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Abstract In multiagent environments, the capability of learning is important for an

agent to behave appropriately in face of unknown opponents and dynamic environ-

ment. From the system designer’s perspective, it is desirable if the agents can learn

to coordinate towards socially optimal outcomes, while also avoiding being exploited

by selfish opponents. To this end, we propose a novel gradient ascent based algorithm

(SA-IGA) which augments the basic gradient-ascent algorithm by incorporating so-

cial awareness into the policy update process. We theoretically analyze the learning

dynamics of SA-IGA using dynamical system theory and SA-IGA is shown to have

linear dynamics for a wide range of games including symmetric games. The learning

dynamics of two representative games (the prisoner’s dilemma game and the coordi-

nation game) are analyzed in details. Based on the idea of SA-IGA, we further pro-

pose a practical multiagent learning algorithm, called SA-PGA, based on Q-learning

update rule. Simulation results show that SA-PGA agent can achieve higher social

welfare than previous social-optimality oriented Conditional Joint Action Learner

(CJAL) and also is robust against individually rational opponents by reaching Nash

equilibrium solutions.
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1 Introduction

In multiagent systems, the ability of learning is important for an agent to adaptively

adjust its behaviors in response to coexisting agents and unknown environments in

order to optimize its performance. Multiagent learning algorithms have received ex-

tensive investigation in the literature, and lots of learning strategies [6,9,18,30] have

been proposed to facilitate coordination among agents.

The multi-agent learning criteria proposed in [8] require that an agent should

be able to converge to a stationary policy against some class of opponents (conver-

gence) and the best-response policy against any stationary opponent (rationality).

If both agents adopt a rational learning strategy in the context of repeated games

and also their strategies converge, then they will converge to a Nash equilibrium of

the stage game. Indeed, convergence to Nash equilibrium has been the most com-

monly accepted goal to pursue in multiagent learning literature. Until now, a number

of gradient-ascent based multiagent learning algorithms [?, 1, 8, 23, 29] have been

sequentially proposed towards converging to Nash equilibrium with improved con-

vergence performance and more relaxed assumptions (less information is required).

Under the same direction, another well-studied family of multiagent learning strate-

gies is based on reinforcement learning (e.g., Q-learning [27]). Representative exam-

ples include distributed Q-learning in cooperative games [15], minimax Q-learning

in zero-sum games [16], Nash Q-learning in general-sum games [14], and other ex-

tensions [9, 17], to name just a few.

1’s payoff

2’s payoff

Agent 2’s actions

C D

Agent 1’s

actions

C 3/3 0/5

D 5/0 1/1

Table 1 The Prisoner’s Dilemma Game

All the aforementioned learning strategies pursue converging to Nash equilibrium

under self-play, however, Nash equilibrium solution may be undesirable in many sce-

narios. One well-known example is the prisoner’s dilemma (PD) game shown in Table

1. By converging to the Nash equilibrium (D,D), both agents obtain the payoff of

1, while they could have obtained a much higher payoff of 3 by coordinating on the

non-equilibrium outcome (C,C). In situations like the PD game, converging to the

socially optimal outcome, i.e., the maximal total reward of all players, under self-

play would be more preferred. To address this issue, one natural modification for a

gradient-ascent learner is to update its policy along the direction of maximizing the

sum of all agents’ expected payoff instead of its own. However, in an open environ-

ment, the agents are usually designed by different parties and may have not the incen-

tive to follow the strategy we design. The above way of updating strategy would be

easily exploited and taken advantage by (equilibrium-driven) self-interested agents.

Thus it would be highly desirable if an agent can converge to socially optimal out-
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comes under self-play and Nash equilibrium against self-interested agents to avoid

being exploited.

In this paper, we propose a new gradient-ascent based algorithm (SA-IGA) which

augments the basic gradient ascent algorithm by incorporating “social awareness”

into the policy update process. Social awareness means that agents try to optimize

social outcomes as well as its own outcome. A SA-IGA agent holds a social attitude

to reflect its socially-aware degree, which can be adjusted adaptively based on the

relative performance between its own and its opponent. A SA-IGA agent seeks to up-

date its policy in the direction of increasing its overall payoff which is defined as the

average of its individual and the social payoff weighted by its socially-aware degree.

We theoretically show that for a wide range of games (e.g., symmetric games), the

dynamics of SA-IGAs under self-play exhibits linear characteristics. For general-sum

games, it may exhibit non-linear dynamics which can still be analyzed numerically.

The learning dynamics of two representative games (the prisoner’s dilemma game

and the coordination game representing symmetric games and asymmetric games,

respectively) are analyzed in details. Like previous theoretical multiagent learning

algorithms, SA-IGA also requires additional assumption of knowing the opponent’s

policy and the game structure.

To relax the above assumption, we then propose a practical gradient ascent based

multiagent learning strategy, called Socially-aware Policy Gradient Ascent (SA-PGA).

SA-PGA relaxes the above assumptions by estimating the performance of its own and

the opponent using Q-learning techniques. We empirically evaluate its performance in

different types of benchmark games and simulation results show that SA-PGA agent

outperforms previous learning strategies in terms of maximizing the social welfare

and Nash product of the agents. Besides, SA-PGA is also shown to be robust against

individually rational opponents and converges to Nash equilibrium solutions.

The remainder of the paper is organized as follows. Section 2 generally reviews

some related works about Gradient Ascent Reinforcement Learning algorithms. Sec-

tion 3 reviews normal-form game and the basic gradient ascent approach. Section 4

introduces the SA-IGA algorithm and analyzes its learning dynamics theoretically.

Section 5 presents the practical multiagent learning algorithm SA-PGA in details. In

Section 6, we extensively evaluate the performance of SA-PGA under various bench-

mark games. Lastly we conclude the paper and point out future directions in Section

7.

2 Related Works

The first gradient ascent multiagent reinforcement learning algorithm is Infinitesimal

Gradient Ascent (IGA [23]), in which each learner updates its policy towards the

gradient direction of its expected payoff. The purpose of IGA is to promote agents

to converge to a particular Nash Equilibrium in a two-player two-action normal-form

game. IGA has been proved that agents will converge to Nash equilibrium or if the

strategies themselves do not converge, then their average payoffs will nevertheless

converge to the average payoffs of Nash equilibrium. Soon after, M. Zinkevich et al.
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[31] propose an algorithm called Generalized Infinitesimal Gradient Ascent(GIGA),

which extends IGA to the game with an arbitrary number of actions.

Both IGA and GIGA can be combined with the Win or Learn Fast (WoLF)

heuristic in order to improve performance in stochastic games (Wolf-IGA [8], Wolf-

GIGA [7]). The intuition behind WoLF principle is that an agent should adapt quickly

when it performs worse than expected, whereas it should maintain the current strat-

egy when it receives payoff better than the expected one. By altering the learning rate

according to the WoLF principle, a rational algorithm can be made convergent. The

shortage of WoLF-IGA or WoLF-GIGA is that these two algorithms require a refer-

ence policy, i.e., they require the estimation of Nash equilibrium strategies and cor-

responding payoffs. To this end, Banerjee et al [4] propose an alternative criterion of

WoLF-IGA, named Policy Dynamics based WoLF(PDWoLF), that can be accurately

computed and guarantees convergence. The Weighted Policy Learner (WPL [1]) is

another variation of IGA that also modulates the learning rate, meanwhile, it does

not require a reference policy. Both of the WoLF and WPL are designed to guarantee

convergence in stochastic repeated games.

Another direction for extending IGA is making improvements from the learning

value functions. Zhang et al [29] propose a gradient-based learning algorithm by

adjusting the expected payoff function of IGA, named Gradient Ascent with Policy

Prediction Algorithm(IGA-PP). The algorithm is designed for games with two agents.

The key idea behind this algorithm is that a player adjusts its strategy in response

to forecasted strategies of the other player, instead of its current ones. It has been

proved that, in two-player, two-action, general-sum matrix games, IGA-PP in self-

play or against IGA would lead players’ strategies to converge to a Nash equilibrium.

Like other MARL algorithms, besides the common assumption, this algorithm also

has additional requirements that a player knows the other players strategy and current

strategy gradient (or payoff matrix) so that it can forecast the other players strategy.

All the aforementioned learning strategies pursue converging to Nash equilibri-

ums. In contrast, in this work, we seek to incorporate the social awareness into GA-

based strategy update and aim at improving the social welfare of the players under

self-play rather than pursuing Nash equilibrium solutions. Meanwhile, individually

rational behavior is employed when playing against a selfish agent. Similar idea of

adaptively behaving differently against different opponents was also employed in pre-

vious algorithms [10,12,17,19]. However, all the existing works focus on maximizing

an agent’s individual payoff against different opponents in different types of games,

but do not directly take into consideration the goal of maximizing social welfare (e.g.,

cooperate in the prisoner’s dilemma game).

3 Background

In this section we introduce the necessary background for our contribution. First,

we gave an overview of the relevant game theory definition. Then a brief review of

gradient ascent based MARL (GA-MARL) algorithm is given.
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3.1 Game theory

Game theory provides a framework for modeling agents’ interaction, which was used

by previous researchers in order to analyze the convergence properties of MARL

algorithms [1, 8, 23, 29]. A game specifies, in a compact and simple manner, how the

payoff of an agent depends on other agents actions. A (normal form) game is defined

by the tuple < N,A1, ..., AN , R1, ..., RN >, where N is the number of players in the

game, Ai is the set of actions available to agent i, and Ri : A1× ...×AN → R is the

reward (payoff) of agent i which is defined as a function of the joint action executed

by all agents. If the game has only two agents, then it is convenient to define their

reward functions as a payoff matrix as follows,

Ri = {r
jk
i }|A1|×|A2|

where i ∈ {1, 2}, j ∈ Aj and k ∈ Ak . Each element r
jk
i in the matrix represents the

payoff received by agent i, if agent i plays action j and its opponent plays action k.

A policy (or a strategy) of an agent i is denoted by πi : Ai → [0, 1], which

maps its actions to a probability. The probability of choosing an action k according

to policy πi is πi(k). A policy is deterministic or pure if the probability of playing

one action is 1 while the probability of playing other actions is 0, (i.e. ∃πi(k) = 1
AND ∀l 6= k, πi(l) = 0), otherwise the policy is stochastic or mixed. The joint

policy of all agents is the collection of individual agents’ policies, which is defined

as π =< π1, ..., πN >. For continence, the joint policy is usually expressed as π =<

πi, π−i >, where π−i is the collection of all policies of agents other than agent i.

The expected payoff of an agent is defined as the reward averaged over the

joint policy. Let A−i = {< a1, ..., aN >: aj ∈ Aj ∧ i 6= j}, if agents fol-

low a joint policy π, then the expected payoff of agent i would be, Vi (π) =
∑

ai∈Ai

∑

a−i∈A−i
πi (ai)π−i (a−i)Ri (ai, a−i), where Ri (ai, a−i) = r

aia−i

i .

The goal of each agent is to find such a policy that maximizes the players expected

payoff. Ideally, we want all agents to reach the equilibrium that maximizes their in-

dividual payoffs. However, when agents do not communicate and/or agents are not

cooperative, reaching a globally optimal equilibrium is not always attainable. An al-

ternative goal is converging to the Nash Equilibrium (NE), which is by definition a

local maximum across agents. A joint strategy is called a Nash Equilibrium (NE),

if no player can get a better expected payoff by changing its current strategy unilater-

ally. Formally, π∗ =
(

π∗
i , π

∗
−i

)

is a NE, iff ∀i∀πi: Vi

(

π∗
i , π

∗
−i

)

≥ Vi

(

πi, π
∗
−i

)

. An

NE is pure if all its constituting policies are pure. Otherwise the NE is called mixed

or stochastic. Any game has at least one Nash equilibrium, but may not have any pure

equilibrium.

Next subsection, we introduce the Gradient Ascent based MARL algorithm (GA-

MARL), together with a brief review of the dynamic analysis of GA-MARL.

3.2 Gradient Ascent (GA) MARL Algorithms

Gradient ascent MARL algorithms (GA-MARL) learn a stochastic policy by directly

following the expected reward gradient. The ability to learn a stochastic policy is
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particularly important when the world is not fully observable or has a competitive

nature. The basic GA-MARL algorithm whose dynamics were analyzed is the In-

finitesimal Gradient Ascent(IGA [23]) . When a game is repeatedly played, an IGA

player updates its strategy towards maximizing its expected payoffs. A player i em-

ploying GA-based algorithms updates its policy towards the direction of its expected

reward gradient, as illustrated by the following equations,

∆π
(t+1)
i ← α

∂Vi

(

π(t)
)

∂πi

(1)

π
(t+1)
i ← Π[0,1]

(

π
(t)
i +∆π

(t+1)
i

)

(2)

where parameter α is the gradient step size, and Π[0,1] is the projection function

mapping the input value to the valid probability range of [0, 1], used to prevent the

gradient moving the strategy out of the valid probability space. Formally, we have,

Π[0,1] (x) = argminz∈[0,1] |x− z| (3)

Singh, Kearns, and Mansour [23] examined the dynamics of using gradient ascent

in two-player, two-action, iterated matrix games. We can represent this problem as

two matrices,

Ri =

[

r11i r12i
r21i r22i

]

, i ∈ {1, 2}

We refer to the joint policy of the two players at time t by the probabilities of

choosing the first action (pt1, p
t
2), where πi = (pti, 1− pti), i ∈ {1, 2} is the policy of

player i. The t notation will be omitted when it does not affect clarity (for example,

when we are considering only one point in time). Then, for the two-player two-action

case, the above way of GA-based updating in Equations 1 and 2 can be simplified as

follows,

p
(t+1)
i ← Π[0,1]

(

p
(t)
i + α

(

uip
(t)
−i + ci

))

(4)

where ui = r11i + r22i − r12i − r21i , ci = r12i − r22i .

In the case of infinitesimal gradient step size (η → 0), the learning dynamics of

the players can be modeled as a system of differential equations, i.e. ṗi = uip−i+ ci,

i ∈ {1, 2}, which can be analyzed using dynamic system theory [11]. It is proved

that the agents will converge to a Nash equilibrium, or if the strategies themselves

do not converge, then their average payoffs will nevertheless converge to the average

payoffs of a Nash equilibrium [23].

Combined with Q-learning [26], researchers propose a practical learning algo-

rithm, i.e. the policy hill-climbing algorithm (PHC) [8], which is a simple extension

of IGA and is shown in Table 1.

The algorithm performs hill-climbing in the space of mixed policies, which is

similar to gradient ascent, but does not require as much knowledge. Q values are

maintained just as in normal Q-learning. In addition the algorithm maintains the cur-

rent mixed policy. The policy is improved by increasing the probability that it selects

the highest valued action according to a learning rate α ∈ (0, 1]. After that, the pol-

icy is mapped back to the valid probability space. This technique, like Q-learning, is
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Algorithm 1 PHC for player i

1: Lets α, β ∈ (0, 1) be learning rates.

2: Initialize,

Qi (a)← 0, πi(a)←
1

|Ai|
.

3: repeat

4: Select action a ∈ Ai according to mixed strategy πi with suitable exploration.

5: Observing reward r. Update Q,

Qi (a)← (1− β)Qi (a) + βr.

6: Update πi according to gradient ascent strategy,

πi (a)← Π[0,1][πi (a) − α], if a 6= argmax
a′∈A

Q (a′),

πi (a)← 1−
∑

a′ 6=a

π (a′), if a = argmax
a′∈A

Q (a′).

7: until the repeated game ends

rational and will converge to an optimal policy if other players are playing stationary

strategies. The algorithm guarantees the Q values will converge to Q∗ (the local op-

timal value of Q) with a suitable exploration policy. π will converge to a policy that

is greedy according to Q, which is converging to Q∗, and therefore will converge to a

best response. PHC is rational and has no limit on the number of agents and actions.

4 Socially-aware Infinitesimal Gradient Ascent (SA-IGA)

In our daily life, people usually do not always behave as a purely individually rational

entity and seek to achieve Nash equilibrium solutions. For example, when two person

subjects play a PD game, reaching mutual cooperation may be observed frequently.

Similar phenomena have also been observed in extensive human-subject based ex-

periments in games such as the Public Goods game [13] and Ultimatum game [2], in

which human subjects are usually found to obtain much higher payoff by mutual co-

operation rather than pursuing Nash equilibrium solutions. If the above phenomenon

is transformed into computational models, it indicates that an agent may not only

update its policy in the direction of maximizing its own payoff, but also take into

consideration other’s payoff. We call this type of agents as socially-aware agents.

In this paper, we incorporate the social awareness into the gradient-ascent based

learning algorithm. In this way, apart from learning to maximizing its individual pay-

off, an agent is also equipped with the social awareness so that it can (1) reach mu-

tually cooperative solutions faced with other socially-aware agents (self-play); (2)

behave in a purely individually rational manner when others are purely rational.

Specifically, for each SA-IGA agent i, it distinguishes two types of expected pay-

offs, namely V idv
i and V soc

i . Payoffs V idv
i (π) and V soc

i (π) represent the individual

and social payoff (the average payoff of all agents) that agent i perceives under the

joint strategy π respectively. The payoff V idv
i (π) follows the same definition as IGA

and the payoff V soc
i (π) is defined as the average of the individual payoffs of all

agents.

V soc
i (π) =

1

N

∑

i

V idv
i (π), (5)
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Each agent i adopts a social attitude wi ∈ [0, 1] to reflect its socially-aware de-

gree. The social attitude intuitively models an agent’s social friendliness degree to-

wards others. Specifically, it is used as the weighting factor to adjust the relative

importance between V idv
i and V soc

i , and agent i’s overall expected payoff is defined

as follows,

V (π) = (1− wi)V
idv
i (π) + wiV

soc
i (π) (6)

Each agent i updates its strategy in the direction of maximizing the value of Vi.

Formally we have,

∆πi ← απ

∂Vi (π)

∂πi

, πi ← Π[0,1] (πi +∆πi) (7)

where parameter απ is the gradient step size of πi. If wi = 0, it means that the agent

seeks to maximize its individual payoff only, which is reduced to the case of tradi-

tional gradient-ascent updating; if wi = 1, it means that the agent seeks to maximize

the sum of the payoffs of both players.

Finally, each agent i’s socially-aware degree is adaptively adjusted in response to

the relative value of V idv
i and V soc

i as follows. During each round, if player i’s own

expected payoff V idv
i exceeds the value of V soc

i , then player i increases its social

attitude wi, (i.e., it becomes more social-friendly because it perceives itself to be

earning more than the average). Conversely, if V idv
i is less than V soc

i , then the agent

tends to care more about its own interest by decreasing the value of wi. Formally,

wt+1
i ← Π[0,1]

(

wt
i + αw

(

V idv
i − V soc

i

))

(8)

where parameter αw is the learning rate of wi.

4.1 Theoretical Modeling and Analysis of SA-IGA

An important aspect of understanding the behavior of a multiagent learning algo-

rithm is theoretically modeling and analyzing its underlying dynamics [6, 20, 25].

In this section, we first show that the learning dynamics of SA-IGA under self-play

can be modeled as a system of differential equations. To simplify analysis, we only

considered two-player-two-action games.

Based on the adjustment rules in Equation (7) and (8), the learning dynamics of a

SA-IGA agent can be modeled as a set of equations in (9). For ease of exposition, we

concentrate on an unconstrained update equations by removing the policy projection

function which does not affect our qualitative analytical results. Any trajectory with

linear (non-linear) characteristic without constraints is still linear (non-linear) when

a boundary is enforced.

∆π
(t+1)
i ← απ

∂Vi

(

π(t)
)

∂πi

∆wt+1
i ← αw(V

idv
i − V soc

i )

π
(t+1)
i ← π

(t)
i +∆π

(t+1)
i

w
(t+1)
i ← w

(t)
i +∆w

(t+1)
i

(9)
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Substituting V idv
i and V soc

i by their definitions (Equations 4 and 5), the learning

dynamics of two SA-IGA agents can be expressed as follows,

∆pt+1
i = αp ·

[(

ui +
u−i − ui

2
wt

i

)

pt−i +
d−i − ci

2
wt

i + ci

]

∆wt+1
i = αw ·

[

(ui − u−i) p
t
ip

t
−i + (ci − d−i) p

t
i + (c−i − di) p

t
−i + ei

]

(10)

where ui = r11i + r22i − r12i − r21i , ci = r12i − r22i ,di = r21i − r22i , and ei = r22i − r22−i

with i ∈ {1, 2}.
As απ → 0 and αw → 0, it is straightforward to show that the above equations

become differential. Thus the unconstrained dynamics of the strategy pair and social

attitudes as a function of time is modeled by the following system of differential

equations:

ṗi =

(

ui +
u−i − ui

2
wi

)

p−i +
d−i − ci

2
wi + ci

ẇi = ε · [(ui − u−i) pip−i + (ci − d−i) pi + (c−i − di) p−i + ei]

(11)

where ε = αw

αp
> 0.

Based on the above theoretical modeling, next we analyze the learning dynamics

of SA-IGA qualitatively as follows.

Theorem 1 SA-IGA has non-linear dynamics when u1 6= u2.

Proof : From differential equations in (11), it is straightforward to verify that the

dynamics of SA-IGA learners are non-linear when u1 6= u2 due to the existence of

w1p2, w2p1 and p1p2 in all equations.

Since SA-IGA’s dynamics are non-linear when u1 6= u2, in general we cannot

obtain a closed-form solution, but we can still resort to solve the equations numer-

ically to obtain useful insight of the system’s dynamics. Moreover, a wide range of

important games fall into the category of u1 = u2, in which the system of equations

become linear. Therefore, it allows us to use dynamic system theory to systematically

analyze the underlying dynamics of SA-IGA.

Theorem 2 SA-IGA has linear dynamics when the game itself is symmetric.

Proof : A two-player two-action symmetric game can be represented in Table 2 in

general. It is obvious to check that it satisfies the constraint of u1 = u2, given that

ui = r11i + r22i − r12i − r21i , i ∈ {1, 2}. Thus the theorem holds.

4.2 Dynamics Analysis of SA-IGA

Previous section mainly analyzed the dynamics of SA-IGA in a qualitative manner.

In this section, we move to provide detailed analysis of SA-IGA’s learning dynamics.

We first summarize a generalized conclusion for symmetric games, and then analysis

symmetric circumstances in two representative games: the Prisoner’s Dilemma game
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1’s payoff

2’s payoff

Agent 2’s actions

action 1 action 2

Agent 1’s

actions

action 1 a/a b/c

action 2 c/b d/d

Table 2 The General Form of a Symmetric Game

and the Symmetric Coordination game. For asymmetric circumstances, because the

complexity of nonlinear problem analysis, we only focus on the general coordination

game (Table 3). Specifically we analyze the SA-IGA’s learning dynamics of those

games by identifying the existing equilibrium points, which provides useful insights

into understanding of SA-IGA’s dynamics.

For symmetric games, we have the following conclusion,

Theorem 3 The dynamics of SA-IGA algorithm under self-play under a symmetric

game have three types of equilibrium points:

1.
{

(0, 0, w∗
1 , w

∗
2)

∣

∣

c−b
2 w∗

i + b − d < 0, w∗
i ∈ [0, 1]

}

;
{

(1, 1, w∗
1 , w

∗
2)

∣

∣

c−b
2 w∗

i + a− c > 0, w∗
i ∈ [0, 1]

}

;

2. {(1, 0, 0, 1) , (0, 1, 1, 0)}, if c > b > d ∧ b+ c > 2a;

{(1, 0, 1, 0) , (0, 1, 0, 1)}, if b > c > a ∧ b+ c > 2d;

3.
{

(p∗, p∗, w∗, w∗)
∣

∣p∗ = b−c
2u w∗ + d−b

u
, p∗, w∗ ∈ [0, 1]

}

,

where u = a + d − b − c. The first and second types of equilibrium points are

stable, while the last is not. We say an equilibrium point is stable if once the strategy

starts ”close enough” to the equilibrium (within a distance δ from it), it will remain

”close enough” to the equilibrium point forever.

Proof : Following the system of differential equations in Equations (11), we can ex-

press the dynamics of SA-IGA in Symmetric game as follows:

ṗi = up−i +
c− b

2
wi + b− d

ẇi = ε (b− c) (pi − p−i)
(12)

where ε = ηw

ηp
> 0,u = a+ d− b− c, i ∈ {1, 2}.

We start with proving the last type of equilibrium points: If there exist an equilib-

rium eq = (p∗1, p
∗
2, w

∗
1 , w

∗
2)

T ∈ (0, 1)4, then we have ṗi (eq) = 0 and ẇi (eq) = 0,

i ∈ {1, 2}. By solving the above equations, we have p∗1 = p∗2 = b−c
2u w∗ + d−b

u
and

w∗ = w∗
1 = w∗

2 . Since p∗1, p
∗
2 ∈ (0, 1), then we have,

0 <
b− c

2u
w∗ +

d− b

u
< 1

Then eq = (p∗1, p
∗
2, w

∗
1 , w

∗
2)

T
is an equilibrium. The stability of eq can be verified

using theories of non-linear dynamics [21]. By expressing the unconstrained update
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differential equations in the form of ẋ = Ax +B, we have

A =









0 u c− b 0
u 0 0 c− b

ε (b− c) ε (c− b) 0 0
ε (c− b) ε (b− c) 0 0









After calculating matrix A’s eigenvalue, then we have λ1 = 0, λ2 = u, λ3 = −u
2 +k

and λ4 = −u
2 − k, where k is a constant. Since there exist an eigenvalue λ > 0, the

equilibrium eq is not stable.

Next we turn to consider cases that equilibriums are in the boundary. In these

cases, we need to put the projection function back. If pi = 0, i ∈ {1, 2}, accord-

ing to the known conditions, we have w c−b
2 w∗

i < d − b. Combined with the un-

constrained update differential equations 12, we have limt→∞ ṗi < 0, then pi re-

mains unchanged. And because p1 = p2 = 0, then for ∀wi ∈ [0, 1], ẇi = 0, then

((0, 0, w∗
1, w

∗
2)) is an equilibrium.

Becausew c−b
2 w∗

i < d−b, there exist a δ > 0, and a set U (eq, δ) =
{

x ∈ [0, 1]4 |

|x− eq| < δ}, that for ∀x ∈ U (eq, δ), limpi
ṗi < 0. Thus p will stabilize on the

point of 0. Also, as limt→0 ẇi = (b− c) limt→0 (p1 − p2) = (b− c) limt→0 (0− 0) =
0, w also stable, and thus the equilibrium eq is stable.

The case that pi = 1, i ∈ {1, 2} can be proved similarly, which is omitted here.

For the case p1 = 1 ∧ p2 = 0, if ((1, 0, w∗
1, w

∗
2)) is an equilibrium, combined

with the unconstrained update differential equations 12, we have ẇ1 = −ẇ2, which

means that wi will keeps changing until w1 = 1 ∧ w2 = 0 or w1 = 0 ∧ w2 = 1. If

((1, 0, 0, 1)) is an equilibrium, then ṗ1 > 0 ∧ ṗ2 < 0 and ẇ1 < 0 ∧ ẇ2 > 0. Take

into Equations 12, we get c > b > d ∧ b + c > 2a. Other case are the same, thus we

it omit here.

The stability of the second type of equilibriums can be proved by the way as the

first type one, which is omitted here.

From Theorem 3, we know that there are three types of equilibriums if both play-

ers play SA-IGA policy, while only the first and second types of equilibrium points

are stable. Besides, all equilibriums of the first two types are pure strategies, i.e., the

probability pi for selecting action 1 for agent i ∈ {1, 2} equals to 1 or 0. Notably,

the range of w (the social attitude) in these three types of equilibriums may be over-

lapped, resulting in that the final convergence of the algorithm also depends on the

value of p. Next we concentrate on details of two representative symmetric games:

the Prisoner’s Dilemma (PD) game and the Symmetric Coordination game.

The Prisoner’s Dilemma (PD) game is a symmetric game whose parameters meet

the conditions: c > a > d > b. Combined with Theorem 3, we have the following

conclusion,

Corollary 1 The dynamics of SA-IGA algorithm under Prisoner’s Dilemma (PD)

game have two types of stable equilibrium points:

1. (0, 0, w∗
1, w

∗
2), if w∗

1 , w
∗
2 < min

{

2(c−a)
c−b

,
2(d−b)
c−b

}

;

2. (1, 1, w∗
1, w

∗
2), if w∗

1 , w
∗
2 > max

{

2(c−a)
c−b

,
2(d−b)
c−b

}

;



12 Chengwei Zhang et al.

Proof : Because the PD game is a symmetric game, we can use conclusions of The-

orem 3 directly. From Theorem 3, we can see that the PD game have two types of

stable equilibrium points:

1.
{

(0, 0, w∗
1 , w

∗
2)

∣

∣

c−b
2 w∗

i + b − d < 0, w∗
i ∈ [0, 1]

}

;
{

(1, 1, w∗
1 , w

∗
2)

∣

∣

c−b
2 w∗

i + a− c > 0, w∗
i ∈ [0, 1]

}

;

2. {(1, 0, 0, 1) , (0, 1, 1, 0)}, if c > b > d ∧ b+ c > 2a;

{(1, 0, 1, 0) , (0, 1, 0, 1)}, if b > c > a ∧ b+ c > 2d;

For the first type of equilibrium, take c > a > d > b into conditions in above

formulas, we have: if w∗
1 , w

∗
2 < min

{

2(c−a)
c−b

,
2(d−b)
c−b

}

, then (0, 0, w∗
1 , w

∗
2) is an

stable equilibrium; else if w∗
1 , w

∗
2 > max

{

2(c−a)
c−b

,
2(d−b)
c−b

}

, then (0, 0, w∗
1 , w

∗
2) is

an stable equilibrium.

For the second type of equilibrium, take c > a > d > b into consideration, we

found that the conditions are in conflict with each other, which means there is no such

type of equilibriums under Prisoner’s Dilemma (PD) game.

Intuitively, for a PD game, from Corollary 1, we know that if both SA-IGA play-

ers are initially sufficiently social-friendly (the value of w is large than a certain

threshold), then they will always converge to mutual cooperation of (C,C). In other

words, given that the value of w exceeds certain threshold, the strategy point of (1, 1)
(or (C,C)) in the strategy space is asymptotically stable. If both players start with a

low socially-aware degree (w is smaller than certain threshold), then they will always

converge to mutual defection of (D,D) eventually. For the rest of cases, there exist

infinite number of equilibrium points in-between the above two extreme cases, all of

which are not stable, which means that the learning dynamic will never converge to

those equilibrium points.

Next we turn to analyze the dynamics of SA-IGA playing the Symmetric Coordi-

nation game. The general form of a Coordination game is shown in Table 3. From the

table, we can see that the Coordination game is asymmetric if any of the following

conditions are met: R 6= r, P 6= p, T 6= t or S 6= s. we analyze a simplified game

first, i.e., the Symmetric Coordination game, the general circumstance of coordina-

tion game will be analyzed later. Similar to the analysis of Theorem 1, we have,

1’s payoff

2’s payoff

Agent 2’s actions

1 2

Agent 1’s

actions

1 R/r S/t

2 T/s P/p

Table 3 The General Form of a Coordination Game (where R > T ∧ P > S and r > t ∧ p > s)

Corollary 2 The dynamics of SA-IGA algorithm under a symmetric coordination

game have two types of stable equilibrium points:
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1. (1, 1, w∗
1, w

∗
2), with T−S

2 w∗
1 > T −R;

2. (0, 0, w∗
1, w

∗
2), with T−S

2 w∗
i < P − S;

where u = R+ P − S − T .

Proof : The proof is the same with Theorem 1, thus we omit it here.

Intuitively, for a Symmetric Coordination game, from Corollary 2, there are two

types of stable equilibrium if players playing SA-IGA policy, which means players

will eventually converging to action (1, 1) or (0, 0), i.e., the Nash equilibriums of

the Symmetric Coordination game. Besides, because the final convergence of the

algorithm depends on the combined effect of p and w, we cannot give a theoretical

conclusion about the condition under which the algorithm will converge to the social

optimal for a symmetric Coordination game. In fact, experimental simulations in the

following section show that the SA-IGA has a higher probability converging to social

optimal.

Now we turn to consider the asymmetric case. As we mentioned before, SA-IGA

under an asymmetric game may have nonlinear dynamics when u1 6= u2, which has

caused great difficulties for theoretical analysis. For this reason, we only analyze the

general Coordination game which is a typical asymmetric game.

Theorem 4 The dynamics of SA-IGA algorithm under a general coordination game

have three types of equilibrium points:

1. (0, 0, w∗
1, w

∗
2), with w∗

1 = 1 ∧ w∗
2 = 0 when P > p > t; w∗

1 = 0 ∧ w∗
2 = 1 when

T < P < p; and
(

t−S
2 w∗

1 < P − S
)

∧
(

T−s
2 w∗

2 < p− s
)

when P = p;

2. (1, 1, w∗
1, w

∗
2), with w∗

1 = 1 ∧ w∗
2 = 0 when R > r > s; w∗

1 = 0 ∧ w∗
2 = 1 when

T < R < r; and
(

T−s
2 w∗

1 < R− T
)

∧
(

S−t
2 w∗

2 < r − t
)

when R = r;

3. (p∗1, p
∗
2, w

∗
1 , w

∗
2), others.

The first and second types of equilibrium points are stable, while the last non-

boundary equilibrium points is not.

Proof : Following the system of differential equations in Equations (11), we can ex-

press the dynamics of SA-IGA in coordination game as follows:

ṗ1 =

(

u1 +
u2 − u1

2
w1

)

p2 +
d2 − c1

2
w1 + c1

ṗ2 =

(

u2 +
u1 − u2

2
w2

)

p1 +
d1 − c2

2
w2 + c2

ẇ1 = ε · [(u1 − u2) p1p1 + (c1 − c2) p1 + (d2 − d1) p2 + e1]

ẇ2 = −ẇ1

(13)

where ε = ηw

ηp
> 0,u1 = R+P − S − T > 0, u2 = r+ p− s− t > 0, c1 = S −P ,

c2 = s− p, d1 = T − P , d2 = t− p, and e1 = P − p. We can see that the dynamic

of coordination game is nonlinear when u1 6= u2. We start with proving the last type

of equilibrium points first:

If there exit a equilibrium eq = (p∗1, p
∗
2, w

∗
1 , w

∗
2)

T ∈ (0, 1)4, then there have

ṗi (eq) = 0 and ẇi (eq) = 0, i ∈ {1, 2}. By linearizing the unconstrained update



14 Chengwei Zhang et al.

differential equations into the form of ẋ = Ax +B in point eq = (p∗1, p
∗
2, w

∗
1 , w

∗
2)

T
,

we have

A =









0 u∗
1 a13 0

u∗
2 0 0 a24

−εa13 εa24 0 0
εa13 −εa24 0 0









where u∗
1 = u1 +

u2−u1

2 w∗
1 and u∗

2 = u2 +
u1−u2

2 w∗
2 , The parameters aij are

represented as functions of p∗1, p
∗
2, w

∗
1 and w∗

2 . Without loss of generality, we set u1 ≥
u2. Because of u1 ≥ u2 > 0, and w∗

1 , w
∗
2 ∈ [0, 1], we have u∗

1 ∈ [u1+u2

2 ,u1] and

u∗
2 ∈ [u2,u1+u2

2 ], which means u∗
1 > u∗

2 > 0.

After calculating matrix A’s eigenvalue in Matlab, we have an eigenvalueλ1 = 0,

an eigenvalue λ2 with its real part Re (λ2) > 0, an eigenvalue λ3 with Re (λ3) < 0
and an eigenvalue λ4 close to 0. Since there exists an eigenvalue λ > 0, the equilib-

rium eq is not stable [21].

Next we turn to prove the first type of equilibrium. In this case, we need to put the

projection function back since we are dealing with boundary cases.

For the case P > p > t, we have V idv
i (eq) > V soc

i (eq), thus ẇr (eq) > 0
and ẇ2 (eq) < 0, which means w1 and w2 will keep w1 = 1 and w2 = 0. Because

ṗ1 (eq) = t−p+S−P
2 < 0 and ṗ2 (eq) = s − p < 0, then pr and pc will keep

pr = 0 and pc = 0. According to the continuity theorem of differential equations

[11], (0, 0, 1, 0) is a stable equilibrium. The case p > P > T can be proved similarly,

which is omitted here.

For the case P = p, we have V idv
i = V soc

i , then ẇ1 (eq) = −ẇ2 (eq) =
ε
(

V idv
1 − V soc

i

)

= 0. Because
(

T−s
2 w∗

2 < p− s
)

, we have ṗ1 = T−s
2 w∗

2+s−p < 0.

Because
(

t−S
2 w∗

1 < P − S
)

, we have ṗ2 = t−S
2 w∗

2 + S − P < 0. According to the

continuity theorem of differential equations, (0, 0, w∗
1, w

∗
2) is a stable equilibrium.

The stability of the second type of equilibrium points can be proved similarly, which

is omitted here.

From Theorem 4, we find that conclusions of Corollary 2 is a special case of The-

orem 4. Note that it can be verified by drawn the symmetry conditions into Theorem

4.

5 A Practical Algorithm

In SA-IGA, each agent needs to know the policy of others and the payoff function,

which are usually not available before a repeated game starts. Based on the idea of

SA-IGA, we relax the above assumptions and propose a practical multiagent learning

algorithm called Socially-Aware Policy Gradient Ascent (SA-PGA). The overall flow

of SA-PGA is shown in Algorithm 2. In SA-PGA, each agent only needs to observe

the payoffs of both agents by the end of each round.

In SA-IGA, we know that agent i’s policy (the probability of selecting each ac-

tion) is updated based on the partial derivative of the expected value Vi, while the

social attitude w is adjusted according to the relative value of V idv
i and V soc

i . Here
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Algorithm 2 SA-PGA for player i

1: Let απ ,αw ∈ (0, 1) and β ∈ (0, 1) be learning rates.

2: Initialize,

Qidv
i (a)← 0, Qsoc

i (a)← 0, Qi (a)← 0,

πi(a)←
1

|Ai|
, wi ← w0.

3: repeat

4: Same as PHC in Step 4 of Table 1.

5: Observing reward r and the average of all agents’ current rewards rall,

Qidv
i (a)← (1− β)Qidv

i (a) + βr,

Qsoc
i (a)← (1− β)Qsoc

i (a) + βrall,

Qi (a)← (1− wi)Qidv
i (a) + wiQ

soc
i (a).

6: Update πi according to gradient ascent strategy, Same as PHC in Step 6 of Table 1.

7: Update wi,

V idv
i =

∑

a∈Ai
πi(a)Qidv

i (a) .

V soc
i =

∑

a∈Ai
πi(a)Qsoc

i (a) .

wi ← Π[0,1][wi + αw

(

V idv
i − V soc

i

)

] .

8: until the repeated game ends

in SA-PGA, we first estimate the value of V idv
i and V soc

i using Q-values, which

are updated based on the immediate payoffs received during repeated interactions.

Specifically, each agent i keeps a record of the Q-value of each action for both its

own and the average of all agents (Qidv
i and Qsoc

i ) (Step 5). Both Q-values are up-

dated following Q-learning update rules accordingly by the end of each round (Step

5). Then the overall Q-value of each agent is calculated as the weighted average of

Qidv
i and Qsoc

i weighted by its social attitude w (Step 5). The policy update strategy

is the same as the Table 1 in Step 6. Finally, the social attitude of agent i is updated

in Step 7. The value of V idv
i and V soc

i are estimated based on its current policy and

Q-values. The updating direction of wi is estimated as the difference between V idv
i

and V soc
i . Note that a SA-PGA player in each interaction needs only to know its own

reward and the average reward of all agents. Knowing the average reward of a group

is a reasonable assumption in many realistic scenarios, such as elections and voting.

6 Experimental Evaluation

This section is divided into three parts. Subsection 6.1 compare SA-IGA and SA-

PGA with simulation in different types of two-agents, two-actions, general-sum games.

Subsection 6.2 presents the experimental results for the 2x2 benchmark games, specif-

ically, performance of converging to the social optimal outcomes and against self-

ish agents. Subsection 6.3 presents the experimental results for games with multiple

agents, i.e. public good game [3].

6.1 Simulation comparison of SA-IGA and SA-PGA

We start the performance evaluation with analyzing the learning performance of SA-

PGA under two-player two-action repeated games. In general a two-player two-action

game can be classified into three categories [24]:
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1. ∃i ∈ {1, 2}, (r11i − r21i )(r12i − r22i ) > 0. In this case, each player has a dominant

strategy and thus the game only has one pure strategy NE.

2. ∀i ∈ {1, 2}, (r11i − r21i )(r12i − r22i ) < 0 and (r111 − r211 )(r212 − r222 ) > 0. In this

case, there are two pure strategy NEs and one mixed strategy NE.

3. ∀i ∈ {1, 2}, (r11i − r21i )(r12i − r22i ) < 0 and (r111 − r211 )(r212 − r222 ) < 0. In this

case, there only exists one one mixed strategy NE.

where r
jk
i is the payoff of player i when player i takes action j while its opponent−i

takes action k. We select one representative game for each category for illustration.

6.1.1 Category 1

For category 1, we consider the PD game as shown in Table 1. In this game, both

players have one dominant strategyD, and (D,D) is the only pure strategy NE, while

there also exists one socially optimal outcome (C,C) under which both players can

obtain higher payoffs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p1

p2

(a) SA-PGA in PD game

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p1

p2

(b) SA-IGA in PD game

Fig. 1 The Learning Dynamics of SA-IGA and SA-PGA in PD game ( w1(0) = w2(0) = 0.85, απ =
αw = 0.001, β = 0.8)

Figure 1(a) show the learning dynamics of the practical SA-PGA algorithm play-

ing the PD game. The x-axis p1 represents player 1’s probability of playing action C

and the y-axis p2 represents player 2’s probability of playing action C. We randomly

selected 20 initial policy points as the starting point for the SA-PGA agents. We can

observe that the SA-PGA agents are able to converge to the mutual cooperation equi-

librium point starting from different initial policies.

Figure 1(b) illustrates the learning dynamics predicted by the theoretical SA-IGA

approach. Similar to the setting in Figure 1(a), the same set of initial policy points

are selected and we plot all the learning curves accordingly. We can see that for

each starting policy point, the learning dynamics predicted from the theoretical SA-

IGA is well consistent with the learning curves from simulation. This indicates that

we can better understand and predict the dynamics of SA-PGA algorithm using its

corresponding theoretical SA-IGA model.



SA-IGA: A Multiagent Reinforcement Learning Method Towards Socially Optimal Outcomes 17

6.1.2 Category 2

For category 2, we consider the CG game as shown in Table 4. In this game, there

exist two pure strategy Nash equilibria (C, C) and (D, D), and both of them are also

socially optimal.

1’s payoff

2’s payoff

Agent 2’s actions

C D

Agent 1’s

actions

C 3/4 0/0

D 0/0 4/3

Table 4 Coordination game (Category 2)
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(a) SA-PGA in CG
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(b) SA-IGA in CG

Fig. 2 The Learning Dynamics of SA-IGA and SA-PGA in coordination game ( w1(0) = w2(0) = 0.85,

απ = αw = 0.001, β = 0.8)

Figure 2(a) illustrates the learning dynamics of the practical SA-PGA algorithm

playing a CG game. The x-axis p1 represents player 1’s probability of playing action

C and the y-axis p2 represents player 2’s probability of playing action C. Similar to

the case of PD game, 20 initial policy points are randomly selected as the starting

points. We can see that the SA-PGA agents can converge to either of the aforemen-

tioned two equilibrium points depending on the initial policies they start with.

Figure 2(b) shows the learning dynamics predicted by the theoretical SA-IGA ap-

proach. Similar to the setting in Figure 2(a), we adopt the same set of 20 initial policy

points for comparison purpose. All the learning curves starting from these 20 pol-

icy points are drawn accordingly. We can observe that for each starting policy point,

the learning dynamics predicted from the theoretical SA-IGA is well consistent with

the learning curves obtained from simulation. Therefore, the theoretical model can

facilitate better understanding and predicting the dynamics of SA-PGA algorithm.
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6.1.3 Category 3

The game we use in Category 3 is shown in Table 5. In this game, there only exists one

mixed strategy Nash equilibrium, while the pure strategy outcome (C,D) is socially

optimal.

1’s payoff

2’s payoff

Agent 2’s actions

C D

Agent 1’s

actions

C 3/2 4/4

D 1/3 5/1

Table 5 An example game of Category 3
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(a) SA-PGA for the game with one mix NE
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(b) SA-IGA for the game with one mix NE

Fig. 3 The Learning Dynamics of SA-IGA and SA-PGA in game with one mix NE ( w1(0) = w2(0) =
0.85, απ = αw = 0.001, β = 0.8)

Figure 3(a) illustrates the learning dynamics of the practical SA-PGA algorithm

playing the game in Table 5. The x-axis p1 and y-axis p2 represent player 1’s proba-

bility of playing action C and player 2’s probability of playing action C respectively.

Similar to the previous cases, 20 initial policy points are randomly selected as the

starting points. From Figure 3(a), we can see that the SA-PGA agents can always

converge to the socially optimal outcome (C,D) no matter where the initial policies

start with.

Figure 3(b) presents the learning dynamics of agents predicted by the theoretical

SA-IGA approach. Similar to the setting in Figure 3(a), we adopt the same set of 20

initial policy points for comparison purpose, and the corresponding learning curves

are drawn accordingly. From Figure 3(b), we can observe that for each starting pol-

icy point, the theoretical SA-IGA model can well predict the simulation results of

SA-PGA algorithm. Therefore, better understanding and insights of the dynamics of

SA-PGA algorithm can be obtained through analyzing its corresponding theoretical

model.
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6.2 Performance in 2× 2 General-sum Games

In this subsection we turn to evaluate the performance of SA-PGA in two-agents, two-

actions, general-sum games. First we implement two previous representative learning

algorithms for comparison: CJAL [5] and WoLF-PHC [8]. We compare their perfor-

mance based on the following two criteria: utilitarian social welfare and Nash social

welfare, which reflect the system-level efficiency of different learning strategies in

terms of the total payoffs received for the agents. Then we evaluate the ability of

SA-PGA against selfish opponents with the same three representative games used in

previous sections.

6.2.1 Comparison of SA-PGA with CJAL and WoLF-PHC

we evaluate the performance of SA-PGA with CJAL [5] and WoLF-PHC [8] in

two-player’s repeated games under self-play. CJAL is selected since this algorithm

is specifically designed to enable agents to achieve mutual cooperation (i.e., maxi-

mizing social welfare) instead of inefficient NE for games like prisoner’s dilemma.

WoLF-PHC is selected as one representative NE-oriented algorithm for baseline com-

parison purpose. For all previous strategies the same parameter settings used in their

original papers are adopted.

Utilitarian Social Welfare Nash Product

SA-PGA (our strategy)

(wr(0) = wc(0) = 0.85)

7.241 ± 0.003 12.706 ± 0.015

CJAL [5] 6.504 ± 0.032 10.887 ± 0.114
WoLF-IGA [8] 6.536 ± 0.004 10.943 ± 0.145

Table 6 Performance comparison with CJAL and WoLF-PHC

We use all possible structurally distinct two-player, two-action conflict games as

a testbed for SA-PGA. In each game, each player ranks the four possible outcomes

from 1 to 4. We use the rank of an outcome as the payoff to that player for any out-

come. We perform the evaluation under 100 randomly generated games with strict

ordinal payoffs. We perform 10,000 interactions for each run and the results are av-

eraged over 20 runs for each game.

We compare their performance based on the the following two criteria: utilitarian

social welfare (USW) and Nash social welfare (NSW). Utilitarian social welfare is the

sum of the payoffs obtained by the two players in their converged state, while Nash

social welfare is the product of the payoffs obtained by two players in their converged

state. Formally, USW =V1+V2 and NSW = V1V2, where V1 and V2 are payoffs

obtained by the two players in their converged state, averaged over 100 randomly

generated games. Both criteria reflect the system-level efficiency of different learning

strategies in terms of the total payoffs received for the agents. Besides, Nash social

welfare also partially reflects the fairness in terms of how equal the agents’ payoffs

are. The overall comparison results are summarized in Table 6. We can see that SA-
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PGA outperforms the previous CJAL strategy and WoLF-PHC strategy under both

criteria.

6.2.2 Performance Against Selfish Agents
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Fig. 4 SA-PGA against a selfish agent for in PD game(wr(0) = 1, pr(0) = 0.2 and pc(0) = 0.8)
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Fig. 5 SA-PGA against a selfish agent for in coordination game(wr(0) = 1, pr(0) = 0.2 and pc(0) =
0.8)

If a learning agent is facing selfish agents that attempt to exploit others, one rea-

sonable choice for an effective algorithm is to learn a Nash equilibrium. In this sec-

tion, we evaluate the ability of SA-PGA against selfish opponents. We adopt the same

three representative games used in previous sections as the testbed and the results are

given in Figure 4, 5 and 6 respectively. We can observe that for the PD and coor-

dination games, the SA-PGA agent can successfully achieve the corresponding NE

solution. This property is desirable since it prevents the SA-PGA agent from being

taken advantage by selfish opponents. The results also show how the socially-aware

degree w of SA-PGA agent changes, which varies depending on the game struc-

ture. For PD and coordination game, a SA-PGA agent eventually behaves as a purely

individually rational entity and one pure strategy NE is eventually converged to. In
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Fig. 6 SA-PGA against a selfish agent for the game with only one mix NE(wr(0) = 1, pr(0) = 0.2 and

pc(0) = 0.8)

contrast, for the third type of game (Table 5), a SA-PGA agent behaves as a purely so-

cially rational agent and cooperate with the selfish agent towards the socially optimal

outcome (C,D) without fully exploiting the opponent. This indicates the cleverness

of SA-PGA since higher individual payoff can be achieved under the outcome (C, D)

than pursuing Nash equilibrium (C,C).

6.3 Performance in games with multiple agents

We use Public Goods Game (PGG) [3] to further evaluate the performance of SA-

PGA in multiple agent cases. PGG is an extended version of the PD game in mul-

tiagent environment, which has attracted increasing attention to study cooperative

behavior and, in particular, deviations from the rational equilibrium [22,28]. In a typ-

ical public goods experiment a group of players is endowed with one dollar each. The

players then have the opportunity to invest their money into a common pool, knowing

that the total amount will be doubled and split equally among all players, irrespective

of their contributions. If everybody invests their money, they end up with two dollars.

However, each player faces the temptation to free-ride on others’ contributions by

withholding the money because each invested dollar yields only a return of 50 cents.

If everybody adopts this rational strategy, no one would increase the initial capital

and forego the public good. The payoffs for cooperators RC and defectors RD in a

group of N interacting individuals are then given by,

RD =
rNCc

N
,RC = RD − c

where r denotes the multiplication factor of the public good, NC the number of

cooperators in the group and c the cost of the cooperative contributions, i.e. each

agent’s investment in the public good. From the definition, the defect action, i.e.,

the action of not contributing to the public, is the dominate strategy because RD >

RC . The Nash equilibrium of all PGG players is that everyone chooses to defect,

while the social optimal outcomes strategy of PGG is that everyone contributes the

the public. We evaluate the performance of SA-PGA in PGG repeated games with

three players under three circumstance: 1) games with three SA-PGA players, and
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2) games with two SA-PGA player and one selfish opponent, and 3) games with one

SA-PGA player and two selfish opponents. Without lose of generality, all players’

initial policies p(0) of each game are settled to 0.5. Other parameters such as r and c

in the three experiments are exactly the same, r = 2, c = 2.
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Fig. 7 The Learning Dynamics of SA-PGA in PGG with three SA-PGA players (απ = αw = 0.001,

β = 0.8, pi(0) = 0.5 and wi(0) = 0.85)
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Fig. 8 The Learning Dynamics of SA-PGA in PGG with two SA-PGA players and one selfish opponents

(απ = αw = 0.001, β = 0.8, pi(0) = 0.5 and w1(0) = w2(0) = 0.85)

Figure 7 shows the learning dynamics of PGG games with three SA-PGA players.

The y-axis p represents the probability of playing action C, i.e. the cooperate action,

while the x-axis t is the timeline. Each line in Figure 7 shows the learning dynamic

of one player’s strategy. We can observe that the SA-PGA agents are able to converge

to the mutual cooperation equilibrium point giving the initial value of w(0) large

enough (here we set w = 0.85).

Figure 8 shows the learning dynamics of PGG games with two SA-PGA players

and one selfish opponent, while Figure 9 shows the learning dynamics of PGG games

with one SA-PGA player and two selfish opponents. The y-axis p&w represents the

probability of strategy p and the socially-aware degree w. The solid lines are learning

dynamics of players’ strategies, and dotted lines are learning dynamics of SA-PGA

players’ socially-aware degrees. From Figure 8 and 9, we can observe that agents
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Fig. 9 The Learning Dynamics of SA-PGA in PGG with one SA-PGA players and two selfish opponents

(απ = αw = 0.001, β = 0.8, pi(0) = 0.5 and w1(0) = 0.85)

initially tends to cooperate with others and later realizes that the other agents are not

cooperating, thus converging to the pure strategy D eventually behaves as a purely

individually rational entity. This property is desirable since it prevents the SA-PGA

agent from being taken advantage by selfish opponents.

7 Conclusion

In this paper, we proposed a novel way of incorporating social awareness into tra-

ditional gradient-ascent algorithm to facilitate reaching mutually beneficial solutions

(e.g., (C, C) in PD game). We first present a theoretical gradient-ascent based policy

updating approach (SA-IGA) and analyzed its learning dynamics using dynamical

system theory. For PD games, we show that mutual cooperation (C,C) is stable equi-

librium point as long as both agents are strongly socially-aware. For Coordination

games, either of the Nash equilibria (C,C) and (D,D) can be a stable equilibrium point

depending on the agents’ socially-aware degrees. Following that, we proposed a prac-

tical learning algorithm SA-PGA relaxing the impractical assumptions of SA-IGA.

Experimental results show that a SA-PGA agent can achieve higher social welfare

than previous algorithms under self-play and also is robust against individually ra-

tional opponents. As future work, more testbed scenarios (e.g., population of agents)

will be applied to further evaluate the performance of SA-PGA. Another interesting

direction is to investigate how to further improve the convergence rate of SA-PGA.
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