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Abstract

We introduce a voting model with multi-agent ranked delegations. This

model generalises liquid democracy in two aspects: first, an agent’s delega-

tion can use the votes of multiple other agents to determine their own—for

instance, an agent’s vote may correspond to the majority outcome of the

votes of a trusted group of agents; second, agents can submit a ranking over

multiple delegations, so that a backup delegation can be used when their

preferred delegations are involved in cycles. The main focus of this paper

is the study of unravelling procedures that transform the delegation ballots

received from the agents into a profile of direct votes, from which a winning

alternative can then be determined by using a standard voting rule. We pro-

pose and study six such unravelling procedures, two based on optimisation

and four using a greedy approach. We study both algorithmic and axiomatic

properties, as well as related computational complexity problems of our un-

ravelling procedures for different restrictions on the types of ballots that the

agents can submit.

*This paper revises and extends our previous work presented at IJCAI-2020 [19], which was

developed from ideas discussed at the Dagstuhl Seminar 19381 on Application-Oriented Com-

putational Social Choice in September 2019. We are grateful for the feedback received by the

anonymous reviewers of IJCAI-2020 and JAAMAS, as well as the audience of MPREF-2020 and

the COMSOC video seminar. Some of the work in this paper was performed while the third author

was affiliated with the Institute for Logic, Language and Computation (ILLC) at the University of

Amsterdam.

1

http://arxiv.org/abs/2111.13145v1


1 Introduction

In delegative voting, an agent’s vote (or their corresponding voting power) can

be passed to another voter or candidate. Dodgson [24] was the first to mention a

delegative voting process, in the context of multi-winner elections, where a can-

didate could strategically delegate their excess votes to another candidate of their

choosing.

In general, models of delegative democracy bridge the gap between direct and

representative democracy, where in the former every member of a community has

to vote on every issue that arises, whereas the latter allows elected representatives

to decide on behalf of a community. On the one hand, direct democracy is ar-

guably time-consuming and infeasible for large-scale voting, since voters must be

informed on every issue to be able to vote on it. On the other hand, representa-

tive democracy tends to leave voters under-represented (although it exists in many

forms). Delegative democracy can thus balance these problems, since agents can

engage either actively, by voting directly, or passively, by choosing a representa-

tive for any issue [28].

Since voters can choose to actively participate into the decision-making, mod-

els of delegative democracy can also be seen as examples of interactive democ-

racy, i.e., those voting systems that turn collective decisions into more engaging

and responsive processes. In particular, Brill [10] argues that the progression of

interactive democracy can be done in conjunction with the advancements of tech-

nology: for instance, in e-democracy the Internet is used to strengthen real-world

and online democracies [47]. There are thus arguments in support of delegative

democracy (and of upholding it via computerised methods), yet it is unclear how

this should be implemented.

Proxy voting and liquid democracy are two instances of delegative democracy.

Proxy voting allows voters to choose their own representative who votes on their

behalf. Depending on the model, the representatives can be predetermined [2,

46]; any voter can be a representative and any agent can vote directly on any issue

[32, 44, 49, 50]; or proxy voting is limited only to certain elections [40]. Liquid

democracy allows agents to either vote directly on an issue or to delegate their vote

to another trusted agent. Unlike in proxy voting, delegations are transitive: i.e., if

you have delegated your vote to another agent, they are free to either vote directly

or to delegate their own vote (as well as all other delegations they have received)

to another agent [6]. However, the transitivity of delegations can lead to an agent’s

vote being used in a way that the agent would not support; for example, if a vote

has been passed through many delegations, the original agent may not agree with
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the final agent who votes on their behalf. Another issue arises in determining the

outcome when some agents are stuck in a delegation cycle, i.e., when a delegating

agent transitively receives their own delegation, as well as all of those in the cycle.

In this paper we tackle these problems by introducing a model of delegative

democracy where voters can give multi-agent ranked delegations, thus generalis-

ing liquid democracy in two aspects. Firstly, we allow agents to submit a ranking

over multiple possible delegations they would support, in order to ensure that their

vote can be determined (should a delegation cycle arise). Secondly, voters can use

the votes of multiple delegates in order to determine their own vote: for instance,

they may state that their vote should coincide with the majority decision of a group

of trusted delegates. Agents are thus able (but not required) to express complex

delegations.

A natural question which arises when allowing for ranked delegations is when

and how should the ranked delegations be used to break cycles. In this paper we

define and analyse six of what we call unravelling procedures, which are used to

find outcomes from delegations that could contain cycles.

1.1 Our contribution

In Section 2 we introduce our model of multi-agent ranked delegations, which we

call smart voting, building upon the model introduced in previous work [19]. Our

smart ballots give more expressivity to the agents than those from previous mod-

els of delegative democracy. Starting from these complex ballots, an unravelling

procedure returns a standard voting profile from which a collective decision is

taken. We introduce six unravelling procedures: MINSUM minimises the prefer-

ence levels globally used for the agents; MINMAX minimises the maximum pref-

erence level used in the unravelling; the remaining four procedures use a greedy

approach to guarantee tractability. We then introduce two restricted languages for

smart ballots on binary issues: BOOL is our general language, where delegations

are arbitrary Boolean functions expressed in complete DNF, while LIQUID allows

for ranked single-agent delegation.

In Section 3 we prove our main results: the decision problems needed to com-

pute MINSUM and MINMAX on the BOOL language are NP-complete, though

they are polynomial for LIQUID ballots. Moreover, we prove that our four greedy

unravelling procedures always terminate on valid smart ballots in polynomial

time.

In Section 4 we compare our unravelling procedures, showing that all six can

give outcomes which differ from each other and from the procedures by Kotsialou
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and Riley [38]. However, the four greedy procedures and MINSUM coincide on

standard liquid democracy ballots. We also study the axioms of cast-participation

and guru-participation, as well as a notion of Pareto dominance. We conclude in

Section 5.

1.2 Related work

In this section we present the related literature on delegative democracy, starting

from the previous work that inspired our twofold generalisation of liquid democ-

racy.

Multi-agent delegations. Our first generalisation is to allow voters to express

delegations involving many other agents. In the same spirit, the model by De-

grave [22] allows for an agent’s delegation to be split among possibly many dele-

gates: for example, a voter delegating to three agents could give half of their vote

to one agent and a quarter to the other two delegates. Abramowitz and Mattei [1]

give a similar model, but for proxy voting, where agents assign weights to a fixed

set of representatives for each issue: agents can thus choose to spread their vote

over many representatives.

In pairwise liquid democracy on ordinal elections [11], ballots are rankings of

candidates and they can be completed by delegating a decision on distinct pairs of

candidates to different delegates. Gölz et al. [29] address the problem of a small

number of agents holding a lot of power by studying the fluid mechanics of liquid

democracy, trying to balance influence like liquid in a vessel.

Ranked delegations. The second generalisation is to allow for ranked delega-

tions, to avoid cycles (as in our case) or to avoid the delegation to an abstaining

agent. Ford [28] introduces the notion of delegation chains, which we call ranked

delegations, where an agent submits an ordering of many delegates, from the most

trusted to one who still represents the agent, but less than the delegates coming

before.

The model proposed by Kotsialou and Riley [38] includes ranked delegations

that are used to avoid delegating to an abstaining agent and delegation cycles.

They propose two procedures, breadth-first and depth-first, which find an outcome

in a similar manner as we suggest; yet they do not allow delegations to abstaining

agents. A similar approach has been proposed by Brill et al. [12] in ongoing work.
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Kahng, Mackenzie, and Procaccia [34] suggest an alternative method of re-

moving delegation cycles, by assigning a competency level to agents and forbid-

ding them to delegate to someone with a lower competency level than themselves.

Boldi et al. [8] propose viscous democracy, a model of liquid democracy that can

be extended to include ranked delegations, where they make use of a dampening

factor to ensure short chains of delegations. Behrens and Swierczek [3] propose

a model of ranked liquid democracy as well as seven desirable properties for a

liquid democracy system, showing that no system can satisfy all of them.

As an alternative to extending liquid democracy with ranked delegations, Es-

coffier, Gilbert, and Pass-Lanneau [27] introduce iterative delegations, to circum-

vent situations where outcomes cannot be determined. For example, an agent may

want to change their vote if they are in a delegation cycle or if they do not approve

of the guru (i.e., the final receiver of the delegation) that votes on their behalf.

However, stable states may not exist: Escoffier, Gilbert, and Pass-Lanneau [26]

study how the profile of preferences impacts the existence of a stable state, show-

ing that some structures on profiles (such as single-peaked preferences) can ensure

an equilibrium.

Other models of delegative democracy. Inspired by Kahng, Mackenzie, and

Procaccia [34], Caragiannis and Micha [14] study the interplay of liquid democ-

racy and truth-tracking. Assuming that voting is about finding some ground-truth,

a delegation to another agent implies that you believe they will be better than you

at finding the truth. Finding optimal delegations (obtaining the highest probability

of finding the ground-truth) is however not a tractable problem and it is also hard

to approximate.

Analogously, Cohensius and Meir [17] use proxy voting to approximate an

underlying ground-truth, when voter participation would otherwise be low, and

show via empirical data that the outcomes are more accurate than with full voter

participation.

Christoff and Grossi [15] give a model of liquid democracy on multiple binary

issues connected by constraints that reflect consistent sets of opinions. In this

extension of liquid democracy an agent’s vote acquired via delegation must be

consistent with the constraint and their votes on other issues. They also include an

embedding of transitive delegative voting on binary issues into binary aggregation

with abstentions. Bloembergen, Grossi, and Lackner [5] give a game-theoretic

analysis of delegation games via pure-Nash equilibria, where the agent’s utility is

the accuracy of their vote. They complement this study with agent-based simu-

5



lations that verify their theoretical best-response dynamic. Cohensius et al. [18]

consider a game-theoretic model, where only a small number of agents are able

or motivated to vote. They compare voting with and without proxies, studying

which method approximates the optimal outcome. Their results support proxy

voting when agents are placed on a line; however, in the general setting, some

agents may gain too much power.

Zhang and Grossi [52] also study delegation games and provide a general-

ization of the Banzhaf index in liquid democracy to investigate the power of the

agents who vote directly on the issues. Meir et al. [43] study power in proxy vot-

ing, trying to limit the power of sybil-voters in their system. They find bounds on

the highest number of sybil-voters a system could have while still upholding two

forms of sybil-resistance.

Social choice on social networks. Delegative democracy can be seen as a form

of social choice on social networks [30], since delegations create a social network

where an edge represents the trust one agent has for another. This is also seen

in models of opinion diffusion: in both cases, trusted agents can affect either the

opinion or the vote of another agent. Threshold models of opinion diffusion [31]

are closely related to multi-agent delegations using quota rules; one such model

is that of Bredereck and Elkind [9], where opinions change to be in agreement

with the majority of the agent’s neighbours. The pairwise diffusion model of Brill

et al. [13] is closely related to the one of pairwise liquid democracy [11]: agents

give an ordering over all alternatives for one issue, and the structure of both the

network and the agent’s preferences are central to determine the termination of

the diffusion process.

Advancements in voting technology. A challenge of delegative democracy is

the technology required to implement it. Miller [44] in 1969 proposed that voters

would need “a special metal key, a coded combination, or even a thumbprint”

to ensure a safe voting process. Since then, the advancement of technology has

surpassed these notions, yet the question remains of how to safeguard voting when

relying on technology.

A suggestion is to use blockchain technology, such as smart contracts. Dhillon

et al. [23] give a detailed plan of the infrastructure required for a decentralised on-

line voting platform, using distributed ledgers—showing the strengths and weak-

nesses of such a system. Zhang and Zhou [51] give a model of statement voting

that uses the Universal Composability framework to circumvent the issues of im-
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plementing e-democracies. Their model allows for approval voting, STV, and

liquid democracy.

Along with theoretical advancements, voting platforms have also become more

commonplace—including those designed for liquid democracy. Mancini [42] ad-

vocates for political systems to be brought into line with the technology available,

and that liquid democracy could “rewire from the inside how politics works”. Liq-

uid democracy has also been promoted by political parties, such as the Partido

de Internet in Mexico, the Net Party in Argentina, and most notably the Pirate

party of Germany who implemented the Liquid Feedback software [4] for inter-

nal deliberation. Voting behaviour has been studied on the platform [36], and

the party’s structure has been altered by its use [41]. Liquid Feedback introduced

pseudonymity to have some level of anonymity in the system via pseudonyms [48].

Finally, Adhocracy has a voting platform that uses proxy voting for com-

munities, whereas Ethereum has a voting platform for liquid democracy. More-

over, Google tested liquid democracy in their internal social network via Google

Votes [33].

2 Smart voting

In this section we recall the definitions of our model for multi-agent ranked dele-

gations in voting, which has been previously introduced as smart voting [19]. The

model allows agents to decide if they want to vote directly on the issues at stake,

or to give (possibly complex and/or multiple) delegations to determine their vote

from the votes of others in the electorate.

In a smart voting election, the following four main stages will take place:

1. Each agent participating in the election creates and sends their own smart

ballot (as described in Section 2.1), which could be restricted to a specific

format;

2. Once the central authority has received all the ballots, they check whether

the ballots abide by the aforementioned restrictions (i.e., whether they are

valid ballots);

3. Since smart ballots may include delegations, they need to be unravelled via

some procedure to obtain a standard voting profile (as presented in Sec-

tion 2.2);
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4. Finally, a classical voting rule, such as the majority or plurality rule, is used

on the resulting standard voting profile to obtain the collective decision.

In the next sections, we will study problems which pertain to the steps 1–3 of

a smart voting election. For the final step 4, any standard voting rule can be used.

2.1 Smart ballots

In a smart voting election, a finite set N of n agents (or voters) has to take a col-

lective decision over a finite set I of m independent issues. The possible values,

or alternatives, for each issue i ∈ I range over a non-empty finite domain D(i),
which can also include abstentions (denoted by the symbol ∗).

Each agent a ∈ N expresses her vote over an issue i ∈ I by submitting what

we call a smart ballot Bai, defined as follows:

Definition 1 (Smart ballot) A smart ballot of agent a on an issue i ∈ I is an

ordering ((S1, F 1) > · · · > (Sk, F k) > x) where k ≥ 0 and for h ≤ k we have

that Sh ⊆ N is a set of agents, F h : D(i)S
h

→ D(i) is a resolute aggregation

function and x ∈ D(i) is an alternative.

For simplicity, we will focus on a single issue i ∈ I. We thus drop the index i
throughout to simplify notation—writing, e.g., D instead of D(i) and Ba instead

of Bai. All our results can be easily generalised to multiple independent issues.

In a smart ballot, an agent is expressing a preference ordering over their de-

sired delegations—i.e., the k domain-function pairs (S, F )—which ends with a

direct backup vote x for an alternative in the domain of the issue. Note that while

it is required for an agent to provide a backup vote as their last choice, that vote

could be an abstention (if it is in the domain of the issue). Moreover, an agent can

submit a smart ballot with k = 0, i.e., they vote directly on the issue without any

delegation.

In most of our examples, a delegating function F either takes the form of

a single-agent delegation, an aggregation rule (such as the majority rule), or a

Boolean function. In the latter case we assume that the function is represented

as a Boolean formula built from a set of propositional variables {a | a ∈ N},

representing the use of agent a’s vote to determine the delegation, and the standard

logical connectives for negation ¬, conjunction ∧, and disjunction ∨, on a binary

domain.

When computing a function F on an incomplete input we use the notion of a

necessary winner [37]. For example, consider an agent a ∈ N having a delegation
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Maj (b, c, d)—i.e., the majority over the votes of b, c and d—on a binary issue for

which b and c have a direct vote for 1, while there is no vote of d yet. We can still

compute Maj (b, c, d) without the vote of d, since there is already a majority for 1.

From our general definition of smart ballots, we further distinguish a class of

valid smart ballots satisfying some desirable properties:

Definition 2 (Valid smart ballot) A valid smart ballot of agent a is a smart ballot

Ba such that, for all 1 ≤ s 6= t ≤ k, we have that (i) if Ss ∩St 6= ∅ then F s is not

equivalent to F t, and (ii) a /∈ Ss.

Condition (i) imposes that an agent is not submitting the same delegation at

multiple preference levels of their smart ballot. This removes the possibility of

manipulating the process by delegating to the same agents with the same dele-

gation function multiple times, thus ensuring that the more preferred delegation

or an equivalent formulation will be chosen. Condition (ii) ensures that agents

cannot include themselves in the set of delegates, as this would immediately lead

to a delegation cycle.

The following example illustrates various instances of possible smart ballots:

Example 1 Six agents N = {a, b, c, d, e, f} face the decision of whether to order

dinner from one of two new restaurants. Let us denote by 1 the first restaurant, by

0 the second one, and assume that agents can also abstain, i.e., D = {1, 0, ∗}.

We now present some options of valid smart ballots that agent a could submit:

(i) Ba = (1)

This smart ballot represents the direct vote of a for the first restaurant.

(ii) Ba = (({b, c, d, e, f},RMaj ) > 0)

Here, agent a wants their vote to be the relative majority RMaj (i.e., plu-

rality between 0 and 1, with ∗ in case of a tie) of the choices of the agents

b, c, d, e, f . If this first delegation of a leads to a cycle, they will vote for the

second restaurant.

(iii) Ba = (({d}, id) > ({e}, id) > ∗)

Here, a’s first preference is to delegate to agent d (id indicates the identity

function); if this causes a delegation cycle, then a chooses to delegate to e;

and if this also causes a cycle, then a abstains from the vote.

9



Suppose now that we have a binary issue1 with domain D = {0, 1} where 1
represents ordering take-away while 0 represents cooking at home.

(iv) Ba = (({b, f}, b ∨ f) > ({b, c, e}, (c ∧ b) ∨ (¬e ∧ b)) > 1)

In this case, a’s first choice is to delegate using the Boolean function b ∨ f ,

i.e., a will vote for take-away if either b or f want to; if this creates a

delegation cycle, then a will vote to try the take-away if both b and c also

want to, or b wants to while e prefers to cook at home. If this still causes a

cycle, then a votes for 1.

(v) Ba = (({b, c, f},Maj ) > ({b, c, e}, (c ∧ b) ∨ (¬e ∧ b)) > 1)

This smart ballot differs from (iv) only in that a’s first preference is to have

their vote coincide with the majority of the agents b, c and f ’s votes.

One can easily check that all the ballots in Example 1 are valid as per Definition 2.

Each linear order of delegations (plus the backup vote) in a smart ballot in-

dicates a preference over possible delegations. We write Bh
a to indicate the hth

preference level given by agent a in their smart ballot Ba. Hence, we have Bh
a =

(Sh
a , F

h
a ) when the hth preference level is a delegation, or Bh

a = x with x ∈ D
when the hth preference level is a direct vote. In Example 1, e.g., B2

a = ({e}, id)
for ballot (iii).

We collect the n smart ballots from each agent in N into a (smart) profile, i.e.,

a vector B = (B1, . . . , Bn). A valid (smart) profile is a smart profile where each

smart ballot is valid, according to Definition 2.

2.2 Unravelling procedures

An unravelling procedure is a function which allows us to turn a smart profile into

a standard voting profile, i.e., a vector in Dn of direct votes for the issue.

Definition 3 (Unravelling procedure) An unravelling procedure U for the agents

in N is any computable function

U : (B1 × · · · × Bn) → Dn.

1Note that in order to use Boolean functions to express a delegation, the domain of the alterna-

tives for the issue must be a Boolean algebra. We restrict this to a two-element Boolean algebra,

namely {0, 1}.
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Thus, an unravelling procedure U takes a smart profile B and it returns a

voting profile in Dn. When U and B are clear from context, we often write just X
to denote an outcome of an unravelling procedure: i.e., X ∈ U(B) for X ∈ Dn.

After an unravelling procedure returns a profile of direct votes, the agents may

want to know how their smart ballot was unravelled: i.e., which preference level

of their ballot was actually used to compute their direct vote. For this purpose, we

introduce the notion of a certificate.

Definition 4 (Certificate) A certificate c ∈ N
n for profile B is a vector where, for

all a ∈ N such that Ba = (B1
a > · · · > Bka

a ), the entry ca ∈ [1, ka] corresponds

to a preference level for agent a.

Within the class of all possible certificates of Definition 4, we are interested

in those that satisfy the following property: a certificate is consistent if there is

an ordering of the agents such that an agent’s vote can be determined using the

preference level in the certificate, given the votes of the agents that come prior in

the order.2

Definition 5 (Consistent certificate) Given a profile B of valid ballots, a certifi-

cate c is consistent if there exists an ordering σ : N → N of the agents which,

starting from vector X0 = {∆}n with placeholder values ∆ for all agents, it-

eratively constructs an outcome vector of direct votes X ∈ Dn as follows, for

σ(a) = z ∈ [1, n]:

Xz
a =

{

Bca
a if Bca

a ∈ D

F ca
a (Xz−1 ↾Sca

a
) otherwise

where Xa represents a’s entry in X and X ↾S= Πs∈SXs.

We let C(B) be the set of all consistent certificates of a profile B, and the

ath entry of c corresponds to Bca
a being used by the unravelling procedure. More-

over, when outcomes of unravelling procedures can be determined by certificates

we will use CU(B) to denote all consistent certificates given by the unravelling

procedure U . We show next that each consistent certificate c has a unique corre-

sponding outcome vector Xc of direct votes.

2This notion, when restricted to ballots with single-agent delegations, corresponds to the defi-

nition of confluent sequence rules by Brill et al. [12].
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Proposition 1 If a consistent certificate c can be given by two orderings σ and

σ′ of the agents (as per Definition 5), then the orderings yield the same outcome

Xc ∈ Dn.

Proof 1 Consider an arbitrary profile B and a consistent certificate c ∈ C(B).
Assume for a contradiction that c can yield two distinct vectors of direct votes

X 6= X ′, which are given by two orderings σ and σ′ of N , respectively. To

reach a contradiction, we show by induction on the ordering σ that for each agent

a ∈ N we have Xa = X ′
a.

For the base case, consider agent a ∈ N such that σ(a) = 1. As a’s vote was

added to Xc without any other vote, ca must refer to a direct vote. Therefore, the

direct vote of a will be added to X and X ′ (although it may be that σ′(a) 6= 1).

We assume for our inductive hypothesis that for all agents b ∈ N where σ(b) ≤ k
it is the case that Xb = X ′

b. We will show that for agent d such that σ(d) = k + 1
we have Xd = X ′

d. In case Bcd

d is a direct vote, the same reasoning as for the

base case applies. Else, by definition we have a necessary winner for F cd

d (X ↾Scd
d

) = Xd. If Xd 6= X ′
d, then F cd

d (X ↾Scd
d
) 6= F cd

d (X ′ ↾Scd
d
) and X ↾Scd

d
6= X ′ ↾Scd

d
.

Hence, there exists an entry that differs in the two vectors, which contradicts our

inductive hypothesis. Then, Xd = X ′
d. As Xa = X ′

a for all a ∈ N , we have that

X = X ′. Hence, a consistent certificate c gives a unique outcome Xc.

Finally, we define the rank of a certificate c as the sum of its preference levels

used. Given profile B, the rank of a certificate c ∈ C(B) is rank(c) :=
∑

a∈N

ca.

The minimum possible value of rank for an unravelling is n, i.e., when all

the agents get their first preference level. Thus, if a profile contains a delegation

cycle at the first preference level, it cannot have a consistent certificate with rank

equal to n.

2.3 Optimal unravellings

Our first procedure, MINSUM, is optimal with respect to the rank: i.e., it returns

all outcome vectors which can be obtained by a consistent certificate minimising

the sum of preference levels used for the agents.

Definition 6 (MinSum) For a given profile B, the MINSUM unravelling proce-

dure is defined as:

MINSUM(B) := {Xc | c ∈ argmin
c∈C(B)

rank(c)}.
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Hence, MINSUM returns all vectors of direct votes Xc whose consistent cer-

tificate c minimises the value of rank(c). Intuitively, by minimising the agents’

preference levels used, more trusted agents are being delegated to. Next, we give

examples of consistent certificates and of the outcomes of the MINSUM proce-

dure.

Example 2 Consider a binary issue with domain D = {0, 1} and five agents

N = {a, b, c, d, e}, whose ballots form the profile B, shown schematically in

Table 1.

B1
x B2

x B3
x

a ({b, c}, b ∧ c) ({d}, d) 1
b 1 - -

c ({d}, d) 0 -

d ({e}, e) 1 -

e ({a}, a) ({b}, b) 0

Table 1: The smart profile B of Example 2, where each row represents the ballot for

each of the agents N = {a, b, c, d, e}, while the columns separate the different preference

levels of the agents’ ballots.

Note that there is a delegation cycle at the first preference level B1
x: agent

a needs the vote of c to compute their own vote, agent c delegates to d, agent

d delegates to e, and agent e delegates to a. Hence, the certificate vector c =
(1, 1, 1, 1, 1), which would be the minimal one for this profile, is not consistent:

there is no ordering of the agents where their direct votes are computed using

only their first preference levels. Thus, c /∈ C(B) and the value of rank for a

consistent certificate will be at least 6.

Consider the certificate c
′ = (1, 1, 2, 1, 1), where only c has their second pref-

erence used: c
′ is consistent, as it is shown by the ordering σ = (b, c, a, e, d).

As rank(1, 1, 2, 1, 1) = 6, the corresponding outcome Xc
′ = (0, 1, 0, 0, 0) is

an outcome of MINSUM(B). The consistent certificate c
′′ = (1, 1, 1, 2, 1) gives

Xc
′′ = (1, 1, 1, 1, 1) and as rank(c′′) = 6, it also is in MINSUM(B). Since there

can be multiple certificates minimising the total rank (yielding distinct vectors of

direct votes X) the MINSUM unravelling procedure is not resolute.

While MINSUM maximises the global satisfaction of the agents, from an indi-

vidual perspective there can be a large disparity in the selected preference levels.
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Our second optimal procedure is motivated by an egalitarian approach, finding

outcomes whose certificate minimises the maximum preference level used among

the agents.

Definition 7 (MinMax) Given profile B, the MINMAX unravelling procedure

returns the following vectors of direct votes:

MINMAX(B) := {Xc | c ∈ argmin
c∈C(B)

max(c)}.

Example 3 Consider a binary issue and 26 agents N = {a, . . . , z}. Let the pro-

file B be such that the smart ballot of agent a is Ba = ((N\{a},
∨

x∈N\{a} x) >

(N\{a, b},
∨

x∈N\{a,b} x) > (N\{a, b, c},
∨

x∈N\{a,b,c} x) > 1), and for each

agent x ∈ N \ {a} let Bx = (({a}, a) > 0) be their smart ballot.

There are three outcomes of MINMAX(B), with certificates c = (1, 2, . . . , 2),
c
′ = (2, . . . , 2), c

′′ = (2, 1, 2, . . . , 2), where max(c) = max(c′) = max(c′′) = 2,

even though rank(c) = rank(c′′) = 51 and rank(c′) = 52. The outcome of

MINSUM(B) has certificate c
′′′ = (4, 1, . . . , 1) and rank(c′′′) = 29; however,

this is not an outcome of MINMAX, since max(c′′′) = 4.

A disadvantage of MINMAX is that for some profiles B it may return a large

number of tied outcomes, as we shall see in Example 5.

2.4 Greedy unravellings

In Section 3 we will prove that computing an outcome for MINSUM and MINMAX

is not computationally tractable in general. This motivates us to introduce four

unravelling procedures with a greedy approach, that break delegation cycles by

using the lowest possible preference level of the ballots, while keeping the process

tractable.

Algorithm 1 outlines our general unravelling procedure UNRAVEL. The input

is a smart profile B, and the procedure initialises a vector X with placeholders ∆
for each agent a ∈ N . The outcome X is returned when each agent has a vote

in D, i.e., X ∈ Dn. A counter lev is always reset to 1 to come back to the

first preference level of the agents. An additional vector Y is used to help with

intermediate computations.

In line 7 a subroutine using an update procedure is executed.3 Given a partial

profile of direct votes and placeholders ∆, as well as a preference level lev, the

3In the following, we will simply write UNRAVEL(#), for # ∈ {U,DU,RU,DRU}, to

indicate the UNRAVEL algorithm using UPDATE procedure #.
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Algorithm 1 General unravelling procedure UNRAVEL

1: Input: B

2: X := (∆, . . . ,∆) ⊲ vector for direct votes initialised with placeholders ∆
3: while X /∈ Dn do

4: lev := 1 ⊲ reset preference level counter lev to 1

5: Y := X ⊲ store a copy of X to compute changes

6: while X = Y do

7: procedure UPDATE(#) with # ∈ {U,RU,DU,DRU}

8: lev := lev+ 1

9: return X ⊲ output a vector of direct votes

UPDATE procedure searches for a direct vote or a vote that can be computed via

necessary winners (depending on which UPDATE is used) at the levth preference

level in the profile; if this is not possible, UNRAVEL moves to level lev + 1
(line 8).

The four update procedures that could be called in Algorithm 1 are defined

by the presence or absence of two properties. The first is direct vote priority

(D): an update procedure prioritises direct votes over those that can be computed

from the current vector Y of votes. The second is random voter selection (R): an

update procedure randomly selects, when possible, a single agent whose direct or

computable vote can be added to X . We thus get: basic update (U), update with

direct vote priority (DU), update with random voter selection (RU), update with

both direct vote priority and random voter selection (DRU).

Algorithm 2 UPDATE(U)

1: for a ∈ N such that xa = ∆ do

2: if Blev
a ∈ D then ⊲ add a’s vote if a has a direct vote at lev

3: xa := Blev
a

4: else if F lev
a (Y↾Slev

a
) ∈ D then

5: xa := F lev
a (Y↾Slev

a
) ⊲ add a’s vote if a has a computable vote at lev

The UPDATE(U) procedure4 in Algorithm 2 updates the vector X with the

direct votes for those agents who currently do not have one (line 1), if their pref-

4Unless otherwise specified, in case the condition in an if statement fails, our programs will

skip to the next step. Recall also that Y↾S denotes the restriction of vector Y to the elements in set

S.
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erence at lev is a direct vote (line 3) or it can be computed from the current votes

in Y (line 5).

Algorithm 3 UPDATE(DU)

1: for a ∈ N such that xa = ∆ do

2: if Blev
a ∈ D then ⊲ add all direct votes

3: xa := Blev
a

4: if Y = X then ⊲ if no direct votes are added to X
5: for a ∈ N such that xa = ∆ do

6: if F lev
a (Y↾Slev

a
) ∈ D then ⊲ find and add computable votes to X

7: xa := F lev
a (Y↾Slev

a
)

In Algorithm 3, UPDATE(DU) first adds the direct votes from preference level

lev to X for those agents without a vote in X (line 2). If there are no direct voters

at lev (line 4), then the procedure tries to add computable votes (line 6).

Algorithm 4 UPDATE(RU)

1: P := ∅ ⊲ initialise an empty set

2: for a ∈ N such that xa = ∆ do

3: if Blev
a ∈ D or F lev

a (Y↾Slev
a

) ∈ D then

4: P := P ∪ {a} ⊲ add voters to P if their vote can be determined

5: if P 6= ∅ then ⊲ there are direct or computable votes in P
6: select b from P uniformly at random

7: if Blev
b ∈ D then

8: xb := Blev
b

9: else if F lev
b (Y↾Slev

b
) ∈ D then

10: xb := F lev
b (Y↾Slev

b
)

The UPDATE(RU) procedure has the random voter selection property (Algo-

rithm 4): at line 1 an empty set P is initialised to store agents with either a direct

vote or a computable vote at lev (line 3). If P is non-empty, one agent will be

randomly selected and their direct or computable vote will be added to X .

Lastly, Algorithm 5 presents UPDATE(DRU), which has both properties. At

lev, the procedure adds agents with direct votes to P (line 3) and agents with

computable votes to P ′. If P is not empty, an agent is selected from P and their

direct vote is added to X (line 9). Otherwise, if P is empty and P ′ is not, an agent
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Algorithm 5 UPDATE(DRU)

1: P, P ′ := ∅ ⊲ initialise two empty sets

2: for a ∈ N such that xa = ∆ do

3: if Blev
a ∈ D then ⊲ add agents with direct votes at lev to P

4: P := P ∪ {a}
5: else if F lev

a (Y ↾Slev
a

) ∈ D then ⊲ add agents with computable votes at

lev to P ′

6: P ′ := P ′ ∪ {a}

7: if P 6= ∅ then ⊲ if there are agents with direct votes

8: select b from P uniformly at random

9: xb := Blev
b ⊲ add only the randomly selected voter’s direct vote to X

10: else if P ′ 6= ∅ then ⊲ if there are some computable votes

11: select b from P ′ uniformly at random

12: xb := F lev
b (Y ↾Slev

b
) ⊲ add only the randomly selected voter’s

computable vote to X

is selected from P ′ and their computable vote is added to X (line 12). If both P
and P ′ are empty, no votes are added to X and the procedure terminates.

We now give an example of the execution of these four unravelling procedures.

Example 4 For a binary issue with D = {0, 1} consider agents N = {a, . . . , f},

whose ballots and delegation structure are represented schematically in Figure 1.5

First of all, B is thus a valid profile. We now illustrate our four unravelling

procedures for UNRAVEL(#) with # ∈ {U,DU,RU,DRU}.

UNRAVEL(U)
At lev = 1 the procedure adds the direct votes of b and c to X . Thus,

we have X = (∆, 1, 0,∆,∆,∆). Then, the algorithm cannot find a direct

or computable vote at lev = 1, so it moves to lev = 2 where it uses Y
to add the direct votes of d and e, as well as f ’s vote that is computable

from X by copying b, giving X = (∆, 1, 0, 0, 1, 1). As no other update is

possible, the algorithm sets lev = 1 and it computes a’s vote, yielding

X = (0, 1, 0, 0, 1, 1), with c = (1, 1, 1, 2, 2, 2).

UNRAVEL(DU)
As with UNRAVEL(U), the direct votes of b and c are added initially, which

5Observe that a formula of propositional logic is a Boolean function.
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B1
x B2

x B3
x

a ({b, c, d}, (b ∧ c) ∨ (b ∧ d) ({e}, e) 1
b 1 - -

c 0 - -

d ({e}, e) 0 -

e ({f}, f) 1 -

f ({a}, a) ({b}, b) 1

f 1 a 1 e 1

(b ∧ c) ∨ (b ∧ d)b 1

c 0

d 0

Figure 1: Representation of the ballots (left) and the delegation structure (right) of the

agents in B from Example 4. In the graph on the right, a solid line indicates the first

preference for delegation, a dashed line represents the second, and the final preference (a

direct vote in {0, 1}) is written next to the agents’ names.

yields to X = (∆, 1, 0,∆,∆,∆), and then the algorithm moves to lev = 2.

Unlike UNRAVEL(U), the procedure UNRAVEL(DU) adds only the direct

votes of d and e, giving X = (∆, 1, 0, 0, 1,∆). Returning to lev =
1, a’s vote can be computed from the votes of b, c and d, giving X =
(0, 1, 0, 0, 1,∆). Finally, at lev = 1 , f ’s computable vote (a delega-

tion to a) can be added, thus giving X = (0, 1, 0, 0, 1, 0), with certificate

c = (1, 1, 1, 2, 2, 1).

UNRAVEL(RU)
First, the direct votes of b and c are added, each in a separate iteration,

giving X = (∆, 1, 0,∆,∆,∆). Then, the algorithm moves to lev = 2,

where it chooses a single vote at random to add to X from the agents d, e
and f . If, for example, the vote of f was added, then X = (∆, 1, 0,∆,∆, 1).
At lev = 1, e’s vote can be computed from f ’s, and then d’s from e’s,

giving X = (∆, 1, 0, 1, 1, 1). Then, at lev = 1, a’s vote can be computed

from b, c and d’s, yielding X = (1, 1, 0, 1, 1, 1), whose certificate is c =
(1, 1, 1, 1, 1, 2).

UNRAVEL(DRU)
This procedure moves as UNRAVEL(RU), except that it chooses randomly

only between the direct votes of d and e at the iteration where UNRAVEL(RU)
can also choose to select the vote of agent f .

Note that in this example, MINMAX would return outcomes corresponding to

all certificates c where max(c) = 2. This would include, e.g., c = (1, 1, 1, 2, 1, 1),
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which is also returned by MINSUM, but also c
′ = (2, 1, 1, 2, 2, 2) and many more.

2.5 Language restrictions for smart ballots

Starting from our general concept of a valid smart ballot in Definition 2, we now

focus on some restrictions on the language of delegations in order to study our

procedures.

We start by focusing on Boolean functions expressed as propositional formu-

las on a binary domain, with a few additional requirements. Firstly, we impose

that the formulas are contingent—i.e., neither a tautology, nor a contradiction—in

order to avoid a direct vote in disguise for (in the case of a tautology) or against

(in the case of a contradiction) the issue, as they would always evaluate to true

(respectively, to false). Secondly, the formulas must be expressed in disjunctive

normal form (DNF): i.e., they are written as a disjunction of cubes, where a cube

is a conjunction of literals (and a literal is a variable or its negation). Finally, call

a cube C an implicant of formula ϕ if C � ϕ, and call C a prime implicant of

ϕ if C is an implicant of ϕ and for all other C ′ � ϕ we have that C ′
2 C. Intu-

itively, prime implicants are the minimal partial assignments to make a formula

true. A complete DNF is the unique representation of a DNF listing all of its prime

implicants.

This representation may seem restrictive, but for an implementation of our

framework we could envisage a pre-processing step where the agents are aided

by a computer platform when creating their ballots—which would use techniques

such as the consensus method or variable depletion (see the textbook by Crama

and Hammer [21] for further details) to find the corresponding complete DNF of

a formula.

We call this restricted language BOOL: 6

Definition 8 (BOOL) A smart ballot Ba for agent a and a binary issue is in lan-

guage BOOL if every F h
a in Ba is a contingent propositional formula in complete

DNF.

Observe that a propositional atom is a Boolean function corresponding to the

identity function: i.e., it is equivalent to copying another agent’s vote. In Ex-

ample 1, ballot (v) does not belong to language BOOL as B1
a = Maj is not a

6Note that in previous work [19], the language BOOL was initially defined simply as the lan-

guage of contingent propositional formulas in DNF, for which however the necessary winners

cannot be computed in polynomial time. We are grateful to an anonymous reviewer for pointing

this out.
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Boolean formula; however, ballot (iv) belongs to BOOL, but note that the formula

(b∧c)∨(b∧¬c)∨f , which is equivalent to the formula used at the first preference

level, would not be in BOOL as it is not complete. For the language BOOL, we

often write ϕlev
a instead of F lev

a .

The following proposition shows that the necessary winner for BOOL ballots

can be computed in polynomial time.

Proposition 2 Deciding if a formula in a BOOL ballot has a necessary winner

can be done in polynomial time.

Proof 2 Observe that the necessary winner for a formula being 1 (resp., 0) means

that the formula is true (resp., false). We first need to prove the following two

claims:

1. The necessary winner of a complete DNF formula is 1 if and only if every

literal of at least one cube of the formula is true.

2. The necessary winner of a complete DNF formula is 0 if and only if every

cube of the formula is made false by at least one literal.

These two claims can be computed by reading the formula and the partial truth

assignment; thus, if they are true, a necessary winner can be found in polynomial

time.

For the right-to-left direction of claim (1), assume that one cube of the formula

is true. As the formula is a complete DNF, each cube represents one of its prime

implicants. By definition, if a prime implicant is made true, so is the formula.

For the left-to-right direction of claim (1), assume that the complete DNF

formula ϕ is made true by some partial truth assignment X . We create a cube C
from the partial assignment, where if a variable x is true (resp., false) in X then x
(resp., ¬x) is a literal in C. As C is built from a partial truth assignment making

ϕ true, we have that C � ϕ and thus C is an implicant of ϕ. Then, either C is a

prime implicant of ϕ or there exists a prime implicant C ′ of ϕ, such that C ′ � C,

where C ′ contains a subset of literals in C. As ϕ is a complete DNF, in either case

there will be a cube of ϕ made true by X (i.e., either C or C ′).

For the right-to-left direction of claim (2), if all cubes in the formula are made

false, then the formula is also necessarily false (i.e., the necessary winner is 0).

For the left-to-right direction of claim (2), assume that a complete DNF ϕ
evaluates to false under a partial truth assignment X . Yet, assume for a contra-

diction that there exists a cube C of ϕ that does not evaluate to false under X .
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As C is not false, then either C is true under X (yielding a contradiction, as ϕ
would be true), or there are some variables v ∈ V ar(C) without a truth value

in X and the remaining literals are made true. We can then extend X for each

such v ∈ V ar(C) such that the literal of v in C is made true. As ϕ is a complete

DNF, the cube C would be true—as no cube can contain contradictions (e.g., x
and ¬x). Thus, the formula ϕ would be true and we would reach a contradiction.

Finally, checking that each literal of at least one cube is true (or that every

cube is made false by at least one literal) can be done by simply inspecting the

formula together with the partial truth assignment, and thus in polynomial time.

A further advantage of having delegations expressed in complete DNF is that

we can check whether a ballot is valid in polynomial time:7 a tautology in com-

plete DNF is ⊤, a contradiction is ⊥, and to check if two complete DNF formulas

are equivalent it suffices to see if the lists of their prime implicants are the same.

The next language restriction that we introduce is to ranked liquid democracy

ballots. The language LIQUID restricts the delegations to single other agents,

where the delegation function is the identity function id.

Definition 9 (LIQUID) Smart ballot Ba for agent a belongs to LIQUID if every

delegating Bh
a is of the form ({b}, id) for b ∈ N \{a} and id the identity function.

In some models of ranked liquid democracy—e.g., in Liquid Feedback [4]—

the final backup vote must be an abstention (∗): we denote this language as

LIQUID∗.

Finally, for a given language L we write L[k] to indicate the smart ballots

in L having at most k delegations in their ordering. For instance, in Example 1

the smart ballots (i) and (iv) belong to the language BOOL[2], while ballot (iii)
belongs to the language LIQUID∗ as well as LIQUID[2]. Note that checking if a

ballot is valid for LIQUID is a tractable problem as it suffices to check that all

delegation functions use id and that no one delegates to themselves or to the same

agent multiple times.

3 Computational complexity of unravellings

In this section we study the complexity of computational problems for each of our

unravelling procedures. First, we study how hard it is to unravel a smart profile

7We previously showed [19] that checking if a ballot of contingent DNF formulas is valid is

an NP-complete problem. Restricting formulas to contingent complete DNFs makes this problem

tractable.
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under a given procedure. We begin with MINSUM and MINMAX, showing that

an associated decision problem, BOUNDEDMINSUM and BOUNDEDMINMAX ,

respectively, are NP-complete. However, when smart ballots are restricted to

LIQUID, finding a solution becomes tractable. Unlike MINSUM and MINMAX,

we show that our greedy procedures, UNRAVEL(#) with# ∈ {U,DU,RU,DRU},

always terminate in a polynomial number of time steps.

3.1 Computational complexity of MINSUM

In this section we study the computational complexity of finding MINSUM out-

comes, when ballots are restricted to either the BOOL or LIQUID language, finding

the problem to be NP-complete in the former case and tractable in the latter.

We begin by studying the decision problem BOUNDEDMINSUM , whose input

is a smart profile B, such that every ballot is restricted to BOOL, and a constant

M ∈ N. The problem then asks if there is a consistent certificate c that un-

ravels B such that rank(c) ≤ M . Repeatedly using BOUNDEDMINSUM for

different values of M gives us the minimum bound, and a modified version of

BOUNDEDMINSUM using partial certificates would allow us to compute an out-

come of MINSUM. Both problems are harder than BOUNDEDMINSUM , which

we now show being NP-complete.

Lemma 1 BOUNDEDMINSUM is in NP.

Proof 3 Recall that BOUNDEDMINSUM is defined on BOOL profiles. We prove

membership in NP by showing that a witness can be checked in polynomial time.

Our witness will be the certificate vector c ∈ N
n, such that ci represents the

preference level of agent i ∈ N when unravelling the profile.

First, we check that c abides by Definition 4: that is, for each i ∈ N , ci

corresponds to a preference level in Bi. To do this, we need to read the certificate

and the profile, taking a polynomial number of time steps. Next, we check that c is

consistent: we first find the direct voters Bci

i ∈ {0, 1} from the certificate and the

profile, and we add them to a set D. We construct the outcome vector X ∈ {∆}n

and append the entry Xi = Bci

i for these direct voters, which can be done in

polynomial time. Then, we check if any necessary winners can be computed from

D: for each agent i ∈ N \ D such that there exists a j ∈ D such that j ∈ Sci

i ,

we check if we can compute a necessary winner of F ci

i given X ↾Sci
i ∩D. If so,

we add i ∈ D and let Xi = F ci
i (X ↾Sci

i ∩D). Since all functions in the ballots

are in complete DNF, by Proposition 2 we can check for a necessary winner in
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polynomial time. Since at least one agent gives a direct vote, we have to check

at most n − 1 agents’ functions for a necessary winner in the first ‘round’. If the

certificate c is consistent, at least one agent is added in each round. Therefore, we

have to do at most
∑n−1

k=1 k = (n−1)n
2

polynomial checks, if a single agent is found

in each round. Finally, we check in polynomial time that
∑

i∈N ci ≤ M . All steps

can be done in polynomial time, showing that BOUNDEDMINSUM is in NP.

We now show that BOUNDEDMINSUM is NP-hard by giving a reduction from

Feedback Vertex Set (FVS), a problem shown by Karp [35] to be NP-complete.

The input of FVS is a directed irreflexive graph G = (V,E) and a positive integer

k,8 and it asks if there is a subset X ⊆ V with |X| ≤ k such that, when all

vertices of X and their adjacent edges are deleted from G, the remaining graph is

cycle-free.

Lemma 2 BOUNDEDMINSUM is NP-hard.

Proof 4 Recall that BOUNDEDMINSUM is defined on the language of complete

DNFs. We prove the claim by reducing from Feedback Vertex Set (FVS). Given

an instance (G, k) of FVS, let an instance of BOUNDEDMINSUM be such that

N = V , M = |V | + k, and for each vertex-agent v ∈ V their ballot Bv is

constructed as follows, for Ov = {u ∈ V | (v, u) ∈ E} the set of outgoing edges

of vertex v in G:

Bv = (Ov,
∧

u∈Ov

u) > 1.

The first delegation of each agent v is a conjunction of positive literals (hence,

a complete DNF), each representing one of the outgoing edges from v in graph

G. Then, the backup vote for 1 represents the removal of the vertex v in the FVS

problem. For the agents v ∈ V without any outgoing edges (Ov = ∅), their ballot

is Bv = 1.

To show the correctness of our reduction, we first prove the following claim: a

graph G is acyclic if and only if c = {1}n is a consistent certificate for the profile

B given by the translation above.

For the left-to-right direction, we prove the contrapositive: assume that the

certificate c = {1}n is not consistent for B. Therefore, there exists no ordering

8The formulation by Karp [35] is on directed graphs G which allow for reflexive edges. How-

ever, our sub-problem is also NP-complete, since a reduction can be given where the constructed

graph G′ adds a dummy node a′ for each node a that had a reflexive edge in G, as well as the

edges (a, a′) and (a′, a).
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of the agents such that all their votes can be added by using the votes added pre-

viously following the ordering. This means that there exists a delegation cycle

between the formulas at the first preference level of some agents in B, as at least

two agents require each others’ votes to determine their own. Since by construc-

tion of B, the literals in the formulas represent the outgoing edges in G, the graph

G is not acyclic.

For the right-to-left direction, let c = {1}n be a consistent certificate for B.

First, note that all nodes in G representing non-delegating agents in B have no

outgoing edges. Second, for each delegating agent v ∈ V , since they can only

possibly be assigned a vote for 1 (their backup direct vote), the truth assignment

to the formula
∧

u∈Ov
u can only be determined when all agents in the delega-

tion have been assigned a vote. Hence, there can be no delegation cycles within

the first preferences, as this would entail that a second preference must be used.

Thus, every maximal path in G starting from a node v ends in a node without any

outgoing edges (a node representing a direct voter). Therefore, G is acyclic.

We now prove the reduction using the previous claim. First, assume that there

exists a subset X such that |X| ≤ k and the resulting graph has no cycles: we

want to show that rank(B) ≤ M = |V | + k. If all of the agents in X receive

their second preference, then all of the agents in N \X get their first preference.

Since this subset is acyclic, it is also consistent (given our claim above), and the

addition of direct voters does not impact the consistency of a certificate. The rank

of this unravelling is |V |+|X| ≤ |V |+k and therefore, rank(B) ≤ M = |V |+k.

Next, we show that if rank(B) ≤ M = |V | + k, then there exists a subset

X such that |X| ≤ k and the remainder of G without X is cycle-free. We let c be

the certificate of unravelling B such that the rank is less than or equal to |V |+ k.

From c, we build X = {u | rank(cu) = 2}. We remove the agents in X from the

profile, both their ballots and any mention of them in delegations. Note that since

rank(B) ≤ M = |V |+ k, it must be the case that |X| ≤ k. Thus, the restriction

of the certificate to v ∈ N \ X must be such that cv = 1. We can now use the

claim above to state that the resulting graph with nodes V \X is acyclic.

Therefore, BOUNDEDMINSUM is NP-hard.

Lemmas 1 and 2 together give us the following theorem.

Theorem 1 BOUNDEDMINSUM is NP-complete.

Remark 1 The reduction in the proof of Lemma 2 does not use negated literals

in the ballots: thus, BOUNDEDMINSUM would still be NP-complete if we were
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to further restrict BOOL to contingent complete DNF formulas with only positive

literals.

The proof of our next result uses Edmonds’ algorithm [25].9 This algorithm

finds, for a given weighted directed graph, a minimum arborescence tree, i.e., a

directed rooted tree minimising the sum of the weights of the edges in the tree.10

Edmond’s algorithm takes as input a (pre-processed) weighted directed graph

D = (V,E, w) and a root r ∈ V , where V is a set of vertices (or nodes), E is a set

of edges, and w is a vector of the edges’ weights. At each step the algorithm picks

a vertex v ∈ V \ {r} that does not have yet an incoming edge in the arborescence

tree and it adds an incoming edge of this vertex having minimum weight. After

each edge has been added, the algorithm checks if a cycle has formed: if that is the

case, the nodes involved in the cycle are contracted to a single node vC creating

a new directed graph D′. The algorithm continues until the contracted graph is a

directed spanning tree, and then all of the contractions are expanded.

The contraction of cycles is performed as follows. Given a set of nodes C in-

volved in a cycle, we let V ′ = (V \C)∪{vC}, for vC a new node. In case euv ∈ E
for u /∈ C and v ∈ C, we let euvC ∈ E ′ such that w(euvC ) = w(euv) − w(ewv)
where ewv is the lowest weighted incoming edge of v (the weight of euvC corre-

sponds to the incoming weight to the cycle, minus the lowest weighted incoming

weight to node v in the cycle). In case evu ∈ E for v ∈ C and u /∈ C, we let

evCu ∈ E ′ with w(evCu) = w(evu). All edges whose nodes are not in the cycle C
remain unchanged.

Theorem 2 An outcome in MINSUM(B) on a profile B in LIQUID can be found

in O(n(d+ n)) time, where d represents the number of delegations in B.

Proof 5 The proof idea is to create a graph on which to apply Edmonds’ algo-

rithm [25]. For a profile B of LIQUID ballots, we construct a directed graph

D = (V,E), where V = N ∪ {r} for a fresh node r. For the edges in E, we let

eji ∈ E if Bk
i = ({j}, j) for some k: i.e., we add an edge from j to i if i was

delegating to j at i’s kth preference level. Furthermore, we add an edge eri ∈ E
for all i ∈ N , representing the final direct vote of each voter. The weight of each

edge is always given by the preference level of the delegation: if Bk
i ∈ D then

w(eri) = k, and if Bk
i = ({j}, j) then w(eji) = k.

9Also independently suggested by Chu [16] and Bock [7].
10For undirected graphs, the corresponding problem is that of finding a minimum spanning tree.
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Edmonds’ algorithm returns the arborescence tree A = (V,E ′) rooted at r in

time O(|V | × |E|), minimising its weight w(A) =
∑

eij∈E′ w(eij). Note that by

applying Edmonds’ algorithm to the graph D above, we find an unravelling of B,

whose certificate vector c minimises rank(c). Moreover, since it returns a tree

which includes every node, there are no delegation cycles and every agent has one

of their preference levels used: hence, the unravelling is consistent.

Thus, we can find a solution of MINSUM in O(|V | × |E|) = O((n + 1) ×
(d + n)) time steps, since |V | = n + 1 (all the agents plus the vertex r), and

|E| = d + n, where d represents the number of delegations in B. To simplify the

bound, this can be done in O(n(d+ n)) time steps.

We can thus find an optimal unravelling of a LIQUID smart profile in a polyno-

mial number of time steps. Furthermore, as the Edmonds’ algorithm is recursive,

we are guaranteed that it will terminate giving an optimal unravelling, provided

that there is some tie-breaking rule when there are many optimal unravellings. We

now illustrate in an example the application of Edmonds’ algorithm in the proof

of Theorem 2.

Example 5 We show the application of Edmonds’ algorithm in the proof of The-

orem 2 to get a MINSUM outcome associated to profile B in Table 2. The di-

rected graph D = (V,E, w) has nodes V = {a, b, c, d, e, r}, edges E = {(ra),
(cb), (ab), (rb), (dc), (ec), (rc), (bd), (ed), (rd), (re)}, and weights w(ra) =
w(cb) = w(dc) = w(bd) = w(re) = 1, w(ab) = w(ec) = w(ed) = 2, and

w(rb) = w(rc) = w(rd) = 3. The graph D is shown on the left of Figure 2, with

solid, dashed, and dotted lines representing first, second, and third preference

levels, respectively.

B1
x B2

x B3
x

a 1 - -

b ({c}, c) ({a}, a) ∗
c ({d}, d) ({e}, e) ∗
d ({b}, b) ({e}, e) ∗
e 0 - -

Table 2: The LIQUID profile that in Example 5 is unravelled via Edmonds’ algorithm, and

in Example 6 by the algorithm from Theorem 4.

In Figure 2, we see at the bottom of D that there is a cycle among the nodes

b, c and d, among the edges representing the first preference levels. Edmonds’
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Figure 2: Three stages of unravelling the LIQUID profile B from Table 2 by using Ed-

monds’ algorithm. The directed graph D (left) represents the initial profile. In D′ (centre),

the nodes b, c and d are contracted into v, as they were in a cycle in D. The arborescence

tree (right) is the output where the edge (ab) was chosen to break the tie, and it corre-

sponds to an outcome of MINSUM on B.

algorithm contracts this cycle to a single vertex v, creating a second directed

graph D′ = (V ′, E ′, w), in the centre of Figure 2. The nodes of D′ are V ′ =
{a, v, e, r}; while for the edges E ′, we keep (ra) and (re) but we alter the edges

coming into and out of the cycle. However, note that there are only incoming

edges to the cycle: (ab), (rb), (rd), (rc), (ed), (ec) and thus we add to E ′ only

edges coming into v, taking into account the lowest weighted incoming edge to

each node in the cycle.

For the edge (rb) ∈ E, we thus have an edge (rv) ∈ E ′ whose weight is

computed as w(rv) = w(rb) − w(xb) where w(xb) is the weight of the lowest

incoming edge of b, e.g., (cb), which has weight w(cb) = 1. Thus, w(rv) =
3 − 1 = 2, and analogously for (rc) and (rd). For the edge (ed) ∈ E, we have

an edge (ev) ∈ E ′ whose weight is w(ev) = w(ed) − w(xd) = 2 − 1 = 1, and

similarly for (ec). Finally, for (ab) ∈ E, we have an edge (av) ∈ E ′ with weight

w(av) = w(ab)− w(xb) = 1.

Since there are no cycles in D′, we can find an arborescence tree of D′ rooted

at r with edges (ra), (re) and then either (av) or (ev), as they both have the

lowest weight of 1. Suppose that (av) is chosen: this represents the delegation

from b to a with weight 2 and in the arborescence tree a will be followed by b—this

unravelling in shown on the right hand-side of Figure 2. From here the unravelling

continues, until all of the vertices of the cycle have been chosen; giving the edges

(bd) and (dc). Alternatively, the algorithm could have chosen the edges (ec) or

(ed) instead of (ab): all of these unravellings are optimal, with a total weight of

6.
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3.2 Computational complexity of MINMAX

We study here the computational complexity of the MINMAX rule, showing that

like MINSUM: it is NP-hard for the language BOOL, and tractable for LIQUID.

We begin by studying the problem BOUNDEDMINMAX , which takes as input

a valid smart profile B restricted to BOOL as well as a constant M , and it asks

whether there is an unravelling given by a certificate c such that maxa∈N (c) ≤ M .

We first show membership in NP and then NP-hardness.

Lemma 3 BOUNDEDMINMAX is in NP.

Proof 6 Recall that BOUNDEDMINMAX is defined on BOOL profiles. To prove

membership in NP we can check in polynomial time that a certificate vector c

abides by Definition 4 and is consistent, as we did for Lemma 1. Then, we need

to check that all entries in the certificate are less than or equal to the constant M ,

which can be done in polynomial time.

Lemma 4 BOUNDEDMINMAX is NP-hard.

Proof 7 Recall that BOUNDEDMINMAX is defined on the language of BOOL

where delegations are expressed as complete DNFs. We reduce from the NP-

complete problem CNF-SAT which has as input a formula ϕ in CNF—i.e., a con-

junction of clauses (disjunctions of literals)—and it asks if there exists a satisfying

assignment for ϕ.

For a given formula ϕ in CNF, let C = {c | c is a clause of ϕ} be a set of

variables c, each one representing one of the clauses of ϕ. Construct now an

instance of BOUNDEDMINSUM where M = 2 and the set of agents is N =
{x, y} ∪ C ∪ V ar(ϕ), for x and y fresh variables. The ballots are defined as

follows:

• Bx = (1),

• Bv = (({x}, x) > 0) for all v ∈ V ar(ϕ),

• By = (({x} ∪ C, x ∧
∧

c∈C c) > (C,
∧

c∈C c) > 1),

• Bc = (({y}, y) > ({y} ∪ V ar(c), y ∨
∨

l∈c l) > 1) for all c ∈ C,

where l ∈ c represents the literal l of clause c, and if c contains a variable

and its negation (i.e., c is a tautology), we remove the second delegation.
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Note that each delegation is a complete DNF since it is either a cube or a

clause.

Assume that ϕ is satisfiable. Then, each agent v ∈ V ar(ϕ) gets their first

preference if in the satisfying truth assignment of ϕ the variable v is true (cv = 1),

and their second preference if v is false (cv = 2). The satisfying truth assignment

of ϕ makes every clause c ∈ C true, and therefore one literal in y∨
∨

l∈c l is made

true, making the whole formula true. Thus, agents c ∈ C cannot receive higher

than their second preference (cc ≤ 2). Agent y can receive their first preference

(cy = 1), given that we can determine the vote of each c ∈ C. Finally, agent x
receives their first preference (cx = 1). Therefore, if ϕ is satisfiable, there is an

unravelling such that every agent receives at most their second preference level in

the ballot.

Next, assume that ϕ is not satisfiable. For a contradiction, assume that there

exists an unravelling with certificate c such that max(c) ≤ 2. Since cx = 1 and

for all v ∈ V ar(ϕ) we have cv ≤ 2, it must be the case that either cy = 1 or

cy = 2.

If cy = 1 then either all clauses c ∈ C evaluate to 1 or there exists a c ∈ C
whose vote is 0. In the latter case, this has to come from c’s first or second pref-

erence. It cannot be c’s first delegation, as in this scenario y’s vote is determined

by c’s and thus the unravelling would not be consistent. Their second preference

can only be 0 if all of the literals of c and y are false, which without the vote of

y cannot be determined: thus, we have reached a contradiction. However, if the

votes of all of c ∈ C are 1 this either means that each c ∈ C can be made true

(using the second preference delegation) and therefore ϕ is satisfiable, or the third

preference of c ∈ C have been used and therefore, max(c) > 2. In both cases we

reach a contradiction.

The same reasoning holds for cy = 2, and thus this concludes the proof.

Lemmas 3 and 4 together give us the following:

Theorem 3 BOUNDEDMINMAX is NP-complete.

Next we study the complexity of finding a MINMAX solution on LIQUID bal-

lots.

Theorem 4 An outcome of MINMAX on a profile B in LIQUID can be found in

time O(n2ℓ2), where ℓ is the highest preference level of any agent in the profile.
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Proof 8 We provide an algorithm to find a MINMAX outcome, by transforming

the profile B into a directed graph and then finding an arborescence tree.

Construct a directed graph G = (V,E, w) where V = N ∪ {r}, G is rooted

at r, and the set of edges E with weights w is constructed iteratively from E = ∅.

Starting from lev = 1 until lev = ℓ, where ℓ is the maximum preference level

given by any agent in B, the following procedure is executed:

1. Add to the current set E an edge eij if Blev

i = ({j}, j), and an edge eri if

Blev

i ∈ D. Namely, E := E ∪ {eji | B
lev

i = ({j}, j)} ∪ {eri | B
lev

i ∈ D}.

In both cases, let w(eij) = w(eri) = lev;

2. Check in O(|V |+ |E|) time (see, e.g., [20], pg. 606) if there is a path from

r to a via E, for a ∈ N (hence, this step has to be repeated n times, for

each a ∈ N ). Then, if r is connected to all a ∈ N , exit the loop; otherwise,

if there is some a ∈ N not connected to r, let lev := lev+ 1.

After the execution of this iterative procedure, we thus obtain a graph G where

all nodes are connected to r. Then, we can find any arborescence tree from E
rooted at r in O(|V |+ |E|) time [39, pg. 19]. The certificate c for an outcome of

MINMAX is then given by ca being the incoming weight of a in the arborescence

tree, for all a ∈ N . Intuitively, we obtain a MINMAX outcome since the root r
represents direct votes, if there are paths from r to any agent we can determine

their votes, and since the edges are added iteratively we know that a path does not

exist for a lower preference level.

As all agents give a backup vote, there will eventually be eri ∈ E to add for

i ∈ N and thus the algorithm always terminates. Since the loop iterates at most ℓ
times, and each time it makes n checks, each bounded by O(|V |+ |E|), it overall

takes at most O(nℓ(|V |+ |E|)). Since |V | = n+ 1 and |E| ≤ nℓ, the time bound

is O(nℓ(n + 1 + nℓ)). In O(|V | + |E|) = O(n + 1 + nℓ) an arborescence tree

is found. Thus, a solution can be found in O((nℓ + 1)(n + 1 + nℓ)) time steps,

which can be simplified to O(n2ℓ2).

We now show in an example the application of the algorithm from the proof

of Theorem 4 to find a MINMAX outcome on a LIQUID profile.

Example 6 Consider the LIQUID profile in Table 2. We construct the directed

graph D1 = (V,E1, w), shown in Figure 3 (left), where V = {a, b, c, d, e, r}
and E1 are the edges added when considering lev = 1. Since the nodes b, d
and c are not connected to the root r in D1, we set lev = 2 and we create the
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graph D2 = (V,E2, w), shown in Figure 3 (right). The set E2 thus contains edges

representing all of the first and second preference levels. Since in D2 there is

a path from r to every other node, we search for an arborescence tree that will

represent a MINMAX outcome, e.g., via a depth-first algorithm. One such tree

has edges {(ra), (re), (ab), (bd), (dc)}.

r ea

b d c

1 1

1 1

1

r ea

b d c

1 1

2

1 1

2 2

1

Directed graph D1 Directed graph D2

Figure 3: Application of the algorithm in the proof of Theorem 4 to the LIQUID profile

B from Table 2. The directed graph D1 (left) shows the first iteration of the algorithm

for the first preference levels of the agents. As in D1 there is not a path from r to every

other node, the algorithm moves to the second iteration, constructing D2 (right), which

shows the agents’ first and second preference levels. Since D2 is connected, the algorithm

terminates.

3.3 Computational complexity of greedy unravellings

We show here that UNRAVEL(#) always terminates when paired with any update

procedure # ∈ {U,DU,RU,DRU}, given a valid profile. Next, we show that

they are all tractable algorithms, terminating in a polynomial number of time steps.

Proposition 3 Algorithms UNRAVEL(#) with # ∈ {U,DU,RU,DRU} al-

ways terminate on a valid smart profile B.

Proof 9 Let B be a valid smart profile for n agents. For the sake of a contradic-

tion, assume that UNRAVEL(#) by Algorithm 1 does not terminate on B. Hence,

UNRAVEL cannot exit the while loop from either line 6, due to no direct votes

being computable at any preference level, or from line 3, due to X /∈ Dn.

Consider UNRAVEL being unable to terminate due to a cycle involving the

while loop from line 6. Let A = {a ∈ N | xa = ∆} be the set of agents whose

votes have not been computed due to a cycle. As B is a valid smart profile, we
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know that for all a ∈ A, Ba has a finite number of preference levels11 and the

final preference is a direct vote. In each of the update procedures (U,DU,RU

and DRU), after a finite number of loops, we will reach a direct vote of an agent

in A. Each of the update procedures will add at least one direct vote to X at this

point, breaking this cycle. Moreover, no procedure replaces a vote in X with ∆ or

with any value not in D.

Therefore, if the algorithm does not terminate, it must be due to the while loop

at line 3. This can only happen while X /∈ Dn. However, as we can exit the cycle

from line 6, the algorithm always changes some xa = ∆ to a vote in D. Thus, after

a finite number of iterations we will have that X ∈ Dn and UNRAVEL terminates.

Next, we show that our unravelling procedures terminate in polynomial time

on BOOL ballots. Recall that the delegations in a BOOL ballot are Boolean func-

tions ϕ expressed in complete DNF. The size of the input for UNRAVEL(#) for

smart ballots in BOOL is in O(maxp(B) · n · maxϕ(B)), where maxp(B) is the

highest preference level of any ballot in B and maxϕ(B) is the maximum length

of any formula in B.

Proposition 4 UNRAVEL(#) for # ∈ {U,DU,RU,DRU} terminates in at

most O(n2 ·maxp(B) ·maxϕ(B)) time steps, on a valid smart profile B in BOOL.

Proof 10 The while loop from line 3 in UNRAVEL (see Algorithm 1) can be re-

peated at most n times (when a single vote is added to X at each iteration). More-

over, the while loop from line 6 can be repeated at most maxp(B) times, when

all smart ballots are of the same length and no vote is computable in the first

maxp(B)− 1 iterations.

The following is executed at most n · maxp(B) times. UNRAVEL(#) checks

that for each agent a such that xa = ∆ (at most n− 1) either Blev

a ∈ D or ϕlev

a

has a necessary winner (depending on the update procedure used). As each ϕlev

a

is a complete DNF, to verify if it has a necessary winner we check if either (i)
all literals of a cube of ϕlev

a are made true by X ↾Slev
a

, or (ii) one literal in each

cube is made false by X ↾Slev
a

, returning a direct vote of 1 or 0, respectively, as

described in Proposition 2.

The use of UNRAVEL(#) takes at most O(n · 2maxϕ(B)) steps, which is

equivalent toO(n·maxϕ(B)) steps. Thus, UNRAVEL(#) with # ∈ {U,DU,RU,DRU}
yields a vector X of direct votes in O(n2 ·maxp(B) ·maxϕ(B)) time steps.

11Recall that since both D and the possible sets of delegates are finite, and since all functions

given in an agent’s valid ballot must differ, the possible number of functions must also be finite.
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4 Comparing the unravelling procedures

In this section we complement the results of Section 3, which analysed the compu-

tational complexity of our unravelling procedures, with the aim to further distin-

guish our defined unravellings, to understand when a procedure would be prefer-

able.

4.1 Restrictions yielding distinct or identical outcomes

We study here under which restrictions on the language of the ballots, the out-

comes of our unravelling procedures coincide or differ. First, we show that all un-

ravelling procedures defined in Subsection 2.2 can give different outcomes, even

when the ballots are restricted to LIQUID.

Proposition 5 The unravellings UNRAVEL(#), for # ∈ {U,DU,RU,DRU},

MINSUM and MINMAX can give different certificates and outcomes on the same

smart profile B of LIQUID ballots.

Proof 11 Consider the LIQUID profile B for the domain D = {1, 0} and the set

of agents N = {a, b, c, d} presented in Table 3 (left). The outcomes of the unravel-

ling procedures and their certificates are also shown in Table 3 (right). However,

we do not show the outcomes of MINMAX, since it returns all consistent certifi-

cates such that no entry is greater than 3; e.g., it will also include the certificate

c = (3, 3, 2, 2) giving the outcome (1, 0, 0, 1). Since the latter is not an outcome of

any of the other procedures, MINMAX differs from those. Moreover, while proce-

dures UNRAVEL(RU) and UNRAVEL(DRU) give the same outcomes (1, 1, 1, 1)
and (0, 0, 0, 1), they are returned at different rates.

We now show that when we restrict the ballots to LIQUID[1]∗ the outcome is

the the same for all our unravelling procedures, except for MINMAX.

Proposition 6 If B ∈ LIQUID[1]∗, the procedures MINSUM and UNRAVEL(#)
for # ∈ {U,DU,RU,DRU} give the same outcome X , but the certificate may

differ.

Proof 12 UNRAVEL(U) and UNRAVEL(DU) act in an identical manner for LIQUID[1]∗
ballots. They first add all non-delegating agents’ votes to X . Then, they iteratively

unravel the first preference delegations of all agents who are not in a cycle. Once

no more votes can be added from the first preference level, i.e., there are agents in
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B1
x B2

x B3
x B4

x

a ({b}, b) ({c}, c) ({d}, d) 1
b ({a}, a) ({c}, c) 0 -

c ({a}, a) ({b}, b) 1 -

d ({a}, a) 1 - -

Procedure Outcome Certificate

U (1, 0, 1, 1) (3, 3, 3, 2)

DU (0, 0, 1, 1) (1, 3, 3, 2)

RU (1, 1, 1, 1) (3, 1, 1, 2)
(0, 0, 0, 1) (1, 3, 1, 2)
(1, 1, 1, 1) (2, 1, 3, 2)
(1, 1, 1, 1) (1, 2, 3, 2)

DRU (0, 0, 0, 1) (1, 3, 1, 2)
(1, 1, 1, 1) (2, 1, 3, 2)
(1, 1, 1, 1) (1, 2, 3, 2)

MINSUM (0, 0, 0, 0) (1, 3, 1, 1)

Table 3: On the left, we show the profile B used in the proof of Proposition 5. On

the right, the table shows the outcomes and certificates of unravelling profile B with the

procedures UNRAVEL(U), UNRAVEL(DU), UNRAVEL(RU), UNRAVEL(DRU), and

MINSUM.

a delegation cycle, these agents are assigned their second choice, i.e., the absten-

tion ∗.

UNRAVEL(RU) picks one agent at a time from the first preference level who

either gives a direct vote, or their delegate has a vote in X . When no more agents

are available at the first preference level, the remaining agents are in delegation

cycles. Moving to the second preference level, one of these agents will be added

with an abstention. Consequently, everyone caught in this delegation cycle will

also receive abstentions from the agent who was picked at random. This is re-

peated until all cycles have been resolved and all agents have a vote in X .

UNRAVEL(DRU) first adds one by one the direct votes of the agents who

do not delegate. Then, it does the same for delegating agents whose delegate

already has a vote in X . Once there are no more agents to add from their top
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preference, the procedure adds a single random agent with an abstention (from

their second preference) and then it continues as for UNRAVEL(RU), until all

delegation cycles are resolved.

Finally, MINSUM returns all outcomes that minimise the total rank. Therefore,

all agents will receive their first preference, except for a single agent from each

delegation cycle, as in the previous unravellings. Observe that on any profile B

in LIQUID[1]∗, we have CMINSUM(B) = CUNRAVEL(RU)(B) = CUNRAVEL(DRU)(B).

Remark 2 All our six unravelling procedures will have the certificate c = {1}n

on LIQUID[1]∗ profiles with no delegation cycles. However, if there are cycles,

MINMAX will return many outcomes—including the one whose certificate gives

to all delegating agents their second preference (∗), regardless of if they are in a

delegation cycle or not. Furthermore, Proposition 6 does not hold for LIQUID[1],
where backup votes are not restricted to ∗, as the tie-breaking affects the outcome

X .

Remark 3 The breadth-first and depth-first rules by Kotsialou and Riley [38] dif-

fer from all six of our unravellings. Consider N = {a, b, c}, an issue with domain

D = {1, 0, ∗}, and agents’ ballots as follows: Ba = (({b}, b) > ({c}, c) > ∗),
Bb = (∗), and Bc = (1). Our six unravelling procedures would return the out-

come (∗, ∗, 1) with certificate c = (1, 1, 1), whereas the breadth-first and depth-

first procedures would return the outcome (1, ∗, 1) with certificate c = (2, 1, 1).

Next, we show that all possible outcomes of UNRAVEL(DRU) are also possi-

ble outcomes of UNRAVEL(RU), as the set of certificates of the former is a subset

of the set of certificates of the latter.

Proposition 7 CUNRAVEL(DRU)(B) ⊆ CUNRAVEL(RU)(B) for valid smart profiles B.

Proof 13 At any iteration of UNRAVEL(RU), the random choice can either in-

clude direct voters or not. If there are direct voters, UNRAVEL(DRU) will thus

have a subset of the choices of UNRAVEL(RU) (and hence potential outcomes).

If there are no direct voters at an iteration, the potential outcomes from this step

are the same for UNRAVEL(RU) and UNRAVEL(DRU). Thus, all certificates of

UNRAVEL(DRU) will also be certificates of UNRAVEL(RU).

4.2 Participation axioms

In this subsection we study two properties of resolute unravelling procedures, fo-

cusing on a binary domain (with abstentions) D = {0, 1, ∗}. Both properties were
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proposed by Kotsialou and Riley [38] and they focus on a voter’s incentive to par-

ticipate in the election, either by voting directly or by delegating, in line with the

classical participation axiom from social choice (see, e.g., [45]).

We assume that an agent a expressing a direct vote for x ∈ {0, 1} prefers x
over 1−x and over an abstention, denoted by x >a 1−x and x >a ∗, respectively.

Furthermore, we focus on resolute rules to directly compare the breadth-first and

depth-first procedures to our own, as the participation axioms were originally con-

structed to study these procedures.

First, we make a distinction between the unravelling procedures being reso-

lute, as our greedy procedures, or irresolute, as our optimal procedures. By the

former, a unique outcome is returned, and by the latter, possibly many tied out-

comes are returned. Although throughout the paper we present all outcomes of

the greedy procedures with random voter selection RU and DRU (see, e.g., the

outcomes displayed in Table 3), these procedures are resolute as defined in Algo-

rithms 4 and 5.

Definition 10 (Cast-Participation) A resolute voting rule r and a resolute un-

ravelling procedure U satisfy cast-participation if for all valid smart profiles B

and agents a ∈ N such that Ba ∈ D \ {∗} we have for all B′
a 6= Ba

r(U(B)) ≥a r(U(B−a, B
′
a))

where B−a is equal to B without a’s ballot. For randomised procedures we re-

quire the inequality to hold for any possible outcome of U .

Cast-participation implies that agents who vote directly have an incentive to

do so, rather than to express any other ballot. In order to prove if a pair of an

unravelling procedure and an aggregation rule satisfies such a participation axiom,

we need some further notation. Let the set of voters influenced by a voter a in a

profile B using a resolute deterministic unravelling procedure U be IU(B, a) =
{b | a ∈ Sk

b for U(B) = Xc with c ∈ C(B) and cb = k}. Further, let IU∗ (B, a) =
IU(B, a) ∪ {c | c ∈ IU(B, b) ∧ b ∈ IU(B, a)} ∪ . . . be the voters who are

influenced by a both directly and indirectly.

Given our domain D = {0, 1, ∗}, we consider the following rules: the majority

rule (Maj) returns the alternative in the domain having more than n/2 votes, and

∗ otherwise; the relative majority rule (RMaj) returns the plurality outcome in

D \ {∗}, and if there is a tie it returns ∗. A voting rule r on the domain {0, 1, ∗}n

satisfies monotonicity if for any profile X , if r(X) = x with x ∈ {0, 1} then

r(X+x) = x, where X+x is obtained from X by having one voter switch from
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either an initial vote of 1 − x to x or ∗, or from an initial vote of ∗ to x. Observe

that both Maj and RMaj satisfy monotonicity. Due to this definition we can now

show the following:12

Theorem 5 Any monotonic rule r with UNRAVEL(#) for # ∈ {U, DU} satisfies

cast-participation for LIQUID∗ with domain D = {0, 1, ∗}.

Proof 14 Without loss of generality, assume that for agent a ∈ N we have Ba =
(1). To falsify cast-participation, we need to find a profileB with r(UNRAVEL(#)(B)) =
0 or ∗, and a ballot B′

a such that r(UNRAVEL(#)(B−a, B
′
a)) = 1, for # ∈ {U,

DU}.

First, observe that all voters c ∈ I#∗ (a,B) vote for 1 in B, since the language

is restricted to single-agent delegations. Now, if B′
a = 0 or ∗ (or they delegate to

some agent who is assigned these votes), then by monotonicity the result of B′ will

keep being 0 or ∗. Moreover, all c 6∈ I#∗ (a,B) do not change their vote from B

to B
′, no matter if B′

a is a direct vote or a possibly ranked delegation. Therefore,

the final votes of B′ can be obtained from those of B by switching 1s to 0s or ∗s.

Thus, this contradicts the monotonicity assumption of rule r.

Remark 4 Theorem 5 does not hold for BOOL ballots. Consider the counterex-

ample with agents N = {a, b, c} having ballots Ba = (1), Bb = (({a},¬a) > 0)
and Bc = (({a},¬a) > 0). Each of our greedy unravellings would return the out-

come Maj(1, 0, 0) = 0. However, if B′
a = 0 then Maj(0, 1, 1) = 1. Thus, agent

a strictly prefers to submit a ballot that is not a direct vote for their preferred

alternative.

We now focus on the incentive that a voter has to receive and accept delega-

tions; namely, what has been introduced as the guru-participation property.

Definition 11 (Guru-participation) A voting rule r and a resolute unravelling

procedure U satisfy guru-participation if and only if for all profiles B and all

agents a ∈ N such that Ba = (x) with x ∈ D \ {∗} we have that for any

b ∈ I#∗ (B, a)
r(U(B)) ≥a r(U(B−b, (∗)))

where B−b is B without b’s ballot. For randomised procedures we require the

inequality to hold for any possible outcome of U .

12Note that Definition 10 slightly differs from the one given in previous work [19], and thus

Theorem 5 does not hold for RU or DRU: a counterexample can be constructed exploiting the

fact that an agent may prefer the outcome of one random iteration of the procedure to another.
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All four greedy unravellings do not satisfy this property for the rule RMaj:

Theorem 6 RMaj and UNRAVEL(#) for # ∈ {U, DU, RU, DRU} do not

satisfy guru-participation for LIQUID∗ with domain D = {0, 1, ∗}.

Proof 15 Consider a smart profile B, as shown on the left hand-side of Table 4,

and profile B
′ = (B−b, (∗)) obtained from B by switching b’s vote to B′

b = (∗).
The outcomes of the four procedures are shown in the right hand-side of Table 4.

B1
x B2

x B3
x

a 1 - -

b ({c}, id) ({a}, id) ∗
c ({d}, id) ({f}, id) ∗
d ({b}, id) ({f}, id) ∗
e 1 - -

f 0 - -

# B B
′

U/ X1 = (1, 1, 0, 0, 1, 0) X2 = (1, ∗, ∗, ∗, 1, 0)
DU

RU/ X3 = (1, 1, 1, 1, 1, 0) X2 = (1, ∗, ∗, ∗, 1, 0)
DRU X4 = (1, 0, 0, 0, 1, 0)

X5 = (1, 0, 0, 0, 1, 0)

Table 4: A profile B (on the left) and the outcomes of

UNRAVEL(U),UNRAVEL(DU),UNRAVEL(RU) and UNRAVEL(DRU) on the

profiles B and B
′ (on the right), where B

′ = (B−b, (∗)) is obtained from B by

switching b’s vote to B′
b = (∗).

By applying UNRAVEL(U) and UNRAVEL(DU), agent a prefers the outcome

of B′ to that of B, since RMaj(X1) = ∗ and RMaj(X2) = 1. For UNRAVEL(RU)
and UNRAVEL(DRU), the outcome on B

′ is RMaj(X2) = 1. However, the out-

come on B can be either RMaj(X4) = RMaj(X5) = 0 or RMaj(X3) = 1. Hence,

when the random choice of RU or DRU leads to X4 or X5, agent a strictly

prefers the outcome RMaj(X2) to the outcome RMaj(X4) and RMaj(X5). There-

fore, the inequality does not hold for any outcome of the randomised procedures.

4.3 Pareto dominance and optimality

We now focus on comparing the outcomes of our unravelling procedures in terms

of Pareto dominance and Pareto optimality. We show that none of our proce-

dures always Pareto dominates another. However, we prove that all outcomes of

MINSUM are Pareto optimal with respect to all outcomes with consistent certifi-

cates.
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A certificate c Pareto dominates another certificate c′ if for every i ∈ N , we

have that ci ≤ c′i, and there exists a j ∈ N such that cj < c′j . We say that

the unravelling procedure U Pareto dominates another unravelling procedure U ′

when for any valid profile B, all (possible) certificates c obtained from U(B)
Pareto dominate all the (possible) certificates c obtained from U ′(B). Note that

the possibility of multiple certificates arises not only for irresolute procedures

but also from different executions of the random procedures UNRAVEL(RU) and

UNRAVEL(DRU).

Example 7 Consider the example given in Table 3. The certificate of the outcome

of UNRAVEL(U) is c
U = (3, 3, 3, 2), and that of the outcome of UNRAVEL(DU)

is c
DU = (1, 3, 3, 2). Thus, UNRAVEL(DU) Pareto dominates UNRAVEL(U),

since c
DU Pareto dominates c

U, given that each entry of c
DU is less than or

equal to the corresponding entry in c
U. Moreover, since there is an outcome of

UNRAVEL(RU) with certificate c
RU = (3, 1, 1, 2), neither c

DU Pareto dominates

c
RU (as c

DU

a < c
RU

a for the first agent a) nor vice-versa (as c
DU

b > c
RU

b for the

second agent b).

When comparing our greedy procedures, one might think that UNRAVEL(DRU)
should always be chosen, given that it has both direct vote priority and ran-

dom voter selection. However, the following example shows a profile where

UNRAVEL(DU), UNRAVEL(RU) and UNRAVEL(DRU) do not Pareto dominate

UNRAVEL(U), and thus, they do not Pareto dominate UNRAVEL(U) in general.

Example 8 Take agents N = {a, b, c, d, e, f}, whose ballots are shown in Ta-

ble 5. On this profile, UNRAVEL(U) gives the outcome Xc = (1, 1, 1, 1, 1, 0),
where c = (1, 1, 1, 1, 2, 2) and UNRAVEL(DU) gives Xc

′ = (0, 0, 0, 1, 0, 0), with

certificate c
′ = (3, 3, 3, 1, 1, 2). Thus, c does not Pareto dominate c

′ as agent e
has that ce < c

′
e. It is also not the case that c

′ Pareto dominates c as for some

agents, i.e., agent a, we have that ca > c
′
a. Thus UNRAVEL(DU) does not Pareto

dominate UNRAVEL(U) or vice-versa.

Furthermore, a possible outcome of UNRAVEL(RU) is Xc
′′ = (0, 0, 0, 1, 0, 0)

where c
′′ = (3, 1, 1, 1, 1, 2)—the random choices picking first f and then a. Again,

c
′′ does not Pareto dominate c, as ca > c

′′
a. Therefore, UNRAVEL(RU) does not

Pareto dominate UNRAVEL(U), and as Xc
′′ is also an outcome of UNRAVEL(DRU),

UNRAVEL(DRU) does not Pareto dominate UNRAVEL(U) as well.

Proposition 8 None of the four greedy unravelling procedures UNRAVEL(#) for

# ∈ {U,DU,RU,DRU} Pareto dominates another greedy procedure.
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B1
x B2

x B3
x

a ({b, e}, b ∨ e) ({c, e}, c ∨ e) 0
b ({c, e}, c ∨ e) ({a, e}, a ∨ e) 0
c ({a, e}, a ∨ e) ({b, e}, b ∨ e) 0
d 1 - -

e ({f}, f) ({d}, d) 0
f ({e}, e) 0 -

Table 5: A profile B showing that UNRAVEL(U) is not dominated in general by

UNRAVEL(DU), UNRAVEL(RU) or UNRAVEL(DRU).

Proof 16 Example 8 shows that UNRAVEL(U) is not Pareto dominated by UNRAVEL(#)
for # ∈ {DU,RU,DRU}. Then, in Table 3 the outcome of UNRAVEL(U) is

Pareto dominated by the outcomes of UNRAVEL(#) for # ∈ {DU,RU,DRU}
and therefore, UNRAVEL(U) does not Pareto dominate the other greedy proce-

dures.

From Table 3, we can also conclude that UNRAVEL(DRU) does not Pareto

dominate UNRAVEL(DU), and vice-versa. The outcome of UNRAVEL(DRU)
with certificate c = (2, 1, 3, 2) does not Pareto dominate the outcome of UNRAVEL(DU),
having certificate c

′ = (1, 3, 3, 2), as ca > c
′
a. For the other direction, as

c
′
b > cb UNRAVEL(DU) does not always Pareto dominate UNRAVEL(DRU).

Since the outcome with c = (2, 1, 3, 2) is also possible for UNRAVEL(RU),
UNRAVEL(RU) is not guaranteed to Pareto dominate UNRAVEL(DU) and vice-

versa.

Finally, UNRAVEL(DRU) and UNRAVEL(RU) do not Pareto dominate one

another as the certificates of the former are a subset of the latter (Proposition 7).

For irresolute procedures, by checking whether for any profile an unravelling

procedure always has an outcome whose certificate Pareto dominates the certifi-

cates of all the outcomes of another procedure, we find the following negative

results:

• The certificates c = (4, 1, . . . , 1) of MINSUM and c′ = (1, 2, . . . , 2) of

MINMAX from Example 3 shot that neither c Pareto dominates c′ nor vice-

versa. Therefore, neither MINMAX nor MINSUM dominates the other.

• From Table 3, we see that UNRAVEL(U) does not Pareto dominate MINSUM

or MINMAX in general. From Example 3 we see that MINSUM does not
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Pareto dominate UNRAVEL(U) in general.

Finally, we introduce the notion of Pareto optimality, which defines all those

consistent certificates that are not Pareto dominated by any other consistent cer-

tificate.

Definition 12 A certificate c for B is Pareto optimal for the consistent certificates

C(B) if there exists no c
′ ∈ C(B) with c

′ 6= c, such that c
′ Pareto dominates c.

The following proposition corresponds to the well-known fact that maximising

the average of a vector leads to a Pareto optimal vector, but not vice-versa.

Proposition 9 The certificate c for any outcome Xc ∈ MINSUM(B) is Pareto

optimal for C(B), for any profile B.

Proof 17 Take an arbitrary valid smart profileB, and arbitraryXc ∈ MINSUM(B).
For the sake of a contradiction, assume that c is not Pareto optimal for C(B).
Hence, there exists a c

′ ∈ C(B) \ {c} such that c
′ Pareto dominates c. Therefore,

for all i ∈ N , we get c
′
i ≤ ci. We thus have that

∑

i∈N

c
′
i ≤

∑

i∈N

ci. Further-

more, since c 6= c
′ and c

′ Pareto dominates c, there exists an agent j ∈ N such

that c
′
j < cj , and thus

∑

i∈N

c
′
i <

∑

i∈N

ci. Since
∑

i∈N

ci is not minimal, we have

Xc /∈ MINSUM(B), and thus we have reached a contradiction.

Note that the opposite direction does not hold: in Example 3, the MINSUM pro-

cedure does not return the Pareto optimal certificate c = (1, 2, . . . , 2). Moreover,

Proposition 9 does not hold for the other unravelling procedures, as there exist

outcomes of each of them whose certificates are Pareto dominated by some other

consistent certificate, as seen in previous examples.

4.4 Discussion on unravelling procedures

In this paper we have provided six unravelling procedures and we have given

results that should guide a user of this model as to which procedure to choose.

Here we provide a summary and a discussion of these results.

The main distinction between the optimal and greedy procedures is that finding

an outcome with a greedy procedure is a tractable problem, whereas even check-

ing if an outcome of an optimal procedure exists under a given bound on the op-

timised score is an NP-complete problem for the general language BOOL (where
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the delegations are contingent formulas expressed in complete DNF). Although

we acknowledge that the improvements in performance of SAT-solvers make the

intractability of the problems BOUNDEDMINMAX and BOUNDEDMINSUM less

concerning, the associated search problem of computing the outcomes of the un-

ravelling remains in principle even harder. Hence, the greedy procedures are de-

sirable when tractability is key.

Proposition 9 shows that the certificates of the outcomes of MINSUM are

Pareto optimal and thus are never dominated by outcomes found by a consis-

tent certificate. In contrast, MINMAX cannot make this guarantee. Although

MINMAX may return outcomes that are not Pareto optimal, it provides more egal-

itarian outcomes. In Example 3, the outcome with the lowest rank relies on the

fourth preference of agent a being chosen: while it is still a trusted delegate, the

agent may be less confident in them than in the three previous delegations.

Furthermore, as MINSUM and MINMAX are irresolute, they would have to be

paired with a tie-breaking mechanism to select a single outcome from the possibly

many that they produce. In contrast, the greedy procedures are not only, in general,

quicker than the optimal procedures, but they are also resolute.

With profiles of LIQUID[1]∗ ballots, MINSUM and the greedy procedures re-

turn the same outcome vector, so they can be used interchangeably. For profiles

of LIQUID ballots, there should be a preference for MINSUM or MINMAX, since

an outcome can be found in polynomial time (Theorems 2 and 4). The choice

between these two procedures should then be determined by whether the situation

would benefit more from Pareto optimality or egalitarian properties. However,

these procedures do rely on tie-breaking, which could bring up issues of fairness

in the certificates.

As the participation axioms do not differentiate the greedy procedures, the

properties that they are defined on (i.e., direct vote priority and random voter

selection) are the clearest way to compare them. Random voter selection should

be used when a lottery is acceptable and it should be avoided when it would be

unfair to give a worse preference level to just some agents. Direct vote priority

should be used when a direct vote from an agent is preferred to a delegation,

perhaps in situations that could benefit from a level of expertise on the issue, and

to ensure shorter delegation chains.

Given the above discussion, one may think that UNRAVEL(DRU) gives the

best outcomes overall. However, we have proved that no greedy procedure is

guaranteed to Pareto dominate another (Proposition 8). Thus, the notion of Pareto

dominance does not distinguish between greedy procedures.

In summary, greedy procedures should be preferred when finding outcomes
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needs to be tractable, except in the special case of LIQUID ballots for which this

problem is polynomial for all proposed rules. The MINSUM procedure should

be used when outcomes need to be Pareto optimal and MINMAX should be used

when an egalitarian approach is required. When using the greedy procedures, the

choice between them should be determined by whether the situation asks for either

of the random voter selection and direct vote priority properties.

5 Conclusion

We proposed a model of multi-agent ranked delegations in voting, which gen-

eralises liquid democracy in two aspects. The first is that delegations are more

expressive, as they can involve many agents instead of a single one, who in turn

determine their vote. We introduced a general language named BOOL, in which

delegations are expressed as contingent propositional formulas in complete DNF.

We emphasise that although agents may not want to use the full expressivity of the

language, many natural delegations types are captured by it: for example, both liq-

uid democracy delegations and delegations using threshold rules can be expressed

in BOOL. Our second generalisation is the possibility of ranked delegations: as

transitive delegations can lead to cycles among the agents’ most preferred dele-

gates, the linear order of trusted delegations given by the agents can be used to

break these cycles.

Our main contribution is the definition and study of six unravelling procedures

(two optimal and four greedy ones), which take a profile of smart ballots and re-

turn a standard voting profile. We show that all of the procedures can give different

certificates and outcomes (Proposition 5), and that they differ from the breadth-

first and depth-first procedures of Kotsialou and Riley [38] (Remark 3). Moreover,

we show that all of the procedures, except MINMAX, coincide on LIQUID[1] bal-

lots, i.e., liquid democracy ballots with a single delegation per agent. The certifi-

cates of the outcomes of MINSUM are Pareto optimal with respect to the outcomes

found from any consistent certificate (Proposition 9), while greedy procedures do

not Pareto dominate one another (Proposition 8). Our main results are that de-

ciding if there exists an outcome of the unravellings MINSUM and MINMAX

bounded by some constant are NP-complete problems (Theorems 1 and 3) over

the general language BOOL, but they become tractable when ballots are restricted

to LIQUID, the language of ranked liquid democracy (Theorems 2 and 4). Finally,

we prove that our four greedy unravelling procedures always terminate (Proposi-

tion 3) and do so in a polynomial number of time steps for general BOOL ballots
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(Proposition 4).

Future work. This paper provides a first analysis of six unravelling proce-

dures in terms of their computational (and some axiomatic) properties. A game-

theoretic analysis of our procedures is yet to be undertaken, by focusing, e.g., on

various notions of manipulative actions. Moreover, we have shown that finding a

solution for our optimal unravellings is a tractable problem when ballots are re-

stricted to ranked single agent delegations. Other tractable cases could be found,

e.g., by restricting delegation functions or by limiting the number of delegations—

leading to a study of the parameterised complexity of optimal unravellings. Fi-

nally, we focused only on independent issues: extending our model to account for

the agents’ rationality with respect to interconnected issues (in line with the work

of Christoff and Grossi [15] and, to a lesser extent, Brill and Talmon [11]) would

be a natural avenue of future research.

Acknowledgments

The authors acknowledge the support of the ANR JCJC project SCONE (ANR

18-CE23-0009-01).

References

[1] Ben Abramowitz and Nicholas Mattei. “Flexible Representative Democ-

racy: An Introduction with Binary Issues”. In: Proceedings of the 28th In-

ternational Joint Conference on Artificial Intelligence (IJCAI). 2019.

[2] Dan Alger. “Voting by proxy”. In: Public Choice 126.1-2 (2006), pp. 1–26.

[3] Jan Behrens and Björn Swierczek. “Preferential Delegation and the Prob-

lem of Negative Voting Weight”. In: The Liquid Democracy Journal 3

(2015).

[4] Jan Behrens et al. Principles of Liquid Feedback. Interacktive Demokratie,

2014.

[5] Daan Bloembergen, Davide Grossi, and Martin Lackner. “On Rational Del-

egations in Liquid Democracy”. In: Proceedings of the 33rd AAAI Confer-

ence on Artificial Intelligence (AAAI). 2019.

44



[6] Christian Blum and Christina Isabel Zuber. “Liquid democracy: Poten-

tials, problems, and perspectives”. In: Journal of Political Philosophy 24.2

(2016), pp. 162–182.

[7] F. C. Bock. “An algorithm to construct a minimum directed spanning tree

in a directed network”. In: Developments in operations research (1971),

pp. 29–44.

[8] Paolo Boldi et al. “Viscous democracy for social networks”. In: Communi-

cations of the ACM 54.6 (2011), pp. 129–137.

[9] Robert Bredereck and Edith Elkind. “Manipulating Opinion Diffusion in

Social Networks”. In: Proceedings of the 26th International Joint Confer-

ence on Artificial Intelligence (IJCAI). 2017.

[10] Markus Brill. “Interactive democracy”. In: Proceedings of the 17th Inter-

national Conference on Autonomous Agents and MultiAgent Systems (AA-

MAS). 2018.

[11] Markus Brill and Nimrod Talmon. “Pairwise Liquid Democracy”. In: Pro-

ceedings of the 27th International Joint Conference on Artificial Intelli-

gence (IJCAI). 2018.

[12] Markus Brill et al. Liquid Democracy with Ranked Delegations. Presenta-

tion at the Workshop on Liquid Democracy at the University of Toulouse.

2021. URL: www.irit.fr/˜Umberto.Grandi/scone/WK_Ulrike.pdf.

[13] Markus Brill et al. “Pairwise Diffusion of Preference Rankings in Social

Networks”. In: Proceedings of the 25th International Joint Conference on

Artificial Intelligence (IJCAI). 2016.

[14] Ioannis Caragiannis and Evi Micha. “A contribution to the critique of liquid

democracy”. In: Proceedings of the 28th International Joint Conference on

Artificial Intelligence (IJCAI). 2019.
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