
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/13 0 9 7 7/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

King, Tho m a s C., De Vos, M a rin a, Dign u m, Virgini a, Jonker, Ca t holijn M., Li,

Ting ting , Pad g e t , Julian a n d van Rie m s dijk, M. Birn a 2 0 1 7. Auto m a t e d m ul ti-level

gove r n a n c e co m plia nc e c h e cking. Autono mo us Agen t s a n d M ulti-Age n t Sys t e m s 3 1

(6) , p p. 1 2 8 3-1 3 4 3. 1 0.10 0 7/s1 0 4 5 8-0 1 7-9 3 6 3-y

P u blish e r s p a g e: h t t p://dx.doi.o rg/10.10 0 7/s 10 4 5 8-0 1 7-9 3 6 3-y

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Autonomous Agents and Multi-Agent Systems manuscript No.

(will be inserted by the editor)

Automated Multi-level Governance Compliance Checking

Thomas C. King · Marina De Vos · Virginia Dignum ·
Catholijn M. Jonker · Tingting Li · Julian Padget ·
M. Birna van Riemsdijk

Received: date / Accepted: date

Abstract An institution typically comprises constitutive rules, which give shape and meaning to social

interactions and regulative rules, which prescribe agent behaviour in the society. Regulative rules guide

social interaction, in particular when they are coupled with reward and punishment regulations that are

enforced for (non-) compliance. Institution examples include legislation and contracts. Formal institutional

reasoning frameworks automate ascribing social meaning to agent interaction and determining whether

those actions have social meanings that comprise (non-) compliant behaviour. Yet, institutions do not

just govern societies. Rather, in what is called multi-level governance, institutional designs at lower

governance levels (e.g., national legislation at the national level) are governed by higher level institutions

(e.g., directives, human rights charters and supranational agreements). When an institution design is

found to be non-compliant, punishments can be issued by annulling the legislation or imposing fines

on the responsible designers (i.e., government). In order to enforce multi-level governance, higher

governance levels (e.g., courts applying human rights) must check lower level institution designs (e.g.,

national legislation) for compliance; in order to avoid punishment, lower governance levels (e.g., national

The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-017-9363-y

Thomas C. King

Lancaster University

t.c.king@lancaster.ac.uk

Marina De Vos

University of Bath

mdv@cs.bath.ac.uk

Virginia Dignum

Delft University of Technology

M.V.Dignum@tudelft.nl

Catholijn M. Jonker

Delft University of Technology

C.M.Jonker@tudelft.nl

Tingting Li

Imperial College London

tingting.li@imperial.ac.uk

Julian Padget

University of Bath

j.a.padget@bath.ac.uk

M. Birna van Riemsdijk

Delft University of Technology

m.b.vanriemsdijk@tudelft.nl

Automated Multi-level Governance Compliance Checking 2

governments) must check their institution designs are compliant with higher-level institutions before

enactment. However, checking non-compliance of institution designs in multi-level governance is non-

trivial. In particular, because institutions in multi-level governance operate at different levels of abstraction.

Lower level institutions govern with concrete regulations whilst higher level institutions typically comprise

increasingly vague and abstract regulations. To address this issue, in this paper we propose a formal

framework with a novel semantics that defines compliance between concrete lower level institutions

and abstract higher level institutions. The formal framework is complemented by a sound and complete

computational framework that automates compliance checking, which we apply to a real-world case

study.

Keywords Institutions, Normative reasoning, Multi-level Governance

1 Introduction

Institutions (e.g., legislation) guide societies towards subjectively-ideal and coordinated behaviour. An

institution, such as the written law, comprises regulations imposed on agents taking part in the governed

society, coupled with the means to detect compliance and impose regulations that reward and punish

agents for (non-)compliance. An institution comprises constitutional and regulative rules. Constitutional

rules define concepts, for example “making an electronic bank transfer counts-as payment”. Regulative

rules impose obligations and prohibitions to instantiate the defined concepts, for example “you are obliged

to make a payment”. Institutions, comprising interacting constitutive and regulative rules, need to be

understood in order to be applied to the governed society. Hence, increasingly institutional reasoning is

formalised and computerised with automated normative and institutional reasoning frameworks (see [3]

for a review). Such formal institutional reasoning frameworks support governing bodies in automatically

penalising agents as well as individual agents in understanding their legal duties.

However, institutions are not typically written in a vacuum. Rather, institution designs are constrained

and regulated by higher level governing bodies. This is what is called multi-level governance [45]. In

multi-level governance, legislators design institutions comprising rules and regulations, but whose design

is also subject to regulation. For example, in 2006 the European Union issued the Data Retention Directive

[22] for harmonising member states’ data retention regulations. In 2009 the UK implemented the directive

with the Data Retention Regulations [74] in order to avoid being fined. Yet, in 2014 the European Court of

Justice ruled [21] that the EU directive was non-compliant with the EU’s Charter of Fundamental Rights

[23], and consequently annulled the EU’s Data Retention Directive. We will use this case throughout,

referring to the Charter of Fundamental rights as the EU-CFR, the EU’s Data Retention Directive as the

EU-DRD, and the UK’s implementing Data Retention Regulations as the UK-DRR. The main point is

that multi-level governance exposes legislators to the risk of punishment for non-compliant institution

designs and burdens a judiciary with determining compliance of institution designs.

So far, institutional reasoning frameworks have focussed on single-level societal governance. Typically,

automated institutional reasoning deals with regulations operating at the level of institutions governing

agents and/or corporations. For example, the UK-DRR [74] obliges communications providers to store

communications metadata. However, there lacks formalisation for cases where regulations themselves are

regulated by higher level institutions in multi-level governance. For example, how EU directives govern

national legislation but where EU directives are in turn governed by human rights charters. In this paper

we look at how lower level institutions themselves are regulated by higher level institutions.

In particular, we look at increasingly abstract regulations at higher levels of governance, which govern

more concrete regulations at lower levels of governance. Such abstraction sets multi-level governance

apart from single-levelled governance of societies. In multi-level governance at the highest-level, such

as human rights charters, regulations are intentionally abstract and open to interpretation. Such abstract

regulations provide many ways in which to (non-) comply. At a lower level, such as EU directives,

regulations are more concrete and less open to interpretation. At the lowest level, such as national

or sub-national legislation, regulations are concrete and should have the least ambiguity. Despite the

Automated Multi-level Governance Compliance Checking 3

differences in abstraction between levels, each level’s institution design must somehow be demonstrated

to be compliant with relatively more abstract regulations at higher levels.

To give an example, the EU-CFR [23] contains vague regulations requiring that people’s private and

family life is respected. The EU-DRD [22] contains a more concrete regulation requiring communications

service providers (e.g., internet service providers) to store people’s communications metadata (e.g., a

phonecall’s time and place) within a fixed time frame. The EU-CFR governs EU directives. Hence, the

EU-DRD’s communications metadata regulation must be shown to be compliant with the EU-CFR’s

more abstract right to a private and family life. At the same time, the EU-DRD itself governs the design

of institutions, namely member states’ legislation. Member states must implement the directive in a

compliant way in order to avoid fines. The directive gives some scope for member states to implement the

legislation differently, allowing the data retention period to be between 6 and 24 months. The UK-DRR

[74] is more concrete and must be shown to ensure communications metadata to be stored within the

required time frame, no shorter and no longer. In fact, the UK-DRR does just that, concretely requiring

that communications metadata is stored for 13 months which complies with the abstract requirement of

the directive to store data between 6 and 24 months.

In this paper, we give a rigorous formal account and automate checking of compliance in multi-level

governance between concrete lower level and abstract higher level institutions with a novel framework. Our

framework provides a representation for defining institutions and their multi-level governance relationship.

A semantics defines the regulatory outcomes of each institution in different (potentially hypothetical)

contexts.

Specifically, a semantics re-interprets concrete regulations at lower levels in terms of their more

abstract meaning with respect to higher level institutions. Taking concrete regulations and determining

their abstract interpretation is based on Searle’s constitutive institutional rules, which define the links

between concrete and abstract concepts. By interpreting concrete regulations in terms of their abstract

meaning, it is determined if the concrete regulations are (non-)compliant with the abstract regulations

in higher level institutions. To give an example, the EU-DRD [22] requires member states to store

communications metadata. According to the semantics we infer that storing communications metadata

without someone’s consent is, abstractly, unfair data processing. Since the EU-CFR prohibits unfair data

processing [23, Art. 8.2] the EU-DRD’s more concrete regulations are determined to be non-compliant.

This paper contributes a framework for semantically determining if concrete regulations at lower levels of

governance are compliant with more abstract regulations at higher levels of governance.

This paper continues by providing the conceptual background of the framework in Section 2. The

approach we take in formalising multi-level governance compliance is described in Section 3. The new

formal framework is presented in Section 4. A practical approach to multi-level governance reasoning

is provided with a computational framework presented in Section 5. The computational framework

provides a sound and complete translation from the formal framework to an executable logic program.

An implementation automates the translation between high-level institution specifications and a logic

programming language program, which in turn automates compliance checking as we demonstrate for a

real-world case study. At the end of this paper we compare our framework to related work in Section 6.

We conclude with reflections and avenues for future work in Section 7.

2 Governance Concepts

2.1 Institutions

An institution, alternatively called a normative system, is in our view a specification of rules and regulations

that guide agents in a Multi-Agent System (MAS) towards ideal and coordinated behaviour. An institution

is operationalised by interpreting and applying its rules and regulations on the agents acting in the MAS

that the institution governs. The interpretation process involves assessing how agents in the MAS are

behaving and the MAS’ state in order to see which rules and regulations apply and when.

Automated Multi-level Governance Compliance Checking 4

We view an institution’s rules as being classified into two types in line with existing formal work. To

quote Searle [72]:

“Some rules regulate antecedently existing activities. For example, the rule ‘drive on the right-

hand side of the road’ regulates driving; but driving can exist prior to the existence of that rule.

However, some rules do not merely regulate, they also create the very possibility of certain

activities.”

In other words two rule types exist in an institution, those that ascribe facts such as social activities

and those that prescribe facts, respectively known as constitutive rules and regulative rules (norms)

according to Searle’s philosophy of institutions [72], formal theories of institutions [11, 13, 12, 35] and

legal scholarship [9].

Searle’s [70, 73] constitutive counts-as rules establish institutional facts (e.g., that an agent possesses

money) from physical/brute facts (e.g., that an agent possesses a piece of paper commonly viewed as

money). Regulatory rules, which we also call norms, specify how agents or a system should behave (e.g.,

obliging an agent to pay for goods) and/or what the state of affairs should be.

In our view (following preceding work on e.g., InstAL [13]) operationalising an institution involves

interpreting institutional rules of both types. Through institutional rule interpretation, a social reality is

established comprising institutional facts and various deontic positions such as obligations. Ultimately,

determining whether agents and society are behaving in a compliant way is based on whether the created

social reality conforms to the prescriptions imposed by norms. We will now describe in detail constitutive

rules and norms.

2.1.1 Constitutive Rules

Constitutive rules [70, 73] construct a social reality, where things such as ‘money’ and ‘personal data’

exist, from a brute reality where physical brute facts exist independently of an institution or society (e.g.,

that there is a piece of paper that looks like money, or that an analog signal has been sent down a wire

in what we might call personal data communication). These constitutive rules have the now ubiquitous

counts-as form of “some brute or institutional fact A counts-as an institutional fact B in a social context

C”. For example, “storing communications metadata counts-as storing personal data in the context that

the metadata is about the communications of a person”. Searle argues that such constitutive rules ascribe

an institutional meaning in the form of an institutional fact, the ‘B’ in such a rule (e.g., storing personal

data), to an ‘A’ in such a rule which is either a brute fact or another more concrete or basic institutional

fact (e.g., storing communications meta-data). Such rules are conditional on a social context, which is a

part of the social reality built by such counts-as rules (e.g., the context that someone is a ‘person’ exists

whenever an agent that exists in the brute reality is ascribed the status of ‘personhood’ by a constitutive

rule).

A similar example is “storing communications content data counts-as storing personal data in the

context that it is a person’s communications being stored”. In both of these examples, content data and

metadata are also institutional facts that are defined by other constitutive rules as either referring to a more

concrete institutional fact or a brute fact. Ultimately, through a chain of derivations, all institutional facts

exist because of constitutive rules that ascribe an institutional fact as being constituted by brute facts. It is

a bit tricky to exemplify a counts-as rule that ascribes an institutional fact from a brute fact. The reason

being, any time we try to refer to a brute fact we will be using words from a language, and since language

is a ‘base institution’ these words we use will always be institutional facts (to give Searle’s example

[73] “It seems intuitively right to say that you can have language without money, but not money without

language.”). Hence, we will use the terms “the thing we call X” or “the observable event X” to represent

a brute fact distinct from the institutional fact/symbol X that refers to the brute fact. So, for example,

meta-data is an abstract institutional fact that refers to a brute fact according to a constitutive rule such

as “the thing we call storing communications metadata counts-as storing communications metadata”. In

Automated Multi-level Governance Compliance Checking 5

other words, institutional facts are ascribed as being constituted by brute facts, giving the physical reality

a social meaning.

These examples are about ascribing abstract institutional events. But, constitutive rules also establish

the institutional properties that hold at a particular point in time. For example, from an institutional event

that occurs, the establishment of an institutional property that holds is ascribed “someone signing a form

stating a communications provider is allowed to store their personal data counts-as establishing that the

person has consented to personal data storage”. This means that the establishment of an institutional

‘consent’ fact in a state is a special meaning ascribed to the event where the agent signs a consent form.

One final example is “storing personal data counts-as non-consensual data processing in the context

that the person who the data concerns has not consented”. In this final example we can see that by

transitivity it follows that from storing metadata (which is personal data) in the context that the person

who it concerns has not consented we derive non-consensual data processing from the aforementioned

abstracting constitutive rules. In conclusion, constitutive rules establish abstract institutional events and

properties from more concrete brute events or institutional events/properties. Constitutive rules build an

abstract institutional reality of institutional facts from brute facts, in turn the institutional reality can be

further abstracted according to constitutive rules.

It is important to note that counts-as rules make institutional facts possible. As Searle argues [72]:

“[...] institutional facts exist only within systems of constitutive rules. The systems of rules create

the possibility of facts of this type; and the specific instances of institutional facts such as the fact

that I won at chess or the fact that Clinton is president are created by the application of specific

rules [...]”

In other words, a status or institutional fact assigned to a particular brute or institutional fact exists

only because a constitutive rule makes it so. For example, ‘personal data’ cannot exist in a social reality

without a constitutive rule ascribing it as being a status of a more concrete brute or institutional fact (e.g.,

meta-data). An important distinction must be made with the physical reality, taking a classical example

often used for explaining abduction. We may know that “if it rains then the grass becomes wet”, however

the grass being wet is not a fact introduced by the rule, rather the rule is representative of a predicted

causal relationship in a pre-existing physical reality. Consequently, if it has not rained, that does not mean

that the grass is not wet, perhaps the grass can become wet by some other means (e.g., a sprinkler is turned

on). In comparison, if we only have the two constitutive rules “communications meta-data counts-as

personal data” and “communications content counts-as personal data” then the social meaning of data

being personal can only be attributed to meta-data or content data, since the constitutive rules introduce

the fact of personal data. Accordingly, counts-as rules are commonly known as having the property of

being ascriptive (i.e., introducing new concepts) [28, p. 420].

In this paper we characterise two counts-as rule types: those that ascribe abstract meaning to events

and those that ascribe abstract meaning to fluents (properties that hold in states). For these counts-as

rules types we give a simple semantics where if we have a rule “A counts-as B in context C” and an

A holds/occurs in a context C then a B holds/occurs in the same context C. Counts-as rules semantics

is intentionally simple, since we focus on the relation between counts-as rules and norms. Specifically,

we will later argue that ascriptive counts-as rules, which introduce abstract institutional facts to refer to

concrete institutional or brute facts, are sufficient to interpret norms at different levels of abstraction such

that concrete deontic positions (e.g., obligations) count-as more abstract deontic positions.

2.1.2 Norms

Institutions, in our framework, use norms to govern a society or to govern other institutions’ normative

effects. A choice needs to be made on the representation and semantics for norms to take. We will discuss

this choice by first describing two common forms for norms in the literature. Namely, an evaluative form

[2, 37] and a modal form [70, p. 63]. Then, we will compare evaluative and modal norms in terms of

the ease with which we can represent and reason about norms that govern other institutions’ normative

Automated Multi-level Governance Compliance Checking 6

effects. Or, in other words, norm governing norms. We will conclude that modal norms offer a simpler

way for representing norm governing norms, which in a modal norm representation are a generalisation

of norms governing agents.

An evaluative norm provides a qualitative evaluation of an institutional fact in a specific context.

For example, “storing communications meta-data is good”. More precisely, evaluative norms ascribe

institutional facts as being good/bad/a violation/compliant. They take a specialised constitutive form of

“A counts-as being good/bad/a violation/compliant in a context C”. If regulations take an evaluative form,

then they place evaluative statements in the social reality stating how ideal the social reality itself is (e.g.,

whether there is a violation). Evaluative norms do not place statements in the social reality stating what

should be done, only evaluations of what has been done (e.g., stating a norm has been complied with, or

the social reality is ‘good’). Rather, it is the evaluative rules themselves that state what should and should

not be done (e.g., “storing meta-data counts-as compliance” states that meta-data should be stored).

Modal regulatory rules ascribe deontic positions of obligation/permission/prohibition/etc. over partic-

ular institutional facts. Modal norms have the form of “An institutional fact A causes the imposition of

an obligation/prohibition/permission/etc. to do B in a context C”. If norms are modal, then they ascribe

‘into’ the social reality explicit deontic positions stating what should (not) be done or which state of

affairs should (not) be brought about. For example, the social reality can contain an obligation to store

communications’ metadata. In turn, whether there is compliance or violation is derived from the deontic

statements that hold in the social reality. For example, from an obligation to store metadata and the

occurrence of storing metadata, compliance is derived. Modal norms place deontic statements in the social

reality explicitly stating what should be done, based on which the social reality is evaluated (i.e., whether

the deontic positions are complied with).

In this paper we adopt a modal representation for norms. This is because they offer a simpler way to

represent and reason about norms at higher levels of governance, which govern norms at lower levels of

governance. For example, expressing that it is required to not require storing communications metadata if

the user has not consented. To see why modal norms are simpler for norm governing norms, we compare

evaluative and modal norm representations.

In the evaluative form one possible representation is through rule nesting - “(storing metadata counts-

as being good in a context C) counts-as being bad if context C is somehow compatible with the user

not consenting”. In this form, the instantiation of the nested rule violates the outer rule if the two

have compatible contexts. There may be other evaluative representations, but this appears to be the

simplest which fully captures the requirement. Determining compliance seems to differ between an

evaluative norm about an evaluative norm compared to an evaluative norm governing an agent’s actions.

On the one hand, determining compliance with an evaluative norm governing an agent’s actions involves

inspecting the social reality in order to determine whether an agent’s actions are compliant. On the other

hand, determining compliance with an evaluative norm governing another evaluative norm seems to

involve comparing evaluative rules themselves to evaluate the rules’ compliance. Hence, evaluative norms

governing norms are not a simple generalisation of those governing agents.

In comparison, a possible modal representation is to nest deontic modalities as opposed to rules. An

example is the following unconditional modal norm - “it is prohibited to oblige a user’s metdata to be

stored in the context that they have not consented”. Determining compliance for a modal norm about

another modal norm seems to be a simple generalisation of determining compliance of a modal norm

about an agent’s actions. Determining compliance of an agent with a deontic modal statement requires

seeing if, in the social reality, the agent is performing actions or bringing about social facts that are

obliged/prohibited. Likewise, determining compliance of a deontic modal statement with another deontic

modal statement requires seeing if, in the social reality, there is an obligation/prohibition that is itself

obliged/prohibited.

We adopt modal norms in this paper as a simple way to reason about norms governing norms. By

adopting modal norms the social reality comprises both institutional facts from descriptive constitutive

rules and deontic positions from norms stating what is obliged and prohibited.

Automated Multi-level Governance Compliance Checking 7

Increasingly Ab-

stract Regulations

Institution

Governs

Non-compliant

Institution
Compliant Institution Compliant Institution

Governs Governs Governs

Compliant Institution Compliant Institution
Non-compliant

Institution
Compliant Institution

Governs Governs Governs Governs

Highest-level

Second-level

First-level

MASs

Fig. 1: A high-level depiction of institutions operating in multi-level governance.

2.2 Multi-level Governance

In our view, multi-level governance acts as a mechanism to guide rather than regiment institutional design.

The purpose is to coordinate regulations across institutions (e.g., collaborative cross-EU policies for data

retention) and ensure institutions do not place unacceptable limits on agents’ rights. At the same time,

multi-level governance aims to appeal to the principle of subsidiarity (what can be done at the local level,

should be left up to the local level). This means that, higher-level institutions do not force lower-level

institutions to be designed in a specific way. Rather, higher-level institutions guide the design of lower-

level institutions by abstractly defining what obligations and prohibitions lower-level institutions should

impose. Where through abstraction, lower-level institution designers are able to comply in multiple ways

as deemed appropriate for their jurisdiction. For example, the EU-DRD [22] was designed to coordinate all

member states in enacting legislation to store communications’ metadata for future criminal investigations.

Appealing to subsidiarity, it gave scope for member states to define the length of time metadata is stored

for. Another example is the EU-CFR [23], which aims to prevent legislation in the EU from violating

agents’ rights such as the right to a private life. If legislation is enacted that is non-compliant, fines can be

issued, and legislation annulled or abrogated.

We view multi-level governance as comprising three distinctive characteristics relevant to compliance

checking, schematically depicted in Figure 1. We draw these characteristics from political science literature

[45], work on multi-level governance for artificial societies in AI [67, 68] (in what is called polycentric

governance), and the real-world case study we focus on. These three characteristics are:

– Regulation of regulation: higher level institutions govern lower level institutions’ designs with

norms that govern norms. This differs from regimenting legislation changes, which due to institution

designers’ autonomy might not be possible. Since we adopt regulations as being modal, “A establishes

an obligation/prohibition in a context C”, regulations governing regulations oblige/prohibit the

imposition of obligations/prohibitions. We call these regulations higher-order norms (first-order norms

impose obligations/prohibitions on agent actions and/or societal outcomes of agent actions) and

they have the form “A establishes an obligation/prohibition for an obligation/prohibition to hold in a

context C”.

– Multiple connected levels: in multi-level governance, higher-level institutions govern lower-level

institutions. We view these institutions as being connected in the sense that the regulations of a

lower-level institution can be (non-)compliant with the regulations in a higher-level institution. For

example, the EU-DRD is a level 2 institution that requires EU member states’ legislation, level 1

institutions, to ensure people’s personal communications data is stored. The EU-DRD is governed by

Automated Multi-level Governance Compliance Checking 8

the EU-CFR, a level 3 institution. The directive violates the charter of fundamental right’s regulation

that demands rights to privacy are respected.

– Abstraction: increasingly abstract regulations, which can be interpreted in many different ways are

prescribed at increasingly higher levels of governance. To give an example, at the (typically) highest

level of governance, human rights charters use abstract terminology such as ‘fairness’ or ‘privacy’

which can have many different interpretations. At a slightly lower level the terminology is more

precise, such as in EU directives or supranational agreements between governments, but there are

many possible compliant institution designs. For example, the EU-DRD [22] states that member

states should legislate for communications’ metadata to be stored between 6 and 24 months. This

regulation is far clearer than human rights regulations, but does not provide the precise data retention

time. At a slightly lower level regulations are more concrete, such as at the level of nation-states. For

example, the UK-DRR which implements the EU directive specifies a precise time in that data should

be stored. In multi-level governance increasingly abstract regulations, which can be interpreted in

many different ways, are prescribed at increasingly higher levels of governance.

A key question is on what basis are concrete regulations determined to be non-compliant with

abstract regulations? Legal monitors such as courts interpret the concrete and abstract regulations in

order to determine if concrete regulations violate more abstract regulations. To go back to our example,

the European Court of Justice [21] determined that the EU-DRD’s relatively concrete requirement for

metadata to be stored violated the EU Human Rights Charter’s for personal data to be processed fairly

[23]. The basis of the judgement [21] was an interpretation that storing metadata was the same as storing

personal data, and storing personal data without someone’s consent was the same as processing data

unfairly. In a different context, where someone has given consent, storing metadata would not be unfair

data processing.

Hence, a relationship between concrete concepts having a context-sensitive abstract meaning is used to

determine compliance between concrete and abstract regulations. According to the concept of institution

we use, the context-sensitive rules linking concrete and abstract institutional facts are constitutive rules.

Hence, the relation between concrete and abstract norms is derived from constitutive rules and based on

this relationship concrete norms are determined to be, themselves, (non-) compliant. Specifically, in the

most basic case given that if X counts-as Y in a context C then we derive an abstracting relation obliged

X counts-as obliged Y in the context C.

There is, however, a well-known argument against this type of derivation. Statements of belief, desire,

obligation etcetera. are known as Intentional statements, which are mental states directed at states of

affairs (borrowing from Searle [71, p. 3], a capital-I distinguishes the technical term Intention from the

specific mental state of intention). Many Intentional statements are also intensional-with-an-s meaning

that they fail at a substitution of identicals, to quote Searle [71, p. 23]:

A sentence such as “John believes that King Arthur slew Sir Lancelot” is usually said to be

intensional-with-an-s because it has at least one interpretation where it can be used to make a

statement which does not permit existential generalization over the referring expressions following

“believes”, and does not permit substitutability of expressions with the same reference, salva

veritate.

In other words, if it is a fact that Sir Lancelot is-a person that never existed, we cannot substitute

Sir Lancelot with “a person that never existed” to obtain “John believes that King Arthur slew a person

that never existed” salva veritate. Hence, the belief Intention is intensional-with-an-s. On the other hand

if John believes that King Arthur is a tall person, then it is possible to make a substitution resulting

in “John believes that a tall person slew Sir Lancelot”. A substitution of X with Y is possible in an

intensional-with-an-s statement if the substituting property (Y) is held within the same Intention (John

believes).

In our case of deriving abstract norms from concrete, a problem stems from the fact that it is a

substitution of identicals in Intentional statements (viz. obligations) that can also be intensional-with-an-s.

Automated Multi-level Governance Compliance Checking 9

We are substituting obliged X with obliged Y because X counts-as Y (i.e., Y is-an X). To give an example,

storing meta-data counts-as storing personal data and hence we might argue that there is a derivation to

obliging storing meta-data counts-as obliging storing personal data. However, if it is not also obliged that

storing meta-data count-as storing personal data then the substitution fails salva veritate. Likewise, King

Arthur can only be substituted with “a very tall person” in John’s belief, if John believes King Arthur is a

very tall person. In order to manage our expectations in this paper, and since this is a difficult topic in its

own right that has been covered elsewhere ([71]), we will leave it here and make a simplifying assumption:

we assume that if a constitutive rule “X counts-as Y in context C” is included in an institution, through

design or interpretation, then the designers/interpreters are implying that it is obliged that “X counts-as Y

in context C” and based on that assumption we will also assume a substitution of identicals for abstracting

norms is correct salva veritate.. To summarise, at the core of our proposal we are abstracting norms based

on constitutive rules, which is a substitution of identicals in otherwise intensional-with-an-s statements

(norms in our case), and through such abstraction we will determine compliance of institution designs.

3 Approach

In this section we describe the approach we take to automatically determining compliance in multi-level

governance. Since we are reasoning about institutions in multi-level governance, we build on an existing

institutional reasoning framework. Our proposal requires representation and reasoning for: constitutive

rules, modal norms, higher-order norms, connections between institutions and reasoning about regulation

abstraction. The InstAL (Institution Action Language) framework [13, 12] provides constitutive rules

and modal norms. Hence, we base our proposal on the InstAL framework and extend it to multi-level

governance with higher-order and abstract norm representation and reasoning.

We also modify InstAL from capturing institutions that are prohibitive by default (where anything not

permitted is forbidden) to permissive institutions (everything is permitted unless explicitly prohibited).

The main motivation is simply that the institutions in our running case study, which comprises three

institutions in a multi-level governance relationship from real-world law, are inherently permissive. Hence,

by representing those institutions in a framework that captures permissive institutions we are able to show

a clearer link between our formalised rules and their natural-language counterparts.

Based on InstAL [13, 12], an institution in our framework specifies six elements: events, fluents,

constitutive rules that generate institutional events, rules that initiate and terminate fluents, constitutive

rules that derive abstract institutional fluents from more concrete institutional fluents and an institution’s

initial set of inertial fluents that hold in its initial state. Each element is described subsequently in more

detail.

Events can represent observable changes to reality, corresponding to the notion of brute fact. Events

can represent changes to the social reality, corresponding to the notion of institutional fact. For example,

the brute fact we call storing metadata is an observable event, whilst storing metadata and storing personal

data are institutional events.

Fluents describe institutional facts holding in a social reality and are subject to changing over time.

For example, a user consenting to processing their data causes a fluent to hold stating that they have

consented, which is removed if they revoke their consent. Some fluents represent the deontic positions

that hold, in our case: obligations, prohibitions and empowerments.

Fluents representing obligations and prohibitions are normative fluents. For example, “an obligation

to pay a fine”. Higher-order normative fluents can also be specified, for example an obligation to oblige

paying a fine. We deal with institutions in a temporal setting, so the various deontic normative fluents

express that something should be done before a deadline. For example, an obligation to pay a fine within

one month.

Empowerments, in contrast, represent the institutional power to perform institutionally-recognised

actions as given various formalisations by Jones and Sergot [47], Artikis et al. [7] and Cliffe et al. [13],

amongst others. In our use of the concept, a typical example is that of bidding in an auction, multiple

Automated Multi-level Governance Compliance Checking 10

agents may raise their hand which typically constitutes bidding, but only those agents empowered to

bid can actually do so (e.g., by being registered for the auction in the auction institution). In the context

of our case-study, whilst multiple telephony providers may perform an action that constitutes storing

communications content, only those providers located in the United Kingdom are empowered to perform

that action such that it affects the UK’s legal institutions (e.g., by being legal or illegal). To be clear,

in line with Jones and Sergot [47], we apply empowerments to agents (in our case study), rather than

roles. But in general we make no distinction in our formalism at the meta-level between events occurring

in the environment, or institutional actions such as performatives taken by agents or by roles. Hence

empowerment is used in a very general sense of making institutional actions possible by which we mean

legally recognisable.

In contrast, Jones and Sergot [47] formalise institutional power as a non-primitive derived from

counts-as rules. Specifically, an agent taking a particular action, such as consenting, constituted by another,

such as signing a form, is empowered to take that action (i.e., counts-as rules empower institutional

actions to be taken). Whilst we also adopt counts-as rules in their canonical form to ascribe institutional

facts, our use of empowerment is as an additional restriction on what actions are empowered to occur -

for example, an agent may be able to de facto raise their hand which counts-as bidding, but only if the

auctioneer has decided to empower the agents in being able to bid can the agent actually do so. In other

words, empowerments represent hard constraints on the actions recognised by an institution, in line with

Cliffe et al.’s earlier conceptualisation [13].

Event generating constitutive rules cause institutional events to occur when observable (brute) events

or institutional events occur in a given context. For example, “the observable event of storing metadata

counts-as the institutional event of storing metadata”. An example of a rule where an institutional events

causes further institutional events to occur is “storing personal data counts-as unfair data processing in

the context that a user has not consented”.

Fluent initiation and termination rules cause inertial fluents to hold in a state when initiated and persist

from one state to another over time until terminated. For example, “a user consenting to storing their

data initiates the fluent stating that the user has consented”. Rules that establish what we call normative

fluents are norms. For example, “a user using a communications device initiates an obligation for their

communications’ metadata to be stored”. Higher-order norms impose higher-order normative fluents.

Once a fluent is initiated by such a rule it holds until it is terminated by another rule. That is, these rules

initiate and terminate inertial fluents.

Constitutive rules that derive fluents based on other fluents holding extend a state comprising relatively

concrete institutional facts to a state comprising more abstract institutional facts. For example, “an

obligation to store personal data non-consensually counts-as unfair data processing, unconditional on

any specific social context”. Generally, these rules have the form “fluent A counts-as fluent B in context

C”. Viewed as counts-as rules, these rules ascribe a special meaning B to a fluent A in a context C. For

example, an obligation to store personal data non-consensually has the special meaning of being unfair

data processing. So long as the fluent ‘A’ holds in a context ‘C’ then its special meaning ‘B’ also holds.

But, unlike fluent initition and termination rules, the special meaning ‘B’ does not hold until terminated,

rather, it holds when ‘A’ holds in the context ‘C’. That is the ‘Bs’ in rules of this type are non-inertial

fluents, since the Bs do not persist over time by default until terminated (i.e., they do not possess inertia).

Unlike the previous rules, constitutive rules that derive non-inertial fluents from other fluents are not

present in the InstAL framework. Similar non-inertial fluent rules with the form “in context C non-inertial

fluent A also holds” are present in subsequent InstAL developments [54, 65, 66].

Each fluent in an institution’s set of initial inertial fluents, which can be the empty set, holds in the

institution’s first state and continues to hold until terminated. To summarise, an institution specifies events,

fluents and constitutive rules which ascribe institutional events or institutional fluents.

Multi-level governance is operationalised with a semantics. This semantics defines how each institution

evolves from one state to the next in response to a trace of observable events. These events can be real

events occurring in the MAS, or hypothetical events if a pre-runtime check for compliance is performed.

An institution’s evolution is schematically depicted in Figure 2 and described as follows.

Automated Multi-level Governance Compliance Checking 11

abstraction

Sn
0

Eventsn
0

abstraction

Sn
1

Eventsn
1

abstraction

Sn
2 ...

abstraction

Sn
k+1

Nth-level Institution

abstraction

S2
0

Events2
0

abstraction

S2
1

Events2
1

abstraction

S2
2 ...

abstraction

S2
k+1

Second-level Institution

abstraction

S1
0

Events1
0

abstraction

S1
1

Events1
1

abstraction

S1
2 ...

abstraction

S1
k+1

First-level Institution

Obs. Event0 Obs. Event1 Obs. Eventk
...

Link

Input for all Institutions

Fig. 2: Overview of Multi-level Governance Reasoning

The institution starts in an initial state in which its initial set of inertial fluents holds. State transitions

are driven by observable events occurring in the MAS (potentially hypothetically). During a state transition,

further events occur in an institution according to its constitutive rules, building up an institutional

interpretation of reality based on the observable events that have occurred. Further events signifying there

is (non-)compliance also occur, for example if there is an obligation to store communications’ metadata

within one month and the data is not stored within one month, then a norm violation occurs. If it is

prohibited to oblige storing communications’ metadata, then a higher-order norm violation occurs. That

is, norm violations are institutional events denoting non-compliance. A newly transitioned to state can

contain different fluents from the previous state, based on each institution’s constitutive rules variously

initiating and terminating fluents from one state to the next. Thus, each institution evolves over time from

one state to the next transitioned by events.

Recall that concrete lower level institution norms are abstracted, in order to determine whether they

are compliant, in higher level institutions according to constitutive rules. The approach we take is to firstly,

link each institutional level such that concrete normative fluents holding in lower level institutions are

‘passed up’ to the corresponding state in higher level institutions. For example, an obligation to oblige

storing communications metadata in the EU-DRD is ‘passed up’ to the EU-CFR for monitoring. Likewise,

so too are norm compliance events.

Then, in each institutional state of a higher level institution the concrete normative fluents coming

from lower level institutions are re-interpreted and abstracted based on constitutive rules. To give an

example, storing communications metadata counts-as non-consensual data processing in the context that

the person whom the data concerns has not consented. Since storing metadata in such a context is ascribed

the special status of non-consensual data processing, an obligation to oblige storing communications

metadata is re-interpreted as an obligation to oblige non-consensual data processing.

In turn, from these abstractions any further abstractions are also derived. For example, the obligation

to oblige non-consensual data processing is abstracted simply to being unfair data processing, if such an

Automated Multi-level Governance Compliance Checking 12

Prohibited to process data unfairly

Unfair data processing

Prohibited to process data unfairly

Obligation to oblige processing

data non-consensually

Abstraction

Obligation to oblige storing per-

sonal data

Abstraction

Obligation to oblige storing meta-

data

Ada has consented to storing data

Obligation to oblige storing per-

sonal data

Obligation to oblige storing meta-

data

Ada consents to

storing data

Violated prohibi-

tion to process data

unfairly

Obligation to oblige storing meta-

data

Abstraction

Obligation to oblige storing meta-

data

Ada consents to

storing data

Charter of Funda-

mental Rights of the

EU

Data Retention Di-

rective

Abstraction

Fig. 3: An example of abstracting normative fluents at different levels of governance based on the context.

Normative fluents oblige/prohibit an aim a occurs before or at the same time as a deadline d. We use < to

denote one thing occurring strictly before another and ≤ to denote one thing occurring before or at the

same time as another.

ascription exists according to constitutive rules. Thus, each institutional state contains concrete normative

fluents from lower levels and the state contains the closure of all abstractions on these concrete normative

fluents based on constitutive rules. So, it is the concrete normative fluents imposed by norms in lower level

institutions that are re-interpreted as more abstract normative fluents at higher levels. Hence, concrete

normative fluents are determined in their abstract incarnation whether they cause non-compliance and

thus whether their originating concrete norms are compliant with abstract norms.

An example is depicted in Figure 3 based on the running case study and described as follows:

1. In the EU-DRD’s first state there is an obligation to oblige storing communications’ metadata, which

is passed up to the EU-CFR.

2. In the EU-CFR’s initial state the EU-DRD’s obligation to oblige storing communications’ metadata is

abstracted. This is because concrete normative fluents are abstracted based on whether the prescribed

event counts-as a more abstract event in a context entailed by the state. Specifically:

i The obligation to oblige storing metadata is abstracted to an obligation to oblige storing personal

data, because storing metadata counts-as storing personal data.

ii The obligation to oblige storing personal data is abstracted to an obligation oblige processing data

without consent, because storing personal data counts-as non-consensual data processing in the

context where an agent has not consented.

3. An obligation to oblige processing data non-consensually counts-as ‘unfair data processing’ and is

hence abstracted to ‘unfair data processing’.

4. Unfair data processing is prohibited and thus a norm violation event occurs in the transition to the

EU-CFR’ next state.

In the EU-CFR institution the next state lacks an obligation to oblige processing data without consent

because a user has consented. So, unfair data processing also does not hold. That is, the abstract meaning

of concrete normative fluents evolves as the context evolves. Consequently, compliance of normative

fluents is context sensitive because normative fluents’ abstraction is context sensitive.

Automated Multi-level Governance Compliance Checking 13

To summarise, our semantics for multi-level governance defines the evolution of each institution over

time in response to a sequence of events. Specifically, the semantics takes concrete normative fluents

from lower-level institutions and abstracts them in higher-level institutions. Abstracted normative fluents

can cause higher-order norm compliance events through discharging or violating higher-order norms.

Thus, non-compliance can be determined by inspecting the sequence of events in higher level institutions

for higher-order norm compliance events. In the next section we will define the representation and a

semantics as described.

4 Formal Framework

In this section we present the syntax for representing multi-level governance (subsection 4.1) and

alongside give the intuition/informal semantics for each syntactic construct. Then, we provide a semantics

for reasoning about multi-level governance (subsection 4.2).

4.1 Syntax

We begin with representing normative fluents. These are fluents that represent temporal obligations and

prohibitions, meaning they have an aim which should be achieved before a deadline. Obligation and

prohibition fluents are respectively represented as obl(aim, deadline) and

pro(aim, deadline). The aims and deadlines can be events, fluents or other normative fluents to represent

higher-order normative fluents. Two special events are used in aims and deadlines, now and never1. The

event ‘now’ occurs immediately to represent something should (not) be done immediately. For example,

obl(aim, now) means the aim should occur ‘now’. Our representation is inspired by the formalisation of

instantaneous norms in a variant of dynamic logic [17], which similarly use ‘now’ to refer to the present

state. An aim or deadline event never represents that the aim/deadline never occurs, potentially meaning

that the normative fluent lasts indefinitely. For example pro(aim, never) means it is always prohibited for

the aim to occur or in other words that the aim should ‘never’ occur.

The informal semantics for normative fluents’ is described in terms of when obligations/prohibitions

are discharged and violated, overviewed in Figure 4. An obligation fluent, of the form obl(aim, deadline),

represents that the aim should occur/hold before or at the same time as the deadline to discharge the

obligation (fulfil all duties). If the deadline occurs/holds strictly before the aim then the obligation is

violated. Prohibition fluents, of the form pro(aim, deadline), are the inverse of obligations. Prohibitions

represent that the aim should not occur/hold strictly before the deadline. When a normative fluent n is

discharged it causes the event disch(n) to occur. If n is violated then the event viol(n) occurs.

Higher-order norms impose higher-order normative fluents. A higher-order normative fluent obliges/pro-

hibits another normative fluent is imposed before a deadline. The deadline is an event or another normative

fluent. Compliance-focussed higher-order norms can also be expressed, which oblige/prohibit compliance

with an obligation/prohibition occurs before/after an event occurs or another normative fluent is imposed

(e.g., it is obliged a norm is violated before a fine is imposed). Where for an obligation n = obl(a, d)

or prohibition n = pro(a,d) norm discharge is the event disch(n) and violation is the event viol(n). A

grammar to specify normative fluents is formalised as:

1 We allow a normative fluent’s aim to be now or never, even though, for example, it sounds odd to say “it is obliged to be

now”. This is for symmetry between obligations and prohibitions - for example, obliged never before an event E is the same

as saying prohibited E until never (i.e., forever).

Automated Multi-level Governance Compliance Checking 14

obl(a,d) pro(a,d)

Event/fluent a Event/fluent d

Violates

if < dDischarges

if ≤ d

Discharges

if ≤ a

Violates

if < a

obl(obl(a,d),d′)

Discharges

if ≤ d′

obl(pro(a,d),d′)

Discharges

if ≤ d′

pro(obl(a,d),d′)

Violates

if < d′

pro(pro(a,d),d′)

Violates

if < d′

Fig. 4: Discharge and violation (higher-order) normative fluent conditions. < X denotes the event/fluent

holding or occurring strictly before X causes a violation. ≤ X denotes the same, but the condition is not

strictly before.

Definition 1 Normative Fluents Let P be a set of propositions denoting events with typical element p.

The set of normative fluents N |P is the set of all normative fluents n expressed as:

aim ::= p | n | now | never | disch(n) | viol(n)

deadline ::= p | n | now | never | disch(n) | viol(n)

n ::= obl(aim,deadline) | pro(aim,deadline)

We give some examples concerning two agents, a law enforcement officer called Charles and an

internet communications user called Ada, and an internet communications provider colloquially called an

ISP. The UK-DRR implements the EU-DRD. The UK-DRR states that if a law enforcement official (e.g.,

charles) requests the data stored by a communications provider (e.g., isp) of a user (e.g., ada) then the

communications provider is obliged to provide the data within one month (m1):

obl(provideData(isp, charles, ada), time(m1))

Instantaneous normative fluents express that something should (not) be done or a normative fluent

should (not) be imposed now. One way an higher-level institution designer might use instantaneous norms

is to express that as soon as something happens a normative fluent should be imposed. For example, as

soon as a norm is violated it is obliged that there is an obligation to punish the violator. The EU-DRD as we

formalise it, requires that any implementing legislation should impose punishment as soon as regulations

are violated. Thus, when there is a violation it imposes a normative fluent obliging an obligation to punish

the violator is imposed immediately:

obl(obl(punish(isp), time(m6)), now)

Compliance-focussed normative fluents can be used to express that an agent should discharge/violate

a normative fluent before another normative is imposed that rewards/punishes the agent. For example,

in our previous work [52], an obligation expressed “it is obliged that a norm is violated before a fine

is imposed”. Such compliance focussed normative fluents do not state that a normative fluent being

discharged should cause a reward/punishment. Rather, they state that discharge/violation should occur

before the reward/punishment is imposed. Following this paper’s case-study - it is obliged that the

communications provider isp violates the obligation to provide charles with data which concerns ada

before any obligation to punish the communications provider isp is imposed.

Automated Multi-level Governance Compliance Checking 15

obl(viol(obl(provideData(isp, charles, ada), time(m1))), obl(punish(isp), time(m6)))

Normative fluents can also be explicitly first-order, but implicitly higher-order by obliging/prohibiting

fluents that abstractly represent other normative fluents. Recall that various obligations in the EU-DRD

can abstractly be interpreted as unfair data processing. Hence, the following is an example of an abstract

first-order norm that indirectly governs other norms. The EU-CFR states that it is prohibited to process

Ada’s data unfairly (indefinitely):

pro(unfairDataProcessing(ada), never)

We now proceed to representing individual institutions. In short, institutions are specified as a tuple,

extending the formal specification of an institution in the InstAL framework [13]. Generally, speaking,

an individual institution describes the things that can occur (events) and hold (fluents) in the institution

as well as the institution’s rules causing events to occur and fluents to hold. An institution’s constitutive

rules - cause institutional events to occur in response to other events (“an event A counts-as an event

B in context C”), fluents to hold in response to events (“an event A counts-as establishing/removing a

fluent B in context C”), and further, more abstract, fluents to be derived from other fluents (“a fluent

A counts-as a fluent B in context C”). Rules stating fluents are derived are not present in InstAL but

we introduce them since they provide an abstracting relation between fluents and thus contribute to our

goal of reasoning about abstraction in multi-level governance. Regulative rules are just modal norms

represented as constitutive rules that establish normative fluents, “an event A counts-as establishing an

obligation/prohibition in context C”.

Specifically, institutions comprise the following elements:

Events - a set of propositions (E) denoting events that can occur in the institution, s.t. now,never 6∈ E ,

meaning that the institution cannot define when the events now and never occur. The set of events

comprises:

– Observable events (Eobs) that are exogenous to the institution corresponding to the notion of a

brute fact denoting an event.

– Internal institutional events (Einst) representing an institutional description of reality.

– Compliance events (Enorm = {disch(n),viol(n) | n ∈ Fcnorm ∪Fanorm}) indicating a normative

fluent (in the set of concrete and abstract normative fluents Fcnorm∪Fanorm) has been discharged

or violated.

Fluents - a set of propositions (F) denoting the fluents that can hold in the institution, comprising:

– Domain fluents (Fdom) providing an institutional description of the state of reality (e.g., an agent

has consented to their data being processed).

– Empowerment fluents (Fpow ⊆ {pow(e) | e ∈ Einst}) denoting an event is recognised by the

institution in a state and has the power to affect the institution (i.e., is empowered).

– Normative fluents (Fnorm = Fcnorm∪Fanorm) comprising mutually disjoint sets of concrete nor-

mative fluents (Fcnorm ⊆N |E∪Fdom
) and abstract normative fluents (Fanorm ⊆N |E∪Fdom

):

• Concrete normative fluents denote obligations and prohibitions imposed by the institution

about events or domain fluents. These normative fluents are concrete in the sense of being

explicitly imposed by an institutional norm, rather than being abstract interpretations of other

normative fluents that have been imposed.

• Abstract normative fluents denote obligations and prohibitions imposed by the institution

about events or domain fluents. These are abstract in the sense of not being imposed by the

institution, but rather represent an abstract interpretation of other more concrete normative

fluents. For example, an obligation to store personal data is a more abstract interpretation of

an obligation to store communications metadata.

– Inertial and non-inertial fluents, We assume that fluents are either inertial or non-inertial repre-

sented as mutually disjoint sets of inertial fluents (Finert) and non-inertial fluents (Fninert) such

that F =Finert∪Fninert and Finert∩Fninert = /0. Institutions define fluents that can be initiated by

Automated Multi-level Governance Compliance Checking 16

the institution’s state consequence function and then persist from one state to the next by default

until they are terminated. That is, some fluents are inertial. Other fluents hold due to constitutive

rules stating more abstract fluents are derived from more concrete fluents. These abstract fluents

hold whenever the concrete fluents hold and do not persist from state to state by default. That

is, they are non-inertial fluents. Concrete normative fluents are inertial, since an institution ex-

plicitly imposes them by initiation and termination according to the state consequence function

(Fcnorm ⊆ Finert). Abstract normative fluents are non-inertial since they are derived from other

normative fluents and do not persist from state to state by default (Fanorm ⊆ Fninert).

Contexts - these characterise a condition on a state and denote the social context each rule is

conditional on. A context is a set of positive and weakly negative fluents, which acts as a condition on

a state that is true if all of the positive fluents hold and none of the negative fluents hold. Formally,

the set of all contexts is X = 2F∪¬F s.t. ¬F = {¬ f | f ∈ F} is the set containing the negation of all

elements in the set F .

State change rules (C : X ×E → 2Finert ×2Finert), described as a state consequence function. They

specify that due to the occurrence of events conditional on a context holding in a state, inertial fluents

are initiated and terminated from one state to the next. State change rules can be descriptive (e.g., a user

consenting to their data being stored initiates a fluent stating that they have consented) and regulative

rules by initiating and terminating normative fluents (e.g., someone using electronic communications

initiates an obligation for the communications provider to store their communications’ metadata).

Event generation rules - (G :X ×E → 2Einst), described as an event generation function. These rules

are only descriptive. They specify that when an exogenous or institutional event occurs, conditional

on a social context holding in a state, another institutional event occurs.

Fluent derivation rules - (D : X ×F → 2Fninert), described as a fluent derivation function. These

rules state that a fluent holding in a state derives a non-inertial fluent holding in the same state,

conditional on a social context.

According to these notions, an individual institution is formally defined as:

Definition 2 Individual Institution An institution is a tuple I = 〈E ,F ,C,G,D,∆〉 such that:

– E = Eobs∪Einst∪Enorm is the set of events.

– F = Fdom∪Fnorm∪Fpow is the set of fluents.

– C : X ×E → 2Finert ×2Finert is the state consequence function.

– G : X ×E → 2Einst is the event generation function.

– D : X ×F → 2Fninert is the fluent derivation function.

– ∆ ⊆ Finert is the set of inertial fluents that initially hold in the institution’s zeroeth state (and until

terminated will hold in subsequent states).

Some further useful constructs are:

– Σ = 2F to denote the set of all states for I .

– Given a context X ∈ X and an event e ∈ E we denote the result of the consequence function as

C(X ,e) = 〈C↑(X ,e),C↓(X ,e)〉 s.t. the set of initiated fluents is C↑(X ,e) and the set of terminated

fluents is C↓(X ,e).
– For readability if an institution is denoted with a superscript, such as id then all its elements have the

same superscript, such as I id = 〈E id,F id,C id,G id,Did,∆ id〉, the set of states being Σ
id and the set of

contexts being X id.

We exemplify using institutional specification fragments where for clarity we use a superscript

denoting the name of each institution. The EU-CFR [23, Art. 8.2] states that a person’s data must be

processed fairly. For an agent called ‘ada’, the set of inertial fluents initially holding in the CFR institution

includes:

pro(unfairDataProcessing(ada), never) ∈ ∆
cfr

Automated Multi-level Governance Compliance Checking 17

A communications provider, called ‘isp’, storing metadata is by default an event empowered to affect

the Data Retention Regulations:

pow(storeData(isp, ada, metadata)) ∈ ∆
drd

Now we give some example counts-as rules, fluent initiation and termination rules and norms (where,

for clarity, we use ∋ to denote right-hand side’s membership of the left-hand-side). According to the

European Court of Justice’s (ECJ) judgement [21] on the EU-DRD, with respect to the EU-CFR, storing

communications metadata counts-as storing personal data. If an agent’s metadata is stored, such as Ada’s,

unconditional on a specific context (the empty set) then the event of storing the Ada’s personal data is

generated. Additionally, if Ada’s personal data is stored in the context that Ada has not consented then the

event of non-consensually processing Ada’s data occurs. The following rules are a part of the EU-CFR,

incorporating the ECJ’s judgement.

Gcfr(/0,storeData(isp, ada, metadata)) ∋ storeData(isp, ada, personal)

Gcfr({¬consentedDataProcessing(ada, isp)},storeData(isp, ada, personal)) ∋

nonConsensualDataProcessing(ada)

The DRD [22, Art. 8] requires data concerning people is transmitted to authorities on request before

any undue delay. A fluent initiation rule is conditional on an agent, Charles, requesting the data from a

communications provider, ISP, of another agent, Ada. In the context that Charles is a law enforcement

official the rule initiates an obligation to immediately oblige that ISP provides Charles with data concerning

Ada before any undue delay.

Cdrd↑({is(charles, lawEnforcement)},requestData(ada, isp, charles)) ∋

obl(obl(provideData(isp, charles, ada), undue delay), now)

According to the ECJ’s interpretation of the EU-DRD [21] with respect to the EU-CFR. Obliging that

personal data is processed non-consensually counts-as unfair data processing. We represent the ECJ’s

interpretation as a fluent derivation rule in the CFR institution. It states that obliging an agent, Ada’s,

personal data is processed without consent in any social context (the empty set) derives the fluent of

(counts-as) unfair data processing.

Dcfr(obl(nonConsensualDataProcessing(ada), now), /0) ∋ unfairDataProcessing(ada)

In multi-level governance, institutions are related in the sense that institutions designed at lower levels

of governance are governed by institutions designed at higher levels of governance. In our approach, this

means that if a lower level institution imposes an obligation or a prohibition, then the same obligation/pro-

hibition holds in any higher level institution that governs it. Institutions are linked in this way in what we

call a multi-level governance institution, where institutions are ordered by the level they operate at and

linked with a relation between lower level and higher level institutions. The relations linking institutions

are expressed as a set of directed edges R between lower level institutions and higher level institutions

they are governed by. Each relation is restricted such that higher levels cannot be governed by lower levels,

meaning that collectively the relations are always acyclic. Formally, a multi-level governance institution

is:

Definition 3 Multi-level Governance Institution A Multi-level Governance Institution is a directed

graph 〈T ,R〉. The vertices are represented as a tuple T = 〈I1, ...,In〉 of institutions. The arrows are a set

of pairs R = 2[1,n]×[1,n] of institution indexes in T such that ∀〈i, j〉 ∈ R : i < j.

Automated Multi-level Governance Compliance Checking 18

Closed Initial State

(definition 8)

Closed transitioned to state

(definition 10)

Generated events

(definition 5)

Inertial

Fluents

Inertial

Fluents

Fluent initiation

and termination

(definition 9)

concrete

normative

fluents As

abstracts

(definition 7)
non-inertial

abstract

normative

fluent B

non-inertial

fluent A

derives

(definition 6) non-inertial

fluent B

concrete

normative

fluents As

abstracts

(definition 7)
non-inertial

abstract

normative

fluent B

non-inertial

fluent A

derives

(definition 6) non-inertial

fluent B

Fig. 5: An overview of the semantics, depicting the transition from the initial state to the next state and

state closure.

For example, in our running case study a multi-level governance institution is 〈T ,R〉 with a hierarchy

of institutions comprising the UK-DRR, the EU-DRD and the EU-CFR such that T = 〈Idrr,Idrd,Icfr〉
and R = {〈drr,drd〉,〈drd,cfr〉}. To demonstrate the representation in its full entirety, the case study is

formalised in Appendix A.

According to these definitions, we can represent the three main aspects of multi-level governance we

focus on in this paper. Firstly, regulations that regulate other regulations in higher level institutions with

higher-order normative fluents in prescriptive rules. Secondly, the links between lower level institutions

governed by higher level institutions by composing multi-level governance institutions. Thirdly, the

interpretation of concrete concepts and normative fluents as more abstract concepts and normative fluents.

In our framework abstraction can occur in institutions related via multi-level governance in two

ways. Firstly with constitutive rules, which state concrete concept counts-as a more abstract concept in a

particular context. Such abstracting constitutive rules are represented as the event generation function and

the fluent derivation function. The event generation function represents abstracting constitutive rules of

the form “a concrete event A counts-as a more abstract event B in the context C”. The fluent derivation

function represents abstracting constitutive rules of the form “a concrete fluent A counts-as an abstract

fluent B in the context C”. The second abstraction method is the implicit abstraction of concrete normative

fluents regulating concrete concepts to more abstract normative fluents regulating abstract concepts.

Normative fluent abstraction requires no explicit representation, since it is defined semantically based on

constitutive rules between concrete and abstract concepts according to the event generation and fluent

derivation functions.

4.2 Semantics

In this section we present the formal semantics for multi-level governance. Given a multi-level governance

institution specification the semantics define a model, comprising for each institution states transitioned

between by events, in response to a supplied trace of observable events. The key idea behind the semantics,

depicted in Figure 5 is to transition from one state to another, driven by generated events, by initiating

and terminating inertial fluents. Then each state is closed by deriving non-inertial fluents according to an

institution’s fluent derivation function and abstracting concrete fluents to non-inertial abstract normative

fluents according to normative fluent abstraction. Given a multi-level governance institution model it

can be determined whether individual institutions are compliant with the institutions that govern them in

Automated Multi-level Governance Compliance Checking 19

different contexts. The formal semantics provide a mechanism for automated compliance-checking in

multi-level governance.

In order to reduce repetition the following definitions are with respect to several common objects. First,

a multi-level governance institutionML = 〈T ,R〉 where T = 〈I1, ...,In〉 is a tuple of institutions with

typical elements being ∀i ∈ [1,n] : I i = 〈E i,F i,C i,G i,Di,∆ i〉. Second, a tuple of states, representing the

state of each institution for a single point in time j - 〈S1
j , ...,S

n
j〉. Third, a tuple of event sets, representing

the events occurring in each institution for a single point in time j - 〈E1
j , ...,E

n
j 〉.

4.2.1 State Conditions

Institutional rules are conditional on states and the occurrence of events. Therefore, determining if a rule

is ‘fired’ requires determining in part if its state condition, a social context, holds in a state. We begin by

defining when contexts are modelled by (hold in) a state.

Informally, a state formula is modelled by a state if for each positive fluent in the formula there is an

equivalent fluent that is a member of the state and for each negative fluent in the formula there is not an

equivalent fluent that is a member of the state. Rather than defining modelling a state formula in terms of

whether the positive/negative fluent is in the state, we use equivalence. This is because two normative

fluents can have an equivalent semantics whilst being syntactically different - this is not unusual, in

‘Standard Deontic Logic’ [76] forbidden X is defined as obliged not X.

In our case, we define equivalences between two fluents based on whether they are are syntactically

identical and two normative fluents based on whether their (non-) compliance coincide. Referring again to

Figure 4, there is an obligation for an event/fluent a to occur/hold before or at the same time as a deadline

d when the obligation fluent obl(a, d) holds, likewise a is prohibited strictly before d when the prohibition

fluent pro(a,d) holds. Given two normative fluents obl(a, d) and pro(a′,d′) where a is equivalent to d′

and d equivalent to a′ the obligation’s and prohibition’s discharge and violation coincide and therefore

they are equivalent. The equivalences (≡) of obligations and prohibitions according to their discharge

and violation is summarised as obl(a,d)≡ pro(a′,d′) if a≡ d′ and d ≡ a′, a definition that generalises to

higher-order normative fluents2.

Accordingly, we define modelling a state formula as:

Definition 4 State Formulae Let f ∈ F i be a fluent. We define ≡ and |= for all contexts X ∈ X i as:

f ≡ f

obl(a,d)≡ pro(a′,d′) ⇔ a≡ d′ and d ≡ a′

Si |= f ⇔ ∃ f ′ ∈ Si : f ≡ f ′

Si |= ¬ f ⇔ ∄ f ′ ∈ Si : f ≡ f ′

Si |= X ⇔ ∀x ∈ X : Si |= x

4.2.2 Events

In this section we semantically define the events occurring in an institution, in response to other events in

specific contexts. Precisely, an event generation operation GRi defines for an institution I i in a multi-level

governance institution which events occur in a state Si in response to a set of events E i. An event occurs

in an institution if it is generated by the institution’s event generation function G i, or if it represents the

discharge/violation of a discharged/violated normative fluent holding in the institution’s state or that of a

lower-level institution the institution governs. The event generation operation is formalised below and

explained subsequently:

Definition 5 Event Generation Operation The event generation operation GRi : Σ
i×2E

i
→ 2E

i
is de-

fined for each institution I i w.r.t. the tuple of multi-level governance states 〈S1
j , ...,S

n
j〉 and event sets

2 An example of higher-order equivalence generalisation is obl(obl(a,d),d′)≡ obl(pro(d,a),d′)≡ pro(d′,obl(a,d)), etc.

Automated Multi-level Governance Compliance Checking 20

〈E1
j , ...,E

n
j 〉. The operation is defined as GRi(Si,E i) = E ′ iff E ′ minimally (w.r.t. set inclusion) satisfies

all of the following conditions:

now ∈ E ′ (D5.1)

E i ⊆ E ′ (D5.2)

∃X ∈ X i,e ∈ E ′,e′ ∈ G i(X ,e) : Si |= X ∧Si |= pow(e′)⇒ e′ ∈ E ′ (D5.3)

Si |= obl(a,d)∧ (a ∈ E ′∨Si |= a)⇒ disch(obl(a,d)) ∈ E ′ (D5.4)

Si |= obl(a,d)∧ (d ∈ E ′∨Si |= d)∧disch(obl(a,d)) 6∈ E ′⇒ viol(obl(a, d)) ∈ E ′ (D5.5)

Si |= pro(a,d)∧ (d ∈ E ′∨Si |= d)⇒ disch(pro(a,d)) ∈ E ′ (D5.6)

Si |= pro(a,d)∧ (a ∈ E ′∨Si |= a)∧disch(pro(a,d)) 6∈ E ′⇒ viol(pro(a,d)) ∈ E ′ (D5.7)

∃〈h, i〉 ∈ R,e ∈ Eh
norm∩E

i
norm⇒ e ∈ E ′ (D5.8)

In more detail:

– D5.1 - the event of now always occurs.

– D5.2 - events that have already occurred still occur (monotonicity).

– D5.3 - an event generated by the institution’s event generation function in response to another event,

conditional on a social context modelled by the state and the event being empowered to occur.

– D5.4 to D5.7 - a compliance event occurring signifying a normative fluent is discharged or violated in

a state, by an obliged/prohibited event, fluent or another normative fluent. Compliance events do not

need to be empowered in order to occur.

– D5.8 - norm compliance events occurring in lower level institutions linked to this institution, also

occur in this institution.

Collectively, these conditions and the minimality constraint close a set of events by producing all

events in response to those events (etc.). Note that GRi is increasingly monotonic, well-defined and can be

a partial function. The function GRi is partial if there is a fault in the institutional specification or the set

of events passed are inconsistent. Specifically, if an institution is defined such that violating a normative

fluent causes an event that discharges the same normative fluent via the event generation function G
(either directly or transitively). We will see later in subsection 4.2.5 how events generated cause fluents to

be initiated and terminated when all the definitions are put together to define a multi-level governance

institution model in definition 13.

4.2.3 Derived Fluents

In this section we semantically define deriving fluents from other fluents in a given state. We define a fluent

derivation operation FDi which, operating on an institutional state, extends the state to include derived

fluents based on fluent derivation rules of the form “fluent A derives fluent B in context C” described by

the fluent derivation function Di. These derived fluents are the ‘Bs’ from fluent derivation rules where

the context ‘C’ holds and the fluent ‘A’ is modelled by the state. By deriving fluents from other fluents

in a state, it is possible further fluents should be derived. Thus, the fluent derivation operation FDi is

defined to close a state by producing an extended state that includes all derived fluents with respect to the

extended state itself. The fluent derivation operation is formally defined as:

Definition 6 Fluent Derivation Operation The fluent derivation operation FDi : Σ
i→ Σ

i is defined for

each institution I i and a state Si ∈ Σ
i such that FDi(Si) = S′ iff S′ minimally (w.r.t. set inclusion) satisfies

all of the following conditions:

Si ⊆ S′ (D6.1)

∃X ∈ X , f ∈ S′, f ′ ∈Di(X , f) : S′ |= X ⇒ f ′ ∈ S′ (D6.2)

Automated Multi-level Governance Compliance Checking 21

obl(a0,d)
counts-as

obl(b,d)

obl(a1,d)
counts-as

obl(b,d)
...

obl(an,d)
counts-as

obl(b,d)

pro(a0,d),
pro(a1,d),
... and

pro(an,d)
counts-as

pro(b,d)

a0 counts-as b a1 counts-as b ... an counts-as b

Deontological counts-as

between normative flu-

ents based on ai counting

as b

An event, fluent or normative

fluent ai counts-as an event, fluent

or normative fluent b in a state

according to event generation,

derived fluents and deontological

counts-as functions

Fig. 6: Overview for deontological counts-as semantics between concrete and abstract normative fluents,

based on counts-as relations between the elements they prescribe holding in a context entailed by a single

state.

In more detail:

– D6.1 - Closure of the state does not remove any fluents from the input state.

– D6.2 - A fluent derived from another fluent conditional on a social context modelled by the state

according to the institution’s fluent derivation function is a member of the closed state.

Collectively, these conditions and the minimality constraint close a state under fluent derivations.

Note that the fluent derivation operation is undefined if an institution’s fluent derivation function has an

output that is inconsistent with its input. For example D({¬B},A) ∋ B or in words “A counts-as B in the

context that B does not hold”. In other cases, the fluent derivation operation is multi-valued if at least

two rules defined by the institution’s fluent derivation function are mutually inconsistent. For example

D({¬B2},A) ∋ B1 and D({¬B1},A) ∋ B2, or in words “A counts-as B1 in the context that B2 does not

hold” and vice versa “A counts-as B2 in the context that B1 does not hold”. Such properties indicate an

institution design problem, which should be resolved by the institution designer.

4.2.4 Abstracting Normative Fluents

This section presents a semantics for abstracting concrete normative fluents. The basic idea, depicted in

Figure 6, is to establish new counts-as relations between concrete normative fluents and abstract normative

fluents, based on the concrete concepts they prescribe counting-as more abstract concepts. Before we go

into the actual semantics for abstracting concrete normative fluents, we describe the intuition and general

semantics, then give numerous examples and finally the formalisation.

We call the relation between concrete and abstract normative fluents deontological counts-as and

derive it based on three counts-as rule types (referring again to Figure 6). Firstly, based on counts-as

between events according to an institution’s event generation function. Here, we derive relations stating

concrete normative fluents about events count-as an abstract normative fluent about an event. Secondly,

based on counts-as between fluents according to an institution’s fluent derivation function. Here, we derive

relations stating concrete normative fluents about fluents count-as an abstract normative fluent about a

fluent. Thirdly, based on counts-as between normative fluents themselves according to the deontological

counts-as relation we define. Here, we derive relations stating higher-order concrete normative fluents

prescribing normative fluents count-as a more abstract higher-order normative fluent prescribing a

normative fluent. So, a deontological counts-as relation between concrete and abstract normative fluents is

derived from more primitive ontological counts-as relations according to an institution’s event generation

Automated Multi-level Governance Compliance Checking 22

and fluent derivation functions, and deontological counts-as itself in order to derive deontological counts-as

between higher-order normative fluents.

How the deontological counts-as relations between concrete and abstract normative fluents are derived

is described as follows. The intuition is that concrete normative fluents count-as a more abstract normative

fluent if and only if: the events or fluents that cause compliance with the concrete normative fluents (i.e.,

discharging or not violating) in turn count-as a certain institutional event to occur or fluent to hold that

guarantees the abstract normative fluent is also complied with (i.e., discharged or not violated).

Following this intuition, we start by describing deontological counts-as for obligations. In reference to

Figure 6, whenever any of a0 to an occur or hold we are guaranteed b occurs/holds. If there is a concrete

obligation imposed on one of a0, ...,an to occur/hold before a deadline d, then it is guaranteed that

complying with the concrete obligation (discharging or not violating) means a more abstract obligation

for b to hold before the same deadline d is also guaranteed to be discharged or not violated. Therefore, we

derive a deontological counts-as relation stating that a concrete obligation on any of a0, ...,an before d

counts-as a more abstract obligation for b to occur before d.

Prohibitions are different. If a0, ...,an count-as b, then unlike obligations we cannot apply modus

ponens and say that prohibiting a0 before d counts-as prohibiting b before d. The reason being, a0 not

occurring/holding does not mean b does not occur/hold. Thus, prohibiting a0 on its own does not mean

b should not occur. In other words, discharging or not violating a prohibition on a0 before d does not

guarantee that a prohibition on b before d is discharged or not violated. The reason is b can occur due

to any of a1, ...,an occurring/holding (all counting-as b) and thus violate a prohibition on b before d.

We might be tempted to apply modus tollens and say that b not occurring/holding means a0, ...,an do

not occur/hold, therefore prohibiting b before d counts-as prohibiting a0, ...,an before d. However, this

would be concretisation since a0, ...,an are more concrete than b (recall that concrete concepts count-as

abstract concepts, and a0, ...,an count-as b). On the other hand, we are interested in abstraction. To

summarise, unlike obligations modus ponens is incorrect to base counts-as between prohibitions on (since

a prohibition is an obligation to the contrary), whilst modus tollens is inappropriate since it concretises

rather than abstracts.

Instead, we derive a deontological counts-as relation between prohibitions stating that prohibiting

all of a0, ...,an from occurring/holding before d counts-as a prohibition on a more abstract event/fluent b

occurring/holding before d. This is based on the fact that counts-as is ascriptive, with reference to the

discussion in Section2, defining all ways an abstract institutional concept can occur/hold when more

concrete concepts occur/hold. Since abstract institutional events/fluents are ascribed by an institution’s

counts-as rules, if none of a0, ...,an occur/hold then b is not ascribed and therefore does not occur/hold.

Note that this is entirely different from material implication. For example, given if it rain then the grass

will be wet, the fact that it does not rain does not mean the grass is not wet. Counts-as rules in contrast

make institutional facts possible, if some institutional fact B has no counts-as rules ascribing it, then

that institutional fact cannot exist in an institution’s social reality. In reference to the discussion in the

background section, counts-as rules introduce institutional facts. Thus, complying with (discharging or

not violating) all prohibitions on a0, ...,an occurring/holding before d guarantees that a prohibition on b

before d is also complied with (discharged or not violated) - if a0, ...,an should not occur/hold before d

then neither should b before d.

These informal semantics abstract concrete normative fluents with different concrete aims to an

abstract normative fluent with a more abstract aim. Normative fluents’ deadlines are also abstracted.

However, as we observed when defining equivalences between normative fluents, the aim of an obligation

is by definition obliged, whilst the deadline is prohibited and vice versa for prohibitions. Thus, the

abstraction of obligation fluents’ deadlines should be under the same semantics as prohibitions’ aims and

vice versa for prohibitions. So, given that a0 counts-as b, a prohibition for z to occur before a0 counts-as a

prohibition for z to occur before b. Alternatively, we can just apply the equivalences between normative

fluents such that we have an obligation for a0 to occur before z that counts-as an obligation for b to occur

before z, which is in turn equivalent to a prohibition for z to occur before b. Since a state with a prohibition

Automated Multi-level Governance Compliance Checking 23

fluent also models an equivalent obligation fluent and vice versa, we define deontological counts-as based

on the normative fluents a state models and obtain the abstraction of normative deadlines ‘for free’.

This summarises the intuition behind deontological counts-as. More formally, deontological counts-as

is defined as the function DCi : Σ
i→ 2F

i
norm ×F i

norm. The function specifies for a state (S) a relationship

(〈N,n〉 ∈ DC(Si)) between sets of relatively concrete normative fluents (N) that count-as an abstract

normative fluent (n) in the state Si.

We exemplify the deontological counts-as function using our running case study. We focus on the

EU-DRD’s prescriptions formalised as an institution Idrd. Counts-as between events according to the

DRD’s event generation G function state that a communications provider (isp) storing the content of a

user’s (ada) communications data (storeData(isp, ada, content)) counts-as (causes the institutional event

of) storing personal data (storeData(isp, ada, personal)). Likewise, storing communications’ metadata

(storeData(isp, ada, metadata)) counts-as storing personal data.

Storing metadata or content data counts-as storing personal data. Thus, obliging metadata or obliging

content data is stored immediately counts-as obliging personal data is stored immediately, since if a

communications provider stores metadata or content data then it also stores personal data:

〈{obl(storeData(isp, ada, content), now)},obl(storeData(isp, ada, personal), now)〉 ∈DCi(Si)

〈{obl(storeData(isp, ada, metadata), now)},obl(storeData(isp, ada, personal), now)〉 ∈DCi(Si)

Prohibiting storing both content and metadata indefinitely counts-as prohibiting storing personal data

indefinitely:

〈{pro(storeData(isp, ada, content), never),

pro(storeData(isp, ada, metadata), never)},pro(storeData(isp, ada, personal), never)〉 ∈ DCi(Si)

Higher-order normative fluents are abstracted using the same intuitions as first-order normative

fluents, but with abstraction based on deontological counts-as. According to our case study, obliging an

obligation to store content data counts-as obliging an obligation to store personal data. Likewise, obliging

an obligation to store metadata counts-as obliging an obligation to store personal data.

〈{obl(obl(storeData(isp, ada, content), now), now)},

obl(obl(storeData(isp, ada, personal), now), now)〉 ∈ DCi(Si)

〈{obl(obl(storeData(isp, ada, metadata), now), now)},

obl(obl(storeData(isp, ada, personal), now), now)〉 ∈ DCi(Si)

Likewise, but for prohibitions, prohibiting storing metadata and prohibiting storing content data

counts-as prohibiting storing personal data. Thus, obliging to immediately prohibit storing metadata and

obliging to immediately prohibit content data counts-as obliging to immediately prohibit storing personal

data. Only obliging to prohibit storing content data, does not mean it is obliged to prohibit storing personal

data:

〈{obl(pro(storeData(isp, ada, content), never), now),

obl(pro(storeData(isp, ada, metadata), never), now)},

obl(pro(storeData(isp, ada, personal), never), now)〉 ∈ DCi(Si)

Higher-order prohibition abstraction semantics generalises the intuition of deontological counts-as for

first-order prohibitions, but based on deontological counts-as itself. Prohibiting all concrete normative

fluents that count-as a more abstract normative fluent, counts-as prohibiting the more abstract normative

fluent.

Automated Multi-level Governance Compliance Checking 24

According to our case study, indefinitely prohibiting obliging storing content data and prohibiting to

oblige storing metadata, counts-as indefinitely prohibiting obliging storing personal data. Likewise, for

prohibiting prohibitions.

〈{pro(obl(storeData(isp, ada, content), now), never),

pro(obl(storeData(isp, ada, metadata), now), never)},

pro(obl(storeData(isp, ada, personal), now), never)〉 ∈ DCi(Si)

〈{pro(pro(storeData(isp, ada, content), never), never),

pro(obl(storeData(isp, ada, metadata), never), never)},

pro(pro(storeData(isp, ada, personal), never), never)〉 ∈ DCi(Si)

Abstracted normative fluents can also be further abstracted. To give an example, in the EU-DRD the

event of storing personal data without someone’s consent counts-as a non-consensual data processing

event. Hence in the context that the agent Ada has not consented (S |= ¬consentedDataProcessing(ada))

we have the following deontological counts-as relation. It states the EU-DRD is effectively obliging an

obligation for data to be processed non-consensually:

〈{obl(obl(storeData(isp, ada, personal), now), now)},

obl(obl(nonConsensualDataProcessing(ada), now), now)〉 ∈ DCi(Si)

Deontological counts-as relations are also derived from the fluent derivation functionDi. To exemplify,

we take the previous example where we have an abstract obligation obliging Ada’s data is stored non-

consensually. Loosely speaking, the ECJ judged [21] that the EU-DRD, by obliging an obligation for

non-consensual data processing, violated the EU-CFR’s prohibition on unfair data processing (e.g.,

pro(unfairDataProcessing(ada), never)). But how do we go from a second-order obligation for data to be

processed non-consensually to violating a first-order prohibition on unfair data processing? One possibility

is that the EU-CFR’s fluent derivation function (Dcfr) states that obliging non-consensual data processing

counts-as unfair data processing, such that Dcfr(/0,obl(nonConsensualDataProcessing(ada)), now)) ∋
unfairDataProcessing(ada). Thus we have the following relation stating the second-order obligation for

non-consensual data processing deontologically counts-as, more abstractly, obliging data is processed

unfairly:

〈{obl(obl(nonConsensualDataProcessing(ada)), now), now)},

obl(unfairDataProcessing(ada), now)〉 ∈ DCi(Si)

However, obliging data is processed unfairly does not violate the EU-CFR prohibition on unfair data

processing, pro(unfairDataProcessing(ada), never). This is unsurprising, the EU-CFR does not impose

an explicit second-order prohibition, or contain any explicit higher-order norms for that matter (both

in reality and in our formalisation). Unfair data processing is somehow derived from an obligation to

oblige non-consensual data processing. One possibility is as follows: i according to the fluent derivation

function obliging non-consensual data processing counts-as unfair data processing, thus ii obliging an

obligation to process data non-consensually counts-as obliging unfair data processing. iii The EU-CFR

considers whether data is processed unfairly or obliged to be processed unfairly as irrelevant, both are

viewed as unfair data processing. iv Thus, an obligation to process data unfairly counts-as unfair data

processing according to the fluent derivation function,Dcfr(/0,obl(un f airDataProcessing(ada)),now))∋
unfairDataProcessing(ada). That is, normative fluents about abstract concepts are reduced to (ascribed

as) those abstract concepts, in this way first-order norms can indirectly govern other norms.

The idea here does not mean what ought to be the case is the case (e.g., unfair data processing). Rather,

unfair data processing is an abstract concept, which has many meanings, including obliging unfair data

Automated Multi-level Governance Compliance Checking 25

processing itself. Note that this means not only is an obligation to process data unfairly reduced to unfair

data processing, but so is a second-order obligation, a third-order obligation, etcetera. Formally:

〈{obl(obl(unfairDataProcessing(ada), now), now)},

unfairDataProcessing(ada)〉 ∈ DCi(Si)

〈{obl(obl(obl(unfairDataProcessing(ada), now), now), now)},

unfairDataProcessing(ada)〉 ∈ DCi(Si)

...

It is worth discriminating between issuing norms and re-interpreting norms at different abstraction

levels, now that we have given a general argument for norm interpretation and its application according

to constitutive rules. From an institution design perspective, it is most straightforward to issue norms

at the abstraction level of an institutional fact we wish to regulate (e.g., prohibiting storing content

data). An alternative method is to issue norms at a more concrete level of abstraction (e.g., prohibiting

storing message content, telephone calls, etc.), where the concrete detached obligations/prohibitions

are collectively re-interpreted as an obligation/prohibition on the more abstract institutional fact (e.g.,

prohibiting storing content data). The second approach is certainly possible, since an institution defines

all of the ways in which an abstract institutional fact is constituted according to its counts-as rules, as

we have discussed previously. Moreover, in our framework the domains we consider are finite and hence

it is possible to enumerate all concretisations. However, this is a less convenient approach since an

abstract concept can have a large number of concretisations that need to be accounted for. Moreover, when

counts-as rules in an institution change over time (e.g., introducing a rule stating that storing message’s

subject counts-as storing content data) further concrete norms may need to be introduced (e.g., prohibiting

storing message subjects) in order to continue regulating the same abstract fact (e.g., prohibiting storing

content data). The most convenient approach to regulating abstract institutional facts or norms is to

directly regulate those abstract institutional facts or norms and rely on abstraction of relatively concrete

facts/norms in each social context to determine compliance.

Following this discussion, we formally define deontological counts-as, based on counts-as relations

that hold in a state according to the event generation function, fluent derivation function and deontological

counts-as itself. For convenience, we collect the event generation and fluent derivation counts-as relations

into a single set Ai that forms the deontological counts-as function’s base cases. Since deontological

counts-as is also defined based on its own counts-as relations (in order to generalise to higher-order

normative fluents), deontological counts-as is defined recursively. Formally, deontological counts-as is

defined as:

Definition 7 Deontological Counts-as Given a state Si, the deontological counts-as function DCi : Σ
i→

2F
i
norm ×F i

norm is defined for the state Si ∈ Σ
i such that DCi(Si) is the minimal (w.r.t. set inclusion) set of

all pairs 〈N′,n′〉 where N′ 6= /0 that satisfy the following:

N′ = {obl(a,d) | a ∈ A}s.t.〈A,b〉 ∈Ai(Si)∪DCi(Si)∧n′ = obl(b,d) ∈ F ′norm or (D7.1)

N′ = {pro(a,d) | 〈A,b〉 ∈Ai(Si)∪DCi(Si)∧a ∈ A}∧n′ = pro(b,d) ∈ F i
norm (D7.2)

Where the set of abstracting counts-as relations Ai(Si) for the state Si is defined as:

A(Si) ={〈{a},b〉 | X ∈ X i,a ∈ E i,b ∈ G i(X ,a)∧Si |= pow(b)}∪ (D7.3)

{〈{a},b〉 | X ∈ X i,a ∈ F i,b ∈Di(X ,a)} (D7.4)

A state closed under deontological counts-as function is the function DC
i
: Σ

i→ Σ
i, such that S′ =DC

i
(Si)

iff it minimally (w.r.t. set inclusion) satisfies all of the following conditions:

Si ⊆ S′ (D7.6)

∃〈N′,n′〉 ∈ DCi(Si) : N′ ⊆ S′∧n′ ∈ F i
anorm⇒ n′ ∈ S′ (D7.7)

Automated Multi-level Governance Compliance Checking 26

In more detail. Concrete obligations count-as a more abstract obligation according to D7.1. Concrete

prohibitions count-as a more abstract prohibition according to D7.2. These counts-as relations are derived

from relations between concrete concepts counting-as an abstract concept defined by the event generation

function and fluent derivation function according to D7.3 - D7.4 (the base cases) and with respect to

deontological counts-as itself since it is defined recursively.

Deontological counts-as does not describe whether normative fluents in a state Si are abstracted, but

rather whether they could be. Closing a state under deontological counts-as is according to the operation

DC
i
. Condition D7.6 ensures any fluents already in the state remain in the state. Condition D7.7 ensures

if concrete normative fluents, should they hold in a state are abstracted to a normative fluent, and they

do indeed hold, then the abstracted normative fluent also holds. Note that in D7.7 it is ensured only

normative fluents that belong to the abstract set of normative fluents can hold in a state due to being

derived from concrete normative fluents. Consequently, deontological counts-as only adds non-inertial

abstract normative fluents to a state.

Note that DC
i

is a partial function if there is a fault in the institutional specification. For example,

if an institution obliges an event a to occur in some state, and the event a generates the event b in that

state, then b is also obliged to occur in that state. However, if a generates the event b conditional on b not

being obliged then there is a problem. We have that b is obliged since a is obliged. But, if b is obliged

then a does not count-as b, thus obliged a does not count-as obliged b and so there is no obligation for b

to occur. Again, in principle there is nothing wrong with the possibility of this paradox occurring since

it is an institutional design fault. If we have DC
i
(S) =⊥ then we have detected an institutional design

problem in the state S for the institution designer to rectify.

4.2.5 Models

In this section we provide a multi-level governance institutional model definition, which captures how

each institution in a multi-level governance institution evolves from one state to the next, driven by

observable events that potentially generate institutional events in state transitions. A model is defined in

response to a trace of observable (exogenous) events.

The approach we take is to put together all of the previous operations according to the following

description. An institution starts at an initial state that includes the institution’s initial set of inertial fluents

(∆ i) and the state closed under the fluent derivation and deontological counts-as operations. The institution

transitions between states with a set of events generated by the event generation operation in response

to an observable event in the event trace. Each state transitioned to contains the fluents that held in the

previous state that were not terminated, any newly initiated fluents as well as closing the state under

the fluent derivation and deontological counts-as operations. Additionally, an institution’s evolution is

affected by the evolution of other institutions it governs. This means that a higher level institution’s state

includes normative fluents from lower level institutions it governs. These normative fluents are ‘passed

up’ to the higher level institution in order to abstract the lower levels normative fluents and determine if

they are compliant in their abstract interpretation.

We begin by defining the initial state of each individual institution. Formally and described subse-

quently:

Definition 8 Initial States The initial state Si
0 for each individual institution I i w.r.t.ML = 〈T ,R〉 and

a tuple of initial states 〈S1
0, ...,S

n
0〉 is the set Si

0 if and only if Si
0 minimally (w.r.t. set inclusion) satisfies the

following:

Si
0 ⊆ ∆

i (D8.1)

∃〈h, i〉 ∈ R,n ∈ (F h
cnorm∪F

h
anorm)∩F

i
ninert : n ∈ Sh

0⇒ n ∈ Si
0 (D8.2)

Si
0 = FDi(Si

0) (D8.3)

Si
0 = DC

i
(Si

0) (D8.4)

Automated Multi-level Governance Compliance Checking 27

– D8.1 - an institution’s initial set of inertial fluents is included in the institution’s initial state.

– D8.2 - if the institution governs a lower level institution then it contains any normative fluents holding

in that lower level institution’s initial state.

– D8.3 - the initial state is closed under the fluent dependency operation, such that all derived fluents

are included.

– D8.4 - the initial state is closed under deontological counts-as such that all abstracted normative

fluents are included.

Now we define which fluents are initiated and terminated from one state to the next in response to a

generated set of events (i.e., by the event generation operation). The set of fluents that are initiated (INITi)

and terminated (TERMi) from one state to the next are formally defined as and subsequently described:

Definition 9 Fluent Initiation and Termination The sets of all initiated and terminated fluents for I i

are respectively defined with the functions INITi : Σ
i×2E

i
→ 2F

i
and TERMi : Σ

i×2E
i
→ 2F

i
:

INITi(Si,E i) = { f | ∃e ∈ E i,∃X ∈ X i : f ∈ C i↑(X ,e)∧Si |= X} (D9.1.1)

TERMi(Si,E i) = { f | ∃e ∈ E i,X ∈ X i :Si |= f ∧ f ∈ C i↓(X i,e)∧Si |= X or (D9.2.1)

Si |= f ∧ (viol(f) ∈ E i∨disch(f) ∈ E i)} (D9.2.2)

Condition D9.1.1 specifies the set of initiated inertial fluents according to the institution’s consequence

function. An inertial fluent is initiated by the state consequence function conditional on an event occurring

and a social context holding in the state. Conversely, D9.2.1 specifies that the set of terminated inertial

fluents includes any inertial fluents terminated according to the institution’s consequence function.

Condition D9.2.2 states that any discharged or violated inertial (concrete) normative fluents are also

terminated, meaning dishcarged/violated normative fluents do not persist by default3.

A state transition operation (TRi(Si,E i)) produces a new institutional state based on the previous

state (Si) due to the occurrence of events (E i). The new state includes any inertial fluents that held in the

previous state and have not been terminated, any newly initiated fluents, normative fluents holding, and

the state’s closure under the fluent derivation and deontological counts-as operations.

Definition 10 State Transitions The state transition operation TRi : Σ
i×2E

i
→ Σ

i is defined for each

institution I i, a state Si and a set of events E i w.r.t. the states of other institutions 〈S1
j , ...,S

n
j〉 holding at

the same time andML = 〈T ,R〉, such that TRi(E iSi) = S′ iff S′ minimally (w.r.t. set inclusion) satisfies

all of the following conditions:

∀ f ∈ (Si∩F i
inert)\TERMi(Si,E i)⇒ f ∈ S′ (D10.1)

∀ f ∈ INITi(Si,E i)⇒ f ∈ S′ (D10.2)

∃〈h, i〉 ∈ R,n ∈ (F h
cnorm∪F

h
anorm)∩F

i
ninert : n ∈ Sh

j ⇒ n ∈ S′ (D10.3)

S′ = FDi(S′) (D10.4)

S′ = DC
i
(S′) (D10.5)

– D10.1 - non-terminated inertial fluents persist from one state to the next, following the common sense

law of inertia.

– D10.2 initiated fluents hold in the next state.

– D10.3 a higher level institution’s state contains all normative fluents that hold in the same state of a

lower level institution the higher level governs.

3 Meaning, if you discharge or violate an obligation you are no longer obliged and likewise for prohibitions. In some cases,

it can make sense for a discharged/violated normative fluent to persist. For example, if you violate a prohibition on murder, it

is often the case that you are still prohibited from committing murder. For an extensive discussion on when it does and does

not make sense for obligations and prohibitions to persist after discharge/violation see [36].

Automated Multi-level Governance Compliance Checking 28

– D10.4 the newly transitioned to state includes all normative fluents that can be derived according to

the fluent derivation operation.

– D10.5 the newly transitioned state contains all normative fluent abstractions according to deontological

counts-as.

We now proceed to event traces. The trace a model is defined in response to is a sequence of observable

events recognised by the institutions involved in a multi-level governance relationship. That is, it is a trace

of only those events that can affect the institutions involved, driving their evolution and the multi-level

governance institution’s evolution as a whole. Each event in a trace needs to be recognised by at least one

institution to drive its evolution over time. We call such a trace, a composite event trace, formally:

Definition 11 Composite Event Trace LetML= 〈T ,B〉 be a multi-level governance institution where

T = 〈I1, ...,In〉. ctr = 〈e0, ...,ek〉 is a composite trace forML iff ∀ j ∈ [0,k],∃i ∈ [n] : e j ∈ E i
obs

Synchronisation issues can arise between institutions. These issues occur if a composite trace includes

an event recognised by one institution, therefore driving its state forward, but not recognised by another

institution meaning its state does not evolve. If an event in a composite trace is not recognised by an

institution, then the institution should still transition to a new state to ensure it is evolving at the same

rate as other institutions. We replace unrecognised events by the event of no change, the null event, in a

synchronised trace for each institution derived from a composite trace. Formally:

Definition 12 Synchronised Trace Let I be an institution, and ctr = 〈e0, ...,ek〉 be a composite event

trace. A trace str = 〈se0, ...,sek〉 is a synchronised trace of ctr for I iff ∀i ∈ [0,k] : if ek ∈ Eobs, sek = ek

and sek = enull otherwise.

We now define a multi-level governance institution model. A model comprises sequences of states (S)

and events (E). One state sequence for each individual institution (Si) and one sequence of event sets for

each individual institution (E i) driving its state transitions. A model is defined in response to a composite

trace such that the corresponding synchronised trace for each institution drives its evolution over time,

causing events to occur and driving state transitions forward. Each state and set of transitioning events is

defined for each institution assuming that the states and set of transitioning events exist for every other

institution. Formally:

Definition 13 Multi-level Governance Institution Model Let M = 〈M1, ...,Mn〉 be a tuple of state and

event sequence pairs for each institution I i with typical element Mi = 〈Si,E i〉where Si = 〈Si
0, ...,S

i
k+1〉 and

E i = 〈E i
0, ...,E

i
k〉. Let ctr be a composite trace forML= 〈T ,R〉 and stri = 〈sei

0, ...,sei
k〉 be a synchronised

trace of ctr for each institution I i. Let ∀i∈ [1,n],∀ j ∈ [0,k] : GRi(Si
j,E

i
j) be the event generation operation

for I i w.r.t. 〈S1
j , ...,S

n
j〉 and 〈E1

j , ...,E
n
j 〉. Let ∀i ∈ [1,n],∀ j ∈ [0,k] : TRi(Si

j,E
i
j) be the state transition

operation for each institution I i w.r.t. 〈S1
j , ...,S

n
j〉. The tuple M is a model ofML w.r.t. ctr if and only if:

∀i ∈ [1,n] : Si
0 is the initial state of each institution I i w.r.t. 〈S1

0, ...,S
n
0〉 (D13.1)

∀i ∈ [1,n],∀ j ∈ [0,k] : E i
j = GRi(Si

j,{sei
j}) (D13.2)

∀i ∈ [1,n],∀ j ∈ [0,k] : Si
j+1 = TRi(Si

j,E
i
j) (D13.3)

– D13.1 - the initial state of each individual institution, which is defined with respect to the initial

state of every other institution (meaning a higher-level institution includes normative fluents from a

lower-level institution).

– D13.2 - each institution’s set of events transitioning to a new state comprises all events generated

from the corresponding event in the synchronised trace and the previous state according to the

event generation operation. The event generation operation is also defined with respect to the states

and events from every other institution, such that norm compliance events are ‘passed up’ between

governance levels.

Automated Multi-level Governance Compliance Checking 29

– D13.3 - the next state transitioned from the previous state by the set of transitioning events. The state

transition operation is also defined with respect to the states and events from every other institution,

such that normative fluents are ‘passed up’ between governance levels.

This concludes multi-level governance institution semantics.

4.2.6 Compliance Monitoring

A multi-level governance institution model monitors the compliance of other institution’s regulations and

their outcomes. A model determines if the concrete regulatory effects of one institution are non-compliant

with the more abstract regulations of a higher level institution in a particular context. This is by ‘passing

up’ any concrete normative fluents from a lower level institution to the higher level institution that

governs it. Then, abstracting those concrete normative fluents in the higher level institution according

to the higher level institution’s abstracting constitutive rules (i.e., under the semantics of deontological

counts-as). Then, taking the more abstract interpretation of the lower levels’ concrete normative fluents,

generating any discharge and violation events of the higher level institution’s higher-order norms that

oblige/prohibit the abstracted lower level institution’s concrete norms. All that is needed to determine

if there is non-compliance is to collect a set of violation events from the multi-level governance model

for each institution. Formally, the set of sets of violation events for each individual institution denoting

non-compliance is:

Definition 14 Multi-level Governance Violations LetML = 〈T ,R〉 be a multi-level governance in-

stitution and M = 〈M1, ...,Mn〉 a model of ML w.r.t. a composite trace ctr such that ∀i ∈ [n] : Mi =
〈Si,E i〉,Si = 〈Si

0, ...,S
i
k+1〉,E

i = 〈E i
0, ...,E

i
k〉. The tuple V = 〈V1, ...,Vn〉 is the set of multi-level governance

violations forML w.r.t. ctr if and only if:

∀i ∈ [1,n] : Vi = {e | ∃ f , j : f ∈ F i
cnorm∪F

i
anorm, j ∈ [k]∧ viol(f) ∈ E i

j ∧ e = viol(f)} (D14.1)

Non-compliance is found if the set of violation events is non-empty. For an institution governing a

society this implies that the society is non-compliant (either in reality if compliance checking is performed

before run-time or hypothetically if not). For a higher level institution governing a lower level institution

non-compliance denotes that the regulatory effects are non-compliant if the violated norms belong to

the higher level institution. Such non-compliant regulatory effects can be due to having a more abstract,

non-compliant, meaning.

5 Computational Framework

In this section we provide a practical approach to reasoning about multi-level governance with a computa-

tional framework that corresponds to the formal framework. The idea of the computational framework is

to use Answer-Set Programming, a declarative programming language where the commonly accepted

syntax is AnsProlog, which we describe in section 5.1. An AnsProlog program in our framework produces

models of a multi-level governance institution for a trace of events.

There are two main components in the computational framework. Firstly, a general AnsProlog

program that implements the multi-level governance semantics from the previous section. Secondly,

specific AnsProlog programs that represent each individual institution, their multi-level governance

relationships and norm abstractions. By executing these AnsProlog programs together we can automate

compliance checks. We describe, for brevity, these AnsProlog programs in section 5.2 and give the

representation in full in Appendix B. To show that the computational framework provides a practical

implementation of the formal framework we provide soundness and completeness theorems between the

two frameworks in section 5.5. The theorems are proven in Appendix C. Moreover, we provide general

properties of the computational framework’s complexity for given institutions in a multi-level governance

relationship in Section 5.6

Automated Multi-level Governance Compliance Checking 30

The corresponding AnsProlog programs that represent institutions, their multi-level governance

relationships and norm abstractions are specific to each set of institutions in a multi-level governance

relationship. Consequently, it would be a lot of effort for a user to manually write AnsProlog programs

for each institution they wish to use in a multi-level compliance check. For this reason, we use a compiler

that takes as input institutions described in a high-level language, similar to the formal representation

used for institutions albeit with additional useful constructs such as variables and types. The compiler

outputs executable AnsProlog programs for individual institutions, their norm abstractions and the general

AnsProlog program representing multi-level governance semantics. By executing these compiled programs

together, we can automatically detect compliance without having to write AnsProlog code by hand. We

give an overview of the implemented compiler and demonstrate the result of executing the AnsProlog

programs for our running case study, with a compliance check corresponding to the real-world judgements

of the European Court of Justice, in Section 5.3.

5.1 Answer Set Programming

Answer-Set Programming is a non-monotonic logic-programming language [8, 32], for declaring problems

according to the syntax of AnsProlog as a set of first-order rules. AnsProlog is fully declarative in the sense

that the ordering of logical formulae (horn clauses and facts) makes no semantic difference. Executing an

AnsProlog program solves the declared problems by first running a grounder, which grounds all rules,

replacing variables with ground terms, and then running a solver against the ground program. A solver

computes the set of answer-sets, where each answer-set is a model of the AnsProlog program and a

solution to the problem declared. Answer-sets are computed according to the stable-model semantics [32].

We use AnsProlog for two main reasons. Firstly, it provides a natural representation of individual

and multi-level governance institutions, where institutions’ functions are represented as AnsProlog rules.

Secondly, it supports meeting the goal of our framework: automatically checking different contexts, or

traces of exogenous events, for whether regulations in a lower level institution are non-compliant. Using

AnsProlog, a single trace of events can be supplied to check for compliance, but we can also specify a

partial trace and that all variants of that trace must be used to check compliance or even all possible traces

up to a specific length must be checked for compliance. It is also possible to declare that each answer-set

produced must have a particular property, such as ‘there must be at least one violation of a norm in a

higher level institution’. In this case the property implies that if no answer-sets are produced then there

is full compliance for all traces up to a certain length. In summary, Answer-Set Programming provides

a natural representation of multi-level governance institutions and an easy way to perform a contextual

search for compliance.

There are many answer-set solvers available (e.g., [20, 30]). We briefly reintroduce the main definitions

to give context for what follows, focussing on the syntax of the CLINGO [30] grounder and solver making

use of a number of its unique constructs. In more detail, an AnsProlog program is built from atoms

and predicates. Predicates can be ground, such as lays_eggs(slinky) or non-ground predicates

containing variables representing the ground instance schemas, such as bird(X). Atoms and predicates

can be weakly negated, such as not 4. A rule r is typically of the form p_0 :- p_1, ..., p_n

comprising a head atom denoted H(r) and a set of body literals denoted B(r), which can be delineated

into the positive body atoms B+(r) and atoms appearing negated in the body B−(r). A rule r can also

be a fact by having an empty body such that B(r) = /0 containing only a single head atom such as

lays_eggs(slinky). To give an example adapted from [8], the following program declares that a

bird is an animal that lays eggs and is not a reptile, a reptile is an animal that lays eggs that is not a bird

and slinky is an animal that lays eggs:

bird(X) :- lays_eggs(X), not reptile(X).

reptile(X) :- lays_eggs(X), not bird(X).

4 we ignore the case of strong negation since it is unnecessary in our use of AnsProlog

Automated Multi-level Governance Compliance Checking 31

lays_eggs(slinky).

A (total) interpretation of an answer-set program is a truth-assignment to literals, comprising a set

of the atoms assigned the value of ‘true’. An answer-set is a minimal interpretation containing all atoms

that are justified in being true. Precisely, for a rule r, the head atom denoted H(r) is justified in being

true if all positive body atoms, denoted B+(r), are true, and none of the weakly negated body atoms,

denoted B−, are true. This implies facts are always justified in being true (e.g., lay_eggs(slinky)).

Looking at the previous example there can be more than one answer-set. If bird(slinky) is in an

interpretation then reptile(slinky) cannot be in the interpretation for it to be an answer-set, and

vice versa. These answer-sets are:

– { bird(slinky), lays_eggs(slinky) }
– { reptile(slinky), lays_eggs(slinky) }

Determining if an interpretation is an answer-set requires knowing which atoms are justified according

to the program’s rules. In the presence of weak negation this means we should only consider the rules that

do not contain weakly negated atoms that are in the answer-set. Furthermore, for those rules that remain

we do not need to consider their weakly negated literals to determine if the head is justified. Removing all

rules in a program with weakly negated literals that are in an interpretation and all weakly negated literals

from the remaining rules is called the reduct of the program, formally from [31]:

Definition 15 Reduct Let Π be an Answer-Set Program and X an interpretation of Π , the reduct denoted

Π
X is the set:

{H(r)← B+(r) | r ∈Π and B−(r)∩X = /0}

We want to determine for a reduct and a set of atoms, whether that set of atoms is closed under the

program (containing all justified atoms) and whether it is minimal (containing no atoms that are not

justified). To give an example, if we have a reduct

Π = { lays_eggs(slinky). bird(slinky) :- lays_eggs(slinky). }, then the set

{lays_eggs(slinky), bird(slinky), some_atom} is closed since

lays_eggs(slinky) and bird(slinky) are justified but it is not minimal due to the presence of

some_atom. Formally adapted from [31]:

Definition 16 Let Π be a reduct and X a set of atoms. The set of atoms X is closed under Π
X if for all

r ∈Π
X , we have H(r) ∈ X iff B+(r)⊆ X . The smallest set of atoms closed under Π

X is denoted Cn(Π X).

An answer-set is simply a minimal interpretation of a reduct of the program for the interpretation:

Definition 17 Answer-Set Let Π be an Answer-Set Program and X be an interpretation of Π and Π
X

be the reduct of Π w.r.t. X . X is an answer-set of Π iff X = Cn(Π X).

In addition to the Answer-Set Programming semantics given above we use three constructs present

in CLINGO [30]. Namely, constraints, choice rules and conditional literals. Constraints are a special

type of rule of the form :−b1, ...,bn. representing a rule with falsity in the head such that if all of b1
to bn are true in an interpretation then there is a contradiction and therefore the interpretation is not an

answer-set. Choice rules are of the form {a1, ...,an} :−b1, ...,bn., meaning that any atom in a1, ...,an
can arbitrarily be picked for inclusion in an answer-set if b1, ...,bn. is true. Aggregates are present in

the body of rules and are of the form l{b1; ...;bn}u where l and u are positive integers meaning that

at least l and at most u elements of b1, ...,bn must be true for the aggregate to be true. Omitting l or u

removes the respective constraint. Finally, conditional literals are special literals that can be contained in

the body of a rule or within in an aggregate and are of the form b1 : b2, ...,bn. They follow the semantics

of material implication; conditional literals are true if the head is true or the body is false. Note that there

are no conditional literals within aggregates, rather a rule of the form l{b1 : b2, ...,bn}u means that b1 is

counted as being true when restricted to the domain of b2, ...,bn. Without variables this simply means that

b1 is counted as true when b2, ...,bn is true.

Automated Multi-level Governance Compliance Checking 32

5.2 Mapping

In this section we give the general idea behind mapping between the formal representation and semantics

of multi-level governance institutions and their representation in AnsProlog. For a detailed account, we

refer the reader to Appendix B.

The approach we take is to represent the events and fluents that can hold in each institution, as

AnsProlog facts, and the functions as non-factual AnsProlog rules. Each rule antecedent corresponds

to the parameters the functions take. For the event generation and state consequence functions, the

corresponding AnsProlog rules’ antecedents comprise the occurrence of events and the state conditions.

For the fluent derivation function, expressing constitutive rules of the form “fluent A derives (counts-as)

fluent B in context C” the corresponding AnsProlog rules’ antecedents comprise conditions on the state

containing fluent A and modelling the context C. The consequence of a rule corresponds to the effect

of the function’s returned value on a multi-level governance institution model. The resulting effect is

an event caused to occur according to G, the initiation and termination of fluents according to C, and

non-inertial fluents holding in a state according to a fluent derivation function D.

Multi-level governance institution semantics is represented in AnsProlog as more general rules. For

example, stating that if an inertial fluent is initiated then it holds until it is terminated. The exception is

the semantics of deontological counts-as, which is represented as a set of specific AnsProlog rules that

ensure normative fluent abstractions are included in states. Finally, composite traces are mapped to a

corresponding AnsProlog representation as sets of facts, each stating that an event has been observed at a

particular point in time.

The computational framework’s AnsProlog rules make use of the same common predicates used

previously in work extending InstAL to settings with multiple institutions [54, 55, 56]. In turn these are

similar to Event Calculus [53] constructs. To give context for what follows, the predicates are summarised

in their non-ground form:

– holdsat(F,In,I) denotes that the fluent F holds in the institution In at time I.

– observed(E,In,I) denotes that the event E is observed by the institution In at time I corresponding

to the exogenous event that has occurred in the synchronised trace for the institution.

– occurred(E,In,I) denotes that the event E occurs in the institution In at time I.

– initiated(F,In,I) denotes that the fluent F is initiated in the institution In at time I.

– terminated(F,In,I) denotes that the fluent F is terminated in the institution In at time I.

– instant(I) denotes I is a time instant.

– start(I) denotes I is the first time instant.

– final(I) denotes I is the last time instant.

– next(I,J) denotes J is a time instant that is strictly after I such that there is no time instant between

I and J.

The aforementioned predicates are used in both antecedents and consequents of rules. Such as, stating

conditional on particular fluents (not) holding in a state one event causes another event to occur. This

means events in function parameters correspond to occurred/3 whilst state conditions correspond to

sets containing positive and negative holdsat/3 predicates5.

5.2.1 Multi-level Governance Translation

The main idea is to translate the formal representation of a multi-level governance institution and its

semantics into a a set of AnsProlog rules.

The translation for representing a multi-level governance institution, comprising a set of AnsPro-

log rules, comprises the translation of the individual institutions and the translation of the multi-level

governance links between them.

5 an empty state condition (the empty set) is always true and replaced with the special atom #true for technical reasons.

Automated Multi-level Governance Compliance Checking 33

Starting with individual institutions, their institutional events and fluents are represented as AnsProlog

facts. For example in the EU-CFR, exConsent is an exogenous event, consent is an institutional

event and consentedDataProcessing(ada,isp) is an inertial fluent:

1 evtype(exConsent,cfr,ex).

2 evtype(consent,cfr,in).

3 ifluent(consentedDataProcessing(ada,isp),cfr).

An institution’s event generation function is translated to rules. Each rule containing an occurred/3

atom in the head representing the event that is caused to occur. Each rule’s body comprising an

occurred/3 atom representing the causal event, and positive and negative holdsat/3 atoms rep-

resenting the rule’s state conditions. For example, the following rule states that non-consensual data

processing occurs if Ada’s personal data has been stored and she has not consented, where non-consensual

data processing is empowered to occur:

1 occurred(nonConsensualDataProcessing(ada),cfr,I) :-

2 occurred(storeData(isp,ada,personal),cfr,I),

3 holdsat(pow(cfr,nonConsensualDataProcessing(ada)),cfr,I),

4 not holdsat(consentedDataProcessing(ada,isp),cfr,I), instant(I).

An institution’s consequence function is translated to AnsProlog rules, using initiated/3 and

terminated/3 atoms in the head for the initiation and termination of fluents. Each fluent initiation and

termination rule’s body comprises an occurred/3 atom representing the event causing a fluent to be

initiated/terminated, and positive and negative holdsat/3 atoms representing the context in which the

fluent initiation/termination is conditional on. For example, in the EU-CFR institution the fluent stating

ada has consented to data processing is initiated if she consents. In the EU-DRD institution the obligation

to oblige metadata is stored is initiated (i.e., imposed) when Ada uses electronic communications:

1 initiated(consentedDataProcessing(ada,isp),cfr,I) :-

2 occurred(consent(ada,isp),cfr,I), instant(I).

3 initiated(obl(obl(storeData(isp,ada,metadata),now),now),drd,I) :-

4 occurred(useElectronicCommunication(ada,isp),drd,I), instant(I).

An institution’s fluent derivation function is represented as AnsProlog rules with holdsat/3 atoms

in the head and body. For example, in the institution ‘unfair data processing’ is derived from an obligation

to process data non-consensually:

1 holdsat(obl(nonConsensualDataProcessing(ada),now),cfr,I) :-

2 holdsat(unfairdataprocessing(ada),cfr,I), instant(I).

The links between institutions are also represented as rules. Generally, a link from a lower level

institution institution L to a higher level institution H that governs L, comprises rules with occurred/3

and holdsat/3 atoms in the head. The occurred rules state a norm discharge/violation event occurs

in the institution H when it occurs in the institution L. Likewise, a normative fluent holds in H when it

holds in L. All of these rules are produced such that only the discharge/violation events occurring in L

and consequently in H are about normative fluents L imposes. Likewise, further rules state only normative

fluents hold in H when they hold in L for those normative fluents that L itself imposes. Thus, if L receives

norm discharge/violation events or normative fluents from another institution, these do not get passed up

to H from L.

To give an example, the following rule states that when the prohibition on deleting data before 12

months holds in the UK-DRR, then it also holds in the EU-DRD for checking compliance.

1 holdsat(pro(deleteData(isp, ada, metadata),time(m12)),drd,I) :-

2 holdsat(pro(deleteData(isp, ada, metadata),time(m12)),drr,I),instant(I).

Abstraction according to deontological counts-as is also represented as rules, where the head is a

holdsat atom representing the abstract normative fluent conditional on some concrete normative fluents

holding. For brevity we do not give details but refer the interested reader to Appendix B.1.

Automated Multi-level Governance Compliance Checking 34

Finally, the semantics is represented as more general rules. For example, the following rules state that

an inertial fluent holds in a state if it is initiated or if it held in the previous state and was not terminated

(capturing the common-sense law of inertia):

1 holdsat(P,In,J) :- holdsat(P,In,I),

2 not terminated(P,In,I), next(I,J), ifluent(P, In).

3 holdsat(P,In,J) :- initiated(P,In,I), next(I,J), ifluent(P, In).

The translation, where here we give its intuition (see Appendix B.1 for details), allows us to automate

compliance checks for institutions operating in a multi-level governance relation. Moreover, the translation

to an AnsProlog program is equivalent in the sense of producing answer-sets that correspond to the formal

models in the formal framework. That is, we have soundness and completeness properties which we

present later in Section 5.5.

5.3 Specification Language and Compiler

The computational framework is implemented as a high-level specification language for declaring in-

stitutions in a multi-level governance relationship and a compiler for producing executable answer-set

programs. The implementation extends the InstAL specification language and compiler [12]. The system

is demonstrated with the results of formalising our case study in the high-level specification language and

executing the compiled AnsProlog code for a trace of exogenous events.

The high-level specification language allows users to declare individual institutions and links between

them. The language constructs provided to users correspond to much the same representation elements as

in the formal framework, with the addition of types and variables to provide users with a concise way to

represent institutions over large domains. Below, is a fragment of the EU-DRD institution from our case

study written in the specification language, which we subsequently describe:

1 institution drd;

2 type Agent;

3 type CommServProv;

4

5 exogenous event exUseElectronicCommunication(Agent, CommServProv);

6 inst event useElectronicCommunication(Agent, CommServProv);

7

8 fluent pow(useElectronicCommunication(Agent, CommServProv);

9 obligation fluent obl(obl(storeData(CommServProv, Agent, Data), now), now);

10

11 exUseElectronicCommunication(Ag, Co) generates useElectronicCommunication(Ag, Co);

12 initially pow(useElectronicCommunication(Ag, Co));

13 useElectronicCommunication(Ag, Co) initiates

14 obl(obl(storeData(Co, Ag, metadata), now), now);

The name of the institution is declared on line 1, and the types of agent and communications

service provider on lines 2 and 3. Lines 5 and 6 declare the institution’s events. Lines 8 and 9 declare

the institution’s fluents. Line 11 corresponds to the notion of the mapping between events provided

by an institution’s event generation function. It states that the exogenous event of using electronic

communications generates an institutional event of using electronic communications. Line 12 declares

that a fluent holds in an institution’s initial state, in this case the fluent empowering the event to use

electronic communication to occur in the institution. Line 13 represents a mapping provided by the

institution’s consequence function, in this case the descriptive rule stating that if an agent uses electronic

communication then it is obliged that the communications provider is obliged to store the communications’

metadata immediately.

A separate file, called a domain file, declares the terms of each type, such as who is an agent or

a communications provider. The compiler processes the files declaring the individual institutions and

outputs a set of AnsProlog files representing each institution and their semantics.

Automated Multi-level Governance Compliance Checking 35

The AnsProlog files are then processed by the grounder and AnsProlog solver CLINGO, together with

a timeline program declaring a sequence of events and a special program declaring the links between each

institution. A short example of a link between two institutions is the following program. The program

specifies the governance relation between the institutions on lines 1 and 2. On line 3 a rule states an

obligation in a lower-level institution that holds and is a non-inertial fluent in the higher-level institution,

also holds in the higher-level institution.

1 governs(cfr, drd).

2 governs(drd, drr).

3 holdsat(obl(A, D), HIn, I) :-

4 holdsat(obl(A, D), LIn, I), nifluent(obl(A, D), HIn), governs(HIn, LIn).

The result of executing the AnsProlog programs together is a multi-level governance institution model

for the sequence of events provided. The model can be inspected for compliance of regulations, denoted

with compliance events, and other properties.

5.4 Running the Case Study

We have written the case study in the high-level computational framework specification language. By

compiling from the specification language to an AnsProlog representation we are able to assess compliance

in our case study’s multi-level governance institution. This is by executing the resulting AnsProlog program

together with a trace of events.

The case study is instantiated for a domain comprising four types. Firstly the agents acting in

the system (ada and charles). Secondly, we specify various types of role, since we need to distin-

guish between the agents/organisations and their social status. The case study differentiates between

citizens and law enforcement officials as well as Internet Service Providers (ISPs) thus we have the

roles lawEnforcement and isp. Thirdly, we distinguish between different data types (content,

metadata and personal).

The case study is run against an observable event trace. We chose an observable event trace that shows

the framework’s context-sensitivity to abstract norm reasoning. This is by testing the use of electronic

communications and ISP’s fulfilment of metadata storage obligations in different social contexts. Namely,

the context that an agent, Ada, has not consented and the context that she has. The trace is given below:

1 observed(exUseElectronicCommunication(ada, isp), 0).

2 observed(exStoreData(isp, ada, metadata), 1).

3 observed(exRequestData(charles, isp, ada), 2).

4 observed(exSignedConsentForm(ada, isp, personal), 3).

5 observed(exUseElectronicCommunication(ada, isp), 4).

6 observed(exStoreData(isp, ada, metadata), 5).

7 observed(exSignedConsentForm(ada, isp, voicerecording), 6).

8 observed(exSignedConsentForm(ada, isp, emailsubject), 7).

9 observed(exRequestData(ada, isp, bertrand), 8).

10 observed(exCloseInvestigation(charles, ada), 9).

11 observed(exChangeDataStorageLocation(isp, newzealand), 10).

12 observed(exUnauthoriseDataStorageLocation(bertrand, newzealand), 11).

13 observed(exUnauthoriseDataStorageLocation(bertrand, noneu), 12).

14 observed(exRequestData(charles, isp, bertrand), 13).

15 observed(exAuthoriseDataStorageLocation(bertrand, newzealand), 14).

16 observed(exOpenInvestigation(charles, bertrand), 15).

17 observed(exRequestData(charles, isp, bertrand), 16).

First the agent Ada uses electronic communications provided by the service provider ISP. Then, the

service provider, ISP, stores Ada’s commnications metadata. An agent, Charles, requests data from ISP

concerning Ada. Ada signs a consent form for her data being stored (after the fact). Ada uses ISP’s

electronic communications again. Finally, ISP stores Ada’s metadata again. Thus Ada’s data is stored

without her consent and then Ada’s data is stored after she has given consent.

Automated Multi-level Governance Compliance Checking 36

S0

1) + is(charles, lawEnforcement): drd, drr

+ is(ada, suspect): drd, drr

+ is(bertrand, dataregulationbody): drr

2) + pro(dataUnprotected(ada, personal),

never): cfr

3) + pro(privacyDisrespected, never): cfr

4) + pro(uncontrolByIndepAuth, never): cfr

5) + pro(unfairDataProcessing(ada), never):

cfr

6) – + obl(pro(storeData(isp, ada, content),

never), now): cfr, drd

7) + pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;

voicerecording), never): cfr, drd, drr

8) + pro(storeData(isp, ada, content),

never): cfr, drd(from 7)

9) + dataStorageLocation(isp, australia): drr

S1

useElectronicCommunication(ada, isp): cfr,

drd, drr

disch(obl(pro(storeData(ada, content),

never), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr

is(ada, suspect): drd, drr

is(bertrand, dataregulationbody): drr

2) – pro(dataUnprotected(ada, personal),

never): cfr

3) – pro(privacyDisrespected, never): cfr

4) – pro(uncontrolByIndepAuth, never): cfr

5) – pro(unfairDataProcessing(ada), never):

cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) – + obl(storeData(isp, ada, metadata),

now): cfr, drd, drr

8) – + obl(obl(storeData(isp, ada, metadata),

now), now): cfr, drd

9) – + obl(obl(storeData(isp, ada,

personal), now), now) : cfr(from 8)

10) – + obl(obl(

nonConsensualDataProcessing(ada),

now), now): cfr (from 9)

11) – + obl(dataProcessed, now) : cfr

(from 9)

12) – + obl(dataUnprotected(ada,

personal), now): cfr (from 9)

13) – + obl(

nonConsensualDataProcessing(ada),

now) : cfr (from 10)

14) – + obl(privacyDisrespected, now) :

cfr (from 9)

15) – + obl(unfairDataProcessing(ada),

now) : cfr (from 13)

16) + dataProcessed : cfr (from 11)

17) + dataUnprotected(ada, personal) :

cfr (from 12)

18) + privacyDisrespected : cfr (from 14)

19) + uncontrolByIndepAuth : cfr (from

16)

20) + unfairDataProcessing(ada) (from

15) : cfr

21) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;

voicerecording), never): cfr, drd, drr

22) pro(storeData(isp, ada, content),

never): cfr, drd(from 21)

23) dataStorageLocation(isp, australia): drr

S2

storeData(isp, ada, metadata): cfr, drd, drr

nonConsensualDataProcessing(ada): cfr

disch(obl(obl(storeData(ada, metadata),

now), now)) : cfr, drd

disch(obl(storeData(i ada, metadata),

now)) : cfr, drd, drr

storeDataIn(australia): drr

storeDataIn(noneu): drr

viol(pro(uncontrolByIndepAut never)) :

cfr

viol(pro(privacyDisrespecte never)) : cfr

viol(pro(dataUnprotected(a personal),

never)) : cfr

viol(pro(unfairDataProcessing(ad

never)) : cfr

1) is(charles, lawEnforcement): drd, drr

is(ada, suspect): drd, drr

is(bertrand, dataregulationbody): drr

2) pro(storeData(isp, ada, content), never):

cfr, drd, drr

3) pro(storeData(isp, charles, content),

never): cfr, drd, drr

4) + pro(dataUnprotected(ada, personal),

never): cfr

5) + pro(deleteData(isp, ada, metadata),

time(m12)): drd, drr

6) + pro(privacyDisrespected, never): cfr

7) + pro(uncontrolByIndepAuth, never): cfr

8) + pro(unfairDataProcessing(ada), never):

cfr

9) + pro(unfairDataProcessing(charles),

never): cfr

10) + obl(deleteData(isp, ada, metadata),

time(m13)): drd, drr

11) + pro(deleteData(isp, ada, metadata),

time(m12)): drd, drr

12) – + obl(ensure data retention period(ada,

isp, metadata, m6, m24), now) : cfr, drd

+ ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;

voicerecording), never): cfr, drd, drr

14) pro(storeData(isp, ada, content),

never): cfr, drd(from 13)

15) dataStorageLocation(isp, australia): drr

Fig. 7: Case study execution. The originating institutions for a fluent are in bold, ‘+’ indicates an initiated

fluent, ‘–’ indicates a terminated fluent. non-inertial fluents are in bold denoting they are derived from

other fluents according to the fluent derivation and deontological counts-as (norm abstraction) operations.

Norm discharge and violation events are highlighted.

Then, Ada signs a consent form for voice recordings to be stored and subsequently email subjects. Ada

requests Bertrand’s data from ISP. Charles closes the investigation on Ada. ISP changes the data storage

location to New Zealand. Bertrand unauthorises New Zealand as a storage location and subsequently all

non-EU countries. Charles requests ISP to provide Bertrand’s Data, then Charles opens an investigation

about Bertrand and finally Charles requests Bertrand’s data again. The main points about this latter half of

the trace are that Ada consents to storing two types of content data, a ban is placed on storing data first

in a specific non-EU country and then any country outside of the EU and finally Charles tries to obtain

Bertrand’s data before an investigation is opened and then afterwards.

The resulting multi-level governance institution model is depicted in Figure 7, for brevity edited to

just containing those fluents that are relevant to the discharge and violation of norms or demonstrate

semantic features. The model is described subsequently.

We first look at the interaction between the UK-DRR and the EU-DRD which governs the UK-DRR.

Accordingly:

– State S0 - Contains fluents stating the agent charles is playing the role of lawEnforcement

ada is a suspect and bertrand is a dataregulationbody officer. A fluent states that isp

stores data in Australia. The EU-DRD obliges that it is prohibited for isp to store the content of

ada’s data. The UK-DRR does indeed prohibit isp from storing the content of ada’s communications

data. Thus, the obligation to prohibit storing content data in the EU-DRD is immediately discharged

as denoted by the discharge event occurring in the transition to the next state. The transition to the

next state also includes the event of ada using electronic communications provided by isp, due to

the occurrence of the exogenous event in the timeline program stating the same.

– State S1 - Includes new fluents. Firstly, the EU-DRD imposes an obligation on the UK-DRR to

oblige isp to store ada’s communications’ metadata. Secondly, the UK-DRR imposes an obligation

for isp to store ada’s communications’ metadata. The UK-DRR’s first-order obligation to store

metadata discharges the EU-DRD’s second-order obligation to oblige an obligation to store metadata.

Automated Multi-level Governance Compliance Checking 37

S3

requestData(charles, isp, ada): cfr, drd, drr

disch(obl(ensure data retention period(ada,

isp, metadata, m6, m24), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr

is(ada, suspect): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

3) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

4) pro(dataUnprotected(ada, personal),

never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never): cfr

9) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 2 and 3

10) + obl(provideData(isp, charles, ada),

time(m1)): drd, drr

11) + obl(provideData(isp, charles, ada),

undue delay) : drd from 10

12) – + obl(obl(provideData(isp, charles,

ada), undue delay), now) : drd

13) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;

voicerecording), never): cfr, drd, drr

14) pro(storeData(isp, ada, content),

never): cfr, drd(from 13)

15) dataStorageLocation(isp, australia): drr

S4

consent(ada, isp, personal): cfr, drr

disch(obl(obl(provideData(charles,

ada), undue delay), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr

is(ada, suspect): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

3) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

4) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

5) pro(dataUnprotected(ada, personal),

never): cfr

6) pro(privacyDisrespected, never): cfr

7) pro(storeData(isp, ada, content), never):

cfr, drd, drr

8) pro(uncontrolByIndepAuth, never): cfr

9) pro(unfairDataProcessing(ada), never): cfr

10) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 2 and 3

11) + consentedDataProcessing(ada, isp,

personal): cfr

12) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;

voicerecording), never): cfr, drd, drr

13) pro(storeData(isp, ada, content),

never): cfr, drd(from 12)

14) dataStorageLocation(isp, australia): drr

S5

useElectronicCommunication(ada, isp): cfr,

drd, drr

1) is(charles, lawEnforcement): drd, drr

is(ada, suspect): drd, drr

is(bertrand, dataregulationbody): drr

2) pro(dataUnprotected(ada, personal),

never): cfr

3) pro(privacyDisrespected, never): cfr

4) pro(uncontrolByIndepAuth, never): cfr

5) consentedDataProcessing(ada, isp,

personal): cfr

6) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

7) obl(provideData(isp, charles, ada),

undue delay): drd

8) pro(dataUnprotected(charles, personal),

never): cfr

9) pro(unfairDataProcessing(ada), never): cfr

10) pro(storeData(isp, charles, content),

never): cfr, drd, drr

11) + obl(deleteData(isp, ada, metadata),

time(m13)): drd, drr

12) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

13) – + obl(storeData(isp, ada, metadata),

now): cfr, drd, drr

14) – + obl(obl(storeData(isp, ada, metadata),

now), now): cfr, drd

15) ensure data retention period(ada, isp,

metadata, m6, m24) : drd from 11 and

12

16) – + obl(obl(storeData(isp, ada,

personal), now), now) : cfr from 14

17) – + obl(privacyDisrespected, now): cfr

from 16

18) – + obl(dataProcessed, now): cfr from

16

19) – + obl(dataUnprotected(ada,

personal), now): cfr from 16

20) + dataUnprotected(ada, personal) :

cfr from 18

21) + privacyDisrespected : cfr from 17

22) + uncontrolByIndepAuth : cfr from

18

23) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage;

voicerecording), never): cfr, drd, drr

24) pro(storeData(isp, ada, content),

never): cfr, drd(from 23)

25) dataStorageLocation(isp, australia): drr

Fig. 7 (cont.)

fact that all types of communications content storage was prohibited on a case by case basis: voice

recordings, email subject’s, email bodies, etc.).

– Similarly state S8 no longer contains a prohibition on storing Ada’s email subject data.

– When transitioning to state S9 Ada requests Bertrand’s data from ISP, but no obligation is imposed on

ISP in the drr because Ada is not a law enforcement officer.

– In state S10 Charles closes the investigate on Ada, causing her to no longer be a suspect.

– State S11 has the data storage location of ISP changed to New Zealand in the drr.

– State S12 contains a prohibition on storing data in New Zealand after Bertrand, the data regulation

body officer, unauthorises data storage in New Zealand. However, note that there is not consequently a

prohibition on storing data in non-EU countries, because although New Zealand is a non-EU country

there are also other non-EU countries where data can, permissibly, be stored.

– In state S13 data is prohibited from being stored in non-EU countries after Bertrand explicitly places

a blanket ban on storing data in any non-EU country.

– Although Charles requests Bertrand’s data from ISP when transitioning to state S14, there is no such

obligation since Bertrand is not a suspect.

Automated Multi-level Governance Compliance Checking 38

S6

storeData(isp, ada, metadata): cfr, drd, drr

storeData(isp, ada, personal): cfr

nonConsensualDataProcessing(ada,

metadata): cfr

disch(obl(storeData(i ada, metadata),

now)) : cfr, drd, drr

viol(pro(uncontrolByIndepAut never)) :

cfr

viol(pro(privacyDisrespecte never)) : cfr

viol(pro(dataUnprotected(a personal),

never)) : cfr

1) is(charles, lawEnforcement): drd, drr

is(ada, suspect): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal): cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) – + obl(ensure data retention period(ada,

isp, metadata, m6, m24), now): cfr, drd

dataStorageLocation(isp, australia): drr

14) pro(storeData(isp, ada, emailbody;

emailsubject; textmessage), never): cfr,

drd, drr

15) – pro(storeData(isp, ada, voicerecording),

never): cfr, drd, drr

16) – pro(storeData(isp, ada, content),

never): cfr, drd(from 14 and 15)

17) dataStorageLocation(isp, australia): drr

S7

consent(ada, isp, voicerecording): cfr, drr

disch(obl(ensure data retention period(

a isp, metadata, m6, m24), now)) : cfr, drd

1) is(charles, lawEnforcement): drd, drr

is(ada, suspect): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal): cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) – pro(storeData(isp, ada, emailsubject),

never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr

16 + consentedDataProcessing(ada, isp,

voicerecording): cfr, drr

S8

consent(ada, isp, emailsubject): cfr, drr

1) is(charles, lawEnforcement): drd, drr

is(ada, suspect): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording): cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr

16 + consentedDataProcessing(ada, isp,

emailsubject): cfr, drr

Fig. 7 (cont.)

– State S15 lifts the ban on storing data in New Zealand, although there is still a ban on storing data in

all non-EU countries.

– Finally, Charles opens an investigation into Bertrand, he becomes a suspect in state S16. Then when

Charles requests Bertrand’s data from ISP there is an obligation to provide it within one month in

state S17 since Bertrand is now a suspect, and consequently there is an obligation to provide the data

before any undue delay as interpreted by the drd.

In conclusion, for this trace of events the UK-DRR is compliant with the EU-DRD. All of the EU-

DRD’s normative fluents it imposes are discharged and none are violated. In comparison, the EU-DRD is

non-compliant with the EU-CFR as we will see:

– State S0 - the EU-CFR prohibits the EU-DRD’s regulations from being uncontrolled by an independent

authority. What this means is that data retention should be within the EU jurisdiction. Likewise, the

EU-CFR also prohibits data from being unprotected (i.e., stored without anonymisation), privacy from

being disrespected (i.e., personal data being stored) and data being processed unfairly (i.e., personal

data being stored without an agent’s consent).

– State S1 - a number of the EU-CFR’s prohibitions are violated:

– Violation of the CFR’s prohibition on regulations not being controlled by an independent

authority (meaning, compliance with the EU-CFR’s data protection rights must be observable

by an independent authority, such as by ensuring data is retained within the EU). The EU-DRD

Automated Multi-level Governance Compliance Checking 39

S9

requestData(ada, isp, bertrand): cfr, drd, drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

15) dataStorageLocation(isp, australia): drr

16) – is(ada, suspect) : drd, drr

S10

closeInvestigation(charles, ada): drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) – dataStorageLocation(isp, australia): drr

S11

changeDataStorageLocation(isp, newzeland):

drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) + dataStorageLocation(isp, newzealand):

drr

Fig. 7 (cont.)

obliges the UK-DRR to oblige ada’s communications’ metadata is stored. According to the

EU-CFR obliging storing data (of any type) counts-as data being processed, hence an obligation

to oblige storing metadata is abstracted to an obligation to process data, which is abstracted

further to processing data. The EU-CFR views processing data without a prohibition on it being

stored outside of the EU counting-as regulations not being controlled by an independent authority.

Hence, the prohibition on regulations being uncontrolled by an independent authority is violated.

– Violation of the CFR’s prohibition on unfair data processing. The EU-CFR interprets storing

metadata as storing personal data, thus it determines that there is an abstract obligation to oblige

personal data is stored. In the EU-CFR, storing personal data in the context that an agent has not

consented counts-as non-consensual data processing (nonConsensualDataProcessing(ada)).

Thus the EU-CFR determines that there is an obligation to oblige non-consensual data processing

of ada’s data. According the EU-CFR an obligation to store data non-consensually counts-as

unfair data processing, hence an obligation to oblige non-consensual data processing is abstracted

to an obligation to process data unfairly. An obligation to process data unfairly in turn, counts-as

unfair data processing (i.e., from the perspective of the EU-CFR it does not matter if data is

actually processed unfairly or just obliged, both are unfair data processing). This causes the

EU-CFR’s prohibition on processing data unfairly to be violated.

– Violation of the CFR’s prohibition on disrespecting privacy. The obligation to oblige storing

metadata imposed by the EU-DRD is abstracted to an obligation to oblige storing personal data.

In the EU-CFR obliging storing personal data counts-as the non-inertial fluent for privacy to be

disrespected. Hence, obliging an obligation to store personal data is further abstracted to obliging

privacy is disrespected which also counts-as simply disrespecting privacy. Hence the EU-CFR’s

prohibition on disrespecting privacy is violated.

– Violation of the CFR’s prohibition on data being unprotected. The obliges an obligation for

Ada’s metadata to be stored (according to the an obligation to oblige personal data to be stored)

even in the context that it is not anonymised. The EU-CFR views an obligation to oblige storing

personal data as being the same thing as processing data, which in the context that the data is

Automated Multi-level Governance Compliance Checking 40

S12

unauthoriseDataStorageLocation(bertrand,

newzealand): drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):

drr

15) + pro(storeDataIn(newzealand), never):

cfr, drd, drr

S13

unauthoriseDataStorageLocation(bertrand,

noneu): drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):

drr

15) pro(storeDataIn(newzealand), never): cfr,

drd, drr

16) + pro(storeDataIn(noneu), never): cfr,

drd, drr

S14

requestData(charles, isp, bertrand): cfr, drd,

drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):

drr

15) – pro(storeDataIn(newzealand), never):

cfr, drd, drr

16) pro(storeDataIn(noneu), never): cfr, drd,

drr

Fig. 7 (cont.)

not anonymised is abstractly the same thing as data being unprotected. Hence, the EU-CFR’s

prohibition on data being unprotected is violated.

Each violated prohibition in the EU-CFR is initiated in the next state.

– States S2 and S3 contain nothing of interest from the perspective of the EU-CFR. In the transition to

state S4 Ada consents to her personal data being stored.

– State S4 contains a fluent stating Ada has consented to her personal data being stored.

– State S5 also contains prohibitions in the EU-CFR which are violated by the EU-DRD, as in state S1,

with one difference:

– The CFR’s prohibition on data being processed unfairly is not violated. The EU-DRD, from

the perspective of the EU-CFR, obliges an obligation to store personal data. However, since

Ada has consented the obligation to oblige personal data being stored is not abstracted to an

obligation to oblige non-consensual data processing and not subsequently abstracted to ‘unfair

data processing’. Hence, in state S5, unlike in state S2 the EU-CFR’s prohibition on unfair data

processing is not violated since the context is different (Ada has consented to her data being

stored). Meanwhile, the rest of the EU-CFR’s prohibitions are violated (for the second time).

– Subsequent states are less interesting to the cfr, however it is important to note that in the final

state S17 there is no violation of the EU-CFR’s prohibition on regulations not being controlled by an

independent authority (within the EU), since there is now a prohibition on storing data in non-EU

countries. Hence, the context change caused by Bertrand prohibiting data storage outside of the EU

results in different compliance effects.

From this case study we can see the UK-DRR is compliant with the EU-DRD (i.e., the UK’s legislation

correctly implements the directive). On the other hand, the EU’s data retention directive is non-compliant

Automated Multi-level Governance Compliance Checking 41

S15

authoriseDataStorageLocation(bertrand,

newzealand): drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):

drr

15) pro(storeDataIn(noneu), never): cfr, drd,

drr

S16

openInvestigation(charles, bertrand): drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):

drr

15) pro(storeDataIn(noneu), never): cfr, drd,

drr

16) + is(bertrand, suspect): drd, drr

S17

requestData(charles, isp, bertrand): cfr, drd,

drr

1) is(charles, lawEnforcement): drd, drr

is(bertrand, dataregulationbody): drr

is(bertrand, suspect): drr

2) obl(provideData(isp, charles, ada), time(

m1)): drd, drr

3) obl(provideData(isp, charles, ada),

undue delay): drd

4) pro(dataUnprotected(ada, isp,

voicerecording; personal), never): cfr

5) pro(privacyDisrespected, never): cfr

6) pro(storeData(isp, ada, content), never):

cfr, drd, drr

7) pro(uncontrolByIndepAuth, never): cfr

8) pro(unfairDataProcessing(ada), never):

cfr

9) consentedDataProcessing(ada, isp,

personal; voicerecording; emailsubject):

cfr

10) obl(deleteData(isp, ada, metadata), time(

m13)): drd, drr

11) pro(deleteData(isp, ada, metadata), time(

m12)): drd, drr

12) ensure data retention period(ada, isp,

metadata, m6, m24): drd from 10 and

11

13) pro(storeData(isp, ada, emailbody;

textmessage), never): cfr, drd, drr

14) dataStorageLocation(isp, newzealand):

drr

15) pro(storeDataIn(noneu), never): cfr, drd,

drr

16) + obl(provideData(isp, charles, bertrand),

time(m1)): cfr, drd, drr

17) + from 16 obl(provideData(isp,

charles, bertrand), undue delay): drd

Fig. 7 (cont.)

with the EU-CFR. In particular, the EU-DRD was found to be non-compliant in a particular social context

with particular prohibitions issued by the EU-CFR. In different contexts the same prohibitions might

not be violated. As we saw in the context that Ada had consented to her personal data being processed,

the directive did not the violate the prohibition on unfair data processing. This is because the directive’s

normative fluents were not interpreted by the charter as more abstractly counting-as unfair data processing.

Hence, whether there is compliance depends on the context, which determines the abstract meaning of

normative fluents.

5.5 Computational Framework Soundness and Completeness

We now demonstrate that the computational framework provides an executable implementation of the

formal framework. This is with theorems stating the computational framework is sound and complete

with respect to the formal framework (proofs are provided in Appendix C). We begin by packaging, for

convenience, the AnsProlog programs of the computational framework, given in Appendix B, into a single

AnsProlog program Π
ML(k).

Definition 18 Multi-level Governance AnsProlog Program LetML = 〈T ,R〉 be a multi-level gov-

ernance institution. Let ctr be a composite trace for ML of length n. Let Π
insts and Π

abstr be the

institutional and deontic abstraction programs obtained for ML. Let, Π
trace(n) be the trace program

obtained for ctr and let Π
base(n) be a multi-level governance base program. A multi-level governance

institution AnsProlog program forML and a composite trace ctr is:

Π
ML(n) = Π

base(n)∪Π
trace(n)∪Π

abstr∪Π
insts

Automated Multi-level Governance Compliance Checking 42

We now give the soundness property for the deontic abstraction representation in AnsProlog with

respect to the formal definition of deontological counts-as. In doing so, we demonstrate that we have

provided a transformation that flattens the deontological counts-as function described in the formal

framework to an executable set of AnsProlog rules. The property states that a state in the answer-set for a

multi-level governance answer-set program is equivalent to the same state in the formal model for the

formal framework with the deontological counts-as function DC
i

applied.

Lemma 1 LetML = 〈T ,R〉 be a multi-level governance institution s.t. T = 〈I1, ...,In〉, and ctr be

a composite trace of length k. Let ∀i ∈ [1,n] Ini be a unique label for I i. Let Π
ML(k) be the multi-

level governance AnsProlog program for ML and ctr. Let MP be an answer-set for the program

P∗ = ground(ΠML(k)). Given a set Si
j such that

∀i ∈ [1,m],∀ j ∈ [k] : MP |= holdsat(f , Ini, j)⇒ f ∈ Si
j

then Si
j = DC

i
(Si

j).

Proof. See Appendix C.1.

The next property we are interested in is soundness for the translation to an AnsProlog program as a

whole. Specifically, the property states any answer-set for a multi-level governance AnsProlog program for

a given trace of events corresponds to a multi-level governance institution model in the formal framework

for the same trace of events.

Theorem 1 (Soundness) Given a multi-level governance institutionML = 〈T ,R〉 s.t. T = 〈I1, ...,In〉.
Let ctr = 〈e0, ...,ek〉 be a composite trace forML. Let Π

ML(k) be the multi-level governance AnsProlog

program forML and ctr. Let ∀i ∈ [1,n] : stri = 〈sei
0, ...,sei

k〉 be a synchronised trace for I i w.r.t. ctr.

Let MP be an answer-set for the program P∗ = ground(ΠML(k)). Then M = 〈M1, ...,Mn〉 with ∀i ∈ [n] :

Mi = 〈Si,E i〉,Si = 〈Si
0, ...,S

i
k+1〉,E

i = 〈E i
0, ...,E

i
k〉 such that:

∀h ∈ [1,n],∀ j ∈ [k], : MP |= holdsat(f , Inh, j)⇒ f ∈ Sh
j (T1.1)

∀h ∈ [1,n],∀ j ∈ [k],∀e 6= null : MP |= occurred(e, Inh, j)⇒ e ∈ Eh
j (T1.2)

∀h ∈ [1,n],∀ j ∈ [k] : MP |= occurred(null, Inh, j)⇒ enull ∈ Eh
j (T1.3)

is the model ofML w.r.t. ctr.

Proof. See Appendix C.2.

The next property we are interested in is completeness. This states that for any model of a multi-

level governance institution in the formal framework, for a trace of events, the multi-level governance

AnsProlog program produces a corresponding answer-set for the same trace of events.

Theorem 2 (Completeness) Given a multi-level governance institutionML= 〈T ,R〉 s.t. T = 〈I1, ...,In〉.
Let ctr = 〈e0, ...,ek〉 be a composite trace forML. Let ∀i ∈ [1,n] : stri = 〈stri

0, ...,stri
k〉 be a synchronised

trace for I i w.r.t. ctr. Let M = 〈M1, ...,Mn〉 be the multi-level governance institution modelML w.r.t.

ctr where ∀i ∈ [1,n] : Mi = 〈Si,E i〉,Si = 〈Si
0, ...,S

i
k+1〉,E

i = 〈E i
0, ...,E

i
k〉. Let Π

ML(k) be the multi-level

Automated Multi-level Governance Compliance Checking 43

structure AnsProlog program forML and a composite trace ctr. Let MP be the set of atoms:

∀i ∈ [1,n],∀ j ∈ [k+1] : Si
j |= f ⇒MP |= holdsat(f , Ini, j) (T2.1)

∀i ∈ [1,n],∀ j ∈ [k] : e ∈ E i
j⇒MP |= occurred(e, Ini, j) (T2.2)

∀i ∈ [1,n],∀ j ∈ [1,k] : f ∈ (S j\S j−1)∩F
i
inert⇒MP |= initiated(f , Ini, j−1) (T2.3)

∀i ∈ [1,n],∀ j ∈ [1,k] : f ∈ (Si
j\S

i
j+1)∩F

i
inert⇒MP |= terminated(f , Ini, j+1) (T2.4)

∀i ∈ [1,n],∀ j ∈ [k] : e = ctr j⇒MP |= observed(e, Ini, j),

MP |= observed(e, j),

MP |= obs(j) (T2.5)

∀i ∈ [1,n],∀ j ∈ [k] : e = stri
j 6= enull⇒MP |= occurred(e, Ini, j) (T2.6)

∀i ∈ [1,n],∀ j ∈ [k] : enull = stri
j⇒MP |= occurred(null, Ini, j) (T2.7)

∀i ∈ [1,n],∀e ∈ E i
obs : MP |= evtype(e, Ini,ex) (T2.8)

∀i ∈ [1,n],∀e ∈ E i
inst : MP |= evtype(e, Ini,inst) (T2.9)

∀i ∈ [1,n],∀ f ∈ F i
inert : MP |= ifluent(f, Ini) (T2.10)

∀i ∈ [1,n],∀ f ∈ F i
ninert : MP |= nifluent(f, Ini) (T2.11)

∀i ∈ [1,n] : MP |= inst(Ini) (T2.12)

∀i ∈ [k] : MP |= instant(i) (T2.13)

MP |= start(0) (T2.14)

∀i, j ∈ [k] : j = i+1⇒MP |= next(i, j) (T2.15)

MP |= final(k) (T2.16)

Then, MP is an answer set of P∗ = ground(ΠML(k)).

Proof. See Appendix C.3.

This concludes the demonstration of the soundness and completeness of the formal and computational

frameworks, with respect to each other.

5.6 Computational Framework Complexity

The question remains over the computational framework’s complexity. There are three concerns surround-

ing an ASP program’s complexity relevant to our case. Firstly, the program grounding complexity, which

we measure as the worst-case growth in size of a ground program for a given input of institutions in a

multi-level governance relationship represented in the formal framework. The growth in size as a function

of institutions represented in the formal framework also accounts for any growth due to performing the

transformation from the formal framework’s institutional representation to an ASP program. Secondly,

the answer-set computation complexity, which we measure in terms of how many literals need to be tested

for inclusion in an answer-set as a function of the institutions in a multi-level governance relationship

represented in the formal framework. Thirdly, the number of answer-sets to compute. Assuming the

institutions are self-consistent then there will be at most one answer-set if a full event trace is provided as

input. If a full event trace is not provided but the institutions are self-consistent, then for a given number of

events |E | and number of undefined events in the trace m there is a combinatorial explosion of answer-sets

|E |m. If the institutions are not self-consistent then there are potentially zero, one or more formal models

and as a corollary of the soundness and completeness theorems the same number of answer-sets. However,

Automated Multi-level Governance Compliance Checking 44

as far as we are aware there is no feasible way to give a general analysis of the number of answer-sets for

the inconsistent institution design case, since they are dependent on the resulting ASP program’s structure.

Hence, we refer the interested reader to dynamic programming algorithms for the tricky problem of

counting answer-sets a-priori [24]. Consequently, we focus on complexity in terms of program size and

computing literal inclusion in an answer-set which can be determined together (i.e., grounding complexity

is given by the growth from the input to the resulting program size, and the resulting program size gives a

worst-case for computing one answer-set).

We give the ground program size for a multi-level governance institutionML as a function of, for

each institution I i: the number of events and fluents, and the sum of rules and their sizes (i.e., the size

of each rule is its context condition size plus two for the input and output event/fluent). The number of

events is denoted as |E i| and non-normative domain and empowerment fluents respectively as |F i
dom| and

|F i
pow|. It is important to note that higher-order norms have a more detrimental effect on complexity than

first-order norms. Hence, we also delineate between the number of normative fluents of a particular order

such that F i
norm(a:d) denotes the set of normative fluents, for I i, that have the order of complexity (nesting)

a for the aim and d for the deadline. For example, F i
norm(1:1) contains all of the first-order normative

fluents, F i
norm(2:1) contains all of the second-order normative fluents where a first-order normative fluent

is the aim and an event or domain fluent is the deadline, and so on. For rules, we mean specifically the

number and size of: state consequence rules for fluent initiation and termination (|C i|), event generation

rules (|G i|) captured by the event generation function, and fluent derivation rules (|Di|) captured by the

fluent derivation function.

An upper-bound on the size of the ground AnsProlog program (i.e., the number of ground facts, and

the sum of ground rules and their sizes) for a multi-level governance institutionML and composite trace

of length k, denoted as |ground(ΠML(‖))|, is given below.

|ground(ΠML(k))| ≤

(
[1,n]

∑
i

1+ |E i|+ |F i
dom|+ |F

i
pow|

)

+

(
[1,n]

∑
i

[0,k]

∑
j

|C i|+ |G i|+ |Di|
)

+

(
[1,n]

∑
i

[0,k]

∑
j

N

∑
a,d

2a+d×|Fnorm(a:d)|×2
)

+

(
[1,n]

∑
i

[0,k]

∑
j

N

∑
a,d

|G i|× |Fnorm(a:d)|+ |D
i|× |Fnorm(a:d)|

)

The first line is the number of facts in the ground ASP program representing each institution’s name,

events and non-normative fluents. The second line is the size and number of each institution’s rules

for each point in time in the ground ASP program. The third line is the number of rules for computing

equivalences between norms and their size (one head and one body literal). The fourth line represents

the worst-case number and size of rules that abstract normative fluents (note that it assumes the set of

normative fluents only contains obligations, since there are many more rules for abstracting obligations

than prohibitions and thus it represents the worst-case complexity). In summary the biggest impact on

program size is the complexity order of normative fluents, which require rules capturing normative fluent

equivalences and thus causing the ground program size to grow exponentially.

6 Related Work

This paper builds on our previous work for reasoning about what we called multi-tier institutions

in [49, 52] (which in turn built on preliminary work by King et al. [50]). In our prior work higher-

Automated Multi-level Governance Compliance Checking 45

tier institutions govern lower-tier institutions, which we extended in this paper to representing and

reasoning about multi-level governance. In turn, our work is influenced by the InstAL framework [13]

for institutional reasoning. Our framework bears the most similarity to other computational-focussed

institutional reasoning frameworks, hierarchical governance and higher-order normative reasoning, and

work on norm abstraction. We compare our work with each of these individual aspects in the literature.

However, we find no work that combines higher-order normative reasoning and abstraction, as required

for multi-level governance reasoning, or provides an obvious way to combine the two.

6.1 Institutional Reasoning and Verification

There have been many different approaches proposed to reason about institutions, normative systems and

organisations which we split into three broad types. Firstly, those proposing a high-level institution speci-

fication language (e.g., [61, 62, 19]) for institution designers to precisely specify an institution’s software

implementation. Secondly, those proposing or studying formal logics of norms and other institutional

rules (e.g., [10, 16, 63, 39, 41, 75]). Thirdly, those contributing frameworks for formally representing and

reasoning about institutions and normative systems, with an aim for practical implementations using an

algorithmic or logic-programming based approach (e.g., [12, 13, 46, 54, 35, 36]). Our work most closely

relates to the latter practical frameworks, which we discuss in more detail.

The most closely related framework, on which we build, is the Institutional Action Language (InstAL)

first proposed by Cliffe et al. [13, 12]. Li et al. have made developments on InstAL for detecting conflicts

between norms [56], in particular in interacting institutions [55] and cooperating institutions [54]. In

the work of Li et al. institutions are linked with special bridge institutions such that events occurring in

one institution can cause events to occur in another institution and likewise for fluents being initiated or

terminated. Such bridge institutions have a similar role to our links between different levelled institutions,

but can be flexibly defined to ensure specific fluents are initiated in one institution by another. In our

framework, we do not require such flexibility since we only need to capture multi-level governance

relationships where regulatory effects are passed between institutions.

Further developments on InstAL were realised by Pieters et al. [65, 66] for reasoning about institutions

as a means to police and enforce security policies. In their work, Pieters et al. [65, 66] extend InstAL

with rules for non-inertial fluents that (in our own words) state “when context C holds then so does fluent

B”. These bear similarity to our fluent derivation rules of the form “fluent A counts-as (derives) fluent B

in context C”. But, in our case we view fluent derivation rules as firstly ascribing a special meaning to

a concrete fluent ‘A’ (hence they have a different form) and secondly serving as a basis for abstracting

normative fluents. Using a variant of Searle’s money example [70], in our framework a counts-as rule

might state “possessing a piece of paper marked with a Euro symbol counts-as (derives) possessing money

in the context of the Eurozone”, hence if it holds that such a piece of paper is possessed in the context

of the Eurozone, then it also holds that money is possessed. In the framework of Pieters et al. [65, 66]

the same rule would be “in the context of possessing a piece of paper marked with a Euro symbol in the

Eurozone then money is also possessed”. In the former case it is clearly possessing the piece of paper

that has the status symbol of possessing money, hence in the context of the Eurozone we can derive from

an obligation to possess that piece of paper another obligation to possess money. In the latter case, it is

not clear what, exactly, possessing money is. In this case, we cannot clearly derive that an obligation to

possess the right piece of paper counts-as an obligation to possess money, because it is not explicit that

the paper constitutes money. Hence in comparison to [65, 66] our rules for ascribing non-inertial fluents

are counts-as rules in the usual sense for the reason that it enables us to derive relations between concrete

and abstract normative fluents.

Finally, our work in this paper also extends our previous work, which was loosely based on InstAL

[49, 52], for reasoning about multi-tier institutions and higher-order norms. The main differences between

all of these developments and this paper is that we have extended InstAL for representation and reasoning

about multi-level governance. In more detail, there are differences in reasoning about permissive societies

Automated Multi-level Governance Compliance Checking 46

InstAL

[13, 12]

Li et al.

[55, 56, 54]

Pieters et al.

[65, 66]

King et al.

[49, 52]
This paper

Individual Institutions

Empowerment

Bridged vs. Linked Institutions B L

Non-Inertial vs. Fluent Derivation rules NI D

Permissive Society

Instantaneous and Indefinite Norms

Higher-order Normative Reasoning

Norm Abstraction

Table 7: Comparison between closely related developments on InstAL.

(where anything not prohibited is permitted), instantaneous and indefinite norms, bridged versus linked

institutions, non-inertial fluent rules versus fluent derivation rules, and our main focus in this paper:

combining higher-order normative reasoning and norm abstraction. We summarise all of these differences

in Table 7.

Work that addresses reasoning about artificial societies or events and their effects bears resemblance

where similar techniques, such as the Event Calculus [53], are used. A series of papers by Artikis (et.

al.) uses Event Calculus-based reasoning to capture MAS’ normative dimension based on the events that

occur and consequently fluents that hold, or to determine the events occurring in the MAS themselves.

In [6, 7] Artikis et al. formerly use the Event Calculus and latterly the C+ language in a similar fashion

to our proposal. That is, in order to reason about the same core institutional concepts we adopt: deontic

positions, empowerment and counts-as rules. Whilst we adopt a generic notion of empowerment that

applies to events and can be applied to events that (presumably) denote agent actions, Artikis et al. offer

an empowerment fluent that specifically applies to agents. In the latter case where Artikis et al. use C+
as their foundational logic, the institutional language is richer in some ways compared to our proposal.

For example, both defaults (e.g., that by default everyone is empowerment to make a payment) and

constraints on performing actions can be expressed. In principle, the expressiveness of Artikis et al. could

be incorporated into our proposal, where ours differs significantly in aims (institutions governing other

institutional designs, where compliance is verified for supplied or generated event traces).

Social commitments (e.g., contracts, promises) have also been formalised [15, 43, 77] with ‘lifecycle’

elements not present in our notion of norms, such as the creation and deletion of the commitment/rule

(e.g., through an utterance) which in turn imposes obligations in particular circumstances. Higher-order

commitments are grammatical in some commitment-focused approaches (e.g., [43, 77]) but they do not

coincide with our notion of higher-order norms, as we now explain. In our case, a higher-order norm

represents a statement such as ‘if event A occurs then it is obliged that the outcome of your rules does not

oblige B in context C’. On the other hand, nested commitments represent statements such as ‘you have

promised to me that you will not create a commitment rule stating that when A occurs there is an obligation

to do B in context C’. In the case of commitments, the nesting is really a promise to (not) make a certain

commitment rule. Whilst in our case the nesting in a higher-order norm represents that there should (not)

be certain obligations and prohibitions imposed from any normative rule, regardless of their form, in

specified contexts. Moreover, in our case, the higher and first-order obligations and prohibitions may have

more abstract meanings which need to be determined through interpretation. Consequently, commitments

and nested commitments, come from a fundamentally different perspective and are not aligned with

our formalisation of regulations that govern other regulations nor do they capture norm/commitment

abstraction.

Another practical institutional reasoning approach is temporal defeasible deontic logic. Defeasible

logic is a non-monotonic logic designed to be implemented in Prolog [4, 64]. There are three rule types

in many defeasible logics, strict rules (→) whose conclusion is true so long as the antecedent is true,

Automated Multi-level Governance Compliance Checking 47

defeasible rules (⇒) whose conclusion is true when the antecedent is true unless the rule is rebutted or

undercut by another rule, and defeating rules () whose conclusion is never true but if the antecedent

is true rebuts or undercuts other rules that have a contradictory consequent or antecedent (respectively).

A defeasible logic often comprises a proof procedure where rule conclusions are tested for whether

they are true by first asserting them as an argument, then finding all counter-arguments by applying

defeating rules, and then recursively counter-attacking all attacks with further arguments, terminating

thanks to constraints on non-repeatability of arguments (e.g., [69]). Defeasible temporal deontic logics

formalised by Governatori et al. [35, 36] extend defeasible logic with rule types and proof procedures

for obligations and temporalised outcomes. In these proposals various legal concepts are formalised,

including constitutive rules and norms. But as far as we know there have been no developments on

these approaches towards norms governing norms and/or norm abstraction, such as for reasoning about

compliance in multi-level governance.

6.2 Hierarchical Governance and Governing Regulations

There appears to be little literature on hierarchical governance and the regulation of regulations. In [61]

López y López and Luck propose a framework for reasoning about norms governing agents, created

from a top-down governance perspective. Their framework, based on the Z specification language,

gives a precise specification language of a normative system/institution. In comparison, our framework

comprises a specification language and operationalisation (semantics) for institutions operating in multi-

level governance. Like our framework, theirs offers similar expressivity with temporal norms, rewards,

punishments, etcetera. In particular López y Lopez and Luck formalize what they call legislative norms,

which are special norms governing the act of norm changes in the sense of making it possible to amend

norms. This still presents a substantial difference to the method of hierarchical governance and regulation

governing regulations that we propose, since we use higher-order norms that govern the outcome of other

norms from which (non-)compliance is determined (typically pre-runtime). López y López and Luck’s

legislative norms on the other hand govern the changes to the norms (rules) themselves.

Boella and van der Torre [10] offer a conceptual formalisation of hierarchical normative systems in the

Input/Output Logic (a logic aimed at studying conditional norms [63]). In particular, they focus on the role

of permissions in hierarchical normative systems, where permissions are issued by higher authorities (e.g.,

existing in higher level institutions) and act to derogate (except) obligations to the contrary (prohibitions)

issued by lower level authorities. Their work is similar to ours with respect to governance hierarchies,

but at the same time quite different in that they are not concerned with the regulation of regulations and

non-compliant regulatory outcomes or a corresponding computational framework.

Lopes Cardoso and Oliveira [57, 58] focus on norms applied to different levels of what they call

context hierarchies. In their work institutions share concepts with our own formalisation, comprising

descriptive rules that create institutional facts and norms that create deontic positions. What differentiates

their work from our own is the idea that a norm can defeat another if it is applied to a lower-level context

and there is a normative conflict. In this sense, the more specific norms (i.e., applied to a narrower

context) are preferred in a similar vein to the lex specialis principle. In this way, agents are able to interact

according to a super-contract that applies in the top-most context and through this super-contract inherit

new norms in new sub-contractual relationships applied to more specific lower-level context as deemed

appropriate for a given social interaction. In contrast with our work, a semantics of abstraction is not

defined and instead the focus is on defeasibility based on context application.

Garcı́a-Camino et al. [29] also investigate hierarchical normative structures. In this case, where there

are hierarchical relations between activities and their constituent sub-activities. For example, ‘trading’

is an activity that has the sub-activity ‘auction’. In this hierarchical setting, activities are governed by

norms and so are their sub-activities. The central problem Garcı́a-Camino et al. investigate is not norms at

higher-levels governing those at lower-levels, but instead the possibility for conflicts to occur between

Automated Multi-level Governance Compliance Checking 48

norms in activities that are propagated down to their sub-activities. Garcı́a-Camino et al. propose a conflict

resolution mechanism to address this issue.

6.3 Abstracting Norms

There has already been a reduction of Standard Deontic Logic [76] to a logic of counts-as conditionals

representing evaluative norms [2], colloquially known as ‘Anderson’s reduction’ (as studied in [42, 38]).

For example, ‘B counts-as a violation in a context C’. Following this idea, Aldewereld et al. [1] propose

implemented reasoning for concretising abstract norms. This is done by representing abstract norms as

counts-as statements such as ‘B counts-as a violation in a context C’ and so B is forbidden in C. Then,

making use of the fact that more concrete concepts count-as more abstract concepts (e.g., ‘A counts-as B

in context C’). Finally, applying transitivity to concretise abstract norms (e.g., ‘A counts-as a violation in

context C’, since A counts-as B and B counts-as a violation). Alderwereld et al. provide a computational

approach to the normative reasoning with a rule-based computational language. The same warning against

this approach for multi-level governance that we make in the background on the governance concepts

(Section 2), applies to what differentiates it from our work. Specifically, that in our approach we can

represent higher-order norms simpler, such as ‘it is prohibited to oblige a user’s metdata to be stored in

the context that they have not consented”. That is, when compared to the more complicated representation

required using Anderson’s reduction, such as “(storing metadata counts-as being good in a context C)

counts-as being bad if context C is somehow compatible with the user not consenting”. Specifically, by

ignoring deontic modalities it is difficult to describe and reason about higher-order norms. Although

concretisation of norms is possible, higher-order normative reasoning (regulation governing regulations)

is not and neither is the abstraction of higher-order norms.

A description-logic based formalisation for reasoning about abstract institutional concepts is also

proposed by Grossi et al. [40]. Unlike our work, Grossi et al. do not propose abstraction of norms

themselves (in fact, they propose concretising concepts), since normative reasoning is not considered.

Rather, they offer guidance on how normative reasoning can be incorporated, either by the reduction of

norms to counts-as, which like us they acknowledge does neither supports nesting of deontic modalities

nor higher-order norms. They also offer an alternative path to normative reasoning that involves the

use of explicit deontic modalities (the same approach we adopt). However, this part of their proposal

is not formalised. Furthermore, our work still differs in that we are interested in abstracting rather than

concretising norms in a temporal-like setting.

In comparison, a series of papers by Fornara and Colombetti [26], Fornara [25] and Fornara, Okouya

and Colombetti [27] combine the semantic-web focussed description logic OWL2DL with normative

reasoning. In their proposal, obligations are about events with a time-indexed deadline. Time is not

integrated within the underlying logic, rather it is reasoned about using an external process that adds facts

to the knowledge-base (e.g., that an action has occurred, time has passed, etc.). Like our proposal and

many others, the deadline of an obligation occurring before the aim triggers violations and potentially

causes punishing obligations to be imposed. In comparison to the work of Grossi et al. they do explicitly

look at representing and reasoning about norms in description logic but do not aim to reason about the

relationship between concrete and abstract concepts or the concretisation/abstraction of norms. The same

differences apply when compared to our own work with the additional difference that we do not restrict

norms to being about events. Rather, in our proposal normative fluents can be higher-order and about

events or other fluents.

Criado et al. [14] look at agent reasoning for fulfilling agent desires about abstract institutional

concepts. Such desires may come about due to the presence of regulative norms (e.g., an obligation to be

married), but their focus is on the concretisation of these abstract institutional concepts (e.g., if an agent

wants to get married, what are the brute facts that need to be realised?). In relation to our work, Criado

et al. also view counts-as, as providing interpretive rules in which abstract institutional concepts can be

reasoned about. However, they do not explicitly look at how to transform abstract norms into concrete

Automated Multi-level Governance Compliance Checking 49

ones, or as we do concrete (higher-order) norms into abstract ones to check compliance. Rather, their

focus is on the interpretation of the abstract concepts in order to fulfil agents’ desires.

Related to our abstraction of temporal norms Lopes Cardoso and Oliveira propose reasoning and

monitoring for norms with flexible deadlines [59, 60]. In their proposal, the idea is that deadlines in

contractual norms are not always strict, but instead one party can violate a deadline (e.g., to deliver

goods) whilst the counter-party may be okay to waive the violation if the obligation is discharged within a

reasonable time after its violation (e.g., if the goods being delivered are more important than the sanction

for the misdemeanour). In contrast, our proposed semantics re-interprets temporal norms by abstracting

the constituent aim and deadline in the contexts it is applied. To some extent, we investigated temporal

conditions with a flexible meaning, for example where the data-retention regulations required data be

provided on request within a specific time limit and this constituted, according to the ECJ’s interpretation,

an obligation to provide data before any undue delay. Although we look into the idea of ambiguity

surrounding temporal conditions, Lopes Cardoso and Oliveira capture deadlines that can be defeated

under defeasible reasoning at run-time.

To summarise, published work proposing ways to reason about abstract and concrete norms or using

techniques that can be extended to do so is quite different from that which we describe here. Whilst

some work does look at the concretisation of abstract norms, there is apparently no work that looks at

the abstraction of concrete, potentially higher-order, norms. Furthermore, the aforementioned work that

explicitly looks at concretisation is not in a temporal setting. In contrast, our proposal focuses on the

temporal aspects where, as the institutional context evolves, so does the abstract meaning of concrete

norms and thus their compliance with abstract norms at higher governance levels.

6.4 Legal Power and Counts-as Rules

As we discussed previously, the notion of power we adopt differs from that of Jones and Sergot’s [47],

where an action is empowered to be taken if it can be ascribed by constitutive rules. This counts-as based

notion of empowerment has also been used to characterise rule change governance. Whilst in this paper

we focussed on the governance of institution designs, the jurist Hart [44] conceptualised secondary legal

rules that act to make legally possible the institutional action of rule change (e.g., through a majority vote

or physically changing the rule book). Later, Biagoli [9] argued that secondary legal rules are a sub-class

of Searle’s counts-as rules.

Based on these developments, Boella and van der Torre [11] formalised the notion of constitutive rules

that make it possible to legally change rules, which in themselves may also be legally changed. In their

formalisation, Boella and van der Torre focus on legislating games where participants aim to modify rules

for their own purposes in a static setting. Governatori et al. [34, 33] meanwhile adopt a kind of meta-rule

that acts to introduce rule changes into a legal system, in a similar vein to Boella and van der Torre’s

formalisation of Hart’s secondary rules, which legally empower rule change. In Governatori et al.’s work

the focus is on formalising a temporal defeasible logic of rule change and different classes of rule change

(e.g., annulment, abrogation, etc.). Later King et al. [51] and King [48, p.136–154] formalised the legality

of rule change, using counts-as rules, in a temporal setting where the focus was on the legality of rule

change being conditional on hypothetical effects (e.g., whether it would criminalise formerly innocent

people) and whether it would cause a paradox (e.g., a self-modifying rule). These papers capture a kind of

governance of institutional designers or legislators, compared to our formalisation of institutional design

governance by higher-level institutions.

Artikis [5] also formalises a notion of the legal power to change rules (legally). In Artikis’ approach the

Event Calculus is used to specify social protocols comprising familiar institutional concepts to direct and

guide agent interactions at the bottom-most level of the society. Adopting a hierarchical structure, agents

can also dispute and change a protocol according to a meta-protocol specifying the social choice procedure

that must be followed in order for the object-level protocol to be modified in a legally empowered way.

In turn the meta-protocol is also legally modifiable by a meta-meta- protocol and so on. Similar to our

Automated Multi-level Governance Compliance Checking 50

proposal, a governance hierarchy is employed, but unlike our work the focus is not on governing the

outcomes of institutional rules (obliging/prohibiting obligations and prohibitions) nor on abstraction in

multi-level governance. Instead, Artikis’ proposal bears closer resemblance to the aforementioned work

on the legal power to change rules.

7 Conclusions

In this paper we introduced a novel framework for determining compliance in multi-level governance. Our

framework contributes a formal representation and semantics, giving a rigorous account of multi-level

governance compliance independent of any particular implementation. We ensure our proposal is practical

by complementing the formal framework with a corresponding computational framework. We adopt

the usual notion of counts-as between concrete and abstract institutional facts. Based on the counts-as

ontological rules, we semantically defined the abstraction of norms, both first-order and higher-order,

with a semantics of deontological counts-as. In so doing, we proposed a novel semantics for assessing

the different contexts in which norms can be applied and abstracting the normative effects of lower level

institutions based on those contexts, where the abstract meaning evolves as the social context evolves.

Our framework uses this abstracting mechanism to determine if concrete norms in lower-level institutions

are non-compliant with more abstract higher-order norms in higher-level institutions. That is, we gave a

semantics of compliance in multi-level governance.

We assessed our proposal along three fronts. Firstly, with a comprehensive case study based on three-

levelled governance in EU law where abstraction and context-sensitivity are important in determining

non-compliance. Secondly, by proving that the practical implementation in Answer-Set Programming, the

computational framework, is indeed sound and complete with respect to the formal framework. We used

the fact that the formal framework corresponds to the computational framework to implement the proposal

by extending the InstAL compiler, thereby offering users a high-level language to specify institution

designs under multi-levelled governance and the means to automatically determine institutional design

compliance. Thirdly, we analysed the program complexity in terms of its size compared to its input

institution specifications. That is, our framework provides both a rigorous formal foundation for multi-

level governance representation, semantics and compliance checking, and the practical computational

means to automatically determine compliance.

Our approach and the framework we proposed show potential for further development, refinement and

wider application. Firstly, through investigation into the abstraction of temporal normative fluents to non-

temporal normative fluents based on counts-as between temporal formulae. For example, an obligation to

send communications’ metadata before one month counting-as an obligation to send communications’

metadata quickly. In part, such abstraction was not captured by our proposal due to the fact that temporal

formula cannot be said to count-as another (non-)temporal formula (e.g., “A before D counts-as B in

context C”). Consequently, we lacked an ontological rule on which to base a deontological counts-as

between temporal and explicitly non-temporal normative fluents. We foresee that a move to a full temporal

logic is necessary for this kind of abstraction. Further investigation is needed, since using a temporal logic

raises questions such as at which point in time from “A before D counts-as B in context C” we can derive

an institutional fact “B”. Defining answers to such questions in a temporal logic would enable us to apply

the intuitions of deontological counts-as we have set out here to a fully-temporal setting.

Another important future development is extending our semantics to support ontological alignment of

institutions. In our proposal lower level institutions’ regulatory effects were re-interpreted at the abstraction

of higher level institutions. In one sense, this means that lower level institutions’ regulations were aligned

with the abstraction of higher level institutions. For example, obliging the storing of communications

metadata in a lower level institution is abstracted to obliging the storing of personal data in a higher level

institution. However, we assumed that the terms shared by lower and higher level institutions have the

same meaning and are already ontologically aligned, by which we mean storing metadata in the lower

level institution coincides with storing metadata in the higher level institution. Thus, if the lower level

Automated Multi-level Governance Compliance Checking 51

obliges the storing of metadata, and the higher level views the storing of metadata as storing personal

data, then from the higher level institution’s perspective the lower level is obliging that personal data

is stored. The assumption of shared terms being aligned between institutions should be relaxed with a

correct formal treatment in order to compare regulations between institutions.

Another avenue for future work is extending the application of our theoretical work on multi-level

governance in human societies, to artificial societies. We envisage this as an important operationalisation

of two proposals. In what Pitt et al. [67] called polycentric governance, it is argued that in complex

artificial MAS a single one-size-fits-all institution is inadequate, since different localised parts of the

MAS may need different regulations. Therefore, separate lower level institutions should be designed,

appealing to subsidiarity, inline with overarching institutions abstractly prescribing what regulations

should be implemented. Similarly, a design methodology for institutions/organisations governing artificial

MASs has been proposed in the OMNI framework [18]. Here, the design methodology is focussed on a

regulation abstraction hierarchy where at the most abstract level statutes comprising values, objectives and

contexts should be designed, followed by abstract norms implementing these statutes and then concrete

norms implementing the abstract norms. In our framework we showed how constitutive rules provide the

ontological basis for capturing links between concrete and abstract norms an appropriate ontology for an

artificial society. Hence, we foresee our contributions supporting the design of governance for artificial and

socio-technical systems according to the design principles of [18, 67], based on an appropriate ontology

of constitutive rules for an artificial or socio-technical society.

Acknowledgements

We would like to thank the anonymous reviewers of JAAMAS for helping to improve the article. Thomas

C. King would like to thank John R. Searle for the correspondence on substitution-of-identicals which

illuminated some formerly implicit assumptions (now explicit) made in this paper. Thomas C. King was

supported by the SHINE 6 project of TU Delft.

References

1. Huib Aldewereld, Sergio Álvarez-Napagao, Frank Dignum, and Javier Vázquez-Salceda. Mak-

ing Norms Concrete. In Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2010), pages 807–814, 2010. ISBN 978-0-9826571-1-9.

doi:10.1145/1838206.1838314.

2. A. R. Anderson. A reduction of deontic logic to alethic modal logic. Mind, 67(265):100–103, 1958.

ISSN 00264423. doi:10.1093/mind/LXVII.265.100.

3. Giulia Andrighetto, Guido Governatori, Pablo Noriega, and Leendert van der Torre. Normative

Multi-Agent Systems, volume 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013. ISBN

9783939897514.

4. G Antoniou, D Billington, G Governatori, and M J Maher. Representation results for defeasible logic.

ACM Transactions on Computational Logic, 2(2):255–287, 2001.

5. Alexander Artikis. Dynamic Protocols for Open Agent Systems. In 8th International Conference on

Autonomous Agents and Multiagent Systems, pages 97–104, 2009.

6. Alexander Artikis, Jeremy Pitt, and Marek Sergot. Animated specifications of computational societies.

In Proceedings of the first international joint conference on Autonomous Agents and Multiagent

Systems, pages 1053 – 1061, New York, New York, USA, 2002. ACM Press. ISBN 1581134800.

doi:10.1145/545068.545070.

6 http://shine.tudelft.nl

Automated Multi-level Governance Compliance Checking 52

7. Alexander Artikis, Marek Sergot, and Jeremy Pitt. Specifying Electronic Societies with the Causal

Calculator. In Proceedings of the Workshop on Agent Oriented Software Engeneering III (AOSE),

volume LNCS 2585, 2003.

8. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge

University Press, 2003. ISBN 9780511543357. doi:10.1017/CBO9780511543357.

9. Carlo Biagioli. Towards a legal rules functional micro-ontology. In Proceedings of the 1st LegOnt

Workshop on Legal Ontologies, 1997.

10. Guido Boella and Leendert van der Torre. Permissions and obligations in hierarchical normative

systems. In Proceedings of the 9th International Conference on Artificial Intelligence and Law, pages

109–118, 2003. ISBN 1581137478.

11. Guido Boella and Leendert van der Torre. Regulative and Constitutive Norms in Normative Mul-

tiagent Systems. In Proceedings of 9th International Conference on the Principles of Knowledge

Representation and Reasoning (KR’04), pages 255–265. AAAI Press, 2004.

12. Owen Cliffe. Specifying and Analysing Institutions in Multi-Agent Systems Using Answer Set

Programming. PhD thesis, University of Bath, 2007.

13. Owen Cliffe, Marina De Vos, and Julian Padget. Answer Set Programming for Representing and

Reasoning About Virtual Institutions. Computational Logic in Multi-Agent Systems, pages 60–79,

2007.

14. N Criado, E. Argente, P. Noriega, and V. Botti. Reasoning about constitutive norms in BDI agents.

Logic Journal of the IGPL, 22(1):66–93, 2013. ISSN 1367-0751. doi:10.1093/jigpal/jzt035.

15. Mehdi Dastani, Leendert van der Torre, and Neil Yorke-Smith. Commitments and interaction norms

in organisations. Autonomous Agents and Multi-Agent Systems, 31(2):207—-249, 2017. ISSN

1573-7454. doi:10.1007/s10458-015-9321-5.

16. F Dignum. Abstract Norms and Electronic Institutions. In International Workshop on Regulated

Agent-Based Social Systems: Theories and Applications (RASTA’02), pages 93 – 104, 2002.

17. F Dignum, H Weigand, and E Verharen. Meeting the deadline: on the formal specication of temporal

deontic constraints. International Symposium on Methodologies for Intelligent Systems, pages

243–252, 1996.

18. Virginia Dignum, Javier Vázquez-Salceda, and Frank Dignum. OMNI: Introducing Social Structure

, Norms and Ontologies into Agent Organizations. In Programming Multi-Agent Systems, pages

181–198. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-24559-9.

19. Mark D’Inverno, Michael Luck, Pablo Noriega, Juan a. Rodriguez-Aguilar, and Carles Sierra.

Communicating Open Systems. Artificial Intelligence, 186:3146–3150, 2012. ISSN 10450823.

doi:10.1016/j.artint.2012.03.004.

20. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis frontend of the dlv

system. AI Communications, 12(1):99–111, 1999.

21. European Court Reports. C-293/12 Digital Rights Ireland Ltd v Minister for Communications,

Marine and Natural Resources; Minister for Justice, Equality and Law Reform; Commissioner of the

Garda Sı́ochána; Ireland; and The Attorney General and Others. C-594/12 Digital Rights Irela, 2014.

22. European Parliament and the Council of the European Union. Directive 2006/24/EC of the European

Parliament and of the Council of 15 March 2006 on the retention of data generated or processed in

connection with the provision of publicly available electronic communications services or of public

communications netwo, 2006.

23. European Union. Charter of Fundamental Rights of the European Union 2000/C 364/01. Official

Journal of the European Communities, 2000.

24. Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Counting Answer Sets

via Dynamic Programming. Informal Proceedings of the First Workshop on Trends and Applications

of Answer Set Programming, TAASP 2016, Klagenfurt, Austria, September 26, 2016, 2016.

25. N Fornara. Specifying and monitoring obligations in open multiagent systems using semantic web

technology. Semantic Agent Systems, pages 25–45, 2011. doi:10.1007/978-3-642-18308-9 2.

Automated Multi-level Governance Compliance Checking 53

26. N Fornara and M Colombetti. Representation and monitoring of commitments and norms using OWL.

AI Communications, 23(4):341–356, 2010. ISSN 09217126 (ISSN). doi:10.3233/AIC-2010-0478.

27. Nicoletta Fornara, Daniel Okouya, and Marco Colombetti. Using OWL 2 DL for expressing ACL

Content and Semantics. In European Workshop on Multi-Agent Systems, pages 97–113, 2012.

28. Dov Gabbay, John Horty, Xavier Parent, Ron van der Meyden, and Leendert van der Torre, editors.

Handbook of Deontic Logic and Normative Systems vol. 1. 2013.

29. A Garcı́a-Camino, Pablo Noriega, and Juan-Antonio Rodrı́guez-Aguilar. An algorithm for conflict

resolution in regulated compound activities. In Seventh Annual International Workshop Engineering

Societies in the Agents World, pages 193–208, 2006.

30. Martin Gebser, Benjamin Kaufmann, and Roland Kaminski. Potassco: The Potsdam answer set

solving collection. AI Communications, 24(2):107–124, 2011.

31. Michael Gelfond. Answer Sets. Foundations of Artificial Intelligence, 3:285–316, 2008. ISSN

15746526. doi:10.1016/S1574-6526(07)03007-6.

32. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In

Logic Programming: Proceedings of the Fifth International Conference and Symposium, pages 1070

– 1080, 1988.

33. Guido Governatori and Antonino Rotolo. Changing Legal Systems: Legal Abrogations and Annul-

ments in Defeasible Logic. Logic Journal of IGPL, 18:157–194, 2010.

34. Guido Governatori, Monica Palmirani, Regis Riveret, Antonino Rotolo, and Giovanni Sartor. Norm

modifications in defeasible logic. In Legal Knowledge and Information Systems (JURIX 2005), pages

13–22. IOS Press, 2005.

35. Guido Governatori, Antonino Rotolo, and Giovanni Sartor. Temporalised normative positions in

defeasible logic. In Proceedings of the 10th international conference on Artificial intelligence

and law, pages 25 – 34, New York, New York, USA, 2005. ACM Press. ISBN 1595930817.

doi:10.1145/1165485.1165490.

36. Guido Governatori, Joris Hulstijn, and Antonino Rotolo. Characterising deadlines in Temporal Modal

Defeasible Logic. In Proceedings of the 20th Australian Joint Conference on Artificial Intelligence,

pages 486–496, 2007.

37. Davide Grossi. Pushing Anderson’s Envelope: The Modal Logic of Ascription. In 9th International

Conference on Deontic Logic in Computer Science (DEON 2008), pages 263–277, 2008.

38. Davide Grossi. Norms as ascriptions of violations: An analysis in modal logic. Journal of Applied

Logic, 9(2):95–112, 2011. ISSN 15708683. doi:10.1016/j.jal.2010.03.002.

39. Davide Grossi, John-Jules Meyer, and Frank Dignum. Modal logic investigations in the semantics

of counts-as. In Proceedings of the 10th international conference on Artificial intelligence and law

(ICAIL ’05), pages 1–19. ACM, 2005. ISBN 1595930817. doi:10.1145/1165485.1165487.

40. Davide Grossi, Huib Aldewereld, Javier Vázquez-Salceda, and Frank Dignum. Ontological aspects of

the implementation of norms in agent-based electronic institutions. Computational and Mathematical

Organization Theory, 12:251–275, 2006. ISSN 1381298X. doi:10.1007/s10588-006-9546-6.

41. Davide Grossi, John-Jules Ch Meyer, and Frank Dignum. Counts-as: Classification or constitution?

An answer using modal logic. Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 4048 LNAI:115–130, 2006. ISSN

03029743. doi:10.1007/11786849 11.

42. Davide Grossi, J. J Ch Meyer, and Frank Dignum. The many faces of counts-as: A formal

analysis of constitutive rules. Journal of Applied Logic, 6(2):192–217, 2008. ISSN 15708683.

doi:10.1016/j.jal.2007.06.008.

43. A Günay and P Yolum. Detecting conflicts in commitments. Declarative Agent Languages and

Technologies IX, pages 51–66, 2012.

44. Herbert Lionel Adolphus Hart. The Concept of Law. Clarendon Press., Oxford, 1961.

45. Liesbet Hooghe and Gary Marks. Unraveling the central state, but how? Types of multi-level

governance. American political science review, 97(2):233–243, 2003.

Automated Multi-level Governance Compliance Checking 54

46. Jie Jiang. Organizational Compliance: An Agent-based Model for Designing and Evaluating Organi-

zational Interactions. PhD thesis, TU Delft, Delft University of Technology, 2015.

47. Andrew J. I. Jones and Marek Sergot. A Formal Characterisation of Institutionalised Power. Journal

of IGPL, 4(3):427–443, 1996. ISSN 1367-0751. doi:10.1093/jigpal/4.3.427.

48. Thomas C. King. Governing Governance: A Formal Framework for Analysing Institutional

Design and Enactment Governance. PhD thesis, Delft University of Technology, 2016.

doi:10.4233/uuid:82438672-3e8b-477a-a39e-0ce189639e88.

49. Thomas C King, Tingting Li, Marina De Vos, Virginia Dignum, Catholijn M Jonker, Julian Padget,

and M Birna Van Riemsdijk. A Framework for Institutions Governing Institutions. In Proceedings

of the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2015), pages 473–481, Istanbul, Turkey, 2015. International Foundation for Autonomous Agents and

Multiagent Systems.

50. Thomas C King, M Birna Van Riemsdijk, Virginia Dignum, and Catholijn M Jonker. Supporting

Request Acceptance with Use Policies. In Coordination, Organizations, Institutions, and Norms in

Agent Systems X: COIN 2014 International Workshops, COIN@ AAMAS, Paris, France, May 6, 2014,

COIN@ PRICAI, Gold Coast, QLD, Australia, December 4, 2014, Revised Selected Papers, pages

114 – 131. Springer, 2015.

51. Thomas C King, Virginia Dignum, and Catholijn M Jonker. When Do Rule Changes Count-as Legal

Rule Changes? In Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI

2016). Frontiers in Artificial Intelligence and Applications. Vol 285., pages 3 – 11, 2016. ISBN

9781614996729. doi:10.3233/978-1-61499-672-9-3.

52. Thomas C King, Tingting Li, Marina De Vos, Catholijn M Jonker, Julian Padget, and M Birna Van

Riemsdijk. Revising Institutions Governed by Institutions for Compliant Regulations. Coordination,

Organizations, Institutions, and Norms in Agent Systems XI: Lecture Notes in Computer Science, vol

9628. Springer, Cham, 9628:191 – 208, 2016. doi:10.1007/978-3-319-42691-4 11.

53. Robert Kowalski and Marek Sergot. A logic-based calculus of events. New Generation Computing, 4

(1):67–95, 1986.

54. Tingting Li. Normative Conflict Detection and Resolution in Cooperating Institutions. PhD thesis,

University of Bath, 2014.

55. Tingting Li, Tina Balke, Marina De Vos, Julian Padget, and Ken Satoh. Legal Conflict Detection

in Interacting Legal Systems. In 1st International Jurix Doctoral Consortium and Poster Sessions,

JURIX-DoCoPe 2013, in Conjunction with the 26th International Conference on Legal Knowledge

and Information Systems, JURIX 2013, 2013.

56. Tingting Li, Tina Balke, Marina De Vos, Ken Satoh, and Julian Padget. Detecting conflicts in legal

systems. New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, 7856:174 –

189, 2013.

57. Henrique Lopes Cardoso and E Oliveira. Norm defeasibility in an institutional normative frame-

work. In European Conference on AI (ECAI ’08), pages 468 – 473, 2008. ISBN 9781586038915.

doi:10.3233/978-1-58603-891-5-468.

58. Henrique Lopes Cardoso and Eugenio Oliveira. A context-based institutional normative environment.

In Coordination, Organizations, Institutions and Norms in Agent Systems IV, pages 140–155, 2009.

doi:10.1007/978-3-642-00443-8 10.

59. Henrique Lopes Cardoso and Eugénio Oliveira. Monitoring directed obligations with flexible

deadlines: A rule-based approach. In International Workshop on Declarative Agent Languages and

Technologies, pages 77 – 92, Budapest, Hungary, 2010. ISBN 3642113540. doi:10.1007/978-3-642-

11355-0 4.

60. Henrique Lopes Cardoso and Eugénio Oliveira. Directed deadline obligations in agent-based business

contracts. In Coordination, Organization, Institutions and Norms (COIN@AAMAS), volume 6069

LNAI, pages 225–240, 2010. ISBN 3642149618. doi:10.1007/978-3-642-14962-7 15.

61. Fabiola López Y López and Michael Luck. Modelling Norms for Autonomous Agents. In Proceedings

of The Fourth Mexican Conference on Computer Science, pages 238–245. IEEE Computer Society,

Automated Multi-level Governance Compliance Checking 55

2003.

62. Fabiola López y López, Michael Luck, and Mark D’Inverno. A normative framework for agent-based

systems. Computational and Mathematical Organization Theory, 12(2-3):227–250, oct 2006. ISSN

1381-298X. doi:10.1007/s10588-006-9545-7.

63. D Makinson and Leendert van der Torre. What is input/output logic? Trends in Logic, 17:163–174,

2003.

64. Donald Nute. Defeasible logic. In Dov M. Gabbay, C. J. Hogger, and J .A. Robinson, editors,

Handbook of Logic in Artificial Intelligence and Logic Programming, volume 3. Oxford University

Press, 1987. ISBN 978-3-540-00680-0. doi:10.1007/3-540-36524-9 13.

65. W Pieters, Julian Padget, and F Dechesne. Obligations to enforce prohibitions: on the adequacy of

security policies. In Proceedings of the 6th International Conference on Security of Information and

Networks, pages 54–61, 2013. ISBN 9781450324984.

66. W. Pieters, J. Padget, F. Dechesne, V. Dignum, and H. Aldewereld. Effectiveness of qualitative and

quantitative security obligations. Journal of Information Security and Applications, 22:3 – 16, 2015.

ISSN 22142126. doi:10.1016/j.jisa.2014.07.003.

67. Jeremy Pitt and Alexander Artikis. The open agent society: retrospective and prospective views.

Artificial Intelligence and Law, 23(3):241–270, 2015. ISSN 0924-8463. doi:10.1007/s10506-015-

9173-y.

68. Jeremy Pitt and Ada Diaconescu. Structure and Governance of Communities for the Digital Society.

In IEEE International Conference on Autonomic Computing (ICAC), pages 279–284, 2015. ISBN

9781467369718. doi:10.1109/ICAC.2015.62.

69. H Prakken and G Sartor. A dialectical model of assessing conflicting arguments in legal reasoning.

Artificial Intelligence and Law, 4:331–368, 1996.

70. John R. Searle. Speech acts: An essay in the philosophy of language. Cambridge university press,

1969.

71. John R. Searle. Intentionality: An essay in the philosophy of mind. Cambridge university press, 1983.

72. John R. Searle. The Construction of Social Reality. The Free Press, New York, 1995.

73. John R. Searle. What is an institution? Journal of Institutional Economics, 1:1–22, 2005. ISSN

1744-1374. doi:10.1017/S1744137405000020.

74. UK. The Data Retention (EC Directive) Regulations 2009, No. 859, 2009.

75. L van der Torre and Y Tan. The temporal analysis of Chisholm’s paradox. In Proceedings of the

Fifteenth National Conference on Artificial Intelligence (AAAI’98), pages 650–655, 1998.

76. G H von Wright. Deontic logic. Mind, 60(237):1–15, 1951.

77. Pnar Yolum and MP Singh. Reasoning about commitments in the event calculus: An approach

for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence, 42(1-3):

227–253, 2004.

Automated Multi-level Governance Compliance Checking 56

Appendices can be downloaded from http://thomascking.com/JAAMAS_Automated_Multilevel_

Governance_Compliance_Checking/appendices.pdf.

	Introduction
	Governance Concepts
	Approach
	Formal Framework
	Computational Framework
	Related Work
	Conclusions

