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Abstract This paper introduces the Crossmodal Attentive Skill Learner (CASL),
integrated with the recently-introduced Asynchronous Advantage Option-Critic
(A2OC) architecture [16] to enable hierarchical reinforcement learning across
multiple sensory inputs. Agents trained using our approach learn to attend to their
various sensory modalities (e.g., audio, video) at the appropriate moments, thereby
executing actions based on multiple sensory streams without reliance on supervisory
data. We demonstrate empirically that the sensory attention mechanism anticipates
and identifies useful latent features, while filtering irrelevant sensor modalities
during execution. Further, we provide concrete examples in which the approach
not only improves performance in a single task, but accelerates transfer to new
tasks. We modify the Arcade Learning Environment (ALE) [8] to support audio
queries1, and conduct evaluations of crossmodal learning in the Atari 2600 games
H.E.R.O. and Amidar. Finally, building on the recent work of Babaeizadeh et al.
[5], we open-source a fast hybrid CPU-GPU implementation of CASL.2
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1 Introduction

Intelligent agents should be capable of using local sensory streams to realize long-
term goals. In recent years, the combined progress of computational capabilities and
algorithmic innovations has afforded reinforcement learning (RL) [42] approaches
the ability to achieve this desiderata in domains with large state-action spaces,
exceeding expert-level human performance in tasks such as Atari and Go [32, 39].
Nonetheless, many of these algorithms thrive primarily in well-defined mission
scenarios learned in isolation from one another; such monolithic approaches are not
sufficiently scalable to missions in which the goals may be less clearly defined and
sensory inputs found salient in one domain may be less relevant than in another.

How should agents learn effectively in domains of high dimensionality, where
tasks are durative, agents receive sparse feedback, and sensors compete for lim-
ited computational resources? One promising avenue is hierarchical reinforcement
learning (HRL), focusing on problem decomposition for learning transferable skills.
Temporal abstraction enables exploitation of domain regularities to provide the
agent hierarchical guidance in the form of options or sub-goals [23, 33, 43]. Op-
tions help agents improve learning by mitigating scalability issues in long-duration
missions, by reducing the effective number of decision epochs. In the parallel field
of supervised learning, temporal dependencies have been captured proficiently
using attention mechanisms applied to encoder-decoder based sequence-to-sequence
models [6, 26]. Attention empowers the learner to focus on the most pertinent
stimuli and capture longer-term correlations in its encoded state, for instance to
conduct neural machine translation or video captioning [46, 47]. Recent works also
show benefits of spatio-temporal attention in RL [31, 40].

One can interpret the temporal abstraction approaches discussed above as
conducting dimensionality reduction on the axis of time. In view of the scalability
benefits afforded by dimensionality reduction, this paper proposes an RL paradigm
exploiting hierarchies in the dimensions of time and sensor modalities. Our approach
enables agents to learn rich skills that attend to and exploit pertinent crossmodal
(multi-sensor) signals at the appropriate moments. The introduced crossmodal
skill learning approach largely benefits an agent learning in a high-dimensional
domain (e.g., a robot equipped with multiple high-dimensional sensors, such as
those yielding audio and video observation streams). Instead of the expensive
operation of processing and/or storing data from all sensors, we demonstrate that
our approach enables such an agent to focus on sensors that are most important.
This, in turn, leads to more efficient use of the agent’s limited computational and
storage resources (e.g., its finite-sized memory).

This paper focuses on combining two sensor modalities: audio and video. While
these modalities have been previously used for supervised learning [34], to our
knowledge they have yet to be exploited for crossmodal skill learning in RL. We
provide concrete examples where the proposed HRL approach not only improves
performance in a single task, but accelerates transfer to new tasks. We demonstrate
the attention mechanism anticipates and identifies useful latent features, while
filtering irrelevant sensor modalities during execution. The attention mechanism also
impacts the gradient computation during training and filters out noisy gradients,
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which results in stabilized learning and increased learning speed. We also show first
ever results in the Arcade Learning Environment with audio-video inputs, where we
modified the environment to support agent audio queries. In addition, we provide
insight into how our model functions internally by analyzing the interactions of
attention and memory. Building on the recent work of Babaeizadeh et al. [5], we
open-source a fast hybrid CPU-GPU implementation of our framework. Finally,
note that despite the focus on audio-video sensors in this paper, the framework
presented is general and readily applicable to other sensory inputs.

2 Related Work

2.1 Multimodal and Crossmodal Learning

Our work is most related to crossmodal learning approaches that take advantage
of multiple input sensor modalities. Fusion of multiple modalities or sources of
information is an active area of research. Works in the diverse domains of sensor
fusion in robotics [13, 27, 36], audio-visual fusion [7, 9, 34, 41], and image-point
cloud fusion [2, 10] have shown that models utilizing multiple modalities tend to
outperform those learned from unimodal inputs.

In general, approaches for multimodal fusion can be broadly classified depending
on the means of integration of the various information sources. Filtering-based frame-
works (e.g., the extended Kalman filter) are widely used to combine multi-sensor
readings in the robotics community [13, 27, 36]. In machine learning, approaches
based on graphical models [7, 9] and conditional random fields [24] have been
used to integrate multimodal features [2, 10]. More recently, deep learning-based
approaches that learn a representations of features across multiple modalities have
been introduced [15, 21, 34, 41].

2.2 Attention

A variety of attentive mechanisms have been considered in recent works, primarily
in application to supervised learning. Temporal attention mechanisms have been
successfully applied to the field of neural machine translation, for instance in
Bahdanau et al. [6] and Luong et al. [26], where encoder-decoder networks work
together to transform one sequence to another. Works also exist in multimodal
attention for machine translation, using video-text inputs [11]. Spatial attention
models over image inputs have also been combined with Deep Recurrent Q-Networks
[17] for RL [40]. Works have also investigated spatially-attentive agents trained via
RL to conduct image classification [4, 31]. As we later demonstrate, the crossmodal
attention-based approach used in this paper enables filtering of irrelevant sensor
modalities, leading to improved learning and more effective use of the agent’s
memory.

2.3 Hierarchical Reinforcement Learning

There exists a large body of HRL literature, targeting both fully and partially-
observable domains. Our work leverages the options framework [43], specifically
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the recent Asynchronous Advantage Option-Critic (A2OC) [16] algorithm, to learn
durative skills. HRL is an increasingly-active field, with a number of recent works
focusing on learning human-understandable and/or intuitive skills. In Andreas
et al. [3], annotated descriptors of policies are used to enable multitask RL using
options. Multitask learning via parameterized skills is also considered in Da Silva
et al. [14], where a classifier and regressor are used to, respectively, identify the
appropriate policy to execute, then map to the appropriate parameters of said policy.
Construction of skill chains is introduced in Konidaris and Barto [22] for learning in
continuous domains. In Machado et al. [28], option discovery is conducted through
eigendecomposition of MDP transition matrices, leading to transferable options
that are agnostic of the task reward function. FeUdal Networks [44] introduce
a two-level hierarchy, where a manager defines sub-goals, and a worker executes
primitive actions to achieve them. A related HRL approach is also introduced in
Kulkarni et al. [23], where sub-goals are hand-crafted by a domain expert. Overall,
the track record of hierarchical approaches for multitask and transfer learning
leads us to use them as a basis for the proposed framework, as our goal is to learn
scalable policies over high-volume input streams.

While the majority of works utilizing multi-sensory and attentive mechanisms
focus on supervised learning, our approach targets RL. Specifically, we introduce
an HRL framework that combines crossmodal learning, attentive mechanisms, and
temporal abstraction to learn durative skills.

3 Background

This section summarizes Partially Observable Markov Decision Processes (POMDPs)
and options, which serve as foundational frameworks for our approach.

3.1 POMDPs

This work considers an agent operating in a partially-observable stochastic environ-
ment, modeled as a POMDP 〈S,A,O, T ,O,R, γ〉 [20]. S, A, and O are, respectively,
the state, action, and observation spaces. At each timestep, the agent executes
action a ∈ A in state s ∈ S, transitions to state s′ ∼ T (s, a, s′), receives obser-
vation o ∼ O(o, s′, a), and reward r = R(s, a). The value of state s under policy
π : Dist(S)→ A is the expected return Vπ(s) = E[

∑T
k=0 γ

kR(st+k, at+k)|st = s],
where Dist(S) denotes the state distribution, st and at denote the state and action
at timestep t, respectively, T is the horizon, and γ ∈ [0, 1) is the discount factor.
The objective is to learn an optimal policy π∗, which maximizes the value.

As POMDP agents only receive noisy observations of the latent state, policy
π typically maps from the agent’s belief (distribution over states) to the next
action. Recent work has introduced Deep Recurrent Q-Networks (DRQNs) [17] for
RL in POMDPs, leveraging recurrent Neural Networks (RNNs) that inherently
maintain an internal state ht ∈ RH to compress input history until timestep t,
where H ∈ N is the dimension of the internal state. Throughout the paper, we give
scalars either lowercase (e.g., st) or uppercase (e.g., H) variable names, column
vectors lowercase names in bold typeface (e.g., ht), and matrices uppercase names
with bold typeface (e.g.,Wm).
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3.2 Options

The framework of options provides an RL agent the ability to plan using temporally-
extended actions [43]. Option ω ∈ Ω is defined by initiation set I ⊆ S, intra-option
policy πω : S→ Dist(A), and termination condition βω : S→ [0, 1], where Dist(A)
denotes the action probability distribution. A policy over options πΩ chooses an
option among those that satisfy the initiation set. The selected option executes
its intra-option policy until termination, upon which a new option is chosen. This
process iterates until the goal state is reached.

Recently, the Asynchronous Advantage Actor-Critic framework (A3C) [30]
has been applied to POMDP learning in a computationally-efficient manner by
combining parallel actor-learners and Long Short-Term Memory (LSTM) cells
[19]. Asynchronous Advantage Option-Critic (A2OC) extends A3C and enables
learning option-value functions, intra-option policies, and termination conditions
in an end-to-end fashion [16]. The option-value function models the value of state
s ∈ S in option ω ∈ Ω,

QΩ(s, ω) =
∑

a

πω(a|s)
(
R(s, a) + γ

∑

s′

T (s′|s, a)U(s′, ω)
)
, (1)

where a ∈ A is a primitive action and U(s′, ω) represents the option utility function,

U(s′, ω) = (1− βω(s′))QΩ(ω, s′) + βω(s′)(VΩ(s′)− c). (2)

A2OC introduces deliberation cost, c, in the utility function to address the issue of
options terminating too frequently. Intuitively, the role of c is to impose an added
penalty when options terminate, enabling regularization of termination frequency.
The value function over options, VΩ , is defined,

VΩ(s′) =
∑

ω

πΩ(ω|s′)QΩ(ω, s′), (3)

where πΩ is the policy over options (e.g., an epsilon-greedy policy over QΩ).
Assuming use of a differentiable representation, option parameters can be learned
using gradient descent. Readers are referred to Harb et al. [16] for more details.

4 Approach

Our goal is to design a mechanism that enables the learner to modulate high-
dimensional sensory inputs, focusing on pertinent stimuli that may lead to more
efficient skill learning. This section presents motivations behind attentive skill
learning, then introduces the proposed framework.

4.1 Attentive Mechanisms

Before presenting the proposed architecture, let us first motivate our interests
towards attentive skill learning. One might argue that the combination of deep
learning and RL already affords agents the representation learning capabilities
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Fig. 1: CASL network architecture enables attention-based learning over multi-
sensory inputs. CASL uses convolutional neural networks (CNNs) to extract sensor
features xt1,xt2, which are then combined with attention αt1, αt2. Finally, LSTM
outputs the option value QtΩ, the intra-option policy πtω, and the termination
condition βtω. Green highlighted region indicates crossmodal attention LSTM cell,
trained via backpropagation through time.

necessary for proficient decision-making in high-dimensional domains; i.e., why the
need for crossmodal attention?

Our ideas are motivated by the studies in behavioral neuroscience that suggest
the interplay of attention and choice bias humans’ value of information during
learning, playing a key factor in solving tasks with high-dimensional information
streams [25]. Research studying learning in the brain also suggest a natural pairing
of attention and hierarchical learning, where domain regularities are embedded as
priors into skills and combined with attention to alleviate the curse of dimensionality
[35]. Other work also suggests attention plays a role in the intrinsic curiosity of
agents during learning, through direction of focus to regions predicted to have high
reward [29], high uncertainty [37], or both [38].

In view of these studies, we conjecture that crossmodal attention, in combination
with HRL, improves representations of relevant environmental features that lead
to superior learning and decision-making. Specifically, using crossmodal attention,
agents combine internal beliefs with external stimuli to more effectively exploit
multiple modes of input features for learning. As we later demonstrate, our approach
captures temporal crossmodal dependencies, and enables faster and more proficient
learning of skills in the domains examined.

4.2 Crossmodal Attentive Skill Learner

We propose Crossmodal Attentive Skill Learner (CASL), a novel framework for
HRL. One may consider many blueprints for integration of multi-sensory attention
into the options framework. Our proposed architecture is primarily motivated
by the literature that taxonomizes attention into two classes: exogeneous and
endogeneous. The former is an involuntary mechanism triggered automatically
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by the inherent saliency of the sensory inputs, whereas the latter is driven by
the intrinsic and possibly long-term goals, intents, and beliefs of the agent [12].
Previous attention-based neural architectures take advantage of both classes, for
instance, to solve natural language processing problems [45]; our approach follows
a similar schema.

The CASL network architecture is visualized in Fig. 1, with pseudocode pre-
sented in Algorithm 1. Let M ∈ N be the number of sensor modalities (e.g., vision,
audio, etc.) and xtm ∈ RXm denote extracted features from the m-th sensor at
timestep t, where m ∈ {1, . . . ,M} and Xm ∈ N is the dimension of the extracted
features. For instance, xtm may correspond to feature outputs of a convolutional
neural network given an image input. Note that we assume the number of extracted
features for each modality is the same (i.e., X1 = X2 = . . . = XM = X). Given
extracted features for all M sensors at timestep t, as well as hidden state ht−1,
the proposed crossmodal attention layer learns the relative importance of each
modality αt ∈ ∆M−1, where ∆M−1 is the (M − 1)-simplex:

zt = tanh
( M∑

m=1

(Wmx
t
m + bm)

︸ ︷︷ ︸
Exogeneous attention

+ Whh
t−1 + bh

︸ ︷︷ ︸
Endogeneous attention

)
, (4)

αt = softmax
(
Wzz

t + bz
)
, (5)

where zt ∈ RZ is the internal embedding feature vector with the dimension
Z ∈ N, weight matricesWm∈ RZ×X ,Wh∈ RZ×H ,Wz∈ RM×Z and bias vectors
bm∈ RZ ,bh∈ RZ ,bz∈ RM are trainable parameters, respectively, and nonlineari-
ties are applied element-wise. Then, the attended feature vector xt⊕ at timestep t
is obtained by two possible options:

xt⊕ =





∑M
m=1 α

t
mx

t
m, (Summed attention)

[
(αt1x

t
1)T , . . . , (αtMx

t
M )T

]T
, (Concatenated attention)

(6)

where αtm ∈ R denotes the relative importance for m-th sensor.
For example, consider Fig. 1, where there are two sensor inputs of image and

audio (M = 2). Assume the extracted feature dimension X of 3872, the LSTM
hidden state dimension H of 16, and the internal embedding feature dimension Z
of 16. Through a post-processing process, such as applying the convolutional neural
network filters, the extracted feature vectors xt1,xt2 ∈ R3872 are obtained, where
xt1 and xt2 denote the extracted features from the image and audio data at timestep
t, respectively. Then, we calculate the attention values αt ∈ R2 through Eqs. (4)
and (5). One possible learned attention values are αt = {αt1, αt2} = {0.75, 0.25},
meaning that the agent should focus on the image data 3 times more than the
audio data at timestep t. Finally, by Eq. (6), the attended feature vector xt⊕ is
calculated.

Both exogeneous attention over sensory features xtm and endogeneous attention
over LSTM hidden state ht−1 are captured in Eq. (4). The sensory feature extractor
used in experiments consists of convolutional layers. Attended features αtmxtm
may be combined via summation or concatenation (Eq. (6)), then fed to an LSTM
cell. The LSTM output captures temporal dependencies used to estimate option
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Algorithm 1 Crossmodal Attentive Skill Learner (CASL)
1: Initialize global step counter T ← 1
2: repeat
3: Initialize episode step counter t← 1
4: repeat
5: Get sensor features at time t: {xt1,xt2, . . . ,xtm}
6: Process attended features xt⊕ using Eq. (6)
7: if t == 1 or Option termination βt−1

ω is True then
8: Get option ωt from policy over options πΩ (see Section 3.2)
9: end if
10: Get primitive action at from intra-option policies πω
11: Execute action at in the environment → Get reward rt
12: Update parameters using A2OC update rules (see Section 3.2 and Harb et al. [16])
13: t← t+ 1
14: T ← T + 1
15: until Episode ends
16: until T > Tmax

values, intra-option policies, and termination conditions (QtΩ , π
t
ω, β

t
ω in Fig. 1,

respectively),

QtΩ(s, ω) =
{
WQh

t + bQ
}
ω
, (7)

πtω(a|s) =
{
softmax(Wπ,ωh

t + bπ,ω)
}
a
, (8)

βtω(s) =
{
σ(Wβh

t + bβ)
}
ω
, (9)

where weight matricesWQ ∈ Rdim(Ω)×H ,Wπ,ω ∈ Rdim(A)×H ,Wβ ∈ Rdim(Ω)×H

and bias vectors bQ ∈ Rdim(Ω),bπ,ω ∈ Rdim(A),bβ ∈ Rdim(Ω) are trainable pa-
rameters for the current option ω, dim(Ω) and dim(A) refer to the dimension of the
option and action space, respectively, and σ(·) is the sigmoid function. Note that
{·}ω and {·}a refer to the values for option ω and action a, respectively. Network
parameters are updated using gradient descent. Entropy regularization of attention
outputs αt was found to encourage exploration of crossmodal attention behaviors
during training. For the hyper-parameter values that we used in our evaluations,
refer to Section 5.6.

5 Evaluation

The proposed framework is evaluated on a variety of learning tasks with inherent
reward sparsity and transition noise. We evaluate our approach in three domains:
a door puzzle domain, a mining domain, and the Arcade Learning Environment
(ALE) [8]. These environments include challenging combinations of reward sparsity
and/or complex audio-video sensory input modalities that may not always be useful
to the agent. The first objective of our experiments is to analyze performance of
CASL in terms of learning rate and transfer learning. The second objective is to
understand relationships between attention and memory mechanisms (as captured
in the LSTM cell state). Finally, we modify ALE to support audio queries and
evaluate crossmodal learning in the Atari 2600 games with long time horizons,
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(a) The agent receives a reward for opening
door 1 with key 1.

(b) The agent receives a reward for opening
door 2 with key 2.

Fig. 2: Door puzzle domain. The agent must pick up the key and then open
the correct door (depending on key color and audio) to receive a reward of +1.
Otherwise, the agent receives a zero reward, making the domain challenging due to
the sparse reward function.

H.E.R.O. and Amidar. Atari games are complex benchmark domains, closer to
real-world settings with long-term environment interactions. Experimental details
are summarized in Section 5.6.

5.1 Crossmodal Learning and Transfer

We first evaluate crossmodal attention in a sequential door puzzle game, where
the agent spawns in a 5× 5 gridworld with two locked doors (door 1 and 2) and a
key at fixed positions. The agent can use four actions (move up, down, right, left ;
dim(A) = 4) to navigate around the domain. The key type (either key 1 or key 2)
is randomly generated, and its observable color indicates the associated door (see
Fig. 2). The agent also hears a sound when adjacent to the key (where the sound
is dependent on key type), and hears noise otherwise. The agent must find and
pick up the key (which then disappears), then find and open the correct door to
receive +1 reward. This is the only situation wherein the agent receives a reward,
making the reward space quite sparse. The game terminates upon the opening of
either door or the timestep exceeds a pre-specified value T .

The agent’s sensory inputs xtm are the grayscale domain images and audio
spectrogram. Note that the audio input is represented visually by converting it
into the spectrogram (see Section 5.6 for details) so that the convolutional filters
can be applied. This task was designed in such a way that audio is not necessary
to achieve the task – the agent can certainly focus on learning a policy mapping
from visual features to open the correct door. However, audio provides potentially
useful signals that may accelerate learning, making this a domain of interest for
analyzing the interplay of attention and sensor modalities.

Attention Improves Learning Rate Figure 3a shows ablative training results for
several network architectures. The three LSTM-based skill learners (including
CASL) converge to the optimal value. Interestingly, the network that ignores audio
inputs (V-O-LSTM) converges faster than its audio-enabled counterpart (V-A-O-
LSTM), indicating the latter is overwhelmed by the extra sensory modality. We
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(a) Door puzzle domain.

(b) Door puzzle transfer learning.

Fig. 3: Ablative analysis demonstrating that CASL improves learning rate com-
pared to other networks. Abbreviations: V: video, A: audio, O: options, FF
feedforward net, LSTM: Long Short-Term Memory net. Mean and 95% confidence
interval computed for 10 independent runs are shown in all figures.

conduct t-tests with p < 0.05 based on the mean and standard deviation (std) of
the area under the learning curve (AUC). Introduction of crossmodal attention
enables CASL to converge faster than all other networks, showing the largest AUC
with statistical significance (e.g., p = 0.0001 against V-O-LSTM and p = 0.0077
against V-A-O-LSTM). The feedforward networks all fail to attain optimal value,
with the non-option cases (V-A-FF and V-FF) repeatedly opening one door due to
lack of memory of key color. Notably, the option-based feedforward nets exploit the
option index to implicitly remember the key color, leading to higher value. Interplay
between explicit memory mechanisms and use of options as pseudo-memory may
be an interesting line of future work.

Attention Accelerates Transfer We also evaluate crossmodal attention for transfer
learning (Fig. 3b), using the more promising option-based networks. The door
puzzle domain is modified to randomize the key position, with pre-trained options
from the fixed-position variant used for initialization. All networks benefit from an
empirical return jumpstart of nearly 0.2 at the beginning of training, due to the skill
transfer. Once again, CASL converges the fastest with statistical significance (e.g.,
p = 0.0017 against V-A-O-LSTM for the t-test with p < 0.05), indicating more
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(a) Example episode of the
door puzzle game. The agent
should open the door 2
(the bottom-left door) corre-
sponding to the lighter key
color.

(b) Option trajectory. The
agent learns two options se-
quentially to complete the
task, first picking up the key,
then navigating to the cor-
rect door.

(c) Option termination. Op-
tion 1 is terminated upon key
pickup, at timestep t = 4.
Option 2 does not terminate
until the agent opens the
door.
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(d) Top and bottom rows show images and audio spectrogram sequences, respectively, in the
door puzzle domain (a). Attention weights αt are plotted in center.

Fig. 4: Visualizations of option trajectories, option termination, and crossmodal
attention. In the example episode shown in (a), the agent should open the door
2. In (b), the agent learns two options, one for picking up the key and the other
for opening the correct door. The option termination in (c) is also sparse and only
happens once for option 1. In (d), the agent uses visual information but also audio
information up to t = 5. After picking up the key, the audio attention becomes
near zero and the agent mostly relies on the visual information to navigate to the
correct door.

effective use of the available audio-video data. While the asymptotic performance
of CASL is only slightly higher than the V-A-O-LSTM network, the reduction in
number of samples needed to achieve a high score (e.g., after 100K episodes) makes
it advantageous for domains with high sampling cost.

Visualizations of Attention-based Option In this section, we visualize the option
trajectories, option terminations, and crossmodal attention to understand the
options learned within CASL. We trained the agent with two options in the
sequential door puzzle game. Recall that the agent in the door puzzle game is
positively rewarded by picking up the key and opening the correct door, depending
on the type of the randomly generated key.
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Fig. 5: An example of attention values during training. Initially, the agent pays
almost the same amount of attention across the two sensors (i.e., αt ≈ {0.5, 0.5}).
Then, the agent explores different attention values during training and converges
to the attention values shown at the train episode of 25K, where the agent focuses
on the audio information when it is near the key (around t = 4).

The option trajectory visualization in Fig. 4b explains what options are learned
with CASL: the option 1 is for navigating to the key whereas option 2 is for opening
the correct door. Related to the option trajectory, Fig. 4c shows that the agent
learned to terminate option 1 and change to option 2 at the moment of picking up
the key. Notably, the option termination is sparse: only option 1 terminates and
the option 2 does not terminate until the agent opens the door. This observation is
consistent with A2OC [16], where the usage of a deliberation cost encourages the
agent to learn temporally-extended options with sparse terminations. A closer look
at the interactions between attention and sensory modalities in Fig. 4d reveals that
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(a) Gold ore should be
mined with the pickaxe.

(b) Iron ore should be mined
with the shovel.

(c) Ore type indistinguish-
able by agent’s visual input.

Fig. 6: Mining domain, where the agent must pick an appropriate tool (pickaxe or
shovel) to mine either (a) gold or (b) iron ore. In its visual input (c), the agent
observes identical grayscale sprites for both ore types, but unique audio features
when near the ore, making long-term audio storage necessary for selecting the
correct tool.

the agent primarily relies on visual information until it reaches the vicinity of the
key (around t = 4), at which point the attention placed on audio signal increases.
Once the key is acquired, audio attention becomes near zero and the agent mostly
relies on the visual information to navigate to the correct door. We hypothesize
that this capability of CASL that decides relative importance of sensory modalities
enables the agent to solve the task using fewer samples than the non-attentive
baselines (Fig. 3).

Attention Visualization During Training We include an example of how the at-
tention values evolve during training to provide more comprehensive insight. In
particular, we visualize the attention values at different train episodes in the door
puzzle domain (see Fig. 5). Initially, the agent pays almost the same amount of
attention across the two sensors (αt ≈ {0.5, 0.5}). Then, the agent explores various
attention values during training, such as the values shown at the train episode of
2K in Fig. 5, where the agent unnecessarily pays much attention to the audio data
even after acquiring the key. At the train episode 5K, the agent begins to notice
that it should focus on the audio information only when it is near the key (around
t = 4), but the attention values are noisy. Finally, the attention values converge to
the attention values shown at the train episode of 25K in Fig. 5.

5.2 Interactions of Attention and Memory

Attention Necessary to Learn in Some Domains Temporal behaviors of the attention
mechanism are also evaluated in a 2D mining domain, where the agent must pick
an appropriate tool (pickaxe or shovel) to mine either gold or iron ore in a 5× 5
gridworld (Figs. 6a to 6c). Critically, the agent observes identical images for both
ore types, but unique audio features when the agent is near the ore, making long-
term audio storage necessary for selection of the correct tool. The agent has four
actions (move up, down, right, left ; dim(A) = 4), and receives +10 reward for
correct tool selection, −10 for incorrect selection, and −1 step cost. The episode
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Fig. 7: In the mining domain, the non-attentive network fails to learn, whereas
the attentive network succeeds. Mean and 95% confidence interval computed for 5
independent runs are shown in all figures.

terminates upon the selection of either tool or the timestep exceeds a pre-specified
value T . Compared to the door puzzle game, the mining domain is posed in such
a way that the interplay between audio-video features is emphasized. Specifically,
an optimal policy for this task must utilize both audio and video features: visual
inputs enable detection of locations of the ore, agent, tools, whereas audio is used
to identify the ore type.

Visual occlusion of the ore type, interplay of audio-video features, and sparse
positive rewards cause the non-attentive network to fail to learn in the mining
domain, as opposed to the attentive case (Fig. 7). Figure 8a plots a sequence of
frames where the agent anticipates salient audio features as it nears the ore at
t = 6, gradually increasing audio attention, then sharply reducing it to 0 after
hearing the signal.

A Closer Look at Attention and Memory While the anticipatory nature of cross-
modal attention in the mining domain is interesting, it also points to additional
lines of investigation regarding interactions of attention and updates of the agent’s
internal belief (as encoded in its LSTM cell state). Specifically, one might wonder
whether it is necessary for the agent to place any attention on the non-useful audio
signals prior to timestep t = 6 in Fig. 8a, and also whether this behavior implies
inefficient usage of its finite-size memory state.

Motivated by the above concerns, we conduct more detailed analysis of the
interplay between the agent’s attention and memory mechanisms as used in the
CASL architecture (Fig. 1). We first provide a brief overview of LSTM networks
to enable more rigorous discussion of these attention-memory interactions. At
timestep t, LSTM cell state ct ∈ RC encodes the agent’s memory given its previous
stream of inputs, where C ∈ N is the cell state dimension. The cell state is updated
as follows,

ft = σ
(
Wf [xt⊕,ht−1] + bf

)
, (10)

it = σ
(
Wi[x

t
⊕,ht−1] + bi

)
, (11)

ct = ft � ct−1 + it � tanh
(
Wc[xt⊕,ht−1] + bc

)
, (12)
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(a) Agent anticipates salient audio features as it nears the ore, increasing audio attention until
t = 6. Audio attention goes to 0 upon storage of ore indicator audio in the LSTM memory.
Top and bottom rows show images and audio spectrogram sequences, respectively. Attention
weights αt plotted in center.
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(b) Average forget gate activation throughout episode. Recall f t = 0 corresponds to complete
forgetting of the previous cell state element.
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(c) Average input gate activation throughout episode. Recall it = 1 corresponds to complete
throughput of the corresponding input element.

Fig. 8: Example interaction of crossmodal attention and LSTM memory in the
mining domain. The agent first approaches the gold ore (located at the bottom
right) to identify the ore type (until t = 6), and then navigates to pick up the
pickaxe (located at the top left). At t = 6, the attended audio input causes forget
gate activation to drop, and the input gate activation to increase, indicating major
overwriting of memory states. Relative contribution of audio to the LSTM forget
and input activations drops to zero after the agent hears the necessary audio signal.

where ft ∈ RC is the forget gate activation vector, it ∈ RC is the input gate acti-
vation vector, ht−1 is the previous hidden state vector, xt⊕ is the attended feature
vector, and � denotes the Hadamard product. WeightsWf ,Wi,Wc ∈ RC×(X+H)

and biases bf ,bi,bc ∈ RC are trainable parameters. The cell state update in
Eq. (12) first forgets certain elements (ft term), and then adds contributions
from new inputs (it term). Note that a forget gate activation of 0 corresponds
to complete forgetting of the previous cell state element, and that an input gate
activation of 1 corresponds to complete throughput of the corresponding input
element.

Our goal is to not only analyze the overall forget/input activations throughout
the gameplay episode, but also to quantify the relative impact of each contributing
variable (audio input, video input, hidden state, and bias term) to the overall
activations. Many methods may be used for analysis of the contribution of explana-
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tory variables in nonlinear models (i.e., Eqs. (10) to (12)). We introduce a means
of quantifying the correlation of each variable with respect to the corresponding
activation function. In the following, we focus on the forget gate activation, but the
same analysis applies to the input gate. First, expanding the definition of forget
gate activation (Eq. (10)) assuming use of concatenated attention (Eq. (6)) yields,

ft = σ
(
[Wf,a,Wf,v,Wf,h,bf ][αaxa, αvxv,ht−1, I]

)
, (13)

where xa and xv are the audio and video input features, respectively, weights
Wf,a,Wf,v ∈ RC×X are the forget gate weights for the audio and video input
features, respectively, and I are is the identity matrix. Define f̂tm as the forget
gate activation if the m-th contributing variable were removed. For example, if
audio input xa were to be removed, then,

f̂ta = σ
(
[Wf,v,Wf,h,bf ][αvxv,ht−1, I]

)
. (14)

Define the forget gate activation residual as f̃ tm = avg(|ft− f̂tm|) (i.e., the average
difference in output resulting from the removal of the m-th contributing variable).
Then, let us define a ‘pseudo correlation’ of the m-th contributing variable with
respect to the true activation,

ρ(f̃ tm) =
f̃ tm∑
a f̃

t
a

. (15)

This provides an approximate quantification of the relative contribution of the m-th
variable (audio input, video input, hidden unit, or bias) to the overall activation of
the forget and input gates.

Armed with this toolset, we now analyze the interplay between attention and
LSTM memory. First, given the sequence of audio-video inputs in Fig. 8a, we plot
overall activations of the forget and input LSTM gates (averaged across all cell
state elements), in Fig. 8b and Fig. 8c, respectively. Critically, these plots also
indicate the relative influence of each gate’s contributing variables to the overall
activation, as measured by Eq. (15).

Interestingly, prior to timestep t = 6, the contribution of audio to the forget
gate and input gates is essentially zero, despite the positive attention on audio (in
Fig. 8a). At t = 6, the forget gate activation drops suddenly, while the input gate
experiences a sudden increase, indicating major overwriting of previous memory
states with new information. The plots indicate that the attended audio input is
the key contributing factor of both behaviors. In Fig. 8a, after the agent hears the
necessary audio signal, it moves attention entirely to video; the contribution of
audio to the forget and input activations also drops to zero. Overall, this analysis
indicates that the agent attends to audio in anticipation of an upcoming pertinent
signal, but chooses not to embed it into memory until the appropriate moment.
Attention filters irrelevant sensor modalities, given the contextual clues provided
by exogeneous and endogeneous input features; it, therefore, enables the LSTM
gates to focus on learning when and how to update the agent’s internal state.
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Fig. 9: Comparisons between the summed and concatenated attention, showing
that the concatenated attention performs slightly better than the summed attention
approach. Mean and 95% confidence interval computed for 5 independent runs are
shown in all figures.

5.3 Summed vs. Concatenated Attention

Equation (6) explains two possible choices for combining the attended features
αtmx

t
m: either by summation xt⊕ =

∑M
m=1 α

t
mx

t
m or by concatenation xt⊕ =

[
(αt1x

t
1)T , . . . , (αtMx

t
M )T

]T . In this section, we conduct an empirical analysis of
these two possibilities, and to clarify, except for this section, all the results in this
paper are based on concatenated attention. Figure 9 compares two versions of CASL
in the mining domain, one with summed attention and the other with concatenated
attention. Interestingly, the t-test result with p < 0.05 based on mean/std of AUC
shows that the concatenated attention has slightly better performance than the
summed attention (p = 0.0383). However, given the comparable performance, one
might prefer the summed attention as it reduces the input size to the LSTM and
thus saves computational resources as compared to the concatenated attention,
whose size increases linearly in the number of sensory modalities.

5.4 The Arcade Learning Environment

Preliminary evaluation of crossmodal attention was also conducted in the Arcade
Learning Environment (ALE) [8]. We modified ALE to support audio queries, as it
previously did not have this feature.

Experiments were conducted in the Atari 2600 games H.E.R.O. and Amidar
(Table 1). This line of investigation considers impacts of crossmodal attention
on Atari agent behavior, even without use of multiple (hierarchical) options;
these results use CASL with a single option, hence tagged “no-options" in the
table.3 Amidar was one of the games in which Deep Q-Networks failed to exceed
human-level performance [32]. The objective in Amidar is to collect rewards in
a rectilinear maze while avoiding patrolling enemies. The agent is rewarded for

3 Note that HRL with a single option is equivalent to a normal RL with primitive actions.
Therefore, a single option CASL corresponds to A3C [30] but with the crossmodal attention
mechanism.
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Table 1: Preliminary results for learning in Atari 2600 games. The crossmodal
attention learner, even without options, achieves high score for non-hierarchical
methods. We emphasize these are not direct comparisons due to our method
leveraging additional sensory inputs, but are meant to highlight the performance
benefits of crossmodal learning.

Algorithm Sensory
Inputs

Amidar
Score

H.E.R.O.
Score

DQN [32] Video 740 19950
A3C [30] Video 284 28766
GA3C [5] Video 218 –
Ours (no options) Audio & Video 900 32985
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Fig. 10: Example interaction of crossmodal attention in Amidar, where pathway
vertices critical for avoiding enemies make an audible sound if not previously crossed.
The agent anticipates and increases audio attention when near these vertices. Top
row shows audio attention over 1000 frames, with audio/video/attention frames
highlighted for zoomed-in region of interest.

painting segments of the maze, killing enemies at opportune moments, or collecting
bonuses. Background audio plays throughout the game, and specific audio signals
play when the agent crosses previously-unseen segment vertices. Figure 10 reveals
that the agent anticipates and increases audio attention when near these critical
vertices, which are especially difficult to observe when the agent sprite is overlapping
them (e.g., zoom into video sequences of Fig. 10).

Our crossmodal attentive agent (no-options) achieves a mean score of 900 in
Amidar, over 30 test runs, outperforming the other non-hierarchical methods. A
similar result is achieved for the game H.E.R.O., where our agent beats other
non-hierarchical agents. Also, our agent trained using 3 options achieved a mean
score of 1175 in Amidar, over 30 test runs. Note that this score is higher than
our CASL agent without options. The score is also higher than our underlying
hierarchical method (A2OC)’s score of 880. We emphasize these are not direct
comparisons due to our method leveraging additional sensory inputs, but are meant
to highlight the performance benefits of crossmodal learning. We also note that
the state-of-the-art hierarchical approach FeUdal [44] beats our agent’s score, the
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future investigation of the combination of audio-video attention with their approach
may be of interest.

5.5 Notes on Scalability

CASL may require a large number of train episodes to converge. We note that
related deep learning approaches, such as GA3C [5], A3C [30], and DQN [32], share
similar computation cost. In general, the computation cost is also affected by the
reward sparsity. Due to the sparse feedback in the door puzzle (Fig. 2) and mining
(Fig. 6) domains, the agent is required to perform a sufficient exploration, making
the domain inherently difficult to solve and resulting in an increased number of
train episodes. Additionally, we train deep neural networks with a large number
of train parameters from scratch for each experiment, resulting in the increased
computation cost. In problems with larger input dimensions and higher problem
complexity, the high computation cost can be mitigated by the use of widely
employed practical methods in deep learning literature. For instance, denser reward
functions can be used to ease the learning complexity and reduce the computation
cost [1]. The time for learning the feature extraction (e.g., CNNs in Fig. 1) can
be also reduced by fine-tuning from pre-trained models instead of learning from
randomly initialized weights [18].

5.6 Experimental Details

We summarize additional details and hyperparameters in our experiments in this
section.

Domains Regarding the sound input in the door puzzle domain, the agent hears the
key-specific sound when adjacent to the key. Specifically, if the Euclidean distance
between the agent and key location is less than 1.5, then the agent hears the sound
dependent on the key type. Otherwise, the agent hears the noise. Similarly, the
agent in the 2D mining domain hears the sound dependent on the ore type if the
Euclidean distance between the agent and ore location is less than 1.5. Otherwise,
the agent hears the noise. Regarding the maximum timestep T , both the door
puzzle and mining domain use T = 30. Additionally, the door puzzle domain has a
transition noise of 0.2 so that the agent moves in a random direction every timestep
with 0.2 probability. Lastly, in ALE, we clip reward values between −1 and 1 to
stabilize learning.

Network Architecture The sensory feature extractor used in all experiments consists
of 3 convolutional layers, each with 32 filters of size 3 × 3, stride 2, and ReLU
activations. The input to each convolutional neural network is a 84× 84 re-scaled,
gray-scale data. The output of the convolutional layers for each sensor is then
flattened, which has the dimension X of 3872. Regarding the LSTM, we use a
single layer LSTM with 16 cells (H = C = 16) in the door puzzle domain, and 128
cells (H = C = 128) in the other domains.
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Audio Conversion The audio sensory data is represented visually so that the
convolutional layers can be applied to extract features. Specifically, given an
audio signal, we convert it into the spectrogram by computing Mel Frequency
Cepstral Coefficients (MFCCs) based on the signal’s sample rate. We use the
default parameters for computing MFCC features (e.g., the window length of
0.025s, window step of 0.01s, cepstrum number of 13, filter number of 26, and
fast Fourier transform size of 512) in the door puzzle and 2D mining domain. For
ALE domains, we use the same parameters, except the window length of 0.01s and
window step of 0.003s with the audio frequency of 30720Hz.

Hyper-Parameters In all experiments, we train the agent with 32 parallel CPU
threads, the discount factor γ of 0.99, either every 5 or 10 timesteps for the
asynchronous update, the entropy regularization of 0.01, the attention regularization
of 0.001, and the Adam optimizer with a learning rate of 0.0001. Regarding the
dimension of the internal embedding feature vector, we use the the same value
of the cell state’s dimension for simplicity (i.e., Z = C). For the option-based
approaches (including CASL), we use 2 options (dim(Ω) = 2) with the deliberation
cost of 0.001, the margin cost of 0.0002, and the option epsilon of 0.15 in the door
puzzle domain, and 3 options (dim(Ω) = 3) with the deliberation cost of 0.03,
the margin cost of 0.0002, and the option epsilon of 0.10 in Amidar (with options
experiment).

6 Contribution

This work introduced the Crossmodal Attentive Skill Learner (CASL), integrated
with the recently-introduced Asynchronous Advantage Option-Critic (A2OC) ar-
chitecture [16] to enable hierarchical reinforcement learning across multiple sensory
inputs. We provided concrete examples where CASL not only improves perfor-
mance in a single task, but accelerates transfer to new tasks. We demonstrated the
learned attention mechanism anticipates and identifies useful sensory features, while
filtering irrelevant sensor modalities during execution. We modified the Arcade
Learning Environment [8] to support audio queries, and evaluations of crossmodal
learning were conducted in the Atari 2600 games H.E.R.O. and Amidar. Finally,
building on the recent work of Babaeizadeh et al. [5], we open-source a fast hybrid
CPU-GPU implementation of CASL. This investigation indicates crossmodal skill
learning as a promising avenue for future works in HRL that target domains with
high-dimensional, multimodal inputs.
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