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Abstract

Control and manipulation are two of the most studied types of attacks on elections.
In this paper, we study the complexity of control attacks on elections in which there
are manipulators. We study both the case where the “chair” who is seeking to control
the election is allied with the manipulators, and the case where the manipulators seek
to thwart the chair. In the latter case, we see that the order of play substantially
influences the complexity. We prove upper bounds, holding over every election system
with a polynomial-time winner problem, for all standard control cases, and some of
these bounds are at the second or third level of the polynomial hierarchy, and we provide
matching lower bounds to prove these tight. Nonetheless, for important natural systems
the complexity can be much lower. We prove that for approval and plurality elections,
the complexity of even competitive clashes between a controller and manipulators falls
far below those high bounds, even as low as polynomial time. Yet for a Borda-voting
case we show that such clashes raise the complexity unless NP = coNP.

1 Introduction

Elections are an important tool in reaching decisions, in both human and online settings.
Regarding online settings, elections have been proposed in such varied, multiagent-systems

∗Supported in part by NSF grants CCF-0915792, CCF-1101452, CCF-1101479, and NSF Graduate Fel-
lowship DGE-1102937. Earlier versions of this paper [FHH13a,FHH14b] were presented at the Twenty-Third
International Joint Conference on Artificial Intelligence and the Fifth International Workshop on Computa-
tional Social Choice.
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settings as planning, recommender systems/collaborative filtering, and web spam reduc-
tion [ER97,GMHS99,PHG00,FKS03]. With the growing importance of the online world
and multiagent systems, the use of elections in computer-based settings will but increase.
Unfortunately, given the relentless growth in the power of computers, it is natural to worry
that computers will also be increasingly brought to bear in planning manipulative attacks
on elections. Indeed, this is one of the central concerns of the relatively young multiagent
systems subarea known as computational social choice [CELM07,BCE13].

The two most computationally studied types of attacks on elections are known as “con-
trol” and “manipulation.” Both were introduced by Bartholdi, Tovey, and Trick [BTT89,
BTT92]. In control, an agent, usually referred to as “the chair,” tries to make a given
candidate win by adding/deleting/partitioning voters or candidates. In manipulation, some
nonmanipulative voters and a coalition of manipulative voters vote under some election
system, and the manipulative voters seek to make a given candidate win.

There is a broad literature on the computational complexity of control, and on the
computational complexity of manipulation. However, the present paper considers control
attacks against elections that contain manipulators. We consider both the cooperative and
the competitive cases.

In the cooperative case, the chair is allied with the manipulative coalition. For example,
perhaps during a CS department’s hiring, the department chair, who happens to also be
the senior member of the systems group, is mounting a control by partition of voters attack
(in which he or she is dividing the faculty into two subcommittees, one to decide which can-
didates are strong enough teachers to merit further consideration, and one to decide which
candidates are strong enough researchers to merit further consideration), and also is able
to directly control the votes of every one of his or her fellow members of the department’s
systems faculty. The chair’s goal is to make some particular candidate, perhaps Dr. I. M.
Systems, be the one chosen for hiring.

In the even more interesting competitive case, which can be thought of in a certain sense
as control versus manipulation, we will assume that the manipulative coalition’s goal is to
keep the chair from achieving the chair’s goal. For the competitive case, we will look at the
case where the chair acts before the manipulators, and at the case where the manipulators
act before the chair. For control attacks by so-called partition, in which there is a two-
round election, we will consider the case where the manipulators can change their votes in
the second round, and the case where the manipulators cannot change their votes in the
second round.

Our main contributions are as follows.

• Building on the existing notions of control and manipulation, we give natural def-
initions that capture our cooperative and competitive notions as problems whose
computational complexity can be studied, and we note how existing hardness results
for control and manipulation are, or are not, inherited by our problems.

• We prove upper bounds on our problems. For the competitive case, these are as high
as NPNP, coNPNP, and coNPNPNP

, with the notable exception of the case of deleting
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voters in the “chair-first” setting, which is in coDP, i.e., it is the union of an NP set
and a coNP set.

• Despite how high those upper bounds are, we show that there are election systems
(having polynomial-time winner problems) for which most of those high bounds have
matching lower bounds, yielding completeness for those classes.

• For the important election systems approval, Condorcet, and plurality, we show that
the complexity of control in the presence of manipulators, whether cooperative or
competitive, can be much lower than those upper bounds, even falling as low as poly-
nomial time. Many of the proofs of these cases involve novel approaches—approaches
very different than those used in the case of control without manipulators (see, e.g.,
the proof of Theorem B.11).

• We obtain results, for election systems satisfying versions—called WARP and unique-
WARP—of the weak axiom of revealed preferences, on the complexity of control by
runoff partitioning of candidates.

The general theme of those results is that the combinatorial explosion that causes
many partition-related candidate-control problems to be NP-complete can never exist
for election systems that satisfy certain nice properties, such as WARP and unique-
WARP. In particular, we will show that such properties can change the challenge
facing the chair (of a control problem) from that of needing to worry about every
partition to just that of checking one very simple partition. From this, polynomial-
time control algorithms immediately follow, as we will see.

The reason that this is interesting is that it is not applying just to one particular
system, but rather is noting that some nice behavioral properties themselves ensure
the simplicity of certain candidate-partition control problems for all systems having
the properties.

• We also obtain cases, for veto (Theorem 4.11) and Borda (Theorem 4.12) elections,
where competitive control-plus-manipulation is variously easier or harder than one
might expect from the separate control and manipulation cases.

2 Related Work

The idea of enhancing control with manipulative voters has been mentioned in the literature,
namely, in a paragraph of [FHH11]. That paper cooperatively integrated with control, to a
certain extent, a different attack type known as bribery [FHH09]. In that paper’s conclusions
and open directions, there is a paragraph suggesting that manipulation could and should
also be integrated into that paper’s “multiprong setting,” and commending such future
study to interested readers. That paragraph was certainly influential in our choice of this
direction. However, it is speaking just of the cooperative case, and provides no results on
this since it is suggesting a direction for study.
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The lovely line of work about “possible winners” [KL05] in the context of adding can-
didates might at first seem to be merging manipulation and control. We refer to the line
of work explored in [CLMM10,BRR11,XLM11,CLM+12]. That work considers an election
with an initial set of candidates, over which all the voters have complete preferences, and
a set of additional candidates over which the voters initially have no preferences, and asks
whether, if the entire set of additional candidates is added, there is some way of extending
the initial linear orders to now be over all the candidates, in such a way that a particular
initial candidate becomes a winner of the election. Although on its surface this might feel
like a cross between manipulation and control by adding candidates, in fact, in this inter-
esting problem there is no actual choice regarding the addition of candidates; all are simply
added. Thus this problem is a generalization of manipulation (as the papers note), that
happens to be done in a setting that involves adding candidates. It is not a generalization
of control by adding, or even so-called unlimited adding, of candidates, as in those the chair
must choose what collection of candidates to add. In short, unlike control and unlike this
paper, there is no existentially quantified action by a chair. (An interesting recent paper of
Baumeister et al. [BRR+12] uses the term possible winner in a new, different way, to speak
of weights rather than preferences initially being partially unset. That particular paper’s
question, as that paper notes, can be seen as a generalization of control by adding and
deleting voters. However, their notion is not a generalization of manipulation.)

The present paper does combine control and manipulation, with both those playing
active—and sometimes opposing—roles. Manipulation alone has been extensively studied
in a huge number of papers, starting with the seminal paper of [BTT89] (see also [BO91]),
which covered the constructive case. The destructive cases (i.e., those where the goal is
to keep a particular candidate from winning) are due to [CSL07]. Control alone has been
extensively studied in many papers, with the seminal paper being [BTT92], which covered
the constructive case. The destructive cases were first studied in [HHR07]. There has been
quite a bit of work on finding systems for which conducting various types of manipulation
is hard, or for which conducting most types of control attacks is hard, see, e.g., [ENR09,
FHHR09a,HHR09,Men13,MS13,PX12,EFRS15] or the surveys [FHHR09b,FHH10,CW16,
FR16].

In the present paper, we will see that who goes first, the chair or the manipulators, is
important in determining what complexity upper bounds apply. Order has also been seen
to be important in the study of so-called online control attacks [HHR12b,HHR12a], and of
online manipulation attacks [HHR14]. However, the papers just mentioned are separately
about control, and about manipulation. In contrast we are mostly interested in when both
are occurring, and especially when the two attacks are in conflict with each other.

The present paper also looks at how revoting affects the complexity of elections that
involve both control and manipulation. It is important to mention that, for the case of just
manipulation, [NW12,NW13] (see also [FHH16]) have recently discussed revoting, and give
an example that shows that revoting can sometimes be a valuable tool for the manipulator.

4



3 Preliminaries

An election (a.k.a. a social choice correspondence) maps from a finite candidate set C and a
finite vote collection V to a set,W ⊆ C, called the winner(s) [SL09]. Candidates each have a
corresponding name, and these names play an important role in some of our results. Voters
come without names, and the votes are input as a list, i.e., as ballots. For approval elections,
each ballot is a length-‖C‖ 0-1 vector indicating whether each candidate is disapproved or
approved. The candidate getting the most approvals is the winner (or winners if candidates
tie for most). For all other systems we discuss, each ballot is a tie-free linear ordering of
the candidates. For plurality elections, each voter gives one point to his or her top choice
and zero to the rest. For veto elections, each voter gives zero points to his or her bottom
choice and one to the rest. For Borda elections, each voter gives zero points to his or her
bottom choice, one point to his or her next to bottom choice, and so on through giving
‖C‖ − 1 points to his or her top choice. In the three systems just mentioned, the winner
is the candidate(s) who receives the most points. In a Condorcet election—[BTT92] recast
the notion of a Condorcet winner [Con85] into an election system of sorts, in this way, and
used it as one of their focus cases in their seminal control study—a candidate p is a winner
exactly if for each other candidate b it holds that strictly more than half the votes cast
prefer p to b. Unlike the systems from earlier in this paragraph, Condorcet elections on
some inputs may have no winners.

An election system E is said to have a p-time winner problem if there is a polynomial-
time algorithm that on input C, V , and p ∈ C, determines whether p is a winner under E
of the election over C with the votes being V .

We assume the reader is aware of the NP, coNPNP, NPNP, and coNPNPNP

levels of the
polynomial hierarchy (the “exponentiation” notation denotes oracle class, informally put,
having unit-cost access to a set of one’s choice from the given class) [MS72,Sto76]. DP is
the class of languages that are the difference of two languages in NP [PY84]. We assume
that the reader is familiar with many-one reductions (which here always means many-one
polynomial-time reductions). As is standard, we use ≤p

m to denote many-one reductions.
There are far fewer completeness results for levels of the hierarchy beyond NP, such as the
abovementioned ones, than there are for NP; a collection of and discussion of such results
can be found in [SU02a,SU02b]. Completeness and hardness here are always with respect
to many-one reductions.

For proofs of the cases of Theorem 4.2 we reduce from Quantified Boolean Formu-
las (QBF) where formulas are restricted to k alternating quantifiers where each quantifier
quantifies over a list of boolean variables. The problem QBFk is the case of k alternating

quantifiers beginning with ∃ and similarly Q̃BFk is the case of k alternating quantifiers

beginning with ∀; QBF2 is NPNP-hard, Q̃BF2 is coNPNP-hard, and Q̃BF3 is coNPNPNP

-

hard [SM73,Wra76]. In all our proofs using QBFk or Q̃BFk we assume without loss of
generality that the same number of variables are bound to each quantifier.

Our hardness results are worst-case results. However, it is known that if there exists even
one set that is hard for NP (and note that all sets hard for coNPNP, NPNP, or coNPNPNP

5



are hard for NP) and has a (deterministic) heuristic algorithm whose asymptotic error rate
is subexponential, then the polynomial hierarchy collapses. See [HW12] for a discussion of
that, and an attempt to reconcile that with the fact that in practice heuristics often do
seem to do well, including for some cases related to elections, see, e.g., [Wal09].

3.1 Types of Electoral Control

We now briefly define all standard control types. For a more formal description we refer the
reader to the detailed definitions given in [FHHR09a]. Given as input an election, (C, V ),
a distinguished candidate p ∈ C, and an integer k ≥ 0, the constructive (respectively,
destructive) control by deleting voters—for short CCDV (respectively, DCDV)—problem
for an election system E asks whether there is some choice of at most k votes such that if
they are removed, p is a winner (respectively, is not a winner) of the given election under E .
We are in the so-called nonunique-winner model, and so we ask about making p “a winner”
rather than “the one and only winner,” which is the so-called unique-winner model.1 Each
of those problems has an adding voters (AV) analogue, in which one has a collection of
registered voters, and has a collection of “unregistered” voters, and the question is whether
there is some choice of at most k voters from the collection of unregistered voters such that if
they are added, the goal is met. These types of control are motivated by issues ranging from
voter suppression to targeted phone calls to get-out-the-vote drives. There are the natural
analogous types for adding and deleting candidates, AC and DC (note: in the destructive
control by deleting candidates case—DCDC—deleting p is not allowed [BTT92]).

The partition types are called runoff partition of candidates (RPC), partition of candi-
dates (PC), and partition of voters (PV). In each of the three partition control types, the
input is just (C, V ) and p ∈ C, and a two-stage election is performed. In RPC, the construc-
tive (destructive) question is whether there exists a partition of the candidates into C1 and
C2 such that if the candidates who survive at least one of the elections (C1, V ) and (C2, V )
move on to a runoff among just them with the collection of votes V , p is (is not) a winner.
(Though we write “V ” for the voter set in each subelection, that implicitly means V masked
down just to the candidates at hand in the subelection; the analogous issue holds regarding
the DC case; and in the AC case, the voters’ preferences V are over the set of all registered
and unregistered candidates and are also similarly masked down when called upon.) Here,
there are two models for what “survive” means. In the ties eliminate (TE) model, to move
forward one must uniquely win a first-round election; in the ties promote (TP) model, it
suffices to be a winner of a first-round election. The PC case is similar, but the winners of
the election (C1, V ) move on to a runoff with all the candidates in C2.

2 In PV, we instead
consider a partition of the collection of voters V into V1 and V2 where the runoff consists

1Many of our results also hold in the other model, but the nonunique-winner model is probably the better,
more natural model on which to focus in general.

2Recent work by Hemaspaandra, Hemaspaandra, and Menton shows that in the nonunique winner model
two pairs of the standard control models collapse. Specifically, the models of destructive control by par-
titioning candidates and destructive control by runoff partitioning candidates, in each of the tie-breaking
models [HHM13].
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of the candidates that survive at least one of the elections (C, V1) and (C, V2).

3.2 Manipulation

As to manipulation, the constructive (destructive) unweighted coalitional manipulation
CUCM (DUCM) problem under election system E has as input (C, V ), p ∈ C, and a
collection of manipulator voters, and the question is whether there is some way of setting
the votes of the manipulative coalition so that p is (is not) a winner of the resulting election
under system E with those votes and the nonmanipulative votes both being cast.

3.3 Control-plus-Manipulation

Our model of allowing control in the presence of manipulators varies the standard control
definitions to allow some of the voters to be manipulators, and thus to come in as blank
slates. We mention that for AV, it is legal to have manipulators among the registered and/or
the unregistered votes. For the cooperative cases, the question is whether the chair can
choose preferences for the manipulators such that, along with using his or her legal control-
decision ability for that control type, p can be made (precluded from being) a winner. We
denote these types by adding in an “M+,” e.g., plurality-M+CCAV. For the competitive
cases, we can look at the case where the manipulative coalition sets its votes and then the
chair chooses a control action, and we call that MF for “manipulators first.” Or we can
have the chair control first and then the manipulators set their votes, which we call CF for
“chair first.” Since the manipulators seek to thwart the chair, the case Borda-CCAV-MF,
for example, asks whether under Borda, no matter how the manipulative voters, moving
first, set their votes, there will exist some choice of at most k unregistered voters that the
chair can add so that p is a winner. For partition cases, we add the string “-revoting” to
indicate that after the first-round elections occur, the manipulators can change their votes
in the runoff. Notice that for a given control action the CF case is a subset of the MF case,
since if there exists a control action such that for all manipulations the chair is successful,
then the chair is successful with this same control action when the manipulators go first.

Below we formally state the control plus manipulation action of constructive control by
deleting voters (CCDV) for the collaborative (M+), chair-first (CF), and manipulator-first
(MF) cases.

Name: E-M+CCDV/E-CCDV-CF/E-CCDV-MF

Given: An election (C, V ∪W ) (where V and W denote the nonmanipulative and manip-
ulative voters respectively), a preferred candidate p ∈ C, and a delete limit k ∈ N.

Question (M+): Does there exist a subcollection V ′ ⊆ (V ∪W ) such that ‖V ′‖ ≤ k, and
a way to set the votes of the manipulators, such that p is a winner of (C, (V ∪W )−V ′)
under election system E?
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Question (CF): Does there exist a subcollection V ′ ⊆ (V ∪W ) such that ‖V ′‖ ≤ k, so that
regardless of how the manipulators set their votes, p is a winner of (C, (V ∪W )− V ′)
under election system E?

Question (MF): Regardless of how the manipulators set their votes, does there exist a
subcollection V ′ ⊆ (V ∪W ) such that ‖V ′‖ ≤ k, and p is a winner of (C, (V ∪W )−V ′)
under election system E?

To allow many things to be spoken of compactly, we use “stacked” notation to indicate
every possible string one gets by reading across and taking one choice from each bracket one

encounters on one’s path across the expression. So, for example, CC
[
A
D

]
V-

[
CF
MF

]
refers to

four control types, not just two, and
[
C
D

]
C


 [A

D
][C

V
][

PC
RPC
PV

]
- [TE

TP
]


 refers to 2× (2× 2 + 3× 2) = 20

control types.
Notice that for our competitive setting, we seem to be asymmetrically focusing on things

from the perspective of the chair. That is, regardless of whether the chair moves first or
whether the manipulators move first, our problems are always posed in terms of the chair’s
constructive or destructive goal regarding the candidate p. It would be natural to ask—and
indeed, a conference referee asked us to address the issue of—whether one can interestingly
study the competitive problem from the perspective of the manipulators rather than that of
the chair. That is, in the MF case for example, one would ask whether the manipulators can
act so as to achieve or block victory for p, regardless of the actions of the chair that follow.
And one could similarly look at the CF case from the manipulators’ perspective. After
all, in many real-world settings, what one cares about may well be the perspective of the
manipulators. Thus being able to address this issue would itself be an additional motivation
for our paper. Fortunately, in the competitive case—and this holds in both the nonunique-
winner model and the unique-winner model, and holds for all types of constructive and
destructive attacks discussed here—the chair achieving his or her goal in the model where
we view things from the perspective of the chair is precisely the same as the manipulators
failing to meet their goal in the model where we view things from the perspective of the
manipulators. This follows from the definitions. Thus this paper is implicitly handling the
case of the manipulators’ perspective: For all our competitive cases, studying a construc-
tive (respectively, destructive) attack problem from the perspective of the manipulators is
exactly the same as studying the complement of the destructive (respectively, constructive)
version of the same problem in the model of this paper, that is, from the perspective of the
chair. For example, the sets E-DCAV-CF-ManipulatorFocus and E -CCAV-CF-ChairFocus
are the same on all syntactically legal inputs (and they will of course differ on all syntacti-
cally illegal inputs). (We will not use “focus” suffixes in this paper except in the previous
sentence, since in this paper our all our problems will implicitly be “-ChairFocus.”) We
caution that the above discussion should not be interpreted as saying that the constructive
and destructive problems are each other’s opposites. That is not true, although there is a
partial connection between these cases, see the discussion in footnote 5 of [HHR07].
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Problem CF CF-revoting MF MF-revoting

E -
[
C

D

]
C
[
A

D

][
C

V

]
NPNP (coDP for DV) N/A coNPNP N/A

E -
[
C

D

]
C
[

PC

RPC

PV

]
-
[
TE

TP

]
NPNP NPNP coNPNP

coNPNP (TE)

coNPNP
NP

(TP)

Table 1: Upper Bounds. (N/A means not applicable.)

4 Results

4.1 Inheritance

Each control type many-one reduces to each of its cooperative and to each of its compet-
itive control-plus-manipulation variants, because for those variants the zero-manipulator
cases degenerate to the pure control case. For example, E-CCDV ≤p

m E-M+CCDV and
E-CCDV ≤p

m E-CCDV-MF. In particular, NP-hardness results for control inherit upward
to each related cooperative and competitive case.

For manipulation, the inheritance behavior is not as broad, since partition control can-
not necessarily be “canceled out” by setting a parameter to zero, as partition doesn’t even
have a numerical parameter. Nonpartition control types do display inheritance, but for
the competitive cases there is some “flipping” of the type of control and the set involved.
For each constructive (respectively, destructive) control type regarding adding or delet-
ing candidates or voters, destructive (respectively, constructive) manipulation many-one
reduces to the complement of the set capturing the competitive case of the construc-
tive (respectively, destructive) control type combined with manipulation. For example,
E-CUCM ≤p

m E-DCAC-CF and E-DUCM ≤p
m E-CCDV-MF. For the cooperative cases

there is no “flipping.” For each constructive or destructive control type regarding adding
or deleting candidates or voters, manipulation many-one reduces to the cooperative case of
that control type combined with manipulation. For example, E-CUCM ≤p

m E-M+CCAC
and E-DUCM ≤p

m E-M+DCAC.

4.2 General Upper Bounds and Matching Lower Bounds

For election systems with p-time winner problems, all the cooperative cases clearly have NP
upper bounds. But the upper bounds for the competitive cases are far higher, falling in the
second and third levels of the polynomial hierarchy, as described by the following theorem.

Theorem 4.1 For each election system E having a p-time winner problem, the bounds of
Table 1 hold.3

Although the table’s upper bounds clearly follow from the structure of the problems
(only for the coDP cases is this nontrivial, see Theorem A.8), the bounds are very high.

3Where the table says N/A—not applicable—the nonrevoting bounds just to the left of the box technically
still hold; we say N/A simply to be clear that revoting cannot even take place in nonpartition cases, since
there is no second round.
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Can they be improved by some cleverer approach? Or are there systems with p-time winner
problems that show the bounds to be tight? The following result establishes that the latter
holds; each of the cells in the table is tight for at least some cases.

Theorem 4.2 1. For each of the eight problems on the top line of Table 1, and each of
the columns on that line, there exists an election system E, which has a p-time winner
problem, for which the named problem is complete for the named complexity class.4

2. For each of CCPV-TP and CCPV-TE, and each of the CF, CF-revoting, and MF
columns of Table 1, and each of the columns on that line, there exists an election
system E, which has a p-time winner problem, for which the named problem is complete
for the named complexity class.

3. There exists an election system E, which has a p-time winner problem, for which
CCPV-TP-MF-revoting is coNPNPNP

-complete, and there exists an election system
E, which has a p-time winner problem, for which CCPV-TE-MF-revoting is coNPNP-
complete.

The above result says that the upper bounds are not needlessly high. They are truly
needed, at least for some systems. However, the constructions proving the lower bounds
are artificial and the construction involving the third level of the polynomial hierarchy is
lengthy and difficult.5 In particular, this leaves completely open the possibility that for
particular, important real-world systems, even the competitive cases may be far simpler
than those bounds suggest. In the coming section, we will see that indeed for some of
the most important real-world systems, even in the presence of manipulators, the control
problem is just as computationally easy as when there are no manipulators.

We now present the proof of the CCAC-CF case of Theorem 4.2, which illustrates the
general arguments used in the proof of this theorem. The proofs of the other cases can be
found in Appendix A.

Theorem 4.3 There exists an election system, E, with a p-time winner problem, such that
E-CCAC-CF is NPNP-complete.

Proof. Let E be defined in the following way. Given an election (C, V ), if ‖V ‖ = 1,
‖C‖ ≥ 1 and the candidates in C listed in increasing lexicographic order are c0, c1, . . . , cℓ,

4The CCDV-CF and DCDV-CF cases were incorrectly classified as NPNP in early versions [FHH13a,
FHH13b,FHH14b].

5The third-level case has to overcome the specific, and as far as we know new, worry that in the second
round, the first-round vote of the manipulators is no longer available. Yet in a “∀∃∀” context (which is the

quantifier structure that models coNPNP
NP

), a particular existential choice has to handle only a particular
value of the first ∀. So to make the construction work, we need to in some sense have the first-round votes,
which are no longer available, still cast a clear and usable shadow forward into the second round, at least
in certain cases in the image of the reduction. We achieve this, in particular by shaping the election system
itself carefully to help realize this unusual effect. Otherwise, we would not be capturing the right quantifier
structure.
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and c0 encodes a boolean formula ψ(x1, . . . , x2ℓ), then do the following. For each i, 1 ≤ i ≤ ℓ,
set xi to true if the lowest-order bit of ci is 1 and otherwise set xi to false. For each i,
1 ≤ i ≤ ℓ, set xℓ+i to true if the voter states ci > c0 and otherwise set xℓ+i to false. If this
is a satisfying assignment for ψ then everyone wins. In all other cases everyone loses. That
completes the specification of E .

Clearly E has a p-time winner problem, and by Theorem 4.1 we know that E-CCAC-CF
is in NPNP. So what is left is to show that E-CCAC-CF is NPNP-hard.

Let (∃x1, . . . , xℓ)(∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] be an instance of QBF2. We construct
an instance of E -CCAC-CF in the following way. Let the candidate set C consist of p en-
coding the boolean formula ψ, and let there be zero nonmanipulators and one manipulator.
Let the set of unregistered candidates contain ℓ pairs where for each i, 1 ≤ i ≤ ℓ, there is
a candidate p · ibinary · 0 and a candidate p · ibinary · 1. (where · denotes concatenation and
ibinary denotes i encoded in binary). Let the add limit k = 2ℓ.6

If (∃x1, . . . , xℓ)(∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] ∈ QBF2, fix an assignment to x1, . . . , xℓ
such that (∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] is true. For each i, 1 ≤ i ≤ ℓ, the chair adds the
candidate, call it ci, from the ith pair whose last bit corresponds to the value of xi in this
assignment. Note that p, c1, . . . , cℓ are in increasing lexicographic order. Then no matter
what assignment to xℓ+1, . . . , x2ℓ is induced by the manipulator’s vote, formula ψ is satisfied
and so p will win.

Conversely, if the chair makes p a winner, then the chair adds exactly ℓ candidates whose
lowest-order bits give an assignment to x1, . . . , xℓ such that (∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)]
is true. ❑

4.3 Specific Systems

Plurality is certainly the most important of election systems, and approval is also an im-
portant system. Plurality, approval, and Condorcet elections each have easy manipulation
problems, and their complexity for every standard control type is known [BTT92,HHR07].
We display these known results in Table 2.7 In this section we will show that the “M+,”

6We set k = 2ℓ instead of the obvious choice of ℓ since then the same proof can be used for the similar
cases that appear in the appendix, and this also nicely handles the case of “control by unlimited adding of
candidates.”

7It should be noted that the referenced table in [HHR07] is focused on the unique-winner case, but
by Observation 4.4 below these results carry over to the nonunique-winner model (some of the cases were
previously noted in Faliszewski, Hemaspaandra, and Hemaspaandra [FHH14a] and Hemaspaandra, Hema-
spaandra, and Rothe [HHR12b]). Also, note that the “AC” line of the referenced table refers to so-called
unlimited adding and (as is now standard) we use “AC” to refer to (limited) adding. Additionally, in our
table we use NPC instead of “R” (resistant) and P instead of “V” (vulnerable) or “I” (immune).

Observation 4.4 The complexities of each of the standard control problems shown in Bartholdi, Tovey, and
Trick [BTT92] and Hemaspaandra, Hemaspaandra, and Rothe [HHR07] for the unique-winner model hold
also for the nonunique-winner model.
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“CF,” and “MF” cases whose control type is classified as P in Table 2, are in the with-no-
manipulators case in P for each of our cooperative and competitive cases.8

Plurality Condorcet Approval

Control by Constr. Destr. Constr. Destr. Constr. Destr.

Adding Candidates NPC NPC P P P P

Deleting Candidates NPC NPC P P P P

Adding Voters P P NPC P NPC P

Deleting Voters P P NPC P NPC P

Partitioning

Candidates

TE: NPC

TP: NPC

TE: NPC

TP: NPC
P P

TE: P

TP: P

TE: P

TP: P

Runoff Partitioning

Candidates

TE: NPC

TP: NPC

TE: NPC

TP: NPC
P P

TE: P

TP: P

TE: P

TP: P

Partitioning

Voters

TE: P

TP: NPC

TE: P

TP: NPC
NPC P

TE: NPC

TP: NPC

TE: P

TP: P

Table 2: Summary of complexity of control for plurality, Condorcet, and approval [HHR07].

Theorem 4.5 Each problem contained in

•

[
approval
Condorcet
plurality

]
-M+

[
C
D

]
C


 [A

D
][C

V
][

PC
RPC
PV

]
- [TE

TP
]


,

•

[
approval
Condorcet
plurality

]
-
[
C
D

]
C


 [A

D
][C

V
][

PC
RPC
PV

]
- [TE

TP
]


-CF, or

•

[
approval
Condorcet
plurality

]
-
[
C
D

]
C


 [A

D
][C

V
][

PC
RPC
PV

]
- [TE

TP
]


-MF,

whose corresponding control type is in P in Table 2 is in P.

The proofs of many of these cases will utilize the polynomial-time algorithms for the
without-manipulators versions of the control cases. The well-known polynomial-time re-
sults from Bartholdi, Tovey, and Trick [BTT92] and Hemaspaandra, Hemaspaandra, and
Rothe [HHR07] are both for the unique-winner model. Observation 4.4 states that each of
these control cases holds for the nonunique-winner model, and we will reference this obser-
vation when referring to the polynomial-time algorithm for a given nonmanipulator control
case.

8The reason we have looked at only the P cases of control for these systems is that due to our inheritance
results, for the NP cases, getting a P result will be impossible.
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As an illustration, we present the proof of plurality-M+CCPV-TE ∈ P here. The proofs
of the remaining cases of Theorem 4.5 can be found in Appendix B.

Proof. Note that it is not the case that the manipulators can always simply vote for p, no
matter what the chair does. For example, if the chair partitions the voters such that one of
the subelections contains a voter voting p > a > b, and the other subelection contains 100
voters voting a > b > p, 101 voters voting b > a > p, and one manipulator, the manipulator
should vote for a, so that a and b are tied in the second subelection and neither goes through
to the second round. Still, we will show that if a partition of the voters and a manipulation
of the manipulators exist such that p wins the election, then there exists a way for p to win
when all manipulators vote for p. It follows that we can check if p can be made a winner by
first having all manipulators vote for p and then running the polynomial-time algorithm for
plurality-CCPV-TE from [HHR07] (modified in the obvious way for the nonunique-winner
case).

So, suppose that a manipulation and a partition (V1, V2) exist such that p is a winner
of the election. Without loss of generality, suppose p is the unique winner of (C, V1).
Then p is also the unique winner of (C, V1) if all manipulators in V1 vote for p, so have
all manipulators in V1 vote for p. Now consider (C, V2). As explained in the previous
paragraph, simply changing the manipulators’ votes to p could have bad effects. Instead,
we do the following. While manipulators remain in V2 whose first-choice candidate is not
p, choose one of them, v, let a be v’s first-choice candidate, and do the following.

1. Change v’s vote from a to p and move v to V1.

2. For each candidate b 6= a, move a current V2 voter for b (if any exists) from V2 to V1
and if it is a manipulator, change its vote to p.

Since in each iteration of the above loop we add at least one vote for p to V1, p will remain
the unique winner of (C, V1). If after the loop (C, V2) does not have a unique winner or has
p as the unique winner it is immediate that p wins the runoff. The only remaining case is
that after the loop (C, V2) has a unique winner c 6= p. Note that in each iteration we keep
the same set of winners in (C, V2) unless V2 becomes empty in which case all candidates
become winners in (C, V2). This implies that c is the unique winner of (C, V2) before the
loop and thus c does not beat p in the runoff before the loop. Since the only votes that are
changed in the loop are manipulator votes changed to p, after the loop p clearly is a winner
of the runoff.9 ❑

We now will seem to change directions, and will briefly study “standard” control prob-
lems, i.e., ones not in the presence of manipulators. However, we do so in service of the
goals of this paper. The results we will obtain below will be crucially used to prove parts
of Theorem 4.5, though the proofs that do so are found not in the body of the paper but
in four proofs in B that draw on the results below.

9 There was a slight problem in the argument used in this paragraph in a previous version [FHH13a,
FHH13b], which was fixed in a later version [FHH14b].
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Below we state general results on election systems satisfying the Weak Axiom of Revealed
Preferences (WARP) and its corresponding unique version (unique-WARP). An election
system satisfies WARP if whenever a candidate is a winner among a set of candidates (under
a vote set V ; as always, we assume that V is masked down to the candidates at hand in the
given election) then that candidate is also a winner among every subset of those candidates
that includes him or her (under that same vote set V ; as always, we assume that V is
masked down to the candidates at hand in the given election). Similarly, an election system
satisfies unique-WARP if whenever a candidate is a unique winner among a set of candidates
then that candidate is also a unique winner among every subset of those candidates that
includes him or her.10 It is easy to see that approval and Condorcet elections satisfy both
WARP and unique-WARP [HHR07].

Though as mentioned above these results are rather crucially used as tools within our
proofs about control in the presence of manipulators, we feel they are of interest in their
own right. Let us take as an example the coming Theorem 4.6, which loosely put says that
for every election system satisfying unique-WARP, and for each instance of CCRPC-TE, it
holds that the partition whose parts are “all candidates other than p” and “p” will cause p
to win if and only if the chair has any partition choice that will cause p to win.

10We here and in many other places write the somewhat strange, awkward phrase “a unique winner” rather
than the seemingly more natural phrase “the unique winner.” We do so to avoid giving the impression that
there necessarily is a unique winner—as opposed for example to perhaps having no winners or perhaps
having multiple winners.

We mention in passing that WARP itself is very closely connected to immunity to destructive control
by deleting candidates (DCDC); in particular, they are the same. To see this, we need to discuss a notion
from the literature: immunity. An election system is said to be immune to destructive control by deleting
candidates if for every election instance (C, V ) and every candidate c ∈ C it holds that: If c is a winner
in that election instance, then for every candidate set C′ satisfying {c} ⊆ C′ ⊆ C it holds that c is a
winner in the election with candidate set C and vote set V (masked down to the candidates in C′). This
notion, destructive control by deleting candidates, is due to the seminal control paper of Bartholdi, Tovey,
and Trick [BTT92], except their paper is in the unique-winner model and our paper is in the nonunique-
winner model. Yang [Yan17] has observed that WARP implies, in the nonunique-winner model, immunity
to destructive control by deleting candidates. We here add the observation that the converse also holds,
since the definitions of the two concepts are in fact the same. Thus the following holds.

An election system E satisfies WARP if and only if E is immune to DCDC (destructive control
by deleting candidates).

Again, like all the results in this paper, the above if and only if statement is with respect to the nonunique-
winner model. We mention, for context, that in the unique-winner model (which is not the model we are
using in this paper), the analogous result holds if one looks instead at unique-WARP, namely, we have the
following result.

An election system E satisfies unique-WARP if and only if E is, in the unique-winner model,
immune to DCDC (destructive control by deleting candidates).

This result’s “only if” direction is stated in [HHR07] and this result’s “if” direction clearly also holds,
again as the definitions of the two notions in fact are the same. Finally, Yang [Yan17] (respectively, Hema-
spaandra, Hemaspaandra, and Rothe [HHR07]) states that in the nonunique-winner model (respectively,
unique-winner model), that WARP (respectively, unique-WARP) implies immunity to constructive control
by adding candidates. We observe that the converse directions for each of those claims hold, for the same
reasons as mentioned above for the DCDC cases, thus yielding two additional if and only if results.
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The result is interesting because it is directly attacking what is the heart of the complex-
ity of partition problems: combinatorial explosion, i.e., the fact that there are an enormous
number of partitions and the chair must determine whether any one of them makes p a
winner. This is precisely why such problems so often turn out to be NP-hard. However,
Theorem 4.6 says that for systems obeying the unique-WARP axiom, that potential com-
plexity is completely side-stepped: There is a single partition that is the only one that
needs to be examined. This immediately shows that the control type is of polynomial-time
complexity for systems satisfying unique-WARP.

Viewed more broadly, by linking the complexity of control to social-choice properties,
this part of our work is trying to take a step away from analyzing systems one at a time,
and is trying to more generally determine what it is that can yield computational simplic-
ity. Work having that goal is most typically done by studying the class of so-called scoring
systems, each of which is defined by a so-called scoring vector, and finding some simple
property of the scoring vector that determines the complexity of various manipulative at-
tacks on elections. To give as an example just one family of such results, we mention the
line doing this regarding manipulation of elections in the general case and in the so-called
single-peaked case [CSL07,HH07,PR07,FHHR11,BBHH15]. However, that work focuses on
the direct definitions of the election systems, and our work in contrast is focusing on how
possession of an axiomatic property can itself force simplicity.

Let us now turn to our results of this type.

Theorem 4.6 For every election system E satisfying unique-WARP, and for each instance
of the CCRPC-TE problem, it holds that control is possible if and only if the preferred
candidate p is an overall winner using the partition (C − {p}, {p}).

Proof. Given an election system satisfying unique-WARP, an election (C, V ), and a
candidate p ∈ C, we do the following.

If p is an overall winner using partition (C − {p}, {p}) then clearly control is possible.
Conversely, if p is not an overall winner using partition (C−{p}, {p}) then we will show

that control is not possible. There are two cases.

1. If under our set of votes (masked down to the candidates in the election at hand in
each case, of course) p does not win in the election where p is the sole candidate, then
by unique-WARP p will not be a unique winner in any subelection it is part of, and
so can never survive the first round, and so can never become an overall winner.

2. On the other hand, if under our set of votes (masked down to the candidates in the
election at hand in each case, of course) p wins in the election where p is the sole
candidate, then p in the partition (C − {p}, {p}) clearly will survive the first round.

Since we are in the TE model, either zero or one candidates will survive the C − {p}
first-round subelection.

But if zero survive, then the second-round election involves just p, who we already, in
our current case, have assumed wins under the votes masked down to it, so it will in
fact be an overall winner (in fact, it will be the only overall winner).
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On the other hand, if one candidate, call it r, survives the C − {p} first-round sub-
election, note that since we assumed that p is not an overall winner, it must be the
case that in the election between r and p (with the votes as always masked down
to the candidates in the election), p is not a winner. So, can there be any parti-
tion, (C − A,A), under the given votes, that will ensure that p is an overall winner?
W.l.o.g., assume p ∈ A. If r ∈ A, then p cannot move forward, since to do that (as
we are in the TE model) p would have to be a unique winner within A, and since
{p, r} ⊆ A, by unique-WARP it would have been impossible for p to fail to beat r
in the second-round election under partition (C − {p}, {p}) in our original setting,
yet that is precisely what happened in our current case’s assumptions. On the other
hand, if r 6∈ A, then given that C − A ⊆ C − {p}, by unique-WARP we have that r
wins the subelection (C − A,V ), and so faces p in the runoff, and we already know
that in that case p will not be a winner of that contest.

By the above case analysis, we have shown that control is not possible, thus completing this
second direction of the proof. ❑

Corollary 4.7 For every election system E that satisfies unique-WARP and has a p-time
winner problem, E-CCRPC-TE is in P.

Theorem 4.6 does not hold for CCPC-TE. For example, in the election system where
all candidates are winners if there are at least two candidates, and no candidates win if
there is at most one candidate (note that this system vacuously satisfies unique-WARP), an
election with candidates {a, b} has no winners using partition ({a}, {p}), but all candidates
win using partition (∅, {a, p}).

Nonetheless, we have proven an analogue of Theorem 4.6 for the CCPC-TE case.
Our analogue, however, applies to election systems that satisfy both WARP and unique-
WARP.11

Theorem 4.8 For every election system satisfying both WARP and unique-WARP, and
for each instance of the CCPC-TE problem, it holds that control is possible if and only if
the preferred candidate p is an overall winner using the partition (C − {p}, {p}).

11Is it going unnaturally far to study systems that satisfy both WARP and unique-WARP? We do not
think so. Indeed, to put our use of two properties in context, we mention that even combined they are
a weaker assumption about the election system than is even a certain different version of WARP that
is sometimes used. The version of WARP that we are using here is precisely that found for example in
Baumeister and Rothe’s survey of preference aggregation [BR16]. This version focuses on the individual
candidate and what happens when other candidates are removed, namely, that winning does not turn into
not winning for any unremoved candidate. The other version, and to avoid confusion let us refer to it
as WARP′, focuses on whether when one removes candidates the winner set is always exactly the previous
winner set intersected with the remaining set of candidates. WARP′ clearly implies both WARP and unique-
WARP. And so Theorem 4.8 would certainly remain true if in it one were to replace the phrase “both WARP
and unique-WARP” with simply “WARP′”.

16



Proof. Given an election system satisfying both WARP and unique-WARP, an election
(C, V ), and a candidate p ∈ C, we do the following.

If p is an overall winner using partition (C − {p}, {p}) then clearly control is possible.
Conversely, if p is not an overall winner using partition (C−{p}, {p}) then we will show

that control is not possible. There are two cases.

1. If under our set of votes (masked down to the candidates in the election at hand in
each case, of course) p does not win in the election where p is the sole candidate, then
by WARP p will not be a winner in any larger subelection that contains him or her,
and so can never be an overall winner.

2. If under our set of votes (masked down to the candidates in the election at hand in
each case, of course) p wins the election where p is the sole candidate then since p is
not the overall winner using partition (C−{p}, {p}) and we are in the TE model, there
exists a candidate r ∈ C − {p} such that r is the unique winner of the subelection
(C − {p}, V ) and p does not win the runoff election ({p, r}, V ). Since the given
election system satisfies unique-WARP and r is the unique winner of (C − {p}, V ),
r will be the unique winner of every subelection that does not involve p. And since
the given election satisfies WARP and p does not win ({p, r}, V ), p is not a winner
in any subelection involving r. Notice that p participates in the runoff only if r also
participates in the runoff. So it is clear to see that control is not possible.

❑

Corollary 4.9 For every election system E that satisfies both WARP and unique-WARP
and has a p-time winner problem, E-CCPC-TE is in P.

Corollary 4.10 For every election system E satisfying both WARP and unique-WARP,
E-CCPC-TE = E-CCRPC-TE.

4.3.1 Weighted Voters

We now give results for veto and Borda, including, for the latter, an interesting increase in
complexity.

In weighted elections every voter has a positive integer weight, and a voter with weight w
counts as w voters. In weighted voter control cases, the addition/deletion limit still pertains
to the number of voters that can be added or deleted. Consider the case of 3-candidate
weighted veto elections. The known results on this are that constructive coalitional manip-
ulation is NP-complete [CSL07], destructive coalitional manipulation is in P [CSL07], and
CCAV and CCDV are both in P [FHH15]. The following result, whose second part may be

surprising, shows that for this system CC
[
A
D

]
V-

[
CF
MF

]
are all in P—not NP-complete.

Theorem 4.11 For 3-candidate weighted veto elections, the following hold.
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1. M+CC
[
A
D

]
V are both NP-complete.

2. CC
[
A
D

]
V-

[
CF
MF

]
are each in P.

Proof. The first case follows directly from the fact that constructive manipulation is
NP-complete [CSL07] and the inheritance observations from Section 4.1 (as the relevant
result there holds even for the weighted case).

For the competitive cases, note that the only action that makes sense for the manipula-
tors is to veto p. This holds regardless of whether the manipulators or the chair goes first.
So, we let the manipulators veto p and then run the polynomial-time algorithm for CCAV
and CCDV from [FHH15]. ❑

3-candidate weighted Borda elections show a true increase in complexity. The known re-
sults for this system are that constructive coalitional manipulation is NP-complete [CSL07],
destructive coalitional manipulation is in P [CSL07], and CCAV and CCDV are both NP-
complete [FHH15] and thus all these problems are in NP. Yet we show that CCAV-MF is
coNP-hard, and so cannot be in NP unless the polynomial hierarchy collapses to NP∩coNP.

Theorem 4.12 For 3-candidate weighted Borda elections, the following hold.

1. M+CC
[
A
D

]
V are both NP-complete.

2. CC
[

AV-CF
DV-[ CF

MF
]

]
are each NP-hard.

3. CCAV-MF is NP-hard and coNP-hard.

4. CC
[
A
D

]
V-CF is NP-complete.

Proof. The first case follows directly from the fact that manipulation is NP-
complete [CSL07] and the inheritance observations from Section 4.1.

The remaining NP-hardness results follow from the NP-completeness of CCAV and
CCDV and the inheritance observations from Section 4.1.

To show that CCAV-CF is in NP, guess a set of voters to add, and then check that the
manipulators can’t make p not win. We do this by setting all manipulators to a > b > p,
checking that p is a winner, and then setting all manipulators to b > a > p, and checking
that p is a winner. A similar argument shows that CCDV-CF is in NP.

It remains to show that CCAV-MF is coNP-hard, i.e., that the complement of CCAV-MF
is NP-hard. We will reduce from Partition. Given a nonempty sequence of positive integers
k1, . . . , kt that sums to 2K, we will construct an election such that there is a partition (i.e.,
a subsequence of k1, . . . , kt that sums to K) if and only if the manipulators can vote in such
a way that the chair won’t be able to make p a winner.

We construct the following election: We have manipulators with weights k1, . . . , kt. The
manipulators are registered voters. We have two unregistered voters, both with weight
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3K − 1. One of these voters votes p > a > b and one votes p > b > a. We have addition
limit one, i.e., the chair can add at most one voter.

If there is a partition, then the manipulators vote so that a total of K vote weight casts
the vote a > b > p and a total of K vote weight casts the vote b > a > p. So, the scores of
p, a, and b are 0, 3K, and 3K. There is no way for the chair to make p a winner by adding
at most one voter. If the chair adds the weight 3K − 1 voter voting p > a > b, the score of
p is 6K − 2 and the score of a is 3K + (3K − 1) = 6K − 1 and so p is not a winner. Adding
the other voter gives a score of 6K − 2 for p and a score of 6K − 1 for b and again p is not
a winner.

Now consider the case that there is no partition. Look at the scores of the candidates
after the manipulators have voted. Without loss of generality, assume that score(a) ≤
score(b). Then score(a) ≤ 3K − 1 (since there is no partition) and score(b) ≤ 4K. Now the
chair adds the weight 3K − 1 voter voting p > a > b. After adding that voter, p’s score is
6K − 2, a’s score is at most (3K − 1) + (3K − 1) and b’s score is at most 4K. It follows
that p is a winner. ❑

5 Conclusions and Open Directions

We have established general inheritance results and complexity upper bounds for control
in the presence of manipulators, for both cooperative and competitive settings. We for
the upper bounds provided matching lower bounds, but also showed that for many natural
systems the complexity is far lower than the general upper bounds.

Many open directions remain. For example, regarding 3-candidate weighted Borda elec-
tions, we have shown that CCAV-MF is NP-hard and coNP-hard, and although our upper-
bound theorem is not explicitly about weighted cases, clearly this problem, for exactly the
same reason as in our upper-bound theorem, is in coNPNP. But precisely where within that
range does it fall? Also, what happens for real-world election systems that themselves are
complex to manipulate and/or control, such as Llull, Copeland, fallback, sincere-preference
approval, and Schulze elections? Do some of these systems themselves provide natural sys-
tems that might for our competitive cases be complete for some of the high complexity
classes given in Table 1?
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A Deferred Proofs from Section 4.2

Theorem A.1 There exists an election system, E, with a p-time winner problem, such that
E-CCAC-MF is coNPNP-complete.

Proof. Let E be as defined in the proof of Theorem 4.3. Then E has a p-time winner
problem and by Theorem 4.1 we know that E-CCAC-MF is in coNPNP. So what is left is
to show that E-CCAC-MF is coNPNP-hard.

Let (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] be an instance of Q̃BF2. Our instance
of E-CCAC-MF is exactly the instance of E-CCAC-CF from the proof of Theorem 4.3. The
same argument as in that proof shows that (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] ∈

Q̃BF2 if and only if the chair can always ensure that p becomes a winner. ❑

Theorem A.2 There exists an election system, E, with a p-time winner problem, such that
E-CCDC-CF is NPNP-complete.

Proof. Let E be defined as in the proof of Theorem 4.3. Then E has a p-time winner
problem and by Theorem 4.1 we know that E-CCDC-CF is in NPNP. So what is left is to
show that E-CCDC-CF is NPNP-hard.

Let (∃x1, . . . , xℓ)(∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] be an instance of QBF2. Our instance
of E-CCDC-MF is the instance of E-CCAC-CF from the proof of Theorem 4.3, except that
we let the candidate set C consist of all 2ℓ + 1 candidates. The same argument as in the
proof of Theorem 4.3 shows that (∃x1, . . . , xℓ)(∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] ∈ QBF2 if and
only if the chair can ensure that p always becomes a winner by deleting candidates. ❑

Theorem A.3 There exists an election system, E, with a p-time winner problem, such that
E-CCDC-MF is coNPNP-complete.

Proof. Let E be defined as in the proof of Theorem 4.3. Then E has a p-time winner
problem and by Theorem 4.1 we know that E-CCDC-MF is in coNPNP. So what is left is
to show that E-CCDC-MF is coNPNP-hard.

Let (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] be an instance of Q̃BF2. Our in-
stance of E-CCDC-MF is exactly the instance of E-CCDC-CF from the proof of
Theorem A.2. The same argument as in that proof of Theorem 4.3 shows that
(∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] ∈ Q̃BF2 if and only if the chair can ensure
that p always becomes a winner. ❑
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Theorem A.4 There exists an election system, E ′, with a p-time winner problem, such
that E ′-DCAC-CF is NPNP-complete, E ′-DCAC-MF is coNPNP-complete, E ′-DCDC-CF is
NPNP-complete, and E ′-DCDC-MF is coNPNP-complete.

Proof. Let E ′ be defined as E in Theorem 4.3 except replace “everyone loses” with
“everyone wins” and “everyone wins” with “everyone loses.”

Note that for every election (C, V ) and every candidate p ∈ C, p is an E winner of
(C, V ) if and only if p is not an E ′ winner of (C, V ). This immediately implies that
E ′-DCAC-CF = E-CCAC-CF, E ′-DCAC-MF = E-CCAC-MF, E ′-CCDC-CF = E-CCDC-CF,
and E ′-CCDC-MF = E-CCDC-MF. The result follows from Theorems 4.3, A.1, A.2,
and A.3. ❑

Theorem A.5 There exists an election system, E, with a p-time winner problem, such that
E-CCAV-CF is NPNP-complete.

Proof. Let E be defined in the following way. Given an election (C, V ), if ‖C‖ ≥ 3 and
the candidates in C listed in increasing lexicographic order are c0, c1, . . . , cℓ+1, candidate c0
encodes a boolean formula ψ(x1, . . . , x2ℓ), ‖V ‖ = 2ℓ+ 1, and for each i, 1 ≤ i ≤ ℓ there are
at least two voters with the same vote who rank ci first, then do the following. For each i,
1 ≤ i ≤ ℓ, set xi to true if two voters with ci first both state cℓ+1 > c0 and otherwise set
xi to false. Let v̂ be the unique vote that occurs three times or only once in V . For each
i, 1 ≤ i ≤ ℓ, set xℓ+i to true if v̂ states ci > c0, else set xℓ+i to false. If this is a satisfying
assignment for ψ then everyone wins. In all other cases everyone loses. That completes the
specification of E .

Clearly E has a p-time winner problem, and by Theorem 4.1 we know that E-CCAV-CF
is in NPNP. So what is left is to show that E-CCAV-CF is NPNP-hard.

Let (∃x1, . . . , xℓ)(∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] be an instance of QBF2. We construct
an instance of E-CCAV-CF in the following way. Let the candidate set C consist of p
encoding ψ and ℓ + 1 candidates all lexicographically larger than p. So, the candidates
in C can be listed in increasing lexicographic order as p, c1, . . . , cℓ+1. Let the collection of
registered voters V consist of zero nonmanipulators and one manipulator. Let the collection
of unregistered voters, all nonmanipulators, consist of 2ℓ pairs where for each i, 1 ≤ i ≤ ℓ,
there are two voters vi and v

′
i with the same vote ci > cℓ+1 > p > · · · and two voters ui and

u′i with the same vote ci > p > cℓ+1 > · · · . Let the add limit k = 4ℓ and let the preferred
candidate of the chair be p ∈ C.

If (∃x1, . . . , xℓ)(∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] ∈ QBF2, fix an assignment to x1, . . . , xℓ
such that (∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] is true. For each i, 1 ≤ i ≤ ℓ, if xi is true in the
assignment the chair adds vi and v

′
i and if xi is false the chair adds ui and u

′
i. Note that the

vote of the manipulator will be the unique vote v̂ that occurs three times (if the manipulator
votes the same as one of the paired voters) or only once. And no matter what assignment
to xℓ+1, . . . , x2ℓ is induced by v̂, formula ψ is satisfied and so p will win.
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Conversely, if the chair makes p a winner then the chair adds exactly ℓ voter pairs whose
ℓ different votes give an assignment to x1, . . . , xℓ such that (∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)]
is true. ❑

Theorem A.6 There exists an election system, E, with a p-time winner problem, such that
E-CCAV-MF is coNPNP-complete.

Proof. Let E be as defined in the proof of Theorem A.5. Then E has a p-time winner
problem and by Theorem 4.1 we know that E-CCAV-MF is in coNPNP. So what is left is
to show that E-CCAV-MF is coNPNP-hard.

Let (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] be an instance of Q̃BF2. Our instance
of E-CCAV-MF is exactly the instance of E-CCAV-CF from the proof of Theorem A.5. The
same argument as in that proof shows that (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] ∈

Q̃BF2 if and only if the chair can always ensure that p becomes a winner. ❑

Theorem A.7 There exists an election system, E ′, with a p-time winner problem, such
that E ′-DCAV-CF is NPNP-complete and E ′-DCAV-MF is coNPNP-complete.

Proof. Let E ′ be defined as E in Theorem A.5 except replace “everyone loses” with
“everyone wins” and “everyone wins” with “everyone loses.”

Note that for every election (C, V ) and every candidate p ∈ C, p is an E winner of (C, V )
if and only if p is not an E ′ winner of (C, V ). This immediately implies that E ′-DCAV-CF
= E-CCAV-CF and E ′-DCAV-MF = E-CCAV-MF. The result follows from Theorems A.5
and A.6. ❑

Unlike in the candidate cases, we can not use the same construction to show that the
deleting voter cases are also hard, because the chair can delete the manipulator. In fact, we
will show that for every election system E with a p-time winner problem, E-CCDV-CF and
E-DCDV-CF are in coDP (and so are not NPNP-complete unless the polynomial hierarchy
collapses). DP is the class of languages that are the difference of two NP languages [PY84].

Theorem A.8 For every election system E with a p-time winner problem, E-CCDV-CF
and E-DCDV-CF are in coDP.

Proof. It is easy to see that it is always at least as good for the chair to delete a
manipulator as it is to delete a nonmanipulator (though note that because the election
system can be anything, deleting as many manipulators as possible may not be best; for
example, if we want to make p a winner and our election systems has all candidates as
winners if there are four voters and no winners if there are fewer voters, we do not want to
delete manipulators if there are four voters). So we have that p can be made a winner (not
a winner) by deleting at most k voters if and only if there exists a k′ ≤ k such that (letting
m be the number of manipulators):
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1. k′ ≤ m and after deleting k′ manipulators the remaining m− k′ manipulators can not
preclude p from winning (not winning), or

2. k′ > m and after deleting all manipulators the chair can make p win (not win) by
deleting at most k′ −m voters.

We can check if there exists a k′ such that we are in case 1 in coNP and we can check if
there exists a k′ such that we are in case 2 in NP, and so we can write our languages as the
union of a coNP set and an NP set. ❑

We now show that the coDP bounds from Theorem A.8 are tight.

Theorem A.9 There exists an election system, E, with a p-time winner problem, such that
E-CCDV-CF is coDP-complete.

Proof. We reduce from the coDP-complete problem {〈φ,ψ〉 | φ ∈ SAT or ψ 6∈ SAT},
which is the complement of the standard DP-complete problem SAT-UNSAT [PY84]. With-
out loss of generality, we assume that φ and ψ have the same number of variables.

Let E be defined in the following way. Given an election (C, V ), if ‖C‖ ≥ 3 and the
candidates in C listed in increasing lexicographic order are c0, c1, . . . , cℓ+1, and candidate
c0 encodes the pair of boolean formulas 〈φ(x1, . . . , xℓ), ψ(xℓ+1, . . . , x2ℓ)〉, then:

1. If ‖V ‖ = ℓ and for each i, 1 ≤ i ≤ ℓ, there is a voter who ranks ci first, we do the
following. For each i, 1 ≤ i ≤ ℓ, set xi to true if the voter with ci first states cℓ+1 > c0
and otherwise set xi to false. If this is a satisfying assignment for φ, then everyone
wins.

2. If ‖V ‖ = 2ℓ+ 1, then if there are no voters that rank cℓ+1 first, then everyone wins.
Otherwise, if there is exactly one voter v̂ that ranks cℓ+1 first then for each i, 1 ≤ i ≤ ℓ,
set xℓ+i to true if v̂ states ci > c0, else set xℓ+i to false. If this is not a satisfying
assignment for ψ, then everyone wins.

In all other cases everyone loses. That completes the specification of E .
Clearly E has a p-time winner problem, and by Theorem A.8 we know that E-CCDV-CF

is in coDP. So what is left is to show that E-CCDV-MF is coDP-hard.
Let 〈φ(x1, . . . , xℓ), ψ(xℓ+1, . . . , x2ℓ)〉 be a pair of boolean formulas. We construct an

instance of E-CCDV-CF in the following way. Let the candidate set C consist of p encoding
〈φ,ψ〉 and ℓ+ 1 candidates all lexicographically larger than p. So, the candidates in C can
be listed in increasing lexicographic order as p, c1, . . . , cℓ+1. Let the collection of voters V
consist of one manipulator and 2ℓ nonmanipulators where for each i, 1 ≤ i ≤ ℓ, there is a
voter vi who votes ci > cℓ+1 > p > · · · and a voter ui who votes ci > p > cℓ+1 > · · · . Let
the delete limit k = 2ℓ+1 (any limit ≥ ℓ+1 will do) and let the preferred candidate of the
chair be p ∈ C. We need to show that (φ ∈ SAT or ψ 6∈ SAT) if and only if control can be
asserted.
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Suppose φ ∈ SAT. Fix an assignment to x1, . . . , xℓ that satisfies φ. The chair deletes
ℓ + 1 voters. The only voters that are not deleted are for each i, 1 ≤ i ≤ ℓ, vi if xi is true
in the assignment and ui if xi is false in the assignment. This leaves ℓ voters that encode
a satisfying assignment for φ and so everyone wins. Next suppose that ψ 6∈ SAT. Then we
keep all voters. Since there does not exist a satisfying assignment for ψ, everyone wins.

For the converse, to have p win, we either have that ‖V ‖ = ℓ, in which case φ is
satisfiable, or ‖V ‖ = 2ℓ+ 1. In the latter case, if ψ ∈ SAT the manipulator could induce a
satisfying assignment for ψ, but then p is not a winner. It follows that ψ 6∈ SAT. ❑

Theorem A.10 There exists an election system, E ′, with a p-time winner problem, such
that E-DCDV-CF is coDP-complete.

Proof. Let E ′ be defined as E in Theorem A.9 except replace “everyone loses” with
“everyone wins” and “everyone wins” with “everyone loses.”

Note that for every election (C, V ) and every candidate p ∈ C, p is an E winner of (C, V )
if and only if p is not an E ′ winner of (C, V ). This immediately implies that E ′-DCDV-CF
= E-CCDV-CF. The result follows from Theorem A.9. ❑

For the CCDV-MF case, we modify the construction from Theorem A.6 to basically
ensure that the manipulator will not be deleted, while still making sure that p can always
be made a winner for positive instances of Q̃BF2.

Theorem A.11 There exists an election system, E, with a p-time winner problem, such
that E-CCDV-MF is coNPNP-complete.

Proof. Let E be defined in the following way. Given an election (C, V ), if ‖C‖ ≥ 3 and
the candidates in C listed in increasing lexicographic order are c0, c1, . . . , cℓ+1, candidate c0
encodes a boolean formula ψ(x1, . . . , x2ℓ), ‖V ‖ = ℓ+ 1, and for each i, 1 ≤ i ≤ ℓ, there is a
voter who ranks ci first, then do the following. For each i, 1 ≤ i ≤ ℓ, set xi to true if some
voter with ci first states cℓ+1 > c0 and otherwise set xi to false. If there is a voter v̂ that
ranks cℓ+1 first (note that there exists at most one such voter) then for each i, 1 ≤ i ≤ ℓ,
set xℓ+i to true if v̂ states ci > c0, else set xℓ+i to false. If this is a satisfying assignment
for ψ then everyone wins. If there is a voter that ranks c0 first then everyone wins. If there
are two voters that rank ci first for some i, 1 ≤ i ≤ ℓ, and these voters agree on whether
or not cℓ+1 > c0 then everyone wins. In all other cases everyone loses. That completes the
specification of E .

Clearly E has a p-time winner problem, and by Theorem 4.1 we know that E-CCDV-MF
is in coNPNP. So what is left is to show that E-CCDV-MF is coNPNP-hard.

Let (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] be an instance of Q̃BF2. We construct
an instance of E-CCDV-MF in the following way. Let the candidate set C consist of p
encoding ψ and ℓ+1 candidates all lexicographically larger than p. So, the candidates in C
can be listed in increasing lexicographic order as p, c1, . . . , cℓ+1. Let the collection of voters
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V consist of one manipulator and 2ℓ nonmanipulators where for each i, 1 ≤ i ≤ ℓ, there is
a voter vi who votes ci > cℓ+1 > p > · · · and a voter ui who votes ci > p > cℓ+1 > · · · . Let
the delete limit k = 2ℓ + 1 (any limit ≥ ℓ will do) and let the preferred candidate of the
chair be p ∈ C.

Suppose (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] ∈ Q̃BF2. Consider a vote v̂ for the
manipulator. If v̂ ranks c0 first then the chair deletes vi for all i, 1 ≤ i ≤ ℓ to make p
a winner. If v̂ ranks ci first, for some i, 1 ≤ i ≤ ℓ, and states cℓ+1 > c0, then the chair
deletes {u1, . . . , uℓ} to make p a winner. If v̂ ranks ci first, for some i, 1 ≤ i ≤ ℓ, and states
c0 > cℓ+1, then the chair deletes {v1, . . . , vℓ} to make p a winner. If v̂ ranks cℓ+1 first, then
consider the assignment to xℓ+1, . . . , x2ℓ induced by v̂ and fix an assignment to x1, . . . , xℓ
such that ψ(x1, . . . , x2ℓ) is true. For each i, 1 ≤ i ≤ ℓ, if xi is true in the assignment the
chair deletes ui and if xi is false the chair deletes vi. This will make p a winner.

Conversely, fix an assignment to xℓ+1, . . . , x2ℓ. Set the manipulator vote v̂ so that it
induces this assignment and so that cℓ+1 is ranked first. Consider the set of voters left after
the chair has deleted voters to make p a winner. Note that this set must include v̂ and a
set of voters that induces an assignment to x1, . . . , xℓ that makes ψ true. ❑

Theorem A.12 There exists an election system, E ′, with a p-time winner problem, such
that E ′-DCDV-MF is coNPNP-complete.

Proof. Let E ′ be defined as E in Theorem A.9 except replace “everyone loses” with
“everyone wins” and “everyone wins” with “everyone loses.”

Note that for every election (C, V ) and every candidate p ∈ C, p is an E winner of (C, V )
if and only if p is not an E ′ winner of (C, V ). This immediately implies that E ′-DCDV-MF
= E-CCDV-MF. The result follows from Theorem A.11. ❑

Theorem A.13 There exists an election system E, with a p-time winner problem, such

that E-CCPV-
[
TE
TP

]
-
[

∅
revoting

]
-CF are each NPNP-complete.

Proof. Let E be defined in the following way. Given an election (C, V ), do the following.
If ‖C‖ = 1 then the sole candidate wins.
If ‖C‖ = 2 then the lexicographically larger candidate wins.
If ‖C‖ ≥ 3, ‖V ‖ = 2ℓ, the candidates in C listed in increasing lexicographic order are

c0, c1, . . . , cℓ+1, and candidate c0 encodes a boolean formula ψ(x1, . . . , x2ℓ), then if for each
i, 1 ≤ i ≤ ℓ, there are exactly two voters with the same vote who rank ci first no one wins,
else cℓ+1 wins.

If ‖C‖ ≥ 3, ‖V ‖ = 2ℓ + 1, the candidates in C listed in increasing lexicographic order
are c0, c1, . . . , cℓ+1, candidate c0 encodes a boolean formula ψ(x1, . . . , x2ℓ), and for each
i, 1 ≤ i ≤ ℓ, there are at least two voters with the same vote who rank ci first, then do the
following. For each i, 1 ≤ i ≤ ℓ, set xi to true if two voters with ci first both state cℓ+1 > c0
and otherwise set xi to false. Let v̂ be the unique vote that occurs three times or only once
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in V . For each i, 1 ≤ i ≤ ℓ, set xℓ+i to true if v̂ states ci > c0, else set xℓ+i to false. If this
is a satisfying assignment for ψ then c0 wins.

In all other cases, everyone loses. That completes the specification of E .

Clearly E has a p-time winner problem, and E-CCPV-
[
TE
TP

]
-
[

∅
revoting

]
-CF are each in

NPNP by Theorem 4.1. So, what is left is to show that E-CCPV-
[
TE
TP

]
-
[

∅
revoting

]
-CF are

each NPNP-hard.
Let (∃x1, . . . , xℓ)(∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] be an instance of QBF2. We construct

an instance of E-CCPV-TE-CF in the following way. Let the candidate set C consist of p
encoding ψ and ℓ+1 candidates lexicographically larger than p. So, the candidates in C can
be listed in increasing lexicographic order as p, c1, . . . , cℓ+1. Let there be one manipulative
voter, and let the nonmanipulators consist of 2ℓ pairs where for each i, 1 ≤ i ≤ ℓ, there are
two voters vi and v

′
i with the same vote ci > cℓ+1 > p > · · · and two voters ui and u

′
i with

the same vote ci > p > cℓ+1 > · · · . Let the preferred candidate of the chair be p ∈ C.
If (∃x1, . . . , xℓ)(∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] ∈ QBF2, fix an assignment to x1, . . . , xℓ

such that (∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] is true. The chair sets V1 to consist of the manip-
ulator and the subcollection of the voters whose votes encode the assignment, i.e., for each
i, 1 ≤ i ≤ ℓ, if xi is true in the assignment the chair adds vi and v

′
i to V1 and if xi is false

the chair adds ui and u
′
i to V1. The chair puts the remaining voters from V into V2. Note

that the vote of the manipulator will be the unique vote v̂ that occurs three times (if the
manipulator votes for one of the paired voters) or only once in V1. And no matter what
assignment to xℓ+1, . . . , x2ℓ is induced by v̂, formula ψ is satisfied and so p is the unique
winner of (C, V1). Since V2 consists 2ℓ voters of the correct form, no one wins (C, V2). Only
candidate p participates in the runoff and so p wins the runoff. Note that this argument
works for the “TE” and the “TP” models with or without revoting.

Conversely, if the chair can ensure that p wins then there exists a partition such that for
all manipulations p wins. It is clear that the chair must partition the voters into (V1, V2)
such that ‖V1‖ = 2ℓ+1 and ‖V2‖ = 2ℓ, since otherwise there are no winners. Also, for each
i, 1 ≤ i ≤ ℓ, V2 contains exactly two voters with the same vote who rank ci first. It follows
that V1 contains the manipulator vote v̂ and that for each i, 1 ≤ i ≤ ℓ, V1 contains exactly
two nonmanipulators with the same vote who rank ci first. These 2ℓ nonmanipulators induce
an assignment to x1, . . . , xℓ. Fix this assignment. Now fix an assignment to xℓ+1, . . . , x2ℓ.
Set the manipulator vote v̂ so that it induces this assignment. Since p wins the runoff,
this is a satisfying assignment for ψ. It follows that for the assignment to x1, . . . , xℓ that is
induced by V1, it holds that (∀xℓ+1, . . . , x2ℓ)[ψ(x1, . . . , x2ℓ)] is true ❑

Theorem A.14 There exists an election system E, with a p-time winner problem, such

that E-CCPV-
[
TE
TP

]
-MF and E-CCPV-TE-MF-revoting are each coNPNP-complete.

Proof. Let E be as defined in the proof of Theorem A.13. Then E has a p-

time winner problem and by Theorem 4.1 we know that E -CCPV-
[
TE
TP

]
-MF and
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E-CCPV-TE-MF-revoting are each in coNPNP. So what is left is to show that

E-CCPV-
[
TE
TP

]
-MF and E-CCPV-TE-MF-revoting are each coNPNP-hard. Below we de-

scribe the reduction for the “TE” case. It is easy to see that the same reduction holds for
the “TP” case. For the “TE” case with revoting observe that the same reduction also holds
since in the runoff there will be at most two candidates and in election system E the votes
do not affect who wins in that case.

Let (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] be an instance of Q̃BF2. Our in-
stance of E-CCPV-TE-MF is exactly the instance of E -CCPV-TE-CF from the proof of
Theorem A.13. Note that the vote of the manipulator will always be the unique vote v̂ that
occurs three times or only once in V . The same argument as in the proof of Theorem A.13
shows that (∀xℓ+1, . . . , x2ℓ)(∃x1, . . . , xℓ)[ψ(x1, . . . , x2ℓ)] ∈ Q̃BF2 if and only if the chair can
ensure that p always becomes a winner by partitioning voters. ❑

When revoting is allowed after the first round in the TP case, and the manipulators go
first, we find an interesting rise in complexity.

Theorem A.15 There exists an election system E, with a p-time winner problem, such
that E-CCPV-TP-MF-revoting is coNPNPNP

-complete.

Proof. The election system, E , defined below will utilize the following special candidates.

〈1, ψ〉: where ψ is a boolean formula, which we refer to as a type-1 candidate.

〈2, i, j〉: where i ∈ N and j ∈ {0, 1}, which we refer to as a type-2 candidate.

〈3, i, j〉: where i ∈ N and j ∈ {0, 1}, which we refer to as a type-3 candidate.

〈4, i〉: where i ∈ N, which we refer to as a type-4 candidate.

Let E be defined in the following way.
Given an election (C, V ):

If C consists of one type-1 candidate encoding ψ(x1, . . . , x3ℓ), 2ℓ
type-2 candidates 〈2, 1, 0〉, 〈2, 1, 1〉, . . . , 〈2, ℓ, 0〉, 〈2, ℓ, 1〉, 2ℓ type-3 candidates
〈3, 1, 0〉, 〈3, 1, 1〉, . . . , 〈3, ℓ, 0〉, 〈3, ℓ, 1〉, and ℓ + 2 type-4 candidates 〈4, 1〉, . . . , 〈4, ℓ + 2〉,
then do the following.

• If ‖V ‖ = 2ℓ + 1 and for each i, 1 ≤ i ≤ ℓ, there are at least two voters with the
same vote who rank 〈4, i〉 first, then we have 3ℓ + 2 winners consisting of 〈1, ψ〉,
〈4, 1〉, . . . , 〈4, ℓ + 1〉, and 2ℓ candidates determined in the following way. Let v̂ be
the unique vote that occurs three times or only once in V . For each i, 1 ≤ i ≤ ℓ,
〈2, i, 1〉 is a winner if v̂ states 〈4, i〉 > 〈1, ψ〉 and otherwise 〈2, i, 0〉 is a winner. For
each i, 1 ≤ i ≤ ℓ, 〈3, i, 1〉 is a winner if two voters who rank 〈4, i〉 first both state
〈4, ℓ + 1〉 > 〈1, ψ〉 and otherwise 〈3, i, 0〉 is a winner.
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• If ‖V ‖ = 2ℓ then if for each i, 1 ≤ i ≤ ℓ, there are at least two voters with the same
vote who rank 〈4, i〉 first, no one wins, else 〈4, ℓ+ 2〉 wins.

If C consists of one type-1 candidate encoding ψ(x1, . . . , x3ℓ), ℓ type-2 candidates
of the form 〈2, 1, ⋆〉, . . . , 〈2, ℓ, ⋆〉 (where ⋆ ∈ {0, 1}), ℓ type-3 candidates of the form
〈3, 1, ⋆〉, . . . , 〈3, ℓ, ⋆〉 (where ⋆ ∈ {0, 1}), and ℓ + 1 type-4 candidates 〈4, 1〉, . . . , 〈4, ℓ + 1〉,
‖V ‖ = 4ℓ+1, and there is a unique vote v̂′ that occurs three times or only once in V , then
do the following. For each i, 1 ≤ i ≤ ℓ, set xi to true if 〈2, i, 1〉 is in C and to false if 〈2, i, 0〉
is in C, set xℓ+i to true if 〈3, i, 1〉 is in C and to false if 〈3, i, 0〉 is in C, and set x2ℓ+i to
true if v̂′ states 〈4, i〉 > 〈1, ψ〉 and else set x2ℓ+i to false. If this is a satisfying assignment
for formula ψ, then 〈1, ψ〉 wins. Otherwise, everyone loses.

Else, everyone loses.
That completes the specification of E .

Clearly E has a p-time winner problem, and E-CCPV-TP-MF-revoting is in coNPNPNP

by Theorem 4.1. So, what is left to show is that E -CCPV-TP-MF-revoting is coNPNPNP

-
hard.

Let (∀x1, . . . , xℓ)(∃xℓ+1, . . . , x2ℓ)(∀x2ℓ+1, . . . , x3ℓ)[ψ(x1, . . . , x3ℓ)] be an instance of

Q̃BF3. We construct an instance of E-CCPV-TP-MF-revoting in the follow-
ing way. Let the candidate set C consist of one type-1 candidate encoding
ψ, 2ℓ type-2 candidates 〈2, 1, 0〉, 〈2, 1, 1〉, . . . , 〈2, ℓ, 0〉, 〈2, ℓ, 1〉, 2ℓ type-3 candidates
〈3, 1, 0〉, 〈3, 1, 1〉, . . . , 〈3, ℓ, 0〉, 〈3, ℓ, 1〉, and ℓ + 2 type-4 candidates 〈4, 1〉, . . . , 〈4, ℓ+ 2〉. Let
there be one manipulator and 4ℓ nonmanipulators where for each i, 1 ≤ i ≤ ℓ, there are two
voters vi and v

′
i with the same vote 〈4, i〉 > 〈4, ℓ+ 1〉 > 〈1, ψ〉 > · · · and two voters ui and

u′i with the same vote 〈4, i〉 > 〈1, ψ〉 > 〈4, ℓ+ 1〉 > · · · . Let the preferred candidate of the
chair be 〈1, ψ〉 ∈ C.

Suppose (∀x1, . . . , xℓ)(∃xℓ+1, . . . , x2ℓ)(∀x2ℓ+1, . . . , x3ℓ)[ψ(x1, . . . , x3ℓ)] ∈ Q̃BF3. Con-
sider a first-round vote v̂ for the manipulator, and view it as an assignment to x1, . . . , xℓ
where for each i, 1 ≤ i ≤ ℓ, if v̂ states 〈4, i〉 > 〈1, ψ〉 then xi is true and other-
wise xi is false. Using this assignment, set an assignment to xℓ+1, . . . , x2ℓ such that
(∀x2ℓ+1, . . . , x3ℓ)ψ(x1, . . . , x3ℓ) is true. The chair sets V1 to consist of the manipulator
and for each i, 1 ≤ i ≤ ℓ, if xℓ+i is true in the assignment the chair adds vi and v′i to V1
and if xℓ+i is false the chair adds ui and u

′
i to V1. The chair puts the remaining voters from

V into V2. Note that v̂ will be the unique vote that occurs three times or only once in V1.
Notice that the type-2 and type-3 candidates that proceed to the runoff “hold” the above-
mentioned assignments to x1, . . . , xℓ and xℓ+1, . . . , x2ℓ respectively (since 〈2, i, 1〉 proceeds
to the runoff if and only if xi is true, 〈2, i, 0〉 proceeds to the runoff if and only if xi is false,
〈3, i, 1〉 proceeds to the runoff if and only if xℓ+i is true, and 〈3, i, 0〉 proceeds to the runoff if
and only if xℓ+i is false). And that no matter what assignment to x2ℓ+1, . . . , x3ℓ is induced
by the second-round vote v̂′ of the manipulator, formula ψ is true and so 〈1, ψ〉 wins.

Conversely, suppose that for all first-round manipulator votes there exists a partition
such that for all second-round manipulator votes 〈1, ψ〉 wins. Fix a first-round manipulator
vote v̂, and let (V1, V2) be a partition such that 〈1, ψ〉 wins regardless of the second-round
vote of the manipulator. It is clear that ‖V1‖ = 2ℓ + 1 and ‖V2‖ = 2ℓ (without loss of
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generality), and that for each i, 1 ≤ i ≤ ℓ, V2 contains exactly two voters with the same
vote who rank 〈4, i〉 first. It follows that the first-round manipulator vote v̂ is the unique
vote that occurs three times or only once in V1 and that for each i, 1 ≤ i ≤ ℓ, V1 contains
two voters with the same vote who rank 〈4, i〉 first.

Fix an assignment to x1, . . . , xℓ and consider the first-round manipulator vote v̂ where
for each i, 1 ≤ i ≤ ℓ, if xi is true then v̂ states 〈4, i〉 > 〈1, ψ〉 and so 〈2, i, 1〉 proceeds
to the runoff, and if xi is false then v̂ states 〈1, ψ〉 > 〈4, i〉 and so 〈2, i, 0〉 proceeds to
the runoff. Since we know that there exists a partition (V1, V2) where 〈1, ψ〉 wins the
runoff, we know that for each i, 1 ≤ i ≤ ℓ, 〈3, i, 1〉 proceeds to the runoff if vi and v′i
are in V1 and otherwise 〈3, i, 0〉 does. We can view this as an assignment to xℓ+1, . . . , x2ℓ
where for each i, 1 ≤ i ≤ ℓ, if 〈3, i, 1〉 proceeds to the runoff then xi is true and if 〈3, i, 0〉
proceeds to the runoff then xi is false. Now fix an assignment to x2ℓ+1, . . . , x3ℓ and set the
second-round manipulator vote v̂′ so that it induces this assignment. Since 〈1, ψ〉 wins the
runoff, ψ is true for the assignment to x1, . . . , xℓ, xℓ+1, . . . , x2ℓ, x2ℓ+1, . . . , x3ℓ. It follows that

(∀x1, . . . , xℓ)(∃xℓ+1, . . . , x2ℓ)(∀x2ℓ+1, . . . , x3ℓ)[ψ(x1, . . . , x3ℓ)] ∈ Q̃BF3. ❑

B Specific Systems

In some of the proofs in this section, we use the notation score(C,V )(a) to denote the score
of candidate a in election (C, V ). When it is clear from context, we may leave out C, V , or
both.

B.1 Plurality

Theorem B.1 For plurality elections, the following hold.

1. M+
[
C
D

]
C
[
A
D

]
V are each in P.

2.
[
C
D

]
C
[
A
D

]
V-

[
CF
MF

]
are each in P.

Proof. For the constructive cooperative and the destructive competitive cases it is clear
that the manipulators should all vote for p.

For the destructive cooperative and the constructive competitive cases the optimal action
for the manipulators is to all vote for the same highest-scoring candidate in C − {p}.

In all cases we can determine if the chair can be successful by assuming the manipula-
tors vote as above and using the corresponding p-time algorithm for control from Bartholdi,
Tovey, and Trick [BTT92] (for the constructive cases) or from Hemaspaandra, Hemaspaan-
dra, and Rothe [HHR07] (for the destructive cases), modified in the obvious way for the
nonunique-winner case (see Observation 4.4). ❑

For the remaining proofs in this section, given an election (C, V ) containing k ma-
nipulators, we say that a candidate r is a rival of p if r can beat p pairwise, i.e., if
score{p,r}(r) + k > score{p,r}(p).
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Lemma B.2 If there exists a partition such that p is an overall winner in the “TE” model
when all manipulators vote for the same highest-scoring rival r and put p last, then there
exists a partition such that p is always an overall winner.

Proof. Given an election (C, V ) where V contains k manipulators, a candidate p ∈ C,
and a candidate r ∈ C−{p} such that score{p,r}(r)+ k > score{p,r}(p), we do the following.

Let (V1, V2) be a partition such that p is an overall winner when all manipulators vote
for r and put p last. Let k1 be the number of manipulators in V1, let k2 be the number of
manipulators in V2, let ℓ1 be the number of nonmanipulator votes for r in V1, and let ℓ2 be
the number of nonmanipulator votes for r in V2. Without loss of generality assume that p
is the unique winner of (C, V1) when all manipulators vote for r.

Now we will construct a new partition (V̂1, V̂2) that will work regardless of how the ma-
nipulators vote. Let V̂2 consist of ℓ2 nonmanipulator votes for r, scoreV2

(p) nonmanipulator
votes for p, for every rival r̂ 6= r, min(ℓ2, score(r̂)) votes for r̂, for every nonrival c 6= p all
the nonmanipulator votes for c, and k2 manipulators. Let V̂1 = V − V̂2.

We first show that p is always the unique winner of (C, V̂1). We know that score
V̂1
(r) +

k1 = ℓ1 + k1 < scoreV1
(p) = score

V̂1
(p). For every nonrival c 6= p, score

V̂1
(c) + k1 =

k1 < score
V̂1
(p). Finally, for every rival r̂ 6= r, score(r̂) ≤ score(r) = ℓ1 + ℓ2, and so

score
V̂1
(r̂) ≤ ℓ1, which implies that score

V̂1
(r̂) + k1 ≤ ℓ1 + k1 < score

V̂1
(p). It follows that p

is always the unique winner of (C, V̂1).
So the only way in which p can be precluded from winning the runoff is if there exist a

manipulation and a rival r̂ of p such that r̂ is the unique winner of (C, V̂2). Then ℓ2 + k2 >
score(c) for every nonrival c 6= p, and ℓ2+k2 > score

V̂2
(p) = scoreV2

(p). Now consider (C, V2)
and let all manipulators vote for r. Then the score of r in (C, V2) (after the manipulation)
is ℓ2 + k2, and r is the unique winner of (C, V2). Then p is not an overall winner of (C, V )
when all manipulators vote for r, which contradicts our assumption.

It follows that p is always a winner of (V̂1, V̂2). ❑

Theorem B.3 plurality-CCPV-TE-CF is in P.

Proof. Given an election (C, V ) and a preferred candidate of the chair p ∈ C, p can be
made a winner if and only if there exists a partition (V1, V2) such p is always an overall
winner.

If no rivals of p exist, then clearly control is possible if and only if C = {p} or there is
at least one vote for p (in the latter case, let V1 consist of one voter for p).

Otherwise, let r be a highest-scoring rival of p. It is immediate from Lemma B.2 that
control is possible if and only if there exists a partition such that p wins when all ma-
nipulators vote for r and put p last. This can be determined by running the polynomial-
time algorithm for plurality-CCPV-TE from [HHR07], modified in the obvious way for the
nonunique-winner case (see Observation 4.4). ❑

Theorem B.4 plurality-CCPV-TE-CF = plurality-CCPV-TE-MF.
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Proof. It immediately follows from the definition that plurality-CCPV-TE-CF ⊆
plurality-CCPV-TE-MF.

Now suppose that “MF” control is possible. Then for all manipulations there exists
a partition such that the preferred candidate p wins. Then either no rival to p exists, in
which case “CF” control is possible since either p is the only candidate or there exists at
least one vote for p. When a rival r to p exists, control is certainly possible when all the
manipulators vote for r and put p last. By Lemma B.2 we know that then there exists a
partition where p is always a winner, so “CF” control is possible. ❑

Corollary B.5 plurality-CCPV-TE-MF is in P.

Theorem B.6 plurality-M+DCPV-TE is in P.

Proof. Given an election (C, V ) and a despised candidate of the chair p ∈ C, we can
determine in polynomial time if p can be precluded from winning by partitioning voters
as follows. If there are no manipulators, run the polynomial-time algorithm for plurality-
DCPV-TE from [HHR07], modified in the obvious way for the nonunique-winner case (see
Observation 4.4).

So, let k > 0 denote the number of manipulators in V . If there exists a rival r to
p (i.e., a candidate that can beat p pairwise, i.e., a candidate for which score{p,r}(p) <
score{p,r}(r) + k), then control is possible: Let V2 consist of one manipulator and let all
manipulators vote for r.

If there are no rivals, we must ensure that p doesn’t make it to the runoff. It is easy to
see that this can be done if and only if we are in one of the following two cases.

1. There are at least two candidates, c is a highest-scoring candidate in C − {p}, and
score(p) ≤ score(c) + k. (Have all manipulators vote for c and use partition (V, ∅).)

2. There are at least three candidates, c and d are two highest-scoring candidates in C−
{p}, and score(p) ≤ score(c)+ score(d)+k. (Have V1 consist of min(score(p), score(c))
votes for p and all votes for c. The remaining votes, including all manipulators, who
will vote for d, will be in V2.)

❑

Lemma B.7 If there exists a partition of voters such that p is not a plurality winner in
the “TE” model when all manipulators vote for p, then there exists a partition such that p
can never be made a plurality winner by the manipulators.

Proof. Given an election (C, V ) and a candidate p ∈ C, we do the following.
Let (V1, V2) be a partition such that p is not a winner when all manipulators vote for

p. If p can never be made a winner by the manipulators in this partition then we are done.
So, suppose there exists a manipulation such that p is an overall winner (with the partition
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(V1, V2)). Without loss of generality assume that p is the unique winner of (C, V1). Then p
is also the unique winner in (C, V1) if all manipulators vote for p. However, since p is not
an overall winner if all manipulators vote for p there is a candidate c 6= p such that if all
manipulators vote for p, c is the unique winner of (C, V2) and c is the unique winner of the
runoff ({p, c}, V ).

Now move all manipulators from V2 to V1. Note that c remains the unique winner of
(C, V2) and that c is always the unique winner of ({p, c}, V ). It follows that in this new
partition, p is never a winner, no matter what the manipulators do. ❑

Lemma B.7 implies that plurality-DCPV-TE-CF is in P, since control is possible if and
only if control is possible when all manipulators vote for p. This can be checked using
the polynomial-time algorithm for plurality-DCPV-TE from Hemaspaandra, Hemaspaan-
dra, and Rothe [HHR07], modified in the obvious way for the nonunique-winner case (see
Observation 4.4).

Theorem B.8 plurality-DCPV-TE-CF is in P.

We will now show that Lemma B.7 also implies that plurality-DCPV-TE-MF is in P.

Theorem B.9 plurality-DCPV-TE-MF is in P.

Proof. Given an election (C, V ) and a despised candidate of the chair p ∈ C, we will
show that we can determine in polynomial time if p can be precluded from winning by
partitioning voters.

As in the “CF” case we will use Lemma B.7 to show that control is possible if and only
if there exists a partition such that p is precluded from winning when all manipulators vote
for p. This also implies that plurality-DCPV-TE-CF = plurality-DCPV-TE-MF.

It immediately follows from the definition that if the instance of plurality-DCPV-TE-MF
is positive, then there exists a partition such that p is not a winner when all manipulators
vote for p.

For the other direction, by Lemma B.7 if there exists a partition such that p is not
a winner when all the manipulators vote for p, then there exists a partition (V1, V2) such
that p can never be made a winner by the manipulators. This implies that no matter
what the manipulators do, there exists a partition (in fact, always the same partition) such
that p is not a winner. This then implies that the instance of plurality-DCPV-TE-MF is
positive. ❑

B.2 Condorcet

Theorem B.10 For Condorcet elections, the following hold.

1. M+
[
C
D

]
C
[
A
D

]
C are each in P.
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2. M+DC
[
A
D

]
V are both in P.

3.
[
C
D

]
C
[
A
D

]
C-

[
CF
MF

]
are each in P.

4. DC
[
A
D

]
V-

[
CF
MF

]
are both in P.

Proof. For the constructive cooperative and the destructive competitive cases it is clear
that the manipulators should all vote for p.

For the destructive cooperative and the constructive competitive cases the optimal action
for the manipulators is to rank p last.

In all cases we can determine if the chair can be successful by assuming the manipula-
tors vote as above and using the corresponding p-time algorithm for control from Bartholdi,
Tovey, and Trick [BTT92] (for the constructive cases) or from Hemaspaandra, Hemaspaan-
dra, and Rothe [HHR07] (for the destructive cases), modified in the obvious way for the
nonunique-winner case (see Observation 4.4). ❑

We now prove the Condorcet partition cases. Since Condorcet winners are always
unique, the “TE” and “TP” cases coincide and so we will leave out this notation, fol-
lowing [HHR07].

Theorem B.11 Condorcet-M+
[
C
D

]
C
[

PC
RPC

]
are each in P.

Proof. Given an election (C, V ) and a preferred candidate of the chair p ∈ C, we can
determine in polynomial time if p can be made a winner by partitioning of candidates and
by runoff partitioning of candidates as follows.

For the constructive cases we do the following. Since Condorcet elections satisfy both
WARP and unique-WARP, we know from Theorems 4.6 and 4.8 that control is possible if
and only if control is possible using partition (C − {p}, {p}). Set all manipulators to rank
p first. Rank the candidates that do not beat p pairwise next in all manipulator votes (in
any order). Then, as long as there exists an unranked candidate c that can never be a
Condorcet winner in (C − {p}, V ), rank c next in all manipulator votes.

Let Ĉ be the set of candidates not yet ranked by the manipulators. Notice that every
c ∈ Ĉ beats p pairwise, and every c ∈ Ĉ can become a Condorcet winner in (Ĉ, V ) (and
thus also in (C, V )).

So, to determine if control is possible, we must determine if the manipulators can vote
in such a way that there is no Condorcet winner in (Ĉ, V ), i.e., ∀c ∈ Ĉ ∃c′ ∈ Ĉ such that c′

ties-or-beats c pairwise.
For ‖V ‖ even, assume that there are at least two candidates in Ĉ and for ‖V ‖ odd,

assume there are at least three candidates in Ĉ (otherwise there will always be Condorcet
winners). We have the following cases, depending on whether or not there is a Condorcet
winner in (Ĉ, V ) before the manipulators vote and depending on the parity of ‖V ‖. Let
k ≥ 1 denote the number of manipulators in V .
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1. If there exists a Condorcet winner and ‖V ‖ is even, then let c be the Condorcet
winner, and let d ∈ Ĉ − {c}. It is easy to see that each of the manipulators can vote
c > d > Ĉ − {c, d} or d > c > Ĉ − {c, d} in such a way that c ties d pairwise. So, c is
no longer a Condorcet winner and no other candidate becomes a Condorcet winner,
since c ties-or-beats every other candidate pairwise.

2. If there exists a Condorcet winner and ‖V ‖ is odd, then let c be the Condorcet winner,
and let a, b ∈ Ĉ−{c} be such that a ties-or-beats b pairwise. Have ⌈k/2⌉ manipulators
vote a > b > c > Ĉ − {a, b, c} and ⌊k/2⌋ manipulators vote b > c > a > Ĉ − {a, b, c}.
After this manipulation, b beats c pairwise, a beats b pairwise, and c beats every
candidate in Ĉ − {b, c} pairwise.

3. If there is no Condorcet winner and ‖V ‖ is even, then have ⌊k/2⌋ manipulators vote

Ĉ (i.e., the candidates in Ĉ in some fixed order) and ⌊k/2⌋ manipulators vote
←−
Ĉ (i.e.,

the candidates in Ĉ in reverse order). When k is odd, let the remaining manipulator
vote arbitrarily. It is clear that no Condorcet winners are created by the manipulators.

4. If there is no Condorcet winner and ‖V ‖ is odd, then we have the following cases.

(a) If k is even, then have k/2 manipulators vote Ĉ and the remaining k/2 manipu-

lators vote
←−
Ĉ .

(b) If k is odd and there is no weak Condorcet winner (a weak Condorcet winner is
a candidate that ties-or-beats every other candidate pairwise), then have ⌊k/2⌋

manipulators vote Ĉ and ⌊k/2⌋ manipulators vote
←−
Ĉ . Let the remaining ma-

nipulator vote arbitrarily. It is clear that no Condorcet winner is created by the
manipulators.

(c) If k is odd and there exists a weak Condorcet winner, then let c be a weak
Condorcet winner and let a be a candidate such that a ties c pairwise. We have
the following two cases.

i. If for all b ∈ Ĉ −{a, c}, a beats b pairwise and c beats b pairwise, then have
⌈k/2⌉ manipulators vote Ĉ − {a, c} > a > c and have the remaining ⌊k/2⌋
manipulators vote c > Ĉ − {a, c} > a. So, now a beats c pairwise, and for
all b ∈ Ĉ − {a, c}, c beats b pairwise and b beats a pairwise, and thus there
is still no Condorcet winner.

ii. Otherwise, there exists a candidate b ∈ C − {a, c} such that it is not the
case that a and c both beat b pairwise. Suppose there are at least three
manipulators, and set their votes in the following way. (If there is only
one manipulator, then since each candidate in Ĉ can become a Condorcet
winner, all candidates in Ĉ tie pairwise. And so there is always a Condorcet
winner after manipulation.)

A. If a does not beat b pairwise, then let ⌊k/3⌋ manipulators vote c > b >
a > Ĉ −{a, b, c}, ⌊k/3⌋ manipulators vote b > a > c > Ĉ −{a, b, c}, and
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⌊k/3⌋ manipulators vote a > c > b > Ĉ − {a, b, c}. Note that a beats c
pairwise, b beats a pairwise, and c beats every candidate in Ĉ − {a, c}
pairwise, so there is no Condorcet winner. If two manipulators remain,

then have one vote Ĉ and the other vote
←−
Ĉ . Otherwise, if a single

manipulator remains, since a beats c pairwise after the manipulators
act as above, when the one remaining manipulator votes c > · · · , no
Condorcet winner is created.

B. If a beats b pairwise, then c does not beat b pairwise. It follows that
c ties b pairwise. Now switch candidates a and b, and we are in the
previous case.

For the destructive cases, since Condorcet elections satisfy unique-WARP, the chair can-
not, by partitioning of candidates or by runoff partitioning of candidates, cause a candidate
that is a unique winner to no longer be a unique winner [HHR07]. This implies that control
is possible if and only if the manipulators can vote so that p is not a winner in (C, V ). It
is immediate that the optimal action for the manipulators is to put p last. ❑

Theorem B.12 Condorcet-
[
C
D

]
C
[

PC
RPC

]
-
[
CF
MF

]
are each in P.

Proof. Given an election (C, V ) and a preferred candidate of the chair p ∈ C, we can
determine in polynomial time if p can be made a winner by partitioning candidates and by
runoff partitioning of candidates as follows.

For the constructive cases, since Condorcet elections satisfy both WARP and unique-
WARP, we know from Theorems 4.6 and 4.8 (which each apply only to the TE model,
but since the Condorcet election system never has more than one winner, for Condorcet
elections TE and TP are in effect identical) that control is possible if and only if control is
possible using partition (C − {p}, {p}). The manipulators can preclude p from winning if
and only if there is a candidate c 6= p that can be made to uniquely win (C − {p}, V ) and
ties-or-beats p pairwise. This can easily be checked by having all manipulators vote for c.

For the destructive cases, since Condorcet elections satisfy unique-WARP, the chair can-
not, by partitioning of candidates or by runoff partitioning of candidates, cause a candidate
that is a unique winner to no longer be a unique winner [HHR07]. This implies that control
is possible if and only if the manipulators cannot vote so that p becomes a winner in (C, V ).
It is immediate that the optimal action for the manipulators is to vote for p. ❑

Theorem B.13 Condorcet-M+DCPV is in P.

Proof. Given an election (C, V ) and a despised candidate of the chair p ∈ C, we can
determine in polynomial time if p can be precluded from winning by partitioning voters as
follows.
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If there exists a candidate r ∈ C − {p} such that when all manipulators rank p last, r
ties-or-beats p pairwise, then control is possible by having all manipulators rank p last and
using partition (V, ∅).

If no such candidate exists, the only way to ensure that p is not a winner is to ensure that
p does not participate in the runoff. Suppose there exists a partition and a manipulation
such that p is not a unique winner of either subelection. If in this partition we set all
manipulators to rank p last, p still does not win either subelection. So, we can check whether
we are in this case by having all manipulators rank p last, and then use the polynomial-
time algorithm for Condorcet-DCPV from [HHR07], modified in the obvious way for the
nonunique-winner case (see Observation 4.4). ❑

Below we state a lemma analogous to Lemma B.7, but for Condorcet elections.

Lemma B.14 If there exists a partition of voters such that p is not a Condorcet winner
when all manipulators vote for p, then there exists a partition such that p can never be made
a winner by the manipulators.

Proof. Given an election (C, V ) and a candidate p ∈ C, we do the following.
Let (V1, V2) be a partition such that p is not a winner when all manipulators vote for p.

So, either there exists a candidate r ∈ C−{p} such that r ties-or-beats p pairwise when all
manipulators vote for p, or p is not a unique winner of either subelection.

In the former case the partition (V, ∅) will always work, and in the latter case it is
clear to see that there is no way for the manipulators to make p a unique winner of either
subelection, so we are done. ❑

Lemma B.14 implies that Condorcet-DCPV-CF is in P, since control is possible if and
only if control is possible when all manipulators vote for p. This can be checked using the
polynomial-time algorithm from [HHR07], modified in the obvious way for the nonunique-
winner case (see Observation 4.4).

Theorem B.15 Condorcet-DCPV-CF is in P.

A similar argument as in the proof of Theorem B.9 shows that Lemma B.14 above also
implies that the corresponding “MF” case is also in P.

Theorem B.16 Condorcet-DCPV-MF is in P.

B.3 Approval

Theorem B.17 For approval elections, the following hold.

1. M+
[
C
D

]
C
[
A
D

]
C are each in P.

2. M+DC
[
A
D

]
V are both in P.
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3.
[
C
D

]
C
[
A
D

]
C-

[
CF
MF

]
are each in P.

4. DC
[
A
D

]
V-

[
CF
MF

]
are each in P.

Proof. For the constructive cooperative and the destructive competitive cases it is clear
that the manipulators should all approve of only p.

For the destructive cooperative and the constructive competitive cases the optimal action
for the manipulators is approve of all candidates except p.

In all cases we can determine if the chair can be successful by assuming the manipula-
tors vote as above and using the corresponding p-time algorithm for control from Bartholdi,
Tovey, and Trick [BTT92] (for the constructive cases) or from Hemaspaandra, Hemaspaan-
dra, and Rothe [HHR07] (for the destructive cases), modified in the obvious way for the
nonunique-winner case (see Observation 4.4). ❑

Theorem B.18 approval-M+
[
C
D

]
C
[

PC
RPC

]
-
[
TE
TP

]
are each in P.

Proof. Given an election (C, V ) and a preferred candidate of the chair p ∈ C, we can
determine in polynomial time if p can be made a winner by partitioning of candidates and
by runoff partitioning of candidates as follows. Let k denote the number of manipulators
in V .

For the constructive “TE” cases we do the following. Since approval elections satisfy
both WARP and unique-WARP, we know from Theorems 4.6 and 4.8 that control is possible
if and only if control is possible using partition (C − {p}, {p}). Set all manipulators to
approve of p. If that makes p an overall winner of the election, we are done. If not, let c be
the unique winner of subelection (C−{p}, V ) (since p will participate in the runoff, the only
way p can fail to then win overall is if there is a unique winner of (C −{p}, V ) who beats p
in the runoff). As just mentioned parenthetically, note that after manipulation, c’s score in
this case must be greater than p’s score. If for all d ∈ C−{p, c}, score(c) > score(d)+k, c will
always be the unique winner of (C−{p}, V ) and so p will never be an overall winner. If there
exists a candidate d in C − {p, c} such that score(c) ≤ score(d) + k, let score(c) − score(d)
voters approve of d (in addition to p). In this case, (C − {p}, V ) does not have a unique
winner and so p is an overall winner.

For the constructive “TP” cases, note that control is possible if and only if the ma-
nipulators can vote so that p becomes a winner in (C, V ). So the optimal action for the
manipulators is to approve of only p. Similarly, for the destructive cases, control is possible
if and only if the manipulators can vote so that p does not win (for the “TP” cases) or does
not uniquely win (for the “TE” cases) in (C, V ). So the optimal action for the manipulators
is to approve of all candidates except p. ❑

Theorem B.19 approval-
[
C
D

]
C
[

PC
RPC

]
-
[
TE
TP

]
-
[
CF
MF

]
are each in P.
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Proof. Given an election (C, V ) and a preferred candidate of the chair p ∈ C, we can
determine in polynomial time if p can be made a winner by partitioning candidates and by
runoff partitioning of candidates as follows.

For the constructive “TE” cases, since approval elections satisfy bothWARP and unique-
WARP, we know from Theorems 4.6 and 4.8 that control is possible if and only if control
is possible using partition (C − {p}, {p}). The manipulators can preclude p from winning
if and only if there is a candidate c 6= p that can be made to uniquely win using partition
(C − {p}, {p}). This can easily be checked by having all manipulators approve of only c.

For the constructive “TP” cases, note that control is possible if and only if the manip-
ulators cannot vote so that p does not become a winner in (C, V ). So the optimal action
for the manipulators, regardless of who goes first, is to approve of all candidates except
p. Similarly, for the destructive cases, control is possible if and only if the manipulators
cannot vote so that p becomes a winner (for the “TP” cases) or a unique winner (for the
“TE” cases) in (C, V ). So the optimal action for the manipulators, regardless of who goes
first, is to approve of only p. ❑

Theorem B.20 approval-M+DCPV-
[
TE
TP

]
is in P.

Proof. Given an election (C, V ) and a despised candidate of the chair p ∈ C, we can
determine in polynomial time if p can be precluded from winning by partitioning voters for
the “TE” case as follows.

1. If there is a candidate, c 6= p such that score(p) ≤ score(c)+k, then control is possible
by having all manipulators disapprove of only p and using partition (V, ∅).

2. If we are not in Case 1, the only way to preclude p from being a winner is if p doesn’t
make it to the runoff, i.e., if there exist a partition and a manipulation such that p is
not a unique winner of either subelection. If in this partition we make all manipulators
vote to disapprove of only p, p is still not a unique winner of either subelection.
So, we can check whether we are in this case by having all manipulators vote to
disapprove of only p, and then using the polynomial-time algorithm for approval-
DCPV-TE from [HHR07], modified in the obvious way for the nonunique-winner case
(see Observation 4.4).

For the “TP” case, replace “≤” by “<” in Case 1, and “unique winner” by “winner”
and “approval-DCPV-TE” by “approval-DCPV-TP” in Case 2. ❑

Below we state a lemma analogous to Lemma B.7, but for approval elections.

Lemma B.21 If there exists a partition of voters such that p is not an approval winner
in the “TE” (“TP”) model when all manipulators approve of only p, then there exists a
partition such that p can never be made an approval winner by the manipulators in the
same tie-breaking model.
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Proof. The proof for the “TE” case follows similarly to the proof of Lemma B.7, so we
just provide the proof of the “TP” case.

Given an election (C, V ) and a candidate p ∈ C, we do the following.
Let (V1, V2) be a partition such that p is not a winner when all manipulators approve of

only p. If p can never be made a winner by the manipulators in this partition then we are
done. So, suppose there exists a manipulation such that p is an overall winner (with the
partition (V1, V2)). Without loss of generality p is a winner of the subelection (C, V1). Then
if all manipulators in V1 approve of only p, we know that p remains a winner of (C, V1). Note
we don’t get any new winners in (C, V1). Since p is not an overall winner if all manipulators
approve of only p there is a candidate c 6= p such that if all manipulators vote for p, c is a
winner of (C, V2) and score(c) > score(p).

Now move all manipulators from V2 to V1. Note that c remains a winner of (C, V2) and
that c will always beat p in the runoff. It follows that in this new partition, p is never a
winner, no matter what the manipulators do. ❑

Lemma B.21 implies that approval-DCPV-TE-CF and approval-DCPV-TP-CF are both
in P, since control is possible if and only if (nonmanipulator) control is possible when all
manipulators approve of only p. This can be checked using the corresponding polynomial-
time algorithms from Hemaspaandra, Hemaspaandra, and Rothe [HHR07], modified in the
obvious way for the nonunique-winner case (see Observation 4.4).

Theorem B.22 approval-DCPV-
[
TE
TP

]
-CF are both in P.

Lemma B.21 above also implies that the corresponding manipulators-first cases are both
in P. The proof of the following theorem follows from a similar argument as the proof of
Theorem B.9.

Theorem B.23 approval-DCPV-
[
TE
TP

]
-MF are both in P.
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