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Abstract

We study the problem of exchange when 1) agents are endowed with heterogeneous
indivisible objects, and 2) there is no money. In general, no rule satisfies the three
central properties Pareto-efficiency, individual rationality, and strategy-proofness [62].
Recently, it was shown that Top Trading Cycles is NP-hard to manipulate [32], a relax-
ation of strategy-proofness. However, parameterized complexity is a more appropriate
framework for this and other economic settings. Certain aspects of the problem - num-
ber of objects each agent brings to the table, goods up for auction, candidates in an
election [25], legislative figures to influence [24] - may face natural bounds or are fixed as
the problem grows. We take a parameterized complexity approach to indivisible goods
exchange for the first time. Our results represent good and bad news for TTC. When
the size of the endowments k is a fixed constant, we show that the computational task
of manipulating TTC can be performed in polynomial time. On the other hand, we
show that this parameterized problem is W[1]-hard, and therefore unlikely to be fixed

parameter tractable.

1 Introduction

In many economic environments, agents are endowed with heterogeneous indivisible objects,
exchange is desirable, and there is no money. For example, workers trading shifts/tasks/assignments,
users sharing time blocks on a supercomputer, etc. A rule or mechanism recommends for
each possible profile of preferences and endowments a re-allocation of the objects. The gen-
eral program is to define desirable properties (axioms) and design rules that satisfy as many
of them as possible. Three central and well-studied properties are Pareto-efficiency (no
rearrangement could make all agents at least as well off, and some better off), individual ra-
tionality (no agent is worse off than they started), and strategy-proofness (no agent is better
off reporting a lie than their true preference). Unfortunately, in this environment and many
others, there is no rule satisfying all three [62]. This motivates the study of properties which
are relaxations of strategy-proofness.

We focus on the Top Trading Cycles (TTC) mechanism due to Gale. TTC is strategy-
proof when the endowments are of size 1, but when the endowments are multiple, manipu-
lation is possible. It was recently shown that TTC is NP-hard to manipulate. This result
suggests that there may not be an incentive to manipulate TTC, as agents have bounded
computational resources. However, the result could be very misleading to policy makers. As
we will see, manipulating TTC can be done in time approximately nk, where n is the number
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of goods and k is the size of the endowments. This does not contradict [32] because the size
of the endowment is part of the input to the problem in that paper. Indeed, the hardness
reduction makes the implicit assumption that an agent may have a number of goods that
grows with the number of agents.

Still, when k is large, the algorithm is not practical. If TTC could be manipulated in time
f(k)nc for some function f and constant c (i.e. if the problem were fixed parameter tractable)
Then TTC would cease to be an attractive rule in the general case. The parameterized
complexity of manipulating TTC is therefore an important and interesting question.

Our previously mentioned algorithm is bad news for TTC, but our main result represents
good news. We show that manipulating TTC is W[1]-hard (which we define properly later)
and therefore very unlikely to be fixed parameter tractable.

Related Literature

We discuss two bodies of related work: the progression of the study of indivisible objects
exchange in the economics literature, and recent work in computational social choice.

In 1974, Shapley & Scarf introduced the problem of exchanging indivisible objects without
money, also known as the Housing Market [60]. Each agent is endowed one object, may
consume one object, and has strict preferences over all objects. They showed that the
Top Trading Cycles algorithm (attributed to David Gale) could be used to compute a core
allocation. It turns out that the core is unique, and the rule derived from recommending
the core for each preference profile is the only Pareto-efficient, individually rational, and
strategy-proof rule [5, 55, 42, 44, 59, 62, 65].

Subsequently, the literature considered various generalizations of the model and/or ap-
plications of TTC: the case of no ownership [36, 67, 65], the case where some agents may
own nothing (generalizing the two previous cases) [2, 63, 65, 49, 53], fairer probabilis-
tic rules [1, 8, 6, 11, 15, 16, 22, 21, 23, 35, 41] allowing for indifferences in preferences
[4, 9, 14, 37, 52, 54, 56, 64], School Choice [3, 29, 48, 28, 47, 46], and dynamic environments
[40, 58]. Several authors considered manipulation not by preference misreport but by the
merging/splitting/withholding of endowments [7, 18].

Our paper considers the case when each agent may be endowed with multiple objects
[50, 51, 64, 66]. As mentioned, there is no rule satisfying all three properties [62]. In response
to this, [51] weakens the Pareto-efficiency requirement to range-efficiency and characterizes
the resulting family of rules on a large preference domain. In a complementary manner,
[33] shows that in the Lexicographic domain of preferences ATTC satisfies the properties
when strategy-proofness is weakened to NP-hard to Manipulate. An immediate corollary of
their result is the extension of the statement to larger domains. Other authors consider an
environment where objects have types [38, 39, 45, 43, 61], or where there is no ownership
[19, 20].

The idea of studying the complexity of manipulation was proposed by [10] in response to
[34, 57]—the latter showing that, in the environment of voting, requiring strategy-proofness
leads to dictatorship. We refer the reader to surveys in the subsequent computational social
choice literature [26, 30, 31], and highlight works that take the parameterized complexity
approach [12, 13].

2 Preliminaries

Let N be a set of agents and let O be a set of objects. Let ω = {ωi}i∈N be a set of subsets
of O such that ωi ∩ ωj = ∅ for all i 6= j and ∪ωi = O; we call ωi the endowment of agent
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i. If a good α is in ωi then we say that agent i is the owner of α and that a(α) = i. Let
R be the set of all relations over 2O that are complete, transitive and anti-symmetric. Let
R = {Ri}i∈N be an element of R|N |; we call Ri the preference relation of agent i, and R

the preference profile. We denote the strict component of Ri by Pi, i.e. XPiY if and only
if XRiY and ¬Y RiX . We say that E = (N,O, ω, R) is an economy. If |ωi| = 1 for all i we
say E is a housing market and otherwise a generalised housing market. If z = {zi}i∈N is a
set of disjoint subsets of O such ∪zi = O we say that z is an allocation for the economy E .
Note that the endowment is an allocation. A rule φ : R|N | → Z recommends an allocation
given a particular preference profile. We denote by φi(R) the allocation of agent i under φ
at R; if φ(R) = z then φi(R) = zi.

Properties of rules Following standard notation we write (R′
i, R−i) to be the preference

profile obtained from R by replacing Ri with R′
i. We say that R′

i is a misreport for agent i.
A misreport R′

i is beneficial under φ if φi(R
′
i, R−i)Piφi(R). A rule φ is strategy-proof if for

all economies, no agent has a beneficial misreport under φ. We emphasise that this property
implies that no agent can lie even if they have full information about the preferences of the
other agents. One trivial example of a strategy-proof rule is the “no deal” rule φ(R) = ω,
but this rule is clearly sub optimal. We say that an allocation z is Pareto-optimal for R if for
any z′ we have that ziRiz

′
i and for at least one agent j we do not have that z′iRizi. We say

that a rule is Pareto-efficient (PE) if it always recommends a Pareto-optimal allocation. If
an agent might be worse off after the trade according to their own preference relation, there
is no incentive to take part. A rule is said to be individually rational (IR) if φi(R)Riωi for
each agent i.

Graph theory In order to describe the rule that is the focus on this paper, and our
results, we require some definitions from graph theory. We follow the definitions in [17], but
we now recall some important notions. A (directed) walk in a graph is an ordered multiset
(v1, e1, v2, e2, . . . , ek, vk+1) where vi is a vertex and ei is a (directed) edge from vi to vi+1

for 1 ≤ i < k. A path is a walk where no vertex is repeated. A cycle is a path plus an edge
from vk to v1. A clique in a graph G is a set of vertices C such that there is an edge between
every pair of vertices in C. A proper colouring (or simply a colouring) of a graph G is an
assignment of colours to its vertices such that no edge joins two vertices of the same colour.

Top Trading Cycles For housing markets, there is exactly one rule that is simultaneously
SP, PE and IR [62]. The allocation that the rule recommends can be obtained by following
the Top Trading Cycles procedure which we define below (see Figure 1 for an example).

α β

γδ

α β

γδ

Figure 1: The first step of the TTC procedure (dotted edges denote second preferences)
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In a housing market, the endowments are singletons and so any IR rule must also produce
an assignment whose elements are singletons. We can assume that each agent has a strict
preference relation over O. We introduce the following useful notation: if αPiβ for all β in
some subset O′ of the goods, we say that agent i topranks α in O′ (if O′ = O we say simply
that i topranks α).

Top Trading Cycles
Input: An economy E = (N,O, ω,R).
Output: An assignment z.

1. Create a directed graph H1 whose vertex set is V1 = O with an edge (α, β) in Et if
and only if a(α) topranks β.

2. For t = 1, 2, . . .:

(a) If Vt is empty, stop.

(b) Otherwise, select an arbitrary cycle (γ1, γ2, . . . , γj) in Ht.

i. Add γ1 to za(γj), and add γi+1 to za(γi) for 1 ≤ i < j.

ii. Let Vt+1 = Vt \ {γ1, . . . , γj}.

iii. Let Ht+1 be the directed graph on Vt+1 with an edge (α, β) in Et+1 if and
only if a(α) topranks β in Vt+1.

In Step 2b, an arbitrary cycle was selected. Indeed, the order that cycles are removed
from the graph in TTC does not matter. However, it will be useful to refer to the time
at which goods are traded under TTC. In order to make this notion well-defined, we insist
that an economy E is equipped with a total ordering over O; we can refer to the first good
in O. Observe that for each good α in Vt there is a unique directed walk with no repeated
edges starting at α; we call this the trading walk starting at α. Since every element of Vt

has outdegree 1, this walk must contain a cycle. We define the cycle in Step 2b to be the
one contained in the trading walk starting at the first good in Vt. We can now define the
trading time ttE(α) of a good α in a run of TTC on E to be the least integer t such that
α ∈ Vt \ Vt+1. When the economy is unambiguous, we write tt(α) = ttE(α). The following
simple observations will be very useful later.

Observation 1. Suppose α and β are goods in Vt during a run of TTC. If the owner of α
topranks β in Vt, then tt(α) ≥ tt(β).

Observation 2. Suppose αi ∈ ωi and αj ∈ ωj. If αiRiαj and αjRjαi. Then tt(αi) 6= tt(αj).

Observation 3. Suppose α is a good in Vt, and the trading walk W starting at α in Ht is
not a trading cycle. Let β be a good on the trading cycle in W . Then tt(β) < tt(α).

Observation 4. Suppose β ∈ TTCi(R) and αPiβ. Then tt(α) < tt(β).

Observe that TTC (as we have described it above) does not require the endowments to be
singletons. In other words, it can be applied in the setting of generalised housing markets.
However, we know that in this case TTC is not strategy-proof in general. For example,
let E = (N,O, ω, R) be the economy shown in Figure 1. In this economy, a(δ) and a(γ)
have the same preferences. Suppose that a(δ) and a(γ) are the same; let ω1 = {γ, δ}, ω2 =
{α}, ω3 = {β} for instance. If agent 1 prefers the bundle {α, β} to its assignment {α, δ}
there is a possibility for agent 1 to benefit by misreporting their preferences. Agent 1 can
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eα e0 eβ

γ x

α β y

Figure 2: Agent 1 (who owns e0, eα, eβ) can get α and β by trading e0 for x.

report a preference relation R′
1 such that βP ′

1αP
′
1γP

′
1δ. It is easy to verify that the allocation

TTC1(R
′
1, R−1) when agent 1 reports R′

1 is {α, β}.
In Figure 2 we see a more complicated example. We adopt the convention throughout

the paper that denotes a first preference, denotes second preference,
denotes third preference, denotes fourth preference, and thereafter a dashed line with
i dots denotes the (3 + i)th preference. We set ω1 = {e0, eα, eβ}. The preferences of agent
1 are such that any bundle including both α and β is preferable to any bundle including
one or the other or neither. Informally, agent 1 wants to get α and β. However, the order
of preference of the individual goods, according to R1 is α, β, eα, eβ , e0, γ, x, y. In the first
round of TTC, the goods α, γ, e0 form a trading cycle. It can be seen that after these goods
are removed, first x, y form a trading cycle, and then β forms a trading cycle. Thus the
assignment to agent 1 is {α, eα, eβ}. Agent 1 has an incentive to lie; even though x is not
preferable to any individual good in ω1, obtaining it prevents x, y from forming a trading
cycle.

Since manipulation of TTC is clearly possible with multiple endowments, it is necessary
to consider relaxing the strict condition that a rule is strategy-proof. Instead, we consider
requiring that computing a beneficial misreport is computationally intractable.

Computational complexity We are interested in the complexity of the following prob-
lem:

BENEFICIAL MISREPORT(φ)
INPUT: A generalised housing market economy E
QUESTION: Does agent 1 have a beneficial misreport under φ?

For simplicity’s sake, we always assume that agent 1 is the would-be liar. Since we are
mainly interested in proving (conditional) lower bounds on the complexity of manipulating
TTC, we focus on the decision version of the problem. Fujita et al. [32] showed that
BM(TTC) is NP-complete in general (they refer to Augmented Top Trading Cycles, but
the description is equivalent). This result suggests that TTC might yet be of practical use
despite not being SP; an agent with limited computational resources would have no incentive
to lie.

However, the hardness established by this result seems to depend heavily on the size of
the endowments. Indeed, the proof makes the implicit assumption that one agent may have
a number of goods that grows with the number of agents. This strongly suggests that a
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parameterized approach is more appropriate. In fact, the NP-completeness of the problem
could be very misleading; as we shall see later, there is a polynomial time solution to the
problem when the size of the endowment is a fixed constant.

Parameterized complexity For a full treatment of the topic of parameterized complexity,
we refer the reader to the textbook by Downey and Fellows [27]. We give a brief overview
aimed at non-specialists. Consider the following decision problems.

CLIQUE VERTEX COVER
INPUT: A graph G and an integer
K

INPUT: A graph G and an integer
K

QUESTION: Is there a set C of K
vertices of G every pair of which is
adjacent?

QUESTION: Is there a set C of K
vertices of G such that every edge of
G contains a vertex of C?

Both of these problems are NP-hard, which means that if they can be solved in an
amount of time that is polynomial in the total size of the input (G,K) then P = NP. On
the other hand, when K is fixed, and not part of the input of the problem, both can be
solved in polynomial time. Indeed, CLIQUE can be solved in |G|O(K) time, and VERTEX
COVER can be solved in O(2K |G|) time. It should be clear that there is a big difference in
these run times: 220 × 1000 operations will take a modern computer mere seconds whereas
100020 is larger than the number of atoms in the observable universe. This 2-dimensional
approach shows us that the complexity of these problems is very sensitive to the size of the
solution sought, and in general a problem’s complexity may depend heavily on the size of
some parameter in a way that classical complexity ignores.

We define a parameterized language to be a subset of Σ∗×N for some alphabet Σ. If (x, k)
is a member of a parameterized language L we say that k is the parameter. If there exists
an algorithm which can decide whether (x, k) belongs to L in |x|f(k) for some computable
function f , then L is in the complexity class XP. If, additionally, there exists an algorithm
that decides membership of L in time f(k) · |x| for an arbitrary function f , then L is in the
complexity class FPT. The above discussion shows that VERTEX COVER is in FPT, but
CLIQUE is thought not to be.

The fact that CLIQUE is NP-hard is a conditional lower bound for the run time of an
algorithm that solves CLIQUE. Since every NP problem reduces to CLIQUE, a polynomial
time solution to this problem implies P = NP. An analogous conditional lower bound exists
in the parameterized setting. We define the class of W[1] parameterized languages to be
those that reduce to the following.

SHORT NONDETERMINISTIC TURING MACHINE HALTING
INPUT: A nondeterministic Turing machine M

PARAMETER: k
QUESTION: Is it possible for M to reach a halting state in at most k steps?

It is considered extremely unlikely that FPT = W[1]. We remark that CLIQUE happens
to be W[1]-hard (in fact W[1]-complete) and thus unlikely to be in FPT. There is a whole
hiearchy of classes FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP (deciding the existence of a dominating
set of size k is aW[2]-complete problem for instance) and the inequality FPT ⊂ XP is known
to be strict. For our purposes, it is enough to consider W[1]-hardness as a conditional lower
bound on the complexity of a decision problem.
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v1 v2

v3v4

Figure 3: A directed 4-coloured graph G (snake in red).

Our main result is that BM(TTC), parameterized by the size of the endowments, is W[1]-
hard. For the rest of the paper, we refer only to the parameterized version of BM(TTC) In
fact, BM(TTC) remains hard under a strong restriction on the preference relations.

Preference domains A preference relation Ri is lexicographic if for each X,Y ⊆ O,
X Pi Y iff there is b ∈ O such that 1) b ∈ X\Y , 2) for each a ∈ O with aPi b, a ∈ X ∩ Y .
The lexicographic, additive, responsive, and monotonic domains are ordered by inclusion 1.
Our result holds even on the lexicographic domain; it immediately holds for the more general
domains.

For the rest of this paper, we assume that all agents have lexicographic preference rela-
tions unless stated otherwise. This allows us to write the preference relations in a compressed
format. We may write the preference relation of an agent i as a list of the singletons ordered
by Ri, up to and including the least preferred element of ωi.

3 The Main Result

In order to prove that BM(TTC) is W[1]-hard, we introduce an auxiliary problem; our re-
duction is ultimately from the following problem.

MULTICOLOUR CLIQUE
INPUT: A graph G with a proper vertex colouring φ

PARAMETER: The number of colours k
QUESTION: Does there exists a clique of size k in G?

In order to simplify our exposition, we introduce an intermediate problem which we will
prove is W[1]-hard and reduce to BM(TTC). In a directed graph G with a proper vertex
colouring φ : V (G) → [k], an edge (u, v) with φ(v) = φ(u) + 1 will be called a rung. On the
other hand if φ(v) < φ(u), we say that (u, v) is a snake. A partial ladder in such a graph is
a set of k vertices {v1, . . . , vj} such that (vi, vi+1) is a rung for all 1 ≤ i ≤ j − 1. A (partial)
ladder is snakeless if there are no snakes between its vertices. We define the problem of
deciding the existence of a snakeless ladder in a k-coloured graph as follows:

SNAKELESS LADDER
INPUT: A directed graph G with a proper vertex colouring φ

1A preference relation Ri is monotonic if for each X, Y ⊆ O such that Y ⊆ X, X Ri Y . A preference
relation Ri is responsive if for each X ⊂ O, and each a, b ∈ O\X, X∪{a}Ri X∪{b} iff aRi b. A preference
relation Ri is additive if there is ui : O → R such that for each X, Y ⊆ O, X Ri Y iff

∑
a∈X

ui(a) ≥∑
a∈Y

ui(a).
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e1 e2 e3

x1 x2 x3

y1 y2 y3

Figure 4: Three vertex gadgets.

PARAMETER: The number of colours k
QUESTION: Does G contain a snakeless ladder?

Lemma 5. SNAKELESS LADDER is W[1]-hard.

Proof. The proof is a simple reduction from MULTICOLOUR CLIQUE. From a k-coloured
graph G we obtain a directed graph G′ by first complementing the set of edges between
non-adjacent colour classes. In other words if |φ(u) − φ(v)| 6= 1, then uv is an edge in
G′ if and only if it was not an edge in G. We then direct the edge uv from u to v if
φ(v) = φ(u) + 1 or if φ(v) < φ(u). Now consider a set of vertices {v1, . . . , vk} in G′. By
definition (v1, v2), (v2, v3) . . . , (vk+1, vk) are rungs in G′ if and only if v1v2, v2v3, . . . , vk+1vk
are edges in G. Similarly, for i < j there is no snake (vj , vi) in G′ if and only if vivj is an
edge of G. Therefore, {v1, . . . , vk} form a snakeless ladder in G′ if and only if they form a
clique in G.

Theorem 6. BM(TTC) is W[1]-hard, even when the preference domain is lexicographic

Proof. We reduce from SNAKELESS LADDER. Let G be a graph with a proper k-colouring
for some integer k. We will obtain an economy EG and an integer k′ such that the endowment
of player 1 in EG has size k′ and furthermore player 1 has a beneficial misreport R′

1 if and
only if there is a snakeless ladder in G. We will then show that EG, k′ can be constructed in
time f(k)|G|c for some function f and constant c.

We begin the construction of EG = (N,O, ω, R) by setting ω1 = eα, eβ ∪{ej : 1 ≤ j ≤ k}.
We can assume that all other agents have a singleton endowment. For each vertex vi in G,
we add to EG a vertex gadget. A vertex gadget is a pair of goods xi, yi and their respective
owners, who have particular preferences depending on the colour and neighbourhood of vi.
The agent a(yi) always topranks xi, and a(xi) topranks ej where j is the colour of vi.
The full preference relation of a(xi) is (ej , yi, xi). The preferences of a(yi) are as follows.
Let vs1 , vs2 , . . . be the endpoints of the snakes which start at vi and let vr1 , vr2 , . . . be the
endpoints of the rungs which start at vi. For a vertex vi of colour k, the full preference
relation of a(yi) is (xi, ys1 , ys2 , . . . , eβ, yi). For a vertex vi not of colour k, the full preference
relation of a(yi) is (xi, ys1 , ys2 , . . . , yr1 , yr2 , . . . , yi). Note that a(yi) prefers each of the goods
representing the snakes of vi to each of the goods representing the rungs. In Figure 4 we see
three vertex gadgets. For i = 1, 2, 3 we have that vi has colour i and we see that (v2, v1) is
a snake and (v2, v3) is a rung.
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1 α β γ xi yi
α γ γ e1 ej xi

β α {yi of colour 1} e2 yi {snakes}
eα β · · · xi {rungs}
eβ ek (eβ if j = k)
ek eα yi
· · · γ

e1

Table 1: The preferences of some agents in EG (vi has colour j)

We continue our construction by the addition of three goods (and their respective owners)
α, β, γ. The full preference relation of a(α) is (γ, α). The full preference relation of a(γ) is
(e1, e2, . . . , ek, eα, γ). The preference relation of a(β) is as follows. Suppose v1, v2, . . . , vj are
the vertices of colour 1 in G in an arbitrary order. The full preference relation of a(β) is
(γ, y1, y2, . . . , yj, β). Note that a(β) prefers all goods representing vertices of colour 1 to β

and that β is preferred to all other goods representing vertices.
The construction is completed by revealing the true preference relation of agent 1; namely,

(α, β, eα, eβ , ek, ek−1, . . . , e1). For clarity, we have provided Table 1 which shows the prefer-
ences of the agents described above. In Figure 5 we see an example of an economy constructed
from the graph G in Figure 3. The preferences of agent 1 are omitted. When agent 1 reports
the truth, the assignment received is {α, eα, eβ, ek, . . . , e2}.

Claim 7. If there is a beneficial misreport R′
1 for agent 1, then α, β ∈ TTC1(R

′
1, R−1)

Proof. The two best goods obtained by agent 1 by reporting the truth are α and eα. By the
lexicographic property of R1, any bundle preferred by agent 1 to its true assignment must
include α since agent 1 topranks α. Similarly, a preferred bundle must include a good that
is preferred by agent 1 to eα. The only such good is β.

The only bundles agent 1 prefers to their true assignment include both α and β. The
reader may wish to verify that there is no beneficial misreport available to agent 1 in the
economy in Figure 3. This is in contrast with Figure 2, where agent 1 was able to prevent
x, y forming a trading cycle by obtaining x, and therefore obtain both α and β. If agent
1 tries the misreport (x1, x2, x3, x4, α, β) it is easy to see that y1, y2, y3 will at some point
form a trading cycle. Thus β will form a trading cycle on its own and not be included in
the assignment to agent 1. This is because v1, v2, v3, v4 is not a snakeless ladder in G. If the
snake (v3, v1) was omitted from G, then G would have a snakeless ladder and y3 would no
longer prefer y1 to y4.

We now formalise this intuition and argue that agent 1 has a beneficial misreport in EG if
and only if G has a snakeless ladder. Suppose that L = (v1, v2, . . . , vk) is a snakeless ladder
in G (so vi has colour i in G). We claim that R′

1 = (x1, x2, . . . , xk, α, β, e1, . . . , ek, eα, eβ) is a
beneficial misreport. We abuse our terminology slightly and say that if vi is of colour j, then
xi, yi are goods of colour j. Let E ′

G be the economy obtained from EG by replacing R1 by
R′

1, and consider a run of TTC on E ′
G. For the rest of this proof, we will write tt(δ) = ttE′(δ)

for the trade time of a good δ during a run of TTC on E ′. It is clear that in H1, there is a
trading cycle e1, x1. After this is removed, there will be a trading cycle e2, x2. Observe that
of all the vertices of colour 1 and 2 in G, only v1 and v2 are represented by goods in Htt(e2)+1.
Furthermore, a(y1) topranks y2 in Vtt(e2)+1. Now e3, x3 form a trading cycle, and after this
is removed, only y3 remains among the goods of colour 3. Since L is a snakeless ladder,
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eα

α β

γ

e1 e2 e3 e4 eβ

x1 x2 x3 x4

y1 y2 y3 y4

Figure 5: The economy EG associated with the graph in Figure 3

a(y3) prefers each good of colour 4 to y1. Similarly, we have that a(yi) topranks a(yi+1) in
Htt(ek)+1 for 1 ≤ i < k. Since vk is of colour k, yk topranks eβ . The goods xi, 1 ≤ i ≤ k are
not in Vtt(ek)+1, and so agent 1 topranks α in Htt(ek)+1 (according to the false preference
relation R′

1), and a(γ) topranks eα. Thus, eα, α, γ form a trading cycle. The assignment of
agent 1 under R′

1 includes α as required. Since γ is not in Vtt(α)+1, so a(β) topranks y1, the
only remaining good of colour 1. Furthermore, α is not in Vtt(α)+1, so agent 1 topranks β in
Htt(α)+1. Finally, eβ, β, y1, . . . , yk form a trading cycle, and β is included in the assignment
to agent 1.

Suppose instead that there exists a beneficial misreport R′
1 for agent 1. We show that the

trading cycle in Htt(β) that contains β is of the form (β, y1, y2, . . . , yk, eβ) where v1, v2, . . . , vk
is a snakeless ladder in G. We now demonstrate that αP ′

1β must hold. By Observation 1,
we have that tt(γ) ≤ tt(α). On the other hand, if tt(γ) < tt(α), then a(α) topranks α in
Vtt(γ)+1; thus a(α) keeps α, a contradiction. This shows that tt(α) = tt(γ). Observation 1
also gives us that tt(γ) ≤ tt(β), and by Observation 2 this inequality is strict. This shows
that tt(α) < tt(β). Since α and β are both in the assignment to agent 1 by assumption, we
must have αP ′

1β.
Observation 1 also tells us that tt(e1) ≤ tt(γ). We show that this inequality is strict If

tt(e1) = tt(γ), then e1, α, γ form a trading cycle in Htt(e1). Then in Htt(e1)+1, each pair of
colour 1 forms a trading cycle. By Observation 3, no pair of colour 1 is in Htt(β), and β

forms a trading cycle with itself, contradicting the definition of R′
1.

In Htt(e1)+1, the agent a(γ) topranks e2. Again, by Observation 1 we have that tt(e2) ≤
tt(γ). A very similar argument to the above shows that this inequality is strict. Indeed,
since β does not form a trading cycle on its own by assumption, there must be at least one
good yi of colour 1 in Htt(β). Since there must be a trading cycle including β in Htt(β), the
good xi cannot be in Htt(β). If tt(e2) = tt(γ), every pair of colour 2 forms a trading cycle
in Htt(e2)+1. Thus no pair of colour 2 is in Htt(β), so yi forms a trading cycle with itself a
contradiction.

Proceeding by induction, we see that tt(ei) < tt(α) for 1 ≤ i ≤ k. Consider Htt(α). For
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1 ≤ i ≤ k, the goods ei are not in Vtt(α). The only other good that a(γ) ranks above γ is eα.
Thus the trading cycle in Htt(α) containing α must be α, γ, eα.

Now consider Htt(β). Suppose yi is a good of colour j in Vtt(β). Then, without loss of
generality, xi is not in Vtt(β), since we have shown ej is not, and the order in which cycles are
removed is arbitrary. Moreover, suppose there are distinct goods yi, yi′ of colour j in Vtt(β).
By Observation 1, tt(ej) ≤ tt(xi) and tt(ej) ≤ tt(xi′ ). By Observation 2, tt(xi) 6= tt(xi′ ).
Thus ej must have been in a trading cycle with at most one of xi, xi′ . Without loss of
generality, tt(ej) is strictly less than tt(xi), and yi, xi form a trading cycle in Htt(ej)+1, a
contradiction.

The trading walk in Htt(β) starting at β must be a trading cycle. Since γ is not in Vtt(β),
there must be exactly one good yi of colour 1 in Vtt(β). Without loss of generality, that good
is y1. The agent a(y1) only ranks goods of the form yj of colour 2 above y1 in Vtt(β). As we
have discussed, there must be exactly one such good; without loss of generality, that good is
y2. We proceed by induction. Suppose there is a path P in Htt(β) of the form (β, y1, . . . , yi)
where yi is of colour i. Observe that v1, . . . , vi−1 must be a snakeless partial ladder, though
there may yet be a snake (vi, vi′) with i′ < i. However, if a(yi) topranks some good yi′ ∈ P

with i′ < i then the trading walk starting at β is not a cycle, which is a contradiction.
All other goods of colour less than i are omitted from Vtt(β), as is xi. Thus a(yi) topranks
a good of colour i + 1 in Vtt(β). Without loss of generality, that good is yi+1. Observe
that v1, ldots, vi is a snakeless partial ladder, and that there is a path in Htt(β) of the form
(β, y1, . . . , yi+1). We conclude that there is a path of the form (β, y1, . . . , yk) in Htt(β), and
by the same argument, yk must toprank eβ . In other words, we have that v1, . . . , vk is a
snakeless ladder as required.

4 An Upper Bound

We leave the possibility of a matching upper bound on the complexity of BM(TTC) (i.e. a
proof of membership in W[1]) as an interesting open problem. We conclude the paper with
an upper bound that nevertheless represents a negative result for TTC. Informally, if the
size of the endowments is a fixed constant, BM(TTC) can be decided in polynomial time.
In fact, our result is slightly stronger, in that we present an explicit constructive algorithm
that can produce a beneficial misreport. We also highlight that this result holds regardless
of the preference domain.

Proposition 8. BM(TTC) is in XP.

Proof. We will show that the following algorithm computes a beneficial misreport, if one
exists, for agent 1 in time at most k!nk+c where n is the number of goods, k is the size of
the endowment and c is a constant associated with the runtime of TTC.

Algorithm A
Input: An economy E = (N,O, ω, R).
Output: An beneficial misreport for agent 1.

1. Let ω1 = {e1, . . . , ek} be the endowment of agent 1.

2. Let X1, X2, . . . , Xm be the bundles of size k such that XiR1ω1 for each i (ordered
according to R1).

3. For i = 1, 2, . . . ,m:
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(a) Let Xi = {γ1, . . . , γk}

(b) Let α1, . . . , αn−k be the goods not in Xi.

(c) For each permutation {i1, . . . , ik} of {1, . . . , k}:

i. LetR′
1 induce the following ordering over the singletons: (γi1 , . . . , γik , α1, . . . , αn−k)

(the order of α1, . . . , αn−k is arbitrary).

ii. Let z be the output of TTC(R′
1, R−1)

iii. If z1 ∈ z is the bundle Xi, then return R′
1

4. Return 0

The correctness of our algorithm is a corollary of the following claim.

Claim 9. Suppose the assignment to agent 1 under TTC is z1 = {γ1, . . . , γk} if they report
R′

1, with γiR
′
1γi+1 for 1 ≤ i < k. Let R′′

1 be a misreport such that γiR
′′
1γi+1 for 1 ≤ i < k

and γkR
′′
1α for every good α 6∈ z1. Then the assignment to agent 1 if they report R′′

1 is also
z1

Proof. Let E ′ and E ′′ be the (otherwise identical) economies in which agent 1 reports R′
1

and R′′
1 respectively. For t = 1, 2, . . . let H ′

t and H ′′
t be the graphs generated by running

TTC on E ′ and E ′′ respectively. Let tt′(α) and tt′′(α) be the trade times of α during a run
of TTC on E ′ and E ′′ respectively. By Observation 4, tt′(γ1) < tt′(γi) and tt′′(γ1) < tt′′(γi)
for 1 < i ≤ k. Consider H ′

tt′(γ1)
. Clearly, none of the cycles that have been removed from

H ′
1, H

′
2, . . . , H

′
tt′(γ1)−1 have included any of γ1, . . . , γk. Therefore we may assume without

loss of generality that the same cycles are removed from H ′′
1 , . . . , H

′′
tt′′(γ1)−1 and thus H ′′

tt′′(γ1)

and H ′
tt′(γ1)

are identical. Since γ1 is assigned to agent 1 in E ′, it must also be assigned to

agent 1 in E ′′. The claim follows by induction.

Thus if there is a beneficial misreport such that the assignment to agent 1 is X =
{γ1, . . . , γk}, then it is enough to check only those misreports that rank the goods in X

above any other goods.
It remains for us to analyse the runtime of Algorithm A. There are at most

(

n
k

)

≤ nk

bundles that agent 1 can prefer above the endowment. There are k! different permutations
of a bundle of size k. So Step 3(c)ii is performed at most k!nk times. In this step, TTC is
called. Since TTC takes polynomial time to perform (it takes at most n steps to find a cycle,
and at least one good is removed for each time step), there exists a constant c such that this
step takes at most nc time. The overall run time is therefore at most k!nk+c as required.
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[2] Atila Abdulkadiroğlu and Tayfun Sönmez. House allocation with existing tenants. Jour-
nal of Economic Theory, 88(2):233–260, 1999.
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[50] Szilvia Pápai. Strategyproof exchange of indivisible goods. Journal of Mathematical
Economics, 39(8):931–959, 2003.
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