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Abstract
In many machine learning scenarios, looking for the best classifier that fits a particular 
dataset can be very costly in terms of time and resources. Moreover, it can require deep 
knowledge of the specific domain. We propose a new technique which does not require 
profound expertise in the domain and avoids the commonly used strategy of hyper-param-
eter tuning and model selection. Our method is an innovative ensemble technique that uses 
voting rules over a set of randomly-generated classifiers. Given a new input sample, we 
interpret the output of each classifier as a ranking over the set of possible classes. We then 
aggregate these output rankings using a voting rule, which treats them as preferences over 
the classes. We show that our approach obtains good results compared to the state-of-the-
art, both providing a theoretical analysis and an empirical evaluation of the approach on 
several datasets.
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1  Introduction

It is not easy to identify the best classifier for a certain complex task [4, 25, 45]. Differ-
ent classifiers may be able to exploit better the features of different regions of the domain 
at hand, and consequently their accuracy might be better only in that region [5, 29, 40]. 
Moreover, fine-tuning the classifier’s hyper-parameters is a time-consuming task, which 
also requires a deep knowledge of the domain and a good expertise in tuning various kinds 
of classifiers. Indeed, the main approaches to identify the hyper-parameters’ best values are 
either manual or based on grid search, although there are some approaches based on ran-
dom search [6]. However, it has been shown that in many scenarios there is no single learn-
ing algorithm that can uniformly outperform the others over all data sets [22, 32, 46]. This 
observation led to an alternative approach to improve the performance of a classifier, which 
consists of combining several different classifiers (that is, an ensemble of them) and taking 
the class proposed by their combination. Over the years, many researchers have studied 
methods for constructing good ensembles of classifiers [16, 22, 30, 32, 42, 46], showing 
that indeed ensemble classifiers are often much more accurate than the individual classi-
fiers within the ensemble [30]. Classifiers combination is widely applied to many different 
fields, such as urban environment classification [3, 53] and medical decision support [2, 
49]. In many cases, the performance of an ensemble method cannot be easily formalized 
theoretically, but it can be easily evaluated on an experimental basis in specific working 
conditions (that is, a specific set of classifiers, training data, etc.).

In this paper we propose a new ensemble classifier method, called VORACE, which 
aggregates randomly generated classifiers using voting rules in order to provide an accurate 
prediction for a supervised classification task. Besides the good accuracy of the overall 
classifier, one of the main advantages of using VORACE is that it does not require specific 
knowledge of the domain or good expertise in fine-tuning the classifiers’ parameters.

We interpret each classifier as a voter, whose vote is its prediction over the classes, and a 
voting rule aggregates such votes to identify the “winning” class, that is, the overall predic-
tion of the ensemble classifier. This use of voting rules is within the framework of maxi-
mum likelihood estimators, where each vote (that is, a classifier’s rank of all classes) is 
interpreted as a noisy perturbation of the correct ranking (that is not available), so a voting 
rule is a way to estimate this correct ranking [11, 13, 50].

To the best of our knowledge, this is the first attempt to combine randomly generated 
classifiers, to be aggregated in an ensemble method, using voting theory to solve a super-
vised learning task without exploiting any knowledge of the domain. We theoretically and 
experimentally show that the usage of generic classifiers in an ensemble environment can 
give results that are comparable with other state-of-the-art ensemble methods. Moreover, 
we provide a closed formula to compute the performance of our ensemble method in the 
case of Plurality, this corresponds to the probability of choosing the correct class, assum-
ing that all the classifiers are independent and have the same accuracy. We then relax these 
assumptions by defining the probability of choosing the right class when the classifiers 
have different accuracies and they are not independent.

Properties of many voting rules have been studied extensively in the literature [24, 50]. 
So another advantage of using voting rules is that we can exploit that literature to make 
sure certain desirable properties of the resulting ensemble classifier hold. Besides the clas-
sical properties that the voting theory community has considered (like anonymity, mono-
tonicity, IIA, etc.), there may be also other properties not yet considered, such as various 
forms of fairness [39, 47], whose study is facilitated by the use of voting rules.
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The paper is organized as follows. In Sect. 2 we briefly describe some prerequisites (a 
brief introduction to ensemble methods and voting rules) necessary for what follows and 
an overview of previous works in this research area. In Sect. 3 we present our approach 
that exploits voting theory in the ensemble classifier domain using neural networks, deci-
sion trees, and support vector machines. In Sect. 4 we show our experimental results, while 
in Sects. 5, 6 and 7 we discuss our theoretical analysis: in Sect. 5 we present the case in 
which all the classifiers are independent and with the same accuracy, in Sect. 6 we relate 
our results with the Condorcet Jury Theorem also showing some interesting properties of 
our formulation (e.g. monotonicity and behaviour with infinite voters/classifiers); and in 
Sect. 7 we extend the results provided in Sect. 5 relaxing the assumptions of having all the 
classifiers with the same-accuracy and independent between each other. Finally, in Sect. 8 
we summarize the results of the paper and we give some hints for future work.

A preliminary version of this work has been published as an extended abstract at the 
International Conference On Autonomous Agents and Multi-Agent Systems (AAMAS-20) 
[14]. The code is available open source at https://​github.​com/​alore​ggia/​vorace/.

2 � Background and related work

2.1 � Ensemble methods

Ensemble methods combine multiple classifiers in order to give a substantial improvement 
in the prediction performance of learning algorithms, especially for datasets which present 
non-informative features [26]. Simple combinations have been studied from a theoretical 
point of view, and many different ensemble methods have been proposed [30]. Besides 
simple standard ensemble methods (such as averaging, blending, staking, etc.), Bagging 
and Boosting can be considered two of the main state-of-the-art ensemble techniques in the 
literature [46]. In particular, Bagging [7] trains the same learning algorithm on different 
subsets of the original training set. These different training subsets are generated by ran-
domly drawing, with replacement, N instances, where N is the original size of training set. 
Original instances may be repeated or left out. This allows for the construction of several 
different classifiers where each classifier can have specific knowledge of part of the train-
ing set. Aggregating the predictions of the individual classifiers leads to the final overall 
prediction. Instead, Boosting [21] keeps track of the learning algorithm performance in 
order to focus the training attention on instances that have not been correctly learned yet. 
Instead of choosing training instances at random from a uniform distribution, it chooses 
them in a manner as to favor the instances for which the classifiers are predicting a wrong 
class. The final overall prediction is a weighted vote (proportional to the classifiers’ train-
ing accuracy) of the predictions of the individual classifiers.

While the above are the two main approaches, other variants have been proposed, such 
as Wagging [54], MultiBoosting [54], and Output Coding [17]. We compare our work with 
the state-of-the-art in ensemble classifiers, in particular XGBoost [9], which is based on 
boosting, and Random Forest (RF) [27], which is based on bagging.

2.2 � Voting rules

For the purpose of this paper, a voting rule is a procedure that allows a set of voters to 
collectively choose one among a set of candidates. Voters submit their vote, that is, their 

https://github.com/aloreggia/vorace/
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preference ordering over the set of candidates, and the voting rule aggregates such votes 
to yield a final result (the winner). In our ensemble classification scenario, the voters are 
the individual classifiers and the candidates are the classes. A vote is a ranking of all the 
classes, provided by an individual classifier. In the classical voting setting, given a set of n 
voters (or agents) A = {a1,… , an} and m candidates C = {c1,… , cm} , a profile is a collec-
tion of n total orders over the set of candidates, one for each voter. So, formally, a voting 
rule is a map from a profile to a winning candidate.1 The voting theory literature includes 
many voting rules, with different properties. In this paper, we focus on four of them, but 
the approach is applicable also to any other voting rules: 

1.	 Plurality Each voter states who the preferred candidate is, without providing information 
about the other less preferred candidates. The winner is the candidate who is preferred 
by the largest number of voters.

2.	 Borda Given m candidates, each voter gives a ranking of all candidates. Each candidate 
receives a score for each voter, based on its position in the ranking: the i-th ranked 
candidate gets the score m − i . The candidate with the largest sum of all scores wins.

3.	 Copeland Pairs of candidates are compared in terms of how many voters prefer one or 
the other one, and the winner of such a pairwise comparison is the one with the largest 
number of preferences over the other one. The overall winner is the candidate who wins 
the most pairwise competitions against all the other candidates.

4.	 Kemeny [28] We borrow a formal definition of the rule from [12]. For any two candi-
dates a and b, given a ranking r and a vote v, let �a,b(r, v) = 1 if r and v agree on the rela-
tive ranking of a and b (e.g., they either both rank a higher, or both rank b higher), and 0 
if they disagree. Let the agreement of a ranking r with a vote v be given by 

∑
a,b �a,b(r, v) , 

the total number of pairwise agreements. A Kemeny ranking r maximizes the sum of 
the agreements with the votes 

∑
v

∑
a,b �a,b(r, v) . This is called a Kemeny consensus. 

A candidate is a winner of a Kemeny election if it is the top candidate in the Kemeny 
consensus for that election.

It is easy to see that all the above voting rules associate a score to each candidate (although 
different voting rules associate different scores), and the candidate with the highest score is 
declared the winner. Ties can happen when more than one candidate results with the high-
est score, we arbitrarily break the tie lexicographically in the experiments. We plan to test 
the model on different and more fair tie-breaking rules. It is important to notice that when 
the number of candidates is m = 2 (that is, we have a binary classification task) all the vot-
ing rules have the same outcome since they all collapse to the Majority rule, which elects 
the candidate which has a majority, that is, more than half the votes.

Each of these rules has its advantages and drawbacks. Voting theory provides an axi-
omatic characterization of voting rules in terms of desirable properties such as anonymity, 
neutrality, etc. – for more details on voting rules see [1, 48, 50]. In this paper, we do not 
exploit these properties to choose the “best” voting rule, but rather we rely on what the 
experimental evaluation tells us about the accuracy of the ensemble classifier.

1  We assume that there is always a unique winning candidate. In case of ties between candidates, we will 
use a predefined tie-breaking rule to choose one of them to be the winner.
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2.3 � Voting for ensemble methods

Preliminary techniques from voting theory have already been used to combine individual clas-
sifiers in order to improve the performance of some ensemble classifier methods [5, 18, 22, 
31]. Our approach differs from these methods in the way classifiers are generated and how the 
outputs of the individual classifiers are aggregated. Although in this paper we report results 
only against recent bagging and boosting techniques of ensemble classifiers, we compared our 
approach with the other existing approaches as well. More advanced work has been done to 
study the use of a specific voting rule: the use of majority to ensemble a profile of classifiers 
has been investigated in the work of [34], where they theoretically analyzed the performance 
of majority voting (with rejection if the 50% of consensus is not reached) when the classi-
fiers are assumed independent. In the work of [33], they provide upper and lower limits on 
the majority vote accuracy focusing on dependent classifiers. We perform a similar analysis 
of the dependence between classifier but in the more complex case of plurality, with also an 
overview of the general case. Although majority seems to be easier to evaluate compared to 
plurality, there have been some attempts to study plurality as well: [37] demonstrated some 
interesting theoretical results for independent classifiers, and [41] extended their work provid-
ing a theoretical analysis of the probability of electing the correct class by an ensemble using 
plurality, or plurality with rejection, as well as a stochastic analysis of the formula, and evalu-
ating it on a dataset for human recognition. However, we have noted an issue with their proof: 
the authors assume independence between the random variable expressing the total number of 
votes received by the correct class and the one defining the maximum number of votes among 
all the wrong classes. This false assumption leads to a wrong final formula (the proof can be 
found in “Appendix” A). In our work, we provide a formula that exploits generating func-
tions and that fixes the problem of [41], based on a different approach. Moreover, we provide 
proof for the two general cases in which the accuracy of the individual classifiers is not homo-
geneous, and where classifiers are not independent. Furthermore, our experimental analysis 
is more comprehensive: not limiting to plurality and considering many datasets of different 
types. There are also some approaches that use Borda count for ensemble methods (see for 
example the work of [19]). Moreover, voting rules have been applied to the specific case of 
Bagging [35, 36]. However, in [35], the authors combine only classifiers from the same family 
(i.e., Naive Bayes classifier) without mixing them.

A different perspective comes from the work of [15] and further improvements [11, 13, 55] 
where the basic assumption is that there always exists a correct ranking of the alternatives, but 
this cannot be observed directly. Voters derive their preferences over the alternatives from this 
ranking (perturbing it with noise). Scoring voting rules are proved to be maximum likelihood 
estimators (MLE). Under this approach, one computes the likelihood of the given preference 
profile for each possible state of the world, that is, the true ranking of the alternatives and the 
best ranking of the alternatives are then the ones that have the highest likelihood of producing 
the given profile. This model aligns very well with our proposal and justifies the use of voting 
rules in the aggregation of classifiers’ prediction. Moreover, MLEs give also a justification to 
the performance of ensembles where voting rules are used.
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3 � VORACE

The main idea of VORACE (VOting with RAndom ClassifiErs) is that, given a sample, 
the output of each classifier can be seen as a ranking over the available classes, where the 
ranking order is given by the classifier’s expected probability that the sample belongs to a 
class. Then a voting rule is used to aggregate these orders and declare a class as the “win-
ner”. VORACE generates a profile of n classifiers (where n is an input parameter) by ran-
domly choosing the type of each classifier among a set of predefined ones. For instance, the 
classifier type can be drawn between a decision tree or a neural network. For each classi-
fier, some of its hyper-parameters values are chosen at random, where the choice of which 
hyper-parameters and which values are randomly chosen depends on the type of the classi-
fier. When all classifiers are generated, they are trained using the same set of training sam-
ples. For each classifier, the output is a vector with as many elements as the classes, where 
the i-th element represents the probability that the classifier assigns the input sample to the 
i-th class. Output values are ordered from the highest to the smallest one, and the output of 
each classifier is interpreted as a ranking over the classes, where the class with the highest 
value is the first in the ranking, then we have the class that has the second highest value 
in the output of the classifier, and so on. These rankings are then aggregated using a vot-
ing rule. The winner of the election is the class with the higher score. This corresponds to 
the prediction of VORACE. Ties can occur when more than one class gets the same score 
from the voting rule. In these cases, the winner is elected using a tie-breaking rule, which 
chooses the candidate that is most preferred by the classifier with the highest validation 
accuracy in the profile.

Example 1  Let us consider a profile composed by the output vectors of three classifiers, 
say y1 , y2 and y3 , over four candidates (classes) c1 , c2 , c3 and c4 : y1 = [0.4, 0.2, 0.1, 0.3] , 
y2 = [0.1, 0.3, 0.2, 0.4] , and y3 = [0.4, 0.2, 0.1, 0.3] . For instance, y1 represents the pre-
diction of the first classifier, which could predict that the input sample belongs to 
the first class with probability 0.4, to the second class with probability 0.2, to the third 
class with probability 0.1 and to the fourth class with probability 0.3. From the pre-
vious predictions we can derive the correspondent ranked orders x1 , x2 and x3 . For 
instance, from prediction y1 we can see that the first classifier prefers c1 , then c4 , 
then c2 and then c3 is the less preferred class for the input sample. Thus we have: 
x1 =

[
c1, c4, c2, c3

]
, x2 =

[
c4, c2, c3, c1

]
and x3 =

[
c1, c4, c2, c3

]
 . Using Borda, class c1 gets 

6 points, c2 gets 4 points, c3 gets 1 point and c4 gets 7 points. Therefore, c4 is the winner, 
i.e. VORACE outputs c4 as the predicted class. On the other hand, if we used Plurality, the 
winning class would be c1 , since it is preferred by 2 out of 3 voters.

Notice that this method does not need any knowledge of architecture, type, or param-
eters, of the individual classifiers.2

2  Code available at https://​github.​com/​alore​ggia/​vorace/.

https://github.com/aloreggia/vorace/
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4 � Experimental results

We considered 23 datasets from the UCI [43] repository. Table 1 gives a brief descrip-
tion of these datasets in terms of number of examples, number of features (where some 
features are categorical and others are numerical), whether there are missing values for 
some features, and number of classes. To generate the individual classifiers, we use 
three classification algorithms: Decision Trees (DT), Neural Networks (NN), and Sup-
port Vector Machines (SVM).

Neural networks are generated by choosing 2, 3 or 4 hidden layers with equal prob-
ability. For each hidden layer, the number of nodes is sampled geometrically in the 
range [A, B], which means computing ⌊(ex)⌋ where x is drawn uniformly in the interval 
[log(A), log(B)] [6]. We choose A = 16 and B = 128 . The activation function is chosen 
with equal probability between the rectifier function f (x) = max(0, x) and the hyperbolic 
tangent function. The maximum number of epochs to train each neural network is set to 
100. An early stopping callback is used to prevent the training phase to continue even 
when the accuracy is not improving and we set the patience parameter to p = 5 . Batch 
size value is adjusted to respect the size of the dataset: given a training set T with size l, 
the batch size is set to b = 2⌈log2(x)⌉ where x = l

100
.

Table 1   Description of the datasets

Dataset #Examples #Categorical #Numerical Missing #Classes

Anneal 898 32 6 yes 6
Autos 205 10 15 yes 7
Balance-s 625 0 4 no 3
Breast-cancer 286 9 0 yes 2
Breast-w 699 0 9 yes 2
Cars 1728 6 0 no 4
Credit-a 690 9 6 yes 2
Colic 368 15 7 yes 2
Dermatology 366 33 1 yes 6
Glass 214 0 9 no 5
Haberman 306 0 3 no 2
Heart-statlog 270 0 13 no 2
Hepatitis 155 13 6 yes 2
Ionosphere 351 34 0 no 2
Iris 150 0 4 no 3
Kr-vs-kp 3196 0 36 no 2
Letter 20,000 0 16 no 26
Lymphogra 148 15 3 no 4
Monks-3 122 6 0 no 2
Spambase 4,601 0 57 no 2
Vowel 990 3 10 no 11
Wine 178 0 13 no 3
Zoo 101 16 1 no 7
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Decision trees are generated by choosing between the entropy and gini criteria with 
equal probability, and with a maximal depth uniformly sampled in [5, 25].

SVMs are generated by choosing randomly between the rbf and poly kernels. For both 
types, the C factor is drawn geometrically in [2−5, 25] . If the type of the kernel is poly, the 
coefficient is sampled at random in [3, 5]. For rbf kernel, the gamma parameter is set to 
auto.

We used the average F1-score of a classifier ensemble as the evaluation metric, for all 
23 different data sets, since the F1-score is a better measure to use if we need to seek a 
balance between Precision and Recall. For each dataset, we train and test the ensemble 
method with a 10-fold cross validation process. Additionally, for each dataset, experiments 
are performed 10 times, leading to a total of 100 runs for each method over each dataset. 
This is done to ensure greater stability. The voting rules considered in the experiments are 
Plurality, Borda, Copeland and Kemeny.

In order to compute the Kemeny consensus, we leverage the implementation of the 
Kemeny method for rank aggregation of incomplete rankings with ties that is available 
with the Python package named corankco3. The package provides several methods for 
computing a Kemeny consensus. Finding a Kemeny consensus is computationally hard, 
especially when the number of candidates grows. In order to ensure the feasibility of the 
experiments, we compute a Kemeny consensus using the exact algorithm with ILP Cplex 
when the number of classes |C| ≤ 5 , otherwise we employed the consensus computation 
with a heuristic (see package documentation for further details). We compare the perfor-
mance of VORACE to 1) the average performance of a profile of individual classifiers, 2) 
the performance of the best classifier in the profile, 3) two state-of-the-art methods (Ran-
dom Forest and XGBoost), and 4) the Sum method (also called weighted averaging). The 
Sum method computes xSum

j
=
∑n

i
xj,i for each individual classifier i and for each class j, 

where xj,i is the probability that the sample belongs to class j predicted by classifier i. The 
winner is the one with the maximum value in the sum vector: argmax xSum

j
 . We did not 

compare VORACE to a more sophisticated version of Sum, such as conditional averaging, 
since they are not applicable in our case, requiring additional knowledge of the domain 
which is out of the scope of our work. Both Random Forest and XGBoost classifiers are 
generated with the same number of trees as the number of classifiers in the profile, all the 
remaining parameters are generated using default values. We did not compare to stacking 
because it would require to manually identify the correct structure of the sequence of clas-
sifiers in order to obtain competitive results. An optimal structure (i.e., a definition of a 
second level meta-classifier) can be defined by an expert in the domain at hand [8], and this 
is out of the scope of our work.

To study the accuracy of our method, we performed three kinds of experiments: 1) vary-
ing the number of individual classifiers in the profile and averaging the performance over 
all datasets, 2) fixing the number of individual classifiers and analyzing the performance on 
each dataset and 3) considering the introduction of more complex classifiers as base classi-
fiers for VORACE. Since the first experiment shows that the best accuracy of the ensemble 
occurs when n = 50 , we use only this size for the second and third experiments.

3  The package is available at https://pypi.org/project/corankco/.
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4.1 � Experiment 1: varying the number of voters in the ensemble

The aim of the first experiment is twofold: on one hand, we want to show that increasing 
the number of classifiers in the profile leads to an improvement of the performance. On 
the other hand, we want to show the effect of the aggregation on performance, compared 
with the best classifier in the profile and with the average classifier’s performance. To do 
that, we first evaluate the overall average accuracy of VORACE varying the number n of 
individual classifiers in the profile. Table 2 presents the performance of each ensemble for 
different numbers of classifiers, specifically n ∈ {5, 7, 10, 20, 40, 50} . Plurality, Copeland, 
and Kemeny voting rules have their best accuracy for VORACE when n = 50 . We set the 
system to stop the experiment after the time limit of one week, this is why we stop when 
n = 50 . We are planning to run experiments with larger time limits in order to understand 
whether the system shows that the effect of the profile’s size diminishes at some point. In 
Table 2, we report the F1-score and the standard deviation of VORACE with the consid-
ered voting rules. The last line of the table presents the average F1-score for each voting 
rule. The dataset “letter” was not considered in this test.

Increasing the number of classifiers in the ensemble, all the considered voting rules 
show an increase of the performance, specifically the higher the number of the classifiers 
the higher the F1-score of VORACE.

However, in Table 2 we can observe that the performance is slightly incremental when 
we increase the number of classifiers. This is due to the fact that in this particular experi-
ment the accuracy of every single classifier is usually very high (i.e., p ≥ 0.8 ), thus the 
ensemble has a reduced contribution to the aggregated result. In general this is not the case, 
especially when we have to deal with “harder” datasets where the accuracy p of single 
classifiers is lower. In Sect. 5, we will explore this case and we will see that the number of 
classifiers has a greater impact on the accuracy of the ensemble when the accuracy of the 
classifiers on average is low (e.g., p ≤ 0.6).

Moreover, it is worth noting that the computational cost of the ensemble (both training 
and testing) increases linearly with the number of classifiers in the profile. Thus, it is con-
venient to consider more classifiers, especially when the accuracy of the single classifiers 
is poor. Thus, overall, the increase in the number of classifiers has a positive effect on the 
performance of VORACE, as expected given the theoretical analysis in Sect. 54.

For each voting rule, we also compared VORACE to the average performance of the 
individual classifiers and the best classifier in the profile, to understand if VORACE is 
better than the best classifier, or if it is just better than the average classifiers’ accuracy 
(around 0.86). In Table 2 we can see that VORACE always behaves better than both the 
best classifier and the profile’s average. Moreover, it is interesting to observe that Plurality 
performs better on average than more complex voting rules like Borda and Copeland.

4.2 � Experiment 2: comparing with existing methods

For the second experiment, we set n = 50 and we compare VORACE (using Majority, 
Borda, Plurality, Copeland, and Kemeny) with Sum, Random Forest (RF), and XGBoost 
in each dataset. Table 3 reports the performances of VORACE on binary datasets where 
all the voting rules collapse to Majority voting. VORACE performances are very close to 

4  However, the experiments do not satisfy the independence assumption of the theoretical study
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the state-of-the-art. We try to use Kemeny on the dataset “letter” but it exceeds the time 
limit of one week and thus it was not possible to compute the average. In order to make the 
average values comparable (last row of Table 4), performances on the dataset “letter” were 
not considered in the computation of the average values for the other methods. Table  4 
reports the performances on datasets that have multiple classes: when the number of 
classes increases VORACE is still stable and behaves very similarly to the state-of-the-art. 
The similarity among the performances is promising for the system. Indeed, RandomFor-
est and XGBoost reach better performances on some datasets and they can be improved on 
over by optimizing their hyperparameters. But, this experiment shows that it is possible to 
reach very similar performances using a very simple method as VORACE is. This means 
that usage of VORACE does not require any optimization of hyperparameters whether it 
is done manually or automatically. The importance of this property is corroborated by a 
recent line of work by [52] that suggests how industry and academia should focus their 
efforts on developing tools that reduce or avoid hyperparameters’ optimization, resulting in 
simpler methods that are also more sustainable in terms of energy and time consumption.

Moreover, Plurality is both more time and space efficient since it needs a smaller amount 
of information: for each classifier it just needs the most preferred candidate instead of the 
whole ranking, contrarily to other methods such as Sum. We also performed two additional 
variants of these experiments, one with a weighted version of the voting rules (where the 
weights are the classifiers’ validation accuracy), and the other one by training each classi-
fier on different portions of the data in order to increase the independence between them. In 
both experiments, the results are very similar to the ones reported here.

4.3 � Experiment 3: introducing complex classifiers in the profile

The goal of the third experiment is to understand whether using complex classifiers in 
the profile (such as using an ensemble of ensembles) would produce better final perfor-
mances. For this purpose, we compared VORACE with standard base classifiers (described 
in Sect.  3) with three different versions of VORACE with complex base classifiers: 1) 

Table 3   Performances on binary datasets: average F1-scores (and standard deviation)

Best performance in bold. On binary datasets, all the voting rules behave as majority voting rule

Dataset Majority Sum RF XGBoost

Breast-cancer 0.7356 (0.0947) 0.7151 (0.0983) 0.7134 (0.0397) 0.7000 (0.0572)
Breast-w 0.9645 (0.0133) 0.9610 (0.0168) 0.9714 (0.0143) 0.9613 (0.0113)
Colic 0.8587 (0.0367) 0.8573 (0.0514) 0.8507 (0.0486) 0.8750 (0.0534)
Credit-a 0.8590 (0.0613) 0.8478 (0.0635) 0.8710 (0.0483) 0.8565 (0.0763)
Haberman 0.7337 (0.0551) 0.6994 (0.0765) 0.7353 (0.0473) 0.7158 (0.0518)
Heart-statlog 0.8070 (0.0699) 0.7885 (0.0797) 0.8259 (0.0621) 0.8222 (0.0679)
Hepatitis 0.8385 (0.0903) 0.8377 (0.0955) 0.8446 (0.0610) 0.8242 (0.0902)
Ionosphere 0.9435 (0.0348) 0.9366 (0.0344) 0.9344 (0.0385) 0.9260 (0.0427)
Kr-vs-kp 0.9958 (0.0044) 0.9960 (0.0044) 0.9430 (0.0139) 0.9562 (0.0174)
Monks-3 0.9182 (0.0712) 0.9115 (0.0748) 0.9333 (0.0624) 0.9333 (0.0624)
Spambase 0.9416 (0.0105) 0.8801 (0.1286) 0.9100 (0.0137) 0.9294 (0.0112)
Average 0.8724 (0.0493) 0.8574 (0.0658) 0.8666 (0.0409) 0.8636 (0.0493)
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VORACE with only Random Forest 2) VORACE with only XGBoost and 3) VORACE 
with Random Forest, XGBoost and standard base classifiers (DT, SVM, NN).

For simplicity, we used the Plurality voting rule, since it is the most efficient method 
and it is one of the voting rules that gives better results. We fixed the number of voters in 
the profiles to 50 and we selected the parameters for the simple classifiers for VORACE 
as described at the beginning of Sect. 4. For Random Forest, parameters were drawn uni-
formly among the following values5: bootstrap between True and False, max_depth in 
[10, 20,… , 100,None] , max_features between [auto, sqrt], min_samples_leaf in [1, 2, 4], 
min_samples_split in [2, 5, 10], and n_estimators in [10, 20, 50, 100, 200]. For XGBoost 
instead the parameters were drawn uniformly among the following values: max_depth in 
the range [3, 25], n_estimators equals the number of classifiers, subsample in [0, 1], and 
colsample_bytree in [0, 1]. The results of the comparison between the different versions of 
VORACE are provided in Table 5. We can observe that the performance of VORACE (col-
umn “Majority” of Table 3 and column “Plurality” of Table 4) is not significantly improved 

Table 5   Average F1-scores (and 
standard deviation)

* Denotes binary datasets

dataset VORACE with VORACE with VORACE with
RF & XGBoost only RF only XGBoost

Anneal 0.9937 (0.01) 0.9921 (0.01) 0.9893 (0.01)
Autos 0.8095 (0.09) 0.7969 (0.10) 0.7916 (0.08)
Balance 0.8998 (0.02) 0.8456 (0.03) 0.8040 (0.04)
Breast-cancer* 0.7573 (0.04) 0.7485 (0.06) 0.7394 (0.06)
Breast-w* 0.9654 (0.02) 0.9744 (0.02) 0.9605 (0.03)
Cars 0.9887 (0.01) 0.9547 (0.01) 0.9044 (0.05)
Colic* 0.8668 (0.04) 0.8766 (0.04) 0.8638 (0.04)
Credit-a* 0.8737 (0.03) 0.8691 (0.03) 0.8712 (0.03)
Dermatology 0.9749 (0.02) 0.9765 (0.02) 0.9805 (0.02)
Glass 0.9761 (0.03) 0.9740 (0.04) 0.9770 (0.03)
Haberman* 0.7338 (0.04) 0.7168 (0.04) 0.7286 (0.02)
Heart-statlog* 0.8315 (0.09) 0.8352 (0.09) 0.8248 (0.08)
Hepatitis* 0.8215 (0.07) 0.8091 (0.05) 0.8105 (0.08)
Ionosphere* 0.9349 (0.04) 0.9272 (0.05) 0.9347 (0.04)
Iris 0.9627 (0.05) 0.9593 (0.04) 0.9593 (0.05)
Kr-vs-kp* 0.9953 (0.00) 0.9869 (0.01) 0.9892 (0.01)
Letter 0.9632 (0.01) 0.9622 (0.01) 0.9265 (0.01)
Lymphography 0.8700 (0.10) 0.8306 (0.15) 0.8412 (0.14)
Monks-3* 0.9156 (0.07) 0.9340 (0.06) 0.9037 (0.07)
Spambase* 0.9437 (0.01) 0.9439 (0.01) 0.9337 (0.01)
Vowel 0.9834 (0.01) 0.9691 (0.02) 0.9086 (0.03)
Wine 0.9851 (0.03) 0.9764 (0.04) 0.9796 (0.04)
Zoo 0.9535 (0.05) 0.9589 (0.05) 0.9231 (0.06)
Average 0.9130 (0.04) 0.9051 (0.04) 0.8933 (0.04)

5  Parameters’ names and values refer to the Python’s modules: RandomForestClassifier in 
sklearn.ensemble and xgb in xgboost.
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by using more complex classifiers as a base for the profile. It is interesting to notice the 
effect of VORACE on the aggregation of RF with respect to a single RF. Comparing the 
results in Table 3 and 4 (RF column) with results in Table 5 (VORACE with only RF col-
umn), one can notice that RF is positively affected by the aggregation on many datasets 
(on all the datasets the improvement is on average 5%), especially on those with multiple 
classes. Moreover, the improvement is significant in many of them: i.e. on “letter” dataset 
we have an improvement of more than 35%. This effect can be explained by the random 
aggregation of trees used by the RF algorithm, where the goal is to reduce the variance of 
the single classifier. In this sense, a principled aggregation of different RF models (as the 
one in VORACE) is a correct way to boost the final performance: distinct RF models act 
differently over separate parts of the domain, providing VORACE with a good set of weak 
classifiers—see Theorem 3.

We saw in this section that this more complex version of VORACE does not provide 
any significant advantage, in terms of performance, compared with the standard one. To 
conclude, we thus suggest using VORACE in its standard version without adding complex-
ity to the base classifiers.

In other experiments, we also see that the probability of choosing the correct class 
decreases if the number of classes increases. This means that the task becomes more dif-
ficult with a larger number of classes.

5 � Theoretical analysis: independent classifiers with the same accuracy

In this section we theoretically analyze the probability to predict the correct label/class of 
our ensemble method.

Initially, we consider a simple scenario with m classes (the candidates) and a profile of 
n independent classifiers (the voters), where each classifier has the same probability p of 
correctly classifying a given instance. The independence assumption hardly fully holds in 
practice, but it is a natural simplification (commonly adopted in literature) used for the sake 
of analysis.

We assume that the system uses the Plurality voting rule. This is justified by the fact 
that Plurality provides better results in our experimental analysis (see Sect. 4) and thus it 
is the one we suggest to use with VORACE. Moreover, Plurality has also the advantage to 
require very little information from the individual classifiers and also being computation-
ally efficient.

We are interested in computing the probability that VORACE chooses the correct class. 
This probability corresponds to the accuracy of VORACE when considering the single 
classifiers as black boxes, i.e., knowing only their accuracy without any other information. 
The result presented in the following theorem is especially powerful because it shows a 
closed formula that only requires for the values of p, m, and n to be known.

Theorem 1  The probability of electing the correct class c∗ , among m classes, with a profile 
of n classifiers, each one with accuracy p ∈ [0, 1] , using Plurality is given by:

(1)T(p) =
1

K
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where �i is defined as the coefficient of the monomial xn−i in the expansion of the following 
generating function:

and K is a normalization constant defined as:

Proof  The formula can be rewritten as:

and corresponds to the sum of the probability of all the possible different profiles votes that 
elect c∗ . We perform the sum varying i, an index that indicates the number of classifiers in 
the profile that vote for the correct label c∗ . This number is between ⌈ n

m
⌉ (since if i < ⌈ n

m
⌉ 

that profile cannot elect c∗ ) and n where all the classifiers vote for c∗ . The binomial factor 
expresses the number of possible positions, in the ordered profile of size n, of i classifiers 
that votes for c∗ . This is multiplied by the probability of these classifiers to vote c∗ , that is 
pi . The factors �i(n − i)! correspond the number of possible combinations of votes of the 
n − i classifiers (on the other candidates different from c∗ ) that ensure the winning of c∗ . 
This is computed as the number of possible combinations of n − i objects extracted from a 
set (m − 1) objects, with a bounded number of repetitions (bounded by i − 1 to ensure the 
winning of c∗ ). The formula to use for counting the number of combinations of D objects 
extracted from a set A objects, with a bounded number of repetitions B, is: �iD! . In our 
case A = m − 1 is the number of objects, B = i − 1 is the maximum number of repetitions 
and D = n − i the positions to fill and �i is the coefficient of xD in the expansion of the fol-
lowing generating function:

Finally, the factor (1 − p)n−i is the probability that the remaining n − i classifiers do not 
elect c∗ . 	�  ◻

For the sake of comprehension, we give an example that describes the computation 
of the probability of electing the correct class c∗ , as formalized in Theorem 1.

Example 2  Considering an ensemble with 3 classifiers (i.e., n = 3 ), each one with accuracy 
p = 0.8 . The number of classes in the dataset is m = 4 . The probability of choosing the 
correct class c∗ is given by the formula in Theorem 1. Specifically:
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where K = 1.728 . In order to compute the value of each �i , we have to compute the coef-
ficient of x3−i in the expansion of the generating function G4

i
(x) . 

For i = 1:	� We have G4
1
(x) = 1 , and we are interested in the coefficient of xn−i = x2 , thus 

�1 = 0.
For i = 2:	� We have G4

2
(x) = 1 + 3x + 3x2 + x3 , and we are interested in the coefficient of 

xn−i = x1 , thus �2 = 3.
For i = 3:	� We have G4

3
(x) = 1 + 3x +

9

2
x2 + 4x3 +

9

4
x4 +

3

4
x5 +

1

8
x6 , and we are interested 

in the coefficient of xn−i = x0 , thus �3 = 1.

 We can now compute the probability T(p):

The result says that VORACE with 3 classifiers (each one with accuracy p = 0.8 ) has a 
probability of 0.963 of choosing the correct class c∗.

It is worth noting that T(p) = 1 when p = 1 , meaning that, when all the classifiers in the 
ensemble always predict the right class, our ensemble method always outputs the correct 
class as well6. Moreover, T(p) = 0 in the symmetric case in which p = 0 , that is when all 
the classifiers always predict a wrong class.

Note that the independence assumption considered above is in line with previous studies 
(e.g., the same assumption is made in [10, 55]) and it is a necessary simplification to obtain 
a closed formula to compute T(p) . Moreover, in a realistic scenario, p can be interpreted 
as representing the lower bound of the accuracy of the classifiers in the profile. It is easy 
to see that under this interpretation the value of T(p) as well represents a lower bound of 
the probability of electing the correct class c∗ , given m available classes, and a profile of n 
classifiers.

Although this theoretical result holds in a restricted scenario and with a specific vot-
ing rule, as we already noticed in our experimental evaluation in Sect. 4, the probability 
of choosing the correct class is always greater than or equal to each individual classifiers’ 
accuracy.

It is worth noting that the scenario considered above is similar to the one analyzed in the 
Condorcet Jury Theorem [10], which states that in a scenario with two candidates where 
each voter has probability p >

1

2
 to vote for the correct candidate, the probability that the 

correct candidate is chosen goes to 1 as the number of votes goes to infinity. Some restric-
tions imposed by this theorem are partially satisfied also in our scenario: some voters (clas-
sifiers) are independent on each other (those that belong to a different classifier’s category), 

T(p) = (1 − 0.8)3
1

K

3∑
i=1

�i ⋅ (3 − i)!

(
3

i

)(
0.8

1 − 0.8

)i

T(p) =
0.008

1.728
⋅ (�1 ⋅ (2)!

(
3

1

)
⋅ 4 + �2 ⋅ (1)!

(
3

2

)
⋅ (4)2 + �3 ⋅ (0)!

(
3

3

)
⋅ (4)3)

= 0.963.

6  Formula 1 is equal to 1 for p = 1 because all the terms of the sum are equal to zero except the last term 
for i = n ( K = 1 and �i(0) = 1 as well). This is equal to 1 because we have (1 − p)0 = 00 and by convention 
00 = 1 when we are considering discrete exponents.
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since we generate them randomly. However, Theorem 1 does not immediately follow from 
this result. Indeed, it represents a generalization because some of the Condorcet restric-
tions do not hold in our case, specifically: 1) 2-class classification task does not hold, since 
VORACE can be used also with more than 2 classes; 2) classifiers are generated randomly, 
thus we cannot ensure that the accuracy p >

1

2
 , especially with more than two classes. This 

work has been reinterpreted first by [55] and successively extended by [44] and [51], con-
sidering the cases in which the agents/voters have different pi . However, the focus of these 
works is fundamentally different from ours, since their goal is to find the optimal decision 
rule that maximizes the probability that a profile elects the correct class.

Given the different conditions of our setting, we cannot apply the Condorcet Jury Theo-
rem, or the works cited above, as such. However, in Sect. 6 we will formally see that con-
sidering m = 2 , our formulation enforces the results stated by Condorcet Jury Theorem.

Moreover, our work is in line with the analysis regarding maximum likelihood estima-
tors (MLEs) for r-noise models [11, 50]. An r-noise model is a noise model for ranking 
over a set of candidates, i.e., a family of probability distributions in the form P(⋅|u) , where 
u is the correct preference. This means that an r-noise model describes a voting process 
where there is a ground truth about the collective decision, although the voters do not know 
it. In this setting, a MLE is a preference aggregation function f that maximizes the product 
of the probabilities P(vi|u), i = 1,… , n for a given voters’ profile R = (v1, ..., vn) . Finding a 
suitable f corresponds to our goal.

MLEs for r-noise models have been studied in details by [11] assuming the noise is 
independent across votes. This corresponds to our preliminary assumption of the independ-
ence of the base classifiers. The first result in [11] states that given a voting rule, there 
always exists a r-noise model such that the voting rule can be interpreted as a MLE (see 
Theorem 1 in [11]). In fact, given an appropriate r-noise model, any scoring rule is a maxi-
mum likelihood estimator for winner under i.i.d. votes. Thus, for a given input sample, we 
can interpret the classifiers rankings as a permutation of the true ranking over the classes 
and the voting rule (like Plurality and Borda) used to aggregate these rankings as a MLE 
for an r-noise model on the original classification of the examples. However, to the best of 
our knowledge, providing a closed formulation (i.e., considering only the main problem’s 

Fig. 1   Probability of choos-
ing the correct class c∗ 
varying the size of the profile 
n ∈ {10, 50, 100} and keeping m 
constant to 2, where each clas-
sifier has the same probability p 
of classifying a given instance 
correctly
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parameters p, m and n, and without having any information on the original true ranking 
or the noise model) to compute the probability of electing the winner (as provided in our 
Theorem  1) for a given profile using Plurality is a novel and valuable contribution (see 
discussion on the attempts existing in the literature to define the formula in Sect. 2.3). We 
remind the reader that in our learning scenario the formula in Theorem 1 is particularly 
useful because it computes a lower bound on the accuracy of VORACE (that is, the prob-
ability that VORACE selects the correct class) when knowing only the accuracy of the 
base classifiers, considering them as black boxes.

More precisely, we analyze the relationship between the probability of electing the win-
ner (i.e., Formula 1) and the accuracy of each individual classifier p. Figure 1 shows the 
probability of choosing the correct class varying the size of the profile n ∈ {10, 50, 100} 
and keeping m = 2.7 We see that, by augmenting the size of the profile n, the probability 
that the ensemble chooses the right class grows as well. However, the benefit is just incre-
mental when base classifiers have high accuracy. We can see that when p is high we reach 
a plateau where T(p) is very close to 1 regardless of the number of classifiers in the profile. 
In a realistic scenario, having a high baseline accuracy in the profile is not to be expected, 
especially when we consider “hard” datasets and randomly generated classifiers. In these 
cases (when the accuracy of the base classifiers in average is low), the impact of the num-
ber of classifiers is more evident (for example when p = 0.6).

Thus, if p > 0.5 and n tends to infinity, then it is beneficial to use a profile of classifiers. 
This is in line with the result of the Condorcet Jury Theorem.

6 � Theoretical analysis: comparison with Condorcet Jury Theorem

In this section we prove how, for m = 2 , Formula 1 enforces the results stated in the Con-
dorcet Jury Theorem [10] (see Sect. 5 for the Condorcet Jury Theorem statement). Notice, 
as for Theorem  1, the adopted assumptions likely do not fully hold in practice, but are 
natural simplifications used for the sake of analysis. Specifically, we need to prove the fol-
lowing theorem.

Theorem 2  The probability of electing the correct class c∗ , among 2 classes, with a profile 
of an infinite number of classifiers, each one with accuracy p ∈ [0, 1] , using Plurality, is 
given by:

In Fig. 2 we can see a visualization of the function T(p) when n → ∞ , as described in 
Theorem 2. In what follows we will prove this by showing that the function T(p) is mono-
tonic increasing and when n → ∞ is equal to 0.

(2)lim
n→∞

T(p) =

⎧⎪⎨⎪⎩

0 p < 0.5

0.5 p = 0.5

1 p > 0.5

7  Figure 1 has been created by grid sampling the values of p ∈ [0, 1] with step 0.05 and by performing an 
exact computation of the value of T(p) for each specific value of p in the sampling set with n ∈ {10, 50, 100} 
and m = 2 . We then connected these values with the smoothing algorithm of TikZ package.
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Firstly, we find an alternative, more compact, formulation for T(p) in the case of binary 
datasets (only two alternatives/candidates, i.e., m = 2 ) in the following Lemma.

Lemma 1  The probability of electing the correct class c∗ , among 2 classes, with a profile of 
n classifiers, each one with accuracy p ∈ [0, 1] , using Plurality is given by:

Proof  It is possible to note how for m = 2 , the values of �i is 1

(n−i)!
.

This because:

Consequently, with further algebraic simplifications, we have the following:

(3)T(p) =

n�
i=⌈ n

2
⌉

�
n

i

�
pi(1 − p)n−i.

G
2
i
(x) =

(
i−1∑
j=0

xj

j!

)

= 1 + x +
1

2
x2 +⋯ +

1

(n− i)!
xn−i +⋯ +

1

(i − 1)!
xi−1.
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Fig. 2   The probability of electing the correct class c∗ , among 2 classes, with a profile of an infinite number 
of classifiers ( n → ∞ ), each one with accuracy p ∈ [0, 1] , using Plurality
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Now, looking at the denominator, by definition of binomial coefficient, we can note that:

Thus, we obtain:

	�  ◻

We will now consider the two cases separately: (i) p = 0.5 , and (ii) p > 0.5 or 
p < 0.5 . For both cases we will prove the corresponding statement of Theorem 2.

6.1 � Case: p = 0.5

We will now proceed to prove the second statement of Theorem 2.

Proof  If p = 0.5 we have that:

T(p) =
1

K
(1 − p)n

n�
i=⌈ n

2
⌉
�i(n − i)!

�
n

i

��
p

1 − p

�i

=
1
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⌉
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��
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��
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1−p
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n∑
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(
n
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)(
p

1 − p
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= (1 +
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pi(1 − p)n−i.
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We note that, if n is an odd number:

while if n is even:

Thus, we have the two following cases, depending on n:

We can see that, when n is odd, the following term becomes 0 if n tend to infinity:

This limit is an indeterminate form ∞
∞

 , that can be easily solved considering that 
(

n
n

2

)
< 2n . 

Given this observation we can see that the denominator prevails making the limit going to 
0. Thus, we proved that:

	�  ◻

We note that if n is odd T(0.5) = 0.5 also for small values of n, while if n is even, T(0.5) 
converges to 0.5 and it is equal to 0.5 only when n → ∞.

6.2 � Monotonicity and analysis of the derivative

In this section, we first show that T(p) (see Equation 3) is monotonic increasing by prov-
ing that its derivative is greater or equal to zero. Finally, we will see that, at the limit (for 
n → ∞ ), the derivative is equal to zero for every p ∈ [0, 1] excluding 0.5.
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Lemma 2  The function T(p) , describing the probability of electing the correct class c∗ , 
among 2 classes, with a profile of a n classifiers, each one with accuracy p ∈ [0, 1] , using 
Plurality is monotonic increasing.

Proof  We know from Equation 3 in Lemma 1 that

We want now to prove that T(p) ≥ 0.

It is easy to see that the last row of the sequence is greater or equal to zero since each of the 
terms of the product is greater or equal to zero. We proved that T(p) is monotonic increas-
ing. 	�  ◻

Let’s see now that at the limit (with n → ∞ ) the derivative is equal to zero for every 
p ∈ [0, 1] excluding p = 0.5.
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Lemma 3  Given the function T(p) describing the probability of electing the correct class 
c∗ , among 2 classes, with a profile of a n classifiers, each one with accuracy p ∈ [0, 1] , 
using Plurality, we have that:

Proof  Let’s rewrite the function �T(p)
�p

 as follows:

We will treat separately the case in which n is an odd or even number:

Case 1: n is odd. This is an indeterminate form 0 ⋅∞ , that can be solved considering that:

where the inequality on the right follows from:

Let’s consider the function of the left inequality when n → ∞.
Since p(1 − p) < 1 ∀p ∈ [0, 1] , we know that:

This can be proved with the following observation:

Let’s consider the function of the right inequality when n → ∞:

We know that this limit is zero because:
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which for n → ∞ holds if and only if p ≠
1

2
.

We can now apply the squeeze theorem and show that the derivative is equal to zero if 
p ∈ [0, 1], p ≠

1

2
 . It is important to notice that �T(p)

�p
 is not continuous in p =

1

2
.

Case 2: n is even.

which is equivalent to:

We saw before that:

Thus, the result holds also for the case in which p is even. 	�  ◻

6.3 � Case: p > 0.5 or p < 0.5

In the previous section, we proved that limn→∞
�T(p)

�p
= 0 if p ≠ 0.5 . This implies that we 

can rewrite T(p) for n → ∞ in the following form:

with v1 , v2 and v3 real numbers in [0, 1] such that v1 ≤ v2 ≤ v3 (since T(p) is monotonic). 
We already proved that v2 = 0.5.

It is easy to see that v1 = 0 , because T(0) = 0,∀n since all the terms of the sum are 
equal to zero. Finally, we have that v3 = 1 , because T(1) = 1,∀n.

In fact, T(1) corresponds to the probability of getting the correct prediction con-
sidering a profile of n classifiers where each one elects the correct class with 100% of 
accuracy. Since we are considering Plurality, which satisfies the axiomatic property of 
unanimity, the aggregated profile will also elect the correct class with 100% of accu-
racy. Thus, the value of T(1) is 1 for each n > 0 and consequently for n → ∞ . Thus, we 
showed that:

This concludes the proof of Theorem 2.
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(6)lim
n→∞

T(p) =

⎧⎪⎨⎪⎩

v1 p < 0.5

v2 p = 0.5

v3 p > 0.5,

(7)lim
n→∞

T(p) =

⎧⎪⎨⎪⎩

0 p < 0.5

0.5 p = 0.5

1 p > 0.5,
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7 � Theoretical analysis: relaxing same‑accuracy and independence 
assumptions

In this section we will relax the assumptions made in Sect. 5 in two ways: first, we remove 
the assumption that each classifier in the profile has the same accuracy p, allowing the classi-
fiers to have a different accuracy (while still considering them independent); later we instead 
relax the independence assumption, allowing dependencies between classifiers by taking into 
account the presence of areas of the domain that are correctly classified by at least half of the 
classifiers simultaneously.

7.1 � Independent classifiers with different accuracy values

Considering the same accuracy p for all classifiers is not realistic, even if we set p =
1

n

∑
i∈A pi , 

that is, the average profile accuracy. In what follows, we will relax this assumption by extend-
ing our study to the general case in which each classifier in the profile can have different accu-
racy, while still considering them independent. More precisely, we assume that each classifier 
i has accuracy pi of choosing the correct class c∗.

In this case the probability of choosing the correct class for our ensemble method is:

where K is the normalization function, S is the set of all classifiers S = {1, 2,… , n} ; Si 
is the set of classifiers that elect candidate ci ; S∗ is the set of classifiers that elect c∗ ; S∗ is 
the complement of S∗ in S ( S∗ = S ⧵ S∗ ); and Ωc∗ is the set of all possible partitions of S in 
which c∗ is chosen:

Notice that this scenario has been analyzed, although from a different point of view, in the 
literature (see for example [44, 51]). However, the focus of these works is fundamentally 
different from ours, since their goal is to find the optimal decision rule that maximizes the 
probability that a profile elects the correct class.

Another relevant work is the one from [38] in which the authors study the case where a 
profile of n voters have to make a decision over k options. Each voter i has independent proba-
bilities p1

i
, p2

i
,⋯ , pk

i
 of voting for options 1, 2,⋯ , k respectively. The probability, pc∗

i
 (i.e., the 

probability of voting for the correct outcome c ∗ ) exceeds each probabilities pc
i
 of voting for 

any of the incorrect outcomes, c ≠ c ∗ . The main difference with our approach is that in [38] 
the authors assume to know the full probability distribution over the outcomes for each voter, 
moreover they assume the voters have the same probability distribution. In this regard, we 
just assume to know the accuracy pi (different for each voter) for each classifier/voter (where 
pi = pc∗

i
 ). Thus, we provide a more general formula that covers more scenarios.

7.2 � Dependent classifiers

Until now, we assumed that the classifiers are independent: the set of the correctly classi-
fied examples of a specific classifier is selected by using an independent uniform distribu-
tion over all the examples.

1

K

∑
(S1,…,Sm)∈Ωc∗

[∏
i∈S∗

(1 − pi) ⋅
∏
i∈S∗

pi
]

Ωc∗ = {(S1,… , Sm−1)| partitions of S∗ s.t.|Si| < |S∗| ∀i ∶ ci ≠ c∗}.
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We now relax this assumption, by considering dependencies between classifiers by tak-
ing into account the presence of areas of the domain that are correctly classified by at least 
half of the classifiers simultaneously. The idea is to estimate the amount of overlapping of 
the classifications of the individual classifiers. We denote by � the ratio of the examples 
that are in the easy-to-classify part of the domain (in which more than half of the classifiers 
is able to predict the correct label c∗ ). Thus, � equal to 1 when the whole domain is easy-to-
classify. Considering n classifiers, we can define an upper-bound for �:

In fact, � is bounded by the probability of the correct classification of an example by at 
least half of the classifiers (which are correctly classified by the ensemble). It is interesting 
to note that � ≤ p . Removing the easy-to-classify examples from the training dataset, we 
obtain the following accuracy for the other examples:

We are now ready to generalize Theorem 1.

Theorem 3  The probability of choosing the correct class c∗ in a profile of n classifiers with 
accuracy p ∈ [0, 1[ , m classes and with an overlapping value � , using Plurality to compute 
the winner, is larger than:

The statement follows from Theorem 1 and splitting the correctly classified examples 
by the ratio defined by � . This result tells us that, in order to obtain an improvement of the 
individual classifiers’ accuracy p, we need to maximize the Formula 9. This corresponds 
to avoid maximizing the overlap � (the ratio of the examples that are in the easy-to-classify 
in which more than half of the classifiers is able to predict the correct label) since this 
would lead to a counter-intuitive effect: if we maximize the overlap of a set of classifiers 
with accuracy p, in the optimal case the accuracy of the ensemble would be p as well (we 
recall that � is bounded by p). Our goal is instead to obtain a collective accuracy greater 
than p. Thus, the idea is that we want to focus also on the examples that are more difficult 
to classify.

The ideal case, to improve the final performance of the ensemble, is to generate a family 
of classifiers with a balanced trade-off between � and the portion of accuracy generated by 
classifying the difficult examples (i.e., the ones not in the easy-to-classify set). A reason-
able way to pursue this goal corresponds to choosing the base classifiers randomly.

Example 3  Consider n = 10 classifiers with m = 2 classes and assume the accuracy of 
each classifier in the profile is p = 0.7 . Following the previous observations, we know 
that � ≤ 0.7 . In the case of the maximum overlap among classifiers, i.e., � = 0.7 , the accu-
racy of VORACE is 0.3T(p̃) + 0.7 . Recalling Eq. 8, we have that p̃ = 0 and, consequently, 
T(p̃) = T(0) = 0 . Thus, the accuracy of VORACE remains exactly 0.7. In general (see 
Fig.  1), with small values for the input accuracy p, the function T(p) obtains a decrease 
of the original accuracy. On the other hand, in the case of a smaller overlap, for example 
the edge case of � = 0 , we have that p̃ = p , and Formula 9 becomes equal to the original 
Formula 1. Then, VORACE is able to exploit the increase of performance given by n = 10 

𝜚 ≤ ℙ[ ∃ I ⊆ S, |I| ≥ n

2
s.t. ∀i ∈ I argmax(xi) = c∗] .

(8)�p =
p − 𝜚

1 − 𝜚
< p .

(9)(1 − �)T(p̃) + � .
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classifiers with a high p̃ of 0.7. In fact, Formula 9 becomes simply T(0.7) that is close to 
0.85 > 0.7 , improving the accuracy of the final model.

8 � Conclusions and future work

We have proposed the use of voting rules in the context of ensemble classifiers: a voting 
rule aggregates the predictions of several randomly generated classifiers, with the goal to 
obtain a classification that is closer to the correct one. Via a theoretical and experimen-
tal analysis, we have shown that this approach generates ensemble classifiers that perform 
similarly to, or even better than, existing ensemble methods. This is especially true when 
VORACE employs Plurality or Copeland as voting rules. In particular, Plurality has also 
the added advantage to require very little information from the individual classifiers and 
being tractable. Compared to building ad-hoc classifiers that optimize the hyper-parame-
ters configuration for a specific dataset, our approach does not require any knowledge of 
the domain and thus it is more broadly usable also by non-experts.

We plan to extend our work to deal with other types of data, such as structured data, 
text, or images. This will also allow for a direct comparison of our approach with the work 
by [6]. Moreover, we are working on extending the theoretical analysis beyond the Plural-
ity case.

We also plan to consider the extension of our approach to multi-class classification. 
In this regard, a prominent application of voting theory to this scenario might come from 
the use of committee selection voting rules [20] in an ensemble classifier. We also plan 
to study properties of voting rules that may be relevant and desired in the classification 
domain (see for instance [23, 24]), with the aim to identify and select voting rules that pos-
sess such properties, or to define new voting rules with these properties, or also to prove 
impossibility results about the presence of one or more such properties.

Appendix: Discussion and comparison with [41]

In this section, we compare our theoretical formula to estimate the accuracy of VORACE 
in Eq. 1 (for the plurality case) with respect to the one provided in [41] (page 93 Sect. 3.2, 
formula for Pid Eq.  8), providing details of the problem of their formulation. From our 
analysis, we discovered that applying their estimation of the – so called – Identification 
Rate ( Pid ) produces incorrect results, even in simple cases. We can prove it by using the 
following counterexample: a binary classification problem where the goal is “to combine” 
a single classifier with accuracy p, i.e., number of classes m = 2 , and number of classifiers 
n = 1 . It is straightforward that the final accuracy of a combination of a single classifier 
with accuracy p has to remain unchanged ( Pid = p).

Before proceeding with the calculations, we have to introduce some quantities, follow-
ing the same ones defined in their original paper:

–	 Nt is a random variable that gives the total number of votes received by the correct 
class: 

P(Nt = j) =

(
n

j

)
pj(1 − p)n−j.
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–	 Ns is a random variable that gives the total number of votes received by the wrong class 
sth : 

 where e = 1−p

m−1
 is the misclassification rate.

–	 Nmax
s

 is a random variable that gives the maximum number of votes among all the 
wrong classes: 

 where the quantity P(Ns < j) is: 

The authors assume that Nt and Nmax
s

 are independent random variables. This means that 
the probability that the correct class obtains k votes is independent to the probability that 
the maximum votes within the wrong classes correspond to j. This false assumption leads 
to a wrong final formula. In fact, applying Eq. 8 in [41] to our simple binary scenario with 
a single classifier, we have that the new estimated accuracy is:

whereas the correct result should be p.
On the other hand, our proposed formula (Theorem 1) tackles this scenario correctly, as 

proved in the following, where we specify Equation 1 to this context:

where �1(0)! = 1 and K = 1.
Notice that, as expected, Formula 1 is equal to 1 when p = 1 , meaning that, when all 

classifiers are correct, our ensemble method correctly outputs the same class as all indi-
vidual classifiers.

As other proof of the difference between the two formulas, we created a similar plot as 
the one in Fig. 1, applying Eq.(8) in [41]—instead of our formula—obtaining Fig. 3. The 
two plots are similar, with a less steepness in the curves generated by using our formula. 
In this sense, we suppose that the formula proposed by [41] is a good approximation of 
the correct value of Pid for large values of n (as we proved that for n = 1 and m = 2 is not 
correct).

P(Ns = j) =

(
n

j

)
ej(1 − e)n−j,

P(Nmax
s

= k) =

=

m−1∑
h=1

(
m − 1

h

)
P(Ns = k)hP(Ns < j)m−1−h,

P(Ns < j) =

j−1∑
t=0

P(Ns = t).

(10)
Pid =

N∑
j=1

P(Nt = j)

j−1∑
k=0

P(Nmax
s

= k)

= P(Nt = 1)P(Nmax
s

= 0) = p2,

Pid =
1

K
(1 − p)n

n�
i=⌈ n

m
⌉
�i(n − i)!

�
n

i

��
p

1 − p

�i

=
1

K
�1(0)!p = p,
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