for online-plurality-DCPV)

A simple but crucial observation is that no candidate A will ever make it to the final round,
since her score in the first round in either subelection véllab most 2+ k, which is less thar's
score in that subelection. If bothandw participate in the final round, gains 8nnkpoints,w gains
8mnk+ 1 points, and no other candidate gains points from the vaigesified above whose top
choice was imA.

We will show that.¥ does not have a hitting set of size at mkst and only if c can always
be made a winner in the constructed election, and we will sthat. does not have a hitting set
of sizek if and only if w can always be made to not be a winner in the constructed @tecTihis
proves the theorem.

First suppose tha¥ has a hitting set of size at mdstLet B’ be a hitting set of sizk. B’ exists,
sincek < m. Let thek voters afteiu vote such that the top choice of thh voter is thath candidate
in B'. Then, no matter how we partition the voters, the set of chatds that participate in the
final round is{c,w} UB'. The scores in the final round are as follows: gegrgc) = 8nk+ 8mnk
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(b) scorgw) = 8nk+ 8mnk+ 1, and (€)Y pep Scorgb) = 8mnk— 2m+-k. It follows thatc is not a
winner and thatv is a winner.

For the converse, suppose that does not have a hitting set of size at mkstPartition by
putting u and all voters afteu in the same first-round election. Then the set of candidatelse
final round is{c,w} UB’, whereB’ C B and||B'|| < k. SinceB' is not a hitting set, in the final round
c gains at least Kpoints from voters votingg > ¢ > --- such that§ NB’ = 0. Thus in the final
election the following hold: (a¥coregc) > 8nk+ 8mnk+ 4k, (b) scordw) < 8nk+ 8mnk+ 1+ Kk,
and ()3 pep scorgb) < 8mnk—2m-k. It follows thatc is the unique winner of this electiori]

6 Conclusions and Open Questions

Inspired by the maxi-min approach of online algorithms, weled online voter control in sequen-
tial voting. We showed that for suitably constructed elmtsystems with polynomial-time winner
problems, the resulting voter-control problems can beeexély hard, namely PSPACE-complete,
even for just two candidates. We additionally obtain coMRipleteness for the deleting/adding-
voter cases, even for just two candidates, when there is adedludeletion/addition limit. For
plurality, things are easier still: Online control by débgt or adding voters is in polynomial time
for plurality, just as in the non-online case.

Attractive future directions include the study of additdmatural election systems. Can one
obtain PSPACE-completeness results for highly naturadtieg systems, for example? Another in-
teresting direction would be to investigate online continbbugh a typical-case analysis of heuristic
approaches (such as, for example, [MP$08, HH09] do rigtyons winner-problem setting, see

also [RS13])).
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