Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

A Policy-Graph Approach to Explain Reinforcement
Learning Agents: A Novel Policy-Graph Approach
with Natural Language and Counterfactual
Abstractions for Explaining Reinforcement Learning
Agents

Tongtong Liu

Wake Forest University

Joe McCalmon
Wake Forest University

Thai Le

University of Mississippi
Dongwon Lee

Pennsylvania State University

Sarra Alqahtani (&% alqahtas@wfu.edu)
Wake Forest University

Research Article

Keywords: Reinforcement Learning, Explainable Al, XRL, Autonomous
Posted Date: January 2nd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2409910/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Autonomous Agents and Multi-Agent
Systems on August 9th, 2023. See the published version at https://doi.org/10.1007/s10458-023-09615-8.

https://doi.org/10.21203/rs.3.rs-2409910/v1
mailto:alqahtas@wfu.edu
https://doi.org/10.21203/rs.3.rs-2409910/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10458-023-09615-8

Springer Nature 2021 BTEX template

A Novel Policy-Graph Approach with
Natural Language and Counterfactual
Abstractions for Explaining Reinforcement
Learning Agents

Tongtong Liu!, Joe McCalmon!, Thai Le?, Dongwon Lee?
and Sarra Algahtani*!

LComputer Science Department, Wake Forest Univeristy, 1834
Wake Forest Rd, Winston-Salem, 27109, North Carolina, USA.
2Computer and Information Science Department, University of
Mississippi, 1848 University, Oxford, 38677, Mississippi, USA.
3College of Information Sciences and Technology, The
Pennsylvania State University, University Park, 16802,
Pennsylvania, USA.

Contributing authors: liut18@wfu.edu ; mccalmonjoe@gmail.com;
thaile@olemiss.edu; dongwon@psu.edu; alqahtas@wfu.edu;

Abstract

As reinforcement learning (RL) continues to improve and be applied
in situations alongside humans, the need to explain the learned behav-
iors of RL agents to end-users becomes more important. Strategies for
explaining the reasoning behind an agent’s policy, called policy-level
explanations, can lead to important insights about both the task and the
agent’s behaviors. Following this line of research, in this work, we propose
a novel approach, named as CAPS, that summarizes an agent’s policy in
the form of a directed graph with natural language descriptions. A deci-
sion tree based clustering method is utilized to abstract the state space of
the task into fewer, condensed states which makes the policy graphs more
digestible to end-users. This abstraction allows the users to control the
size of the policy graph to achieve their desired balance between compre-
hensibility and accuracy. In addition, we develop a heuristic optimization
method to find the most explainable graph policy. We then use the user-
defined predicates to enrich the abstract states with semantic meaning.

Springer Nature 2021 B TEX template

2 A Policy-Graph Approach to Explain Reinforcement Learning Agents

To introduce counterfactual state explanations to the policy graph, we
first identify the critical states in the graph then develop a novel counter-
factual explanation method based on action perturbation in those critical
states. We generate explanation graphs using CAPS on 5 RL tasks, using
both deterministic and stochastic policies. We also evaluate the effec-
tiveness of CAPS on human participants who are not RL experts in two
user studies. Our first user study investigates the understanding of the
end-user of the agent’s behavior by answering a set of “what” questions
about the agent’s actions in certain states. Our second user study allows
the participants to ask counterfactual questions, such as “What if the
agent takes action A instead of B?” before measuring their understand-
ing of the agent’s behavior. The results show that our method is: (1)
agnostic to the algorithms used to train the policies, and (2) comparable
in accuracy and superior in explanation capabilities to existing baselines.
Especially, when provided with our explanation graph, end-users are able
to accurately interpret policies of trained RL agents 80% of the time,
compared to 10% when provided with the next best baseline and 68.2%
of users demonstrated an increase in their confidence in understanding
an agent’s behavior after provided with the counterfactual explanations.

Keywords: Reinforcement Learning, Explainable AI, XRL, Autonomous

1 Introduction

Neural networks have been successfully applied to reinforcement learning (RL)
problems in areas of control [1] and games [2]. Due to impressive performance
in these areas, RL has started appearing in performance-sensitive real-world
applications like chip design [3], server management [4], and robotics [5]. How-
ever, the black-box nature of neural network decisions increases the need for
end-user trust when deploying a new RL system [6]. Explainable reinforcement
learning (XRL) attempts to build this trust by explaining the behavior of an
RL agent that uses neural networks in its decision making process.

In general, we argue that a truly useful XRL has to satisfy several desider-
ata. First, XRL has to explain the entire policy (i.e., behavior) of the agent
to end-users who likely have insufficient knowledge of RL. Policy-level expla-
nations attempt to reveal the policy of an agent for many different regions
of the state space, and “before” the agent has taken any actions [7-9]. How-
ever, existing XRL methods often focus on explaining the decisions of an RL
agent in specific instances [10, 11]. Second, XRL needs to be generalizable for
both deterministic and stochastic RL policies in continuous or discrete state
spaces. However, existing XRL approaches explain only deterministic policies
[8] or discrete state spaces [9]. Third, XRL needs to deliver explanations, which
end-users can interpret, in a natural language format with as minimal user
intervention as possible. Forth, the end-users should be given control over the
size and thoroughness of the explanation based on their needs. Moreover, the

Springer Nature 2021 B TEX template

A Policy-Graph Approach to Explain Reinforcement Learning Agents 3

explanations must accurately describe the agent’s policy, which can be eval-
uated using the fidelity test [12]. Finally, XRL must answer the “why not?”
questions in form of counterfactual explanations [13].

In this paper, satisfying these desiderata, we propose a generalizable policy-
level explanation approach, named as Comprehensible Abstract Policy
Summaries (CAPS), that provides “what” and “why not” explanations for
both stochastic and deterministic policies of an RL agent and displays the
policy as a directed graph, embedded with intuitive natural language (NL)
explanations and counterfactual explanations. CAPS first collects, from the
user, simple NL predicates which describe potential aspects of the agent’s state
(e.g., “car moves right” or “car stops at the top of the mountain” in the moun-
tain car environment.) CAPS then collects no more than 500 timesteps from
the RL agent trajectories as representatives of the agent’s behavior. In order
to make the explanation process tractable, CAPS uses a clustering algorithm,
CLTree [14], that abstracts the agent’s states into a hierarchy of different con-
figurations of clusters. Each cluster groups similar states into one abstract
state. Then, a heuristic optimization technique is developed to select the best
configuration of the clusters, which is determined by the accuracy of state tran-
sitions and the end-user interpretability. For each cluster, CAPS also identifies
whether the agent considers the states in the cluster to be critical, extending
the methodology proposed in [6]. Then, using the generated clusters, CAPS
forms the agent’s policy () and transition function as a directed graph, where
the nodes are the clusters of states, forming abstract states, and the edges
represent the actions chosen by 7, as well as the probability of transition-
ing from one abstract state to the next. To enrich the generated graph with
more semantic meaning, CAPS labels the abstract states (i.e. graph nodes)
with concise NL explanations using the user-defined language predicates and
Boolean algebra. By controlling the height of the CLTree, CAPS gives the
end-user the choice of generating different policy graphs with different sizes
such that each size corresponds to different levels of abstraction. Lastly, we
include two metrics to the graph nodes namely; timesteps and failure prob-
ability to provide counterfactual explanations of why the agent takes certain
actions. The timesteps measure the time the agent will take from each state
to the goal state while the failure probability measures how likely the agent
will fail the task if it is placed in each state. We design a tool for the users to
interactively ask “why” and “why not” using CAPSgraphs.

To demonstrate the utility of CAPS, we use 5 RL environments. We
trained the RL agents in the environments using an algorithm for stochastic
policies, PPO [15] and an algorithm for deterministic policies, DQN [16]. Our
experimental results indicate that CAPS is generalizable with minimal user
interventions. To measure how close the explanation graphs are to the agent’s
policy, we ran fidelity testing for each environment and compared it against
two baselines which share the most in common with our approach [8; 9].
The results show that the accuracy of the policy graphs produced by CAPS
is either superior or comparable to those produced by the baselines. We also

Springer Nature 2021 B TEX template

4 A Policy-Graph Approach to Explain Reinforcement Learning Agents

Algorithm | 191 | [7]] [8] | [17) | [13] | [18] | CAPS
Policy Explanation v v v v v
Explains the Transition Function v v v v
Targets End-users v v v v v
Assumes Minimal End-user Knowledge v v v
Highlight Critical States v
Explains Continuous State Spaces v v v
Explains Stochastic Policies v v
Optimizes Size of Explanation v
Natural Language Explanations v v v v
Counterfactual Explanations v v v

Table 1 Summary of Surveyed Related Works vs. CAPS

conducted two user studies; the first tests the general explainability of the gen-
erated graphs with different abstraction levels against the two baselines while
the second study investigates the users’ understanding of the counterfactual
explanations generated by CAPS in the form of timesteps and failure proba-
bility metrics. Results show that users presented with CAPS graphs identify
the correct state and next action of an agent 80% of the time, compared to
just 10% for the next best baseline. For the counterfactual explanations, at
least 68.2% of users demonstrated an increase in confidence after getting the
chance to ask 3 counterfactual questions in the “what if” form.
Our contributions are summarized as follows:

1. We introduce a policy explanation approach for creating abstract policy
graphs with different state abstraction levels, which provides the end-users
with more control over the size of the graph.

2. We provide an optimization heuristic for maximizing the accuracy of our
policy graphs, while minimizing the size of the graph.

3. We highlight which abstract states the agent considers most important and
critical to the task which builds trust in end-users [6].

4. We propose a novel algorithm for generating a single natural language
representation for each abstract state. Our method overcomes the issue
of previous natural language grounding methods, where too many con-
tradictory state regions can degrade the quality of the explanation as in
[7].

5. We develop a method for counterfactual explanations by perturbing the
identified critical states. The counterfactual explanations are provided using
two metrics: timesteps and failure probabilities.

2 Related Work

Researchers have highlighted important pixels in a frame of an Atari game
[19], [20], [21], and generated contrastive Atari frames which would cause the
agent to take another action [10] . [11] use reward decomposition to identify
the part of the goal a specific action was meant to achieve. Other methods

Springer Nature 2021 B TEX template

A Policy-Graph Approach to Explain Reinforcement Learning Agents 5

identify states which an RL agent determines is important for the outcome of
the episode. The entropy of the agent’s policy and the maximum difference of
the value function have been used to determine states in which a certain action
needs to be taken to avoid failure [22], [6]. Highlighting such states improves
a user’s trust in the agent [6].

For policy-level explanations, the developed approach in [17] generates deci-
sion trees that mimic the agent’s policy, and then interprets the rules formed
by the learned tree. Structured models of the environment have been created
in [13] to trace the outcomes of the agent’s policy and produce explanations.
These models are not generalizable across tasks and are difficult to create in
large environments, or in environments where the complete state transition
dynamics are unknown. Another method has been proposed in [18] to gener-
ate an explanation of a policy by comparing it to a user-generated 'foil” policy.
It, however, requires the end-user to have a foil policy in question and know
the dynamics of the environment. In [7], policy-level explanations have been
generated in response to user queries. They also propose a method for translat-
ing state regions to natural language. Our proposed approach improves their
methods for translating state regions, and generates policy explanations which
encompass more scenarios than just those that the user queries. We claim that
the policy graphs are more interpretable for the policy-level explanations since
they explain both the policy and the transition function, and have the capacity
to generate the query explanations as shown in [7].

An abstracted Markov chain has been built in [9] and is displayed as a
directed graph to explain the agent’s policy. This approach clearly visualizes
the structure of the environment, and the agent’s path while traversing it.
However, the generated policy graph is not interpretable beyond its shape,
because the nodes representing abstract states are not given natural language
labels. For stochastic policies and larger environments, the produced graphs
can quickly become too large [9].

Zahavy et.al [8] create state abstractions in Atari environments using clus-
tering. Their method produces abstract policy graphs, but requires heavy
manual feature engineering and knowledge of the environment. In addition,
the quality of the abstract groupings is dependent on the engineered features,
and they do not provide a way to interpret their policy graphs beyond environ-
ments with image representations. Our method alleviates these weaknesses by
clustering the state abstractions before any feature engineering is applied, but
the two can be used in conjunction if the user already has extensive knowledge
of the environment.

The initial stage of this work has been published in [23]. In this paper, we
extend [23] to provide counterfactual explanations answering the users’ ques-
tions of "why” and ”why not”. Moreover, we design a detailed user study to
evaluate the counterfactual explanations of CAPS. The comparison between
CAPS and prior work is listed in Table 1.

Springer Nature 2021 B TEX template

6 A Policy-Graph Approach to Explain Reinforcement Learning Agents

3 Background

3.1 Reinforcement Learning

An RL agent learns by acting within an environment. Their interaction can
be characterized as a Markov Decision Process (MDP) described by the tuple
(S, A, P, R), where S is the set of states, A is the set of actions available to the
agent, P is the transition function such that P(s;,a;) produces a distribution
over all possible next states at time ¢, and R is the set of all possible rewards
that an agent can receive for actions taken in states. The goal of an agent is
to learn the policy, 7(s;) = a;, which would maximize the total discounted
reward over the whole task. To help discover the optimal policy, an agent learns
to approximate the value function, v(s;), which is the expected discounted
reward that can be gained by being in the state s; and following the policy, .
Formally, the value function is:

ols) = 5 0 Rlse), 1)

t=1

Note that the state-value function can be obtained from the action-value func-
tion: Vi (so) = Qr(s0,7(s0)). These are used in methods based on Q-Learning,
Sarsa(A), and actor-critic methods [24]. Therefore, the value-function is gener-
ally available alongside the policy of a trained agent. In the case of stochastic
policies, 7 produces a probability distribution over A, 7 (- | s), which can then
be sampled to choose a;. The goal of CAPS is to display information about the
policy, w, and the transition function, P, to the user as an easily understood
directed graph.

3.2 CLTree

CAPS relies on clustering, an algorithm for finding the natural groupings of
data points within the entire set. Specifically, we use the clustering algorithm,
CLTree [14], which trains a decision tree to separate the data that belongs
to the set, from data which is artificially inserted into the set uniformly. By
learning the feature boundaries which separate real data from fake data, the
nodes in the tree form natural clusters. In addition, these clusters can be
combined or separated by traversing up or down the tree. Therefore, by pruning
the tree, each cluster can be more inclusive or exclusive according to the user’s
needs.

4 The Proposed Approach: CAPS

The main deliverable from CAPS is a directed graph to describe the agent’s
policy in NL predicates and a set of metrics for counterfactual explanations.
We formulate the output graph G as G = (V, E)) to explain the RL policy com-
ponents, states, actions, and transiting probabilities between the states. V is a

A Policy-Graph Approach to Explain Reinforcement Learning Agents

Springer Nature 2021 B TEX template

i 50 42)

\———/ Exiraction State Abstraction
5,7, 8' M, a |:> via Clusterin
| d]:
o
Reinfdftement T= (84,36, 0(8e), HiT(80)), 3041) ARy

Learning Agent

©
pecty

End-Users

Natural Language -

Boolean
Classifiers
Generation

Predicates and Diverse
Groups Generation

—

(e.g. "Car is moving quickly”, i

User's
Dataset

Abstract States in Boolean Formats

7

"Caris on the right") I Natural Language Grounding (Sec. 4.4) W R, "> |

Fig. 1 The overall architecture of the CAPS approach.

set of vertices representing the RL agent’s states S from the MDP representa-
tion of the environment. E is the edges connecting the vertices matching the
actions A = 7(S) in the MDP and defined as E C {(v1,v2) | (v1,v2) € VZ}.
Since G is a directed graph, we can annotate F with the transition probabilities
P as defined in the MDP.

Directly mapping the states S, actions A, and transitions P from the orig-
inal MDP to V and FE in G is intractable for the end-user interpretation. For
instance, generating G for an episode of 100 timesteps collected from a policy
7 could, in the worst case, include 100 vertices to represent each state in the
episode. Given the definitions of the RL agent’s policy 7 and the graph G, we
frame this problem within CAPS framework as a five step process as depicted
in Figure 1 and explained in the following subsections.

lp=1
Right Right

p=1 p
Right p=t

Right

lp=0.12

Rght p=0.41_Right
p=0.03 =056
f Right
up

d.p.

<:I

Down

=

Fig. 2 Example of Abstract Policy Graphs produced by CAPS before translation for
CLTree of height 4 and 5 (left, right)

4.1 Data Collection

In this step, we collect two small datasets, U, from the end-user, and D,
from the RL agent’s execution. The user is asked to create natural language
predicates that concern them about the environment and the agent’s task.
For example, for a self-driving car agent, the user could give predicates like
“the car is moving fast”, “there is a stop sign”, or “car on the right”. Those

Springer Nature 2021 B TEX template

8 A Policy-Graph Approach to Explain Reinforcement Learning Agents

predicates will be used later to append G with semantic meaning that supports
the end-user’s interpretation. For the agent’s dataset D, we collect a small
number (< 500) of timesteps from its execution traces, possibly collected over
multiple episodes, consisting of tuples, 7 = (s, as, v(s), H(m(s¢)), s¢41) € D.
s¢ is the state of the agent at time ¢, which will be used to form the vertices
V of G, while a; is the action that the agent’s policy chooses based on the
current state, a; = 7(s¢), and will be mapped to the edges E in G. The state
value v(s;) is collected to estimate how good it is for the agent to be in state
s¢ for the future reward from Eq.1. This value helps groups states which the
agent views as similarly important to the task’s success (Section 4.2). The
policy entropy H(mw(s:)) defines the entropy of the probability distribution
generated by 7 in state s;. We use the policy entropy to highlight clusters of
states as critical (Section 4.2.1). For deterministic policies which do not output
a probability distribution, we instead use the maximum difference of the Q-
function among actions as a proxy for policy entropy, as in [6]. This is defined
as Mata, q,cA(Q(s¢,a;) — Q(s¢,a5)), where Q(s¢,a;) is the learned value of
taking action a; in state s;.

4.2 Policy State Abstraction via Clustering

The motivation of CAPS is to generate more human-interpretable graphs
than the Markov chains made from the base MDP and the RL agent’s policy.
Therefore, the number of nodes in the resulted graph of CAPS should be
much lower than the number of distinct states in the base MDP. To achieve
this, we adopt the notion of state abstraction from RL literature [24, 25].
State abstraction involves grouping the grounded states of the agent’s MDP
into groups of similar states, reducing the size of the entire state space. Prior
work [9] has abstracted the states using feature importance or significance. In
CAPS, we instead use a clustering algorithm eliminating the need to manually
engineer the state features as in previous work. We can directly apply clustering
algorithms to abstract the state space if we assume that groups of similar states
S1, Sz share similar policies 7(S1) = m(S2) or value functions v(S1) = v(S2)
as in [25]. This assumption, however, does not always hold, thus we include
the value function v(s;) and action a; from the collected tuples 7 for more
accurate clustering.

Using CLTree algorithm [14], we cluster each 7 € D into similar groups.
The generated leaf clusters C' in the tree represent the abstract states. As a
result, each abstract state ¢ € C groups all states which are interchangeable
under the agent’s policy such that either the agent behaves similarly when
starting in any s € ¢, or (Vs € ¢) = a [8, 9], or the agent assigns similar
values to each s € ¢ [9]. The advantage of using CLTree clustering over K-
means or a modified K-means [8] is that the user has direct control over the
size of the graph’s nodes V. From a finished CLTree pruned to a specific depth,
traversing the tree can increase or decrease the level of abstraction, giving a
dynamic understanding of the policy. In addition, by viewing the agent’s policy
at different abstraction levels, RL developers can gain additional information

Springer Nature 2021 B TEX template

A Policy-Graph Approach to Explain Reinforcement Learning Agents 9

about how the environment and the agent’s policy function. As an example,
Figure 2 shows two policy graphs, without natural language labels, at two
sequential levels of the tree.

4.2.1 Heuristic Optimization for Clustering

Using CLTree for the state abstraction equips the user with the ability to
decide the level of abstraction by choosing the height of the tree. To increase
the usability of CAPS for users with minimal to no knowledge about RL and
CLTree, we develop a heuristic optimization technique to find the optimal set
of clusters C*. Our heuristic is motivated by the fact that as the policy graph
G grows in the number of clusters C' (i.e. | V' |), the error between the true
environment transition function P from the MDP and the one estimated by
G, as well as the error between the agent’s true policy 7 and that presented in
the graph, decreases. However, in order for G to be interpretable to a human
end-user, we must limit the number of vertices V' in the graph.

Let L be the set of tree heights, and Cj be the set of clusters at a height,
| € L. We wish to choose [such that the clusters in C* = C; form an accurate
policy graph with respect to the value function v(s) and the policy of the
agent 7w within each cluster. In addition, we want to penalize the size of the
graph, so that the policy graph G remains interpretable for humans with less
vertices V. To achieve that, we introduce two heuristics; the value score and
the cluster policy. Informally, the value score represents the error between the
environment’s transition function Px as estimated by the clusters, and the
true transition function P in the MDP. It does this by comparing the true
value functions of the states in each cluster v(s)¥s € C and the estimated
value function according to the estimated transition function. This heuristic is
inspired by the Value Mean Square Error(VMSE) evaluation criterion in [8].
The second heuristic is the entropy of the cluster policy. The cluster policy,
II(c) defines the probability of taking an action, a, given a cluster, ¢, as the
proportion of s € ¢ such that 7(s) = a. We minimize the average entropy of
the cluster policy, H(II(c)), across all ¢ € C, so that it is clear to the end-user
which action the agent will take in the abstract state, c.

Recall, v(s) is the value of the state s, as determined by the agent’s value
function (Eq.1). We formally define the value score, ((C(1)), as:

¢ew) = Y (Verle) = Vest(e))? (2)
@) |

ceC(l)

where Vg (c) is the ground-truth value of an abstract state, ¢, found by:

Viu(c) = ﬁ S u(s)

Springer Nature 2021 B TEX template

10 A Policy-Graph Approach to Explain Reinforcement Learning Agents

and Vg (c) is the estimated value of an abstract state, ¢, found by:

est =7 Z C Cz gt(ci)

c;eC(l)

where v is the discount factor from Eq. 1 and P*(c, ¢;) is the probability the
agent transitioning from cluster ¢ € C} to cluster ¢; € C},, estimated as the
proportion of (s, a;) pairs € ¢ which transition to s;y1 € ¢;:

. 1
P(c,ci) = m Z I(st+1) 3)
where [is an indicator function deciding whether s;,1 is in ¢;.
Then, we formally define the height of the tree, [, pertaining to the optimal
clusters as:

(s,a,8¢+1)€c

angmin |(CO) + (g X HaK)) +alow]] @

leL e)

where « is a parameter controlling the penalty of larger policy graphs and
H(II(c)) is the entropy of the cluster policy.

4.3 Policy-Level Explanation via Abstract Policy Graph

Given a set of abstract states, we create a policy-level explanation by model-
ing the policy as a directed graph G. Each vertex v € V represents an abstract
state from the clusters generated by CLTree and the edges E are transitions
induced by a single action from one abstract state to another, each accompa-
nied by a transition probability. We estimate the transition function Px from
Eq.3. We use Algorithm2 in [9] to append the actions and transition proba-
bilities to our graph G. We, however, modify the graph generation algorithm
in [9] to include the stochastic transition functions by attaching the actions
taken to the edges with their probabilities, instead of to the nodes. This change
increases the readability of CAPS’s generated graph since the nodes have the
NL predicates to describe the abstract states and the edges describe how likely
the agent will take certain actions. Figure 2 shows what an example G looks
like before incorporating the NL labels to the nodes, at two different heights
of the CLTree.

4.4 Natural Language Grounding

In order to provide interpretable explanations of the agent’s abstract policy
graph G, we ground the graph nodes (i.e. abstract states) in NL. We use a
set of Boolean classifiers that we build based on the user’s given predicates in
U. We use these classifiers to translate internal knowledge of the MDP states
within the abstract states into NL through two levels of translations; MDP
state translation and abstract state translation.

Springer Nature 2021 B TEX template

A Policy-Graph Approach to Explain Reinforcement Learning Agents 11

4.4.1 MDP State Translation

Each state from the base MDP has many features that we can directly translate
into natural language predicates. However, those state features may not add
any meaningful semantic knowledge to the end-user interpretation of the state.
For example, in self-driving car simulation, each environment state would have
information about each pixel in the state but the user is only interested in the
traffic signs and their impacts on the car’s decisions. We approach the chal-
lenge of succinctly describing the grounded MDP states as a minimal set cover
problem, seeking the smallest logical expression of user-predicates that pre-
cisely cover the states. We use Boolean algebra over the set of user-predicates
to translate the grounded states into a natural language sentence.

We modify the method of [7] for grounding state regions in NL to improve
the explanation quality. Recall, our collected preliminary data U has the
environment-specific user-predicates. We use those predicates to create binary
classifiers evaluating the features of each state. The semantic meaning of the
boolean predicates should correspond to some aspect of the state space which
we are interested in using to explain the agent’s action. Unlike [8] which
also uses feature engineering to create semantic meaning, in CAPS, the set
of predicates does not affect the accuracy of the transition function, or the
fidelity of the policy graphs. This is because we apply the NL after clustering
instead of clustering the engineered features. Hence, only the quality of the NL
explanations given to each abstract state is affected by the user-predicates.

Given a set of user-predicates, F', which are binary functions, we map an
MDP state s € ¢ into binary vector, w(s), with length | F' |, where each element
represents whether s satisfies the particular user-predicate, f € F. Ve € C,
and Vs € ¢, we map s to w(s) through:

~ [)1, if f(s) = True
wls) = [{0, otherwise vIer 5)

4.4.2 Abstract State Translation

In Eq.5, each grounded state in the abstract state Vs € c is translated into a
binary vector w(s) of NL predicates. We then condense the set of all binary
vectors in the cluster {w(s) | s € ¢}, into a single vector of predicate values,
w(c), which provides a concise explanation of the cluster ¢ (Algorithm 1).
Algorithm 1 has three steps; finding the frequent predicates for each abstract
state, calculating the correlation between those predicates, and translating
them into one NL sentence. We label a predicate in a cluster as frequent or
not with Eq.6:

(6)

The result, w(c), is a binary vector that has 1 at the ith predicate if the
proportion of each predicate’s appearance in all the MDP states, s, in this

i Dwsee W)
. 1, if véeLC > B
w@m={ 5

0, otherwise

Springer Nature 2021 B TEX template

12 A Policy-Graph Approach to Explain Reinforcement Learning Agents

Algorithm 1 Condense Semantic Meanings into a Single, Translated Repre-
sentation
1: Input

2: w: Binary vectors Vs € ¢ computed by Eq.5

3: (3, d: Predicate frequency and correlation threshold

4: DG: The diverse groups for the user-predicates

5. Output

6: Exp: The English explanation for each state in the graph G

7. procedure GENERATE EXPLANATION

8: for cin C do

9: for i in user-predicate do w(c)[i] + Eq.6

10: for i in user-predicate do

11: if w(c)[i]==1then F + FUi

12: end for

13: for (i,7) in F do

14: if fi, f; € DG then Exp(c) < Exp(c) UfiUor U f;
15: elif p; ; > 6 then Exp(c) < Exp(c) U f; Uand U f;
16: else Exp(c) + Exp(c)U f; Uor U f;

17: end for

18: end for

19: return Exp

20: end procedure

abstract state, ¢, is above a threshold S (lines 8-12). Unlike [7], which only
presents a predicate as part of the explanation if it appears in all MDP states,
our algorithm uses a threshold 8 to control how frequent a predicate value
must appear in the grounded states Vs € ¢ to be included in the explanation
of the abstract state c¢. Hence, CAPS guarantees presenting the user with at
least some relevant descriptions. We find that in practice, the method of [7]
often finds no commonalities between the grounded states, especially as the
amount of input data grows (Table 2). We suspect this is because even a single
contrastive state can invalidate a predicate following their method.

The second step of Algorithm 1 (lines 13-16) decides which Boolean alge-
bra operators (i.e. or, and) should be used to connect the frequent predicates,
so that each node in the graph has a semantically meaningful description.
This is done by first requiring the user to group their predicates into diverse
groups such that no two predicates in the same group can both be true in any
grounded state. For example, in a self-driving car, the predicates “car is mov-
ing fast” and “car is moving slow” should be in the same group since the car
cannot be moving fast and slow simultaneously. If a pair of frequent predicates
for an abstract state are part of the same diverse group, we connect those
predicates with an “or” operator. Otherwise, we use the Pearson correlation
coefficient [26] to find how strong the correlation between the expressive pred-
icates. We use “and” for strong correlations and “or” otherwise. For each pair

Springer Nature 2021 B TEX template

A Policy-Graph Approach to Explain Reinforcement Learning Agents 13
of predicates 7, j, we compute the Pearson correlation coefficient p as:

cov(t, j)

Pig = stdistdj (7)
where cov is the sample covariance, std; and std; are the sample standard
deviations of the predicates ¢ and j in s, Vs € ¢. We use a threshold § to control
how correlated two predicates must be in order to justify an “and” relationship
between them. Algorithm 1 improves upon [7] by including the largest number
of predicates in the explanation as possible, while still presenting combinations
of predicates that actually occurred in the input data. Using the diverse groups
plays a crucial role, since we can still include two predicates in the explanation
which can never coexist in the same state, simply by joining them with an
“or” conjunction.

CAPS | Hayes et al. [7]

“Pole is standing up and cart is No Explanation Produced
either moving left or right and cart
is either on the left or in the middle”

“Pole is either stabilizing to the “Pole is not falling left and cart is
right or standing up and cart is moving right and cart is in the
moving right and cart is in the middle”
middle”
“Pole is either stabilizing to the left “Cart is moving left”

or standing up and cart is moving
left and cart is in the middle”

Table 2 Example labels for abstract states produced by CAPS vs. [7] for the Cartpole
environment.

4.5 Counterfactual Explanation via Action Perturbation

According to [27], explanatory questions in AT are classified into three types:
“What?” (Associative reasoning), “How?” (Interventionist reasoning), and
“Why?” (Counterfactual reasoning). The policy-level explanation given by
CAPS in the abstract policy graph focuses on explaining the long term
decision-making of the agent following the learned policy answering the first 2
questions of “what” and “how”. “Why?” questions have been only investigated
for RL agents operate in visual environments [10, 28]. The “why” question
requires counterfactual reasoning [10] about alternative outcomes that have
not happened. Here, we build our counterfactual reasoning method for the
“why” question based on the associative and interventionist reasoning initially
given by CAPS’s abstract policy graph. Specifically, we answer the “why?”

Springer Nature 2021 B TEX template

14 A Policy-Graph Approach to Explain Reinforcement Learning Agents

and “why not?” questions by first identifying the critical states for the agent
to successfully accomplish its task, and then perturbing those states to gen-
erate alternate behaviors. We explain the impact of those perturbations on
the agent’s behavior using two metrics, the episode length and the failure
probability.

4.5.1 Highlighting Critical States

Critical states are defined as states in which it is important to take a certain
action [6]. To build trust in an end-user, it is helpful to highlight what the agent
does in these critical states, as well as why the agent takes certain actions at
those states. For stochastic policies, such as PPO [15], the set of critical states
under the policy K, have been defined as [6]:

K= {s | H(n(-|5)) <t} (®)

where H(w(- | s)) is the entropy of the probability distribution generated by
7 in state s. Extending this to the setting of abstract states, we define the
critical value of an abstract state, x(c), as:

w(e) = ‘—1| S H(n(-|) (9)

s€c

In this case, a lower critical score, and therefore a lower average entropy, cor-
responds to a more critical state. We highlight ¢ as a critical abstract state if
its critical value is in the bottom n;, percentile of the abstract states in its
graph. n is arbitrary and only affects the number of critical abstract states
which are presented. We chose to use n = 10 in our experiments. We highlight
those states in red in the abstract policy graph as shown in Figure (4) and use
them to generate meaningful counterfactual explanations.

4.5.2 Action Perturbation

Our goal is to perturb the agent’s policy in the critical states—i.e., to force
the agent to take different actions, and consequently generate counterfactual
behaviors for the agent. Given a critical abstract state s. and the optimal
action a at s. selected by the policy a = 7(s.), we generate a counterfactual
behavior that differs in some sense from the expected behavior given by .
The counterfactual behavior is generated by enforcing the agent to take a
counterfactual action a’ rather than action a and roll out its behavior from
w(s' | d’,s.) using its learned policy. We collect a dataset for counterfactual
behaviors starting from the critical abstract states of the learned policy in
0 = (S¢,a,TS,FP) where s, is a critical state, a is the optimal action at
state s, according to the learned policy w, T'S and F'P are episode length
(i.e.timesteps) and failure probability, respectively.

Springer Nature 2021 B TEX template

A Policy-Graph Approach to Explain Reinforcement Learning Agents 15

¢ Episode Length (TS): measures the time steps the agent takes to accom-
plish its task. Perturbing the agent’s policy could result in the agent taking
longer time to reach its goal state. Hence, we use this metric to answer the
question of “why the agent is not taking action a’ instead of a at state s.?”
or “what if the agent takes action a’ instead of a at state s.?” by attaching
the timesteps to each abstract state.

¢ Failure Probability (FP): measures how likely the agent will fail its task
when it takes action a’ instead of following its policy and taking a at s..
To estimate the failure, we build on the risk estimation approach proposed
in [29] for uncovering failures in RL agents by sampling the agent in states
where its performance is low. The intuition behind the failure probability
is to estimate how likely the agent will fail the task, from the current state
following its policy. Suppose we have an oracle function, g, which computes
the probability that the agent will fail the task in the next H timesteps
from state s;. Then, the failure probability can be derived as a; = g(s;). We
then approximate the function g, such that §(s;) =~ g(s;) Vs;. Since s; can
potentially take infinite values, [30] chooses to approximate g through a neu-
ral network, trained with supervised learning. We follow their methodology,
which involves first collecting a dataset {(s¢, g(s¢))} that contains around
100, 000 samples. This dataset can be collected by observing the agent dur-
ing execution. We use a neural network with two fully-connected layers of
64 neurons each, and train it to predict g(s;) from s;. To compute fail-
ure probability for abstract states, we average the failure probabilities for
each clustered state in each abstract state and display that in the nodes of
CAPS’s graph along side the English predicates.

5 Experiments

5.1 Experimental Settings

We tested CAPS on 5 environments, where 4 environments have discrete state
spaces, namely Blackjack, Cliffworld [24], Gridworld [31], and Taxi [32], while
the last environment is Mountain Car [32] which has continuous state space.
In addition, Blackjack has a stochastic transition function while the rest of the
environments have deterministic transition functions. To test the generalizabil-
ity of CAPS, we tested the environments using two different RL agents: one
trained with a deterministic algorithm, DQN [16], and one with a stochastic
algorithm, PPO [15].

5.2 Results

We here describe five environments tested and show their corresponding policy
graphs generated by CAPS.

Springer Nature 2021 B TEX template

16 A Policy-Graph Approach to Explain Reinforcement Learning Agents

5.2.1 Mountain Car

In the Mountain Car environment, a car starts at the bottom of a valley, and
must build up enough speed to reach the top of the hill on the right (Figure
3). The car has 3 actions, either accelerate left, accelerate right, or choose
to not accelerate. The state space consists of two continuous features, car
position, with 0 corresponding to the bottom of the valley, and cart velocity.
Figure 4 shows the policy graph for Mountain Car, produced by CAPS. Nodes
highlighted in red are selected as critical by CAPS.

The user-defined predicates for this environment are broken up into two
diverse groups. The first describes the position of the car, and includes the
predicates “At the bottom”, “On the left slope”, “On the right slope”, “High up
on the left slope”, and “High up on the right slope”. The second group describes
the velocity of the car: “Not moving”, “Moving right slowly”, “Moving left
slowly”, “Moving left quickly”, and “Moving right quickly”.

Given only Figure 3 of the environment and a description of the task,
an end-user might suppose the best way to solve the task is to have the car
accelerate right until reaching the goal flag. However, such a strategy does not
work, because the car fails to build up enough momentum to surmount the
hill. The optimal strategy, as discovered by the RL agent, is to first alternate
between left acceleration, right acceleration, and no acceleration to build up
momentum, and then to stop accelerating once the car is high enough up the
left hill. Momentum is then enough to carry the car to the goal. Such a strategy
can be seen in the CAPS graph (Figure 4). The car starts at the bottom and
has a stochastic policy that sees it alternate between accelerating left, right,
and not at all. Once it builds up enough momentum to reach a position high up
on the left slope, it identifies its current state as critical and stops accelerating
with high probability. These actions bring the car to a point in which it is
rapidly rising up the right slope, and eventually reaches the goal.

Figure 4 shows the optimal policy of the agent and provides the TS and
FP of the agent at each abstract state. T'S and FP are calculated following the
optimal policy manifested in the collected trajectories. The user can under-
stand the optimal policy of the agent by placing the agent at the starting
state "At the bottom and Moving right slowly” and then trace the agent’s path
by following the action from the one with highest probability to the lowest
probability. The edges are generated by collecting no more than 500 timesteps
from the RL agent trajectories, clustering each state-action pair to create the
abstract states, and then calculating the probability distribution for different
actions in the same abstract state. For example, the agent moving from the
abstract state ”High up on the left slope and Moving left slowly” will not accel-
erate 100% of the time, and the probability of failing the task by starting from
this state and choose to not accelerate is 0% as shown by FP in that state.
The expected remaining steps to finish the task is 47 steps as shown by TS.

Springer Nature 2021 B TEX template

A Policy-Graph Approach to Explain Reinforcement Learning Agents 17

Fig. 3 The Mountain Car environment from Open AI Gym

On the left slope
and
Moving left slowly
FP: 0%
TS: 66.11

'High up on the left slope
and

Moving left slowly
FP: 0%

Start here

At the bottom

an

Moving right slowly
FP: 0%

TS:93.64

On the right slope
and
Moving right quickly

FP: 0%
TS: 23.33

Car has reached the

target

Fig. 4 The policy graph for Mountain Car produced by CAPS. Abstract states outlined in
red are critical.

5.2.2 Blackjack

Blackjack is a popular card game with a discrete state space that has been
solved using RL. The objective of the game is to win money by obtaining a
point total higher than the dealer’s without exceeding 21. Determining an opti-
mal blackjack strategy proves to be a difficult challenge due to the stochastic
nature of the game.

Springer Nature 2021 B TEX template

18 A Policy-Graph Approach to Explain Reinforcement Learning Agents

Start here

Sum less than 14
Sum less than 14

and
the dealer has 10
or

an

Dealer card 7-9
FP: 66.6%

TS:4.0

Sum of 17-19

and \

Dealer card 7-9 |
or |

|
‘\\ Dealer card 10 or ace /

FP: 56.2%
TS:1.48
§ —

Fig. 5 The CAPS explanation for Blackjack [24]

Sum of 14-16

or
Sum of 17-19
and
Dealer card less than 7,
FP:33.3%
TS:1.0

End of Game

The game works by assigning each card a point value. Cards 2 through
10 are worth their face value, while Jacks, Queens, and Kings are worth 10
points. An ace is worth either 1 or 11 points, whichever is the most beneficial.
This game is placed with an infinite deck (or with a replacement). The game
starts with dealer having one face up and one face down card, while player
having two face up cards. The player can request additional cards (hit=1)
until they decide to stop (stick=0) or exceed 21 (bust). Hence, the possible
actions include hitting, standing, splitting, or doubling down. After the player
sticks, the dealer reveals their face-down card, and draws until their sum is 17
or greater. If the dealer goes bust the player wins. If neither player nor dealer
busts, the outcome (win, lose, draw) is decided by whose sum is closer to 21.
The reward for winning is +1, drawing is 0, and losing is -1. The observation
of a 3-tuple of: the players current sum, the dealer’s one showing card (1-10
where 1 is ace), and whether or not the player holds a usable ace (0 or 1). This
environment corresponds to the version of the blackjack problem described in
Example 5.1 in [24] !

The CAPS graph for Blackjack (Figure 5) can be interpreted as follows.
If the player or dealer has a usable ace, that is displayed as “Player has an
Ace” or “Dealer has Ace”, respectively. The player has two possible actions,
hit or stick. From the top left node, we see that if the player’s hand is between
0 and 16, it will choose to hit every time. There are many edges leading out
from this node because the environment has a stochastic transition function:
choosing to hit from this node does not always transition the environment to
the same next node. There are two other nodes where the player’s hand is
less than 19, but the dealer’s hand is good (7-10 or ace). In these nodes, the
player will often choose to stay but sometimes will hit. In all other nodes, the

!The Open AT Gym design of this game is here: https://github.com/openai/gym /blob/master/
gym/envs/toy_text/blaackjack.py

https://github.com/openai/gym/blob/master/gym/envs/toy_text/blaa ckjack.py
https://github.com/openai/gym/blob/master/gym/envs/toy_text/blaa ckjack.py

Springer Nature 2021 B TEX template

A Policy-Graph Approach to Explain Reinforcement Learning Agents

R=-1

S The Cliff G

R=