
Full Communication Memory Networks for Team-
Level Cooperation Learning
Yutong Wang

National University of Singapore
Yizhuo Wang

National University of Singapore
Guillaume Sartoretti (mpegas@nus.edu.sg)

National University of Singapore

Research Article

Keywords: Multi-Agent System, Reinforcement Learning, Differentiable Communications, Decentralized
Cooperation

Posted Date: February 10th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2563058/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Autonomous Agents and Multi-Agent
Systems on August 7th, 2023. See the published version at https://doi.org/10.1007/s10458-023-09617-6.

https://doi.org/10.21203/rs.3.rs-2563058/v1
mailto:mpegas@nus.edu.sg
https://doi.org/10.21203/rs.3.rs-2563058/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10458-023-09617-6

Springer Nature 2021 LATEX template

Full Communication Memory Networks for

Team-Level Cooperation Learning

Yutong Wang1, Yizhuo Wang1 and Guillaume Sartoretti1*

1*Mechanical Engineering, National University of Singapore, 9
Engineering Drive 1, Singapore, 117575, Republic of Singapore.

*Corresponding author(s). E-mail(s): mpegas@nus.edu.sg;
Contributing authors: e0576114@u.nus.edu; wy98@u.nus.edu;

Abstract

Communication in multi-agent systems is a key driver of team-level
cooperation, for instance allowing individual agents to augment their
knowledge about the world in partially-observable environments. In this
paper, we propose two reinforcement learning-based multi-agent mod-
els, namely FCMNet and FCMTran. The two models both allow agents
to simultaneously learn a differentiable communication mechanism that
connects all agents as well as a common, cooperative policy conditioned
upon received information. FCMNet utilizes multiple directional recur-
rent neural networks to sequentially transmit and encode the current
observation-based messages sent by every other agent at each timestep.
FCMTran further relies on the encoder of a modified transformer to
simultaneously aggregate multiple self-generated messages sent by all
agents at the previous timestep into a single message that is used in the
current timestep. Results from evaluating our models on a challenging set
of StarCraft II micromanagement tasks with shared rewards show that
FCMNet and FCMTran both outperform recent communication-based
methods and value decomposition methods in almost all tested StarCraft
II micromanagement tasks. We further improve the performance of our
models by combining them with value decomposition techniques; there,
in particular, we show that FCMTran with value decomposition signifi-
cantly pushes the state-of-the-art on one of the hardest benchmark tasks
without any task-specific tuning. We also investigate the robustness of
FCMNet under communication disturbances (i.e., binarized messages,
random message loss, and random communication order) in an asym-
metric collaborative pathfinding task with individual rewards, demon-
strating FMCNet’s potential applicability in real-world robotic tasks.

1

Springer Nature 2021 LATEX template

2 Full Communication Memory Networks for Team-Level Cooperation Learning

Keywords: Multi-Agent System; Reinforcement Learning; Differentiable
Communications; Decentralized Cooperation

1 Introduction

Recent developments in single-agent Reinforcement Learning (RL) as well as
the appearance of cutting-edge neural architectures have fueled fast progress
in Multi-Agent Reinforcement Learning (MARL). MARL has achieved great
success in multi-player and video games [1, 2], and showed promises for a
variety of practical applications, including motion planning for autonomous
vehicles [3, 4] and distributed multi-robot control [5, 6]. However, achieving
decentralized and scalable cooperation among agents remains a key challenge
in MARL. For instance, MARL agents often encounter partially-observable
environments in real-life tasks, where learning effective cooperative policies
merely from their own limited knowledge/memory can be challenging or out-
right impossible. Partial observability further affects the team’s performance,
since in many cases the intentions of other agents are often unknown or unmod-
eled, which prevents agents from recognizing teammates and thus often drives
them to (suboptimally) treat each other as dynamic obstacles. One solution to
mitigate these issues is to allow agents to communicate explicitly within the
team to enhance agents’ knowledge/observations, fostering true joint coopera-
tion at the team-level. In other words, communication can allow autonomous
agents to truly act as a unified group rather than as a collection of individuals.

This work contributes to the recently booming field of Communication

learning (CL) [7, 8], in which agents are allowed to share information through
learned communication mechanisms. The main goals of recent works in this
area, such as SchedNet [9], G2ANet [10], ATOC [11], are to 1) learn the con-
tent of the continuous-valued messages sent/utilized by the team via gradient
backpropagation similar to standard MARL, and 2) choose whom to commu-
nicate with and at which timesteps, to decrease the overall communication
burden and filter out communication noise in large teams (i.e., the chatter

problem). However, as a result, these works often do not take full advantage of
information from all agents, thus limiting cooperation levels at the team level,
and often lack robustness investigations, which may limit their applicability
under real-life conditions, such as robotics deployment with noisy/unreliable
communications, or with binary (digital) messages.

In this paper, we focus on the class of problems where global commu-
nications are available (but might be unreliable) and introduce two new
communication-based models, called Full Communication Memory Net (FCM-
Net) and Full Communication Memory Transformer (FCMTran). These two
models both enable agents to concurrently learn a global and differentiable
communications mechanism as well as a common, cooperative policy condi-
tioned upon received information. FCMNet utilizes the hidden states and cell

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 3

states of multiple parallel directional recurrent neural networks (RNNs) as
messages transmitted among agents (i.e., multi-hop communications). That
is, at every timestep, each agent receives and utilizes multiple messages that
are generated based on the current observations of all other agents. Pushing
this idea further, FCMTran uses a more advanced neural network structure,
the transformer, as the communication channel. The encoder of the modified
transformer in FCMTran replaces the RNNs of FCNet to fuse messages sent
by multiple agents into one message in a scalable and input-order-independent
manner. Different from FCMNet, the message content in FCMTran is self-
generated by the transformer, starting from a zero-vector input at the first
step of each task. That is, in FCMTran, the output of the transformer at the
previous step is used as the only input of the transformer at the current step,
thus allowing agents to obtain information across timesteps. The resulting,
realistic time delay between sending and receiving messages also relaxes the
assumptions towards real-life deployments. By relying on our proposed neural
structures and sharing weights among agents in a discrete manner through-
out our framework, the differentiable communication channels of FCMNet
and FCMTran can be trained using the losses from all agents, thus exhibit-
ing more efficient high-cooperation policies than existing CL methods. We
experimentally evaluate our proposed models on a range of unit microman-
agement tasks in the StarCraft II Multi-Agent Challenge with shared team
rewards [12]. There, our evaluation results show that FCMNet and FCMTran
outperform recently published CL methods and value decomposition methods
in almost all tested tasks. After combining our models with value decomposi-
tion techniques from QMIX [13] and VDN [14], their performances is further
improved. In particular, we show that FCMTran with value decomposition
significantly outperforms the state-of-the-art (SOTA) in one of the hardest
benchmark tasks without any task-specific tuning/tricks. Finally, we inves-
tigate the robustness of FCMNet under realistic communication interference
(i.e.,binary messages, random message loss, and randomized communication
orders) on a partially-observable multi-agent pathfinding task with individ-
ual rewards [15]. Our findings demonstrate that FCMNet exhibits a type of
natural resilience to such communication interference, suggesting promises for
deployments in tasks with real-life communication constraints.

2 Related Work

2.1 Communication Learning

CL is one of the subareas of MARL, in which agents learn to share informa-
tion within the team, thus effectively supplementing the knowledge available
to individual agents (e.g., from local sensing) and mitigating the hazards of
partial observability. Foerster et al. [16] first proposed two types of learn-
able communication mechanisms, namely RIAL and DIAL. While RIAL treats
communication as an additional action to be chosen, DIAL learns real-valued

Springer Nature 2021 LATEX template

4 Full Communication Memory Networks for Team-Level Cooperation Learning

messages passed between agents during centralised learning by backpropa-
gating the gradients from the recipient agent(s) through the differentiable
communication channel. Because of this richer feedback, DIAL was shown to
substantially outperform RIAL on complex tasks. Following a similar direc-
tion to DIAL, CommNet [17] proposed to use the average hidden state of
all other agents as the message to be transmitted, and allows several rounds
of agent communication at each timestep. BiCNet [18] relied on bidirectional
RNNs to build communication channels among agents, thus sequentially inte-
grating information from all agents in an equal structure. More recently, Kong
et al. [19] constructed a RNN-based hierarchy communication, in which each
low-level agent reasons on a local yet focused scale and a single high-level agent
reasons at the global level.

All of the aforementioned methods necessitate constant communication
between agents, with the communication target either being predefined or
broadcast to all agents. Learnable dynamic communication architectures have
recently attracted the community’s interest due to the fact that such archi-
tectures selectively reduce the amount of information that needs to be shared,
thereby reducing the communication overhead and limiting the number of
(potentially contradictory) messages that can be shared as team sizes increase.
For example, G2ANet [10], MAGIC [20] and ATOC [11] all use an attention
mechanism to indicate whether communication is required and how to com-
bine incoming information towards cooperative decision making. SchedNet [9]
enables agents to determine which agents’ encoded messages are valuable to
broadcast within the team at each timestep by learning the importance of
each agent’s partially observed information. However, such selective dynamic
communication architectures inevitably perform poorly in problems that may
require (or can provide) global communication between agents, such as the
tasks examined in this work, because the available information to the team
naturally decreases with selective communications.

2.2 Transformers in Reinforcement Learning

In recent years, the transformer architecture [21] has revolutionized the learn-
ing paradigm across numerous fields of artificial intelligence and proven supe-
rior performance over the convolutional neural network and RNN. Inspired
by the success of transformers in other domains (mainly natural language
processing), there has been a surge of interest in applying these scalable,
attention-based models to RL [22].

GTrXL [23] first proposed to modify the Transformer-XL architecture to
substantially improve the stability and learning speed of the original trans-
former variant in online RL. The Transformer-XL structure proposed in
GTrXL is employed as a memory architecture to process trajectory data. In
order to comprehend the global context of the robot’s belief, graph-based trans-
former architectures have also been proposed for informative/exploratory path
planning tasks [24, 25]. In addition, recent works motivated by offline RL have
demonstrated that the transformer architecture can directly serve as a model

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 5

for sequential decision-making based on fixed large-scale offline data. Chen et
al. [26] first showed that, by conditioning on expected returns, past states,
and actions, transformer-based models can effectively generate future desired
trajectories without temporal difference learning or dynamic programming in
online RL. Following this work, for solving visual input tasks, StARformer [27]
extracts state-action-reward representations within a short temporal win-
dow and uses these representations to execute self-attention across the entire
sequence. The application of transformers in MARL has not been fully explored
to date, compared to computer vision and natural language processing. But
since transformers have demonstrated significant performance gains compared
to RNN in other domains, we hypothesize that transformer-based communica-
tion mechanisms should also outperform previous RNN-based communication
mechanisms [18, 19].

3 Background

3.1 Proximal Policy Optimization Algorithms

Proximal Policy Optimization (PPO) [28] is a well-known on-policy RL algo-
rithm with an actor-critic structure and trained by policy gradient. Different
from standard policy gradient methods that usually perform one gradient
update per data sample, PPO adds a clipped probability ratio to the opti-
misation objective of the actor, which helps prevent destructively huge policy
updates, enables multiple epochs of minibatch updates, hence dramatically
increasing sample efficiency. Specifically, PPO adjusts the weights θ of the actor
network to maximize the loss Eq.(3.1), resulting in monotonic improvements
in policy performance:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1 − ϵ, 1 + ϵ) Ât

)]
,

where rt(θ) denotes the clipped probability ratio rt(θ) = πθ(at|st)
πθold

(at|st)
, with

πθ and πθold the new and old policies of the agent, respectively, ϵ a clipping
hyperparameter (often set to ϵ = 0.2), and Ât the truncated version of the
generalized advantage function. By taking the minimum of the clipped and
unclipped objectives, PPO effectively bounds the rate of change of the agent’s
policy. In addition, PPO also adds a policy entropy term to the final actor
loss, which encourages exploration by preventing premature convergence to
inferior, deterministic policies.

In this paper, while both FCMNet and FCMTran are compatible with other
training algorithms, we rely on the multi-agent version of PPO to train agents
in a centralized training and decentralized execution (CTDE) framework.

3.2 Value Decomposition

In multi-agent cooperative tasks where only a single joint reward is provided to
the agents, both independent Q-learning and fully centralized learning methods

Springer Nature 2021 LATEX template

6 Full Communication Memory Networks for Team-Level Cooperation Learning

perform poorly due to their inability to correlate global rewards with the cor-
rect individual agent action in practice. Value decomposition methods tackle
this credit assignment issue by factorizing the global, team value function into
agent-specific value functions.

Vanilla Value Decomposition Networks (VDN) [14] assume the joint value
function can be represented as a sum of individual value functions. Taking
advantage of the state information during training, QMIX [13] further relaxes
this summation assumption to a more general monotonic constraint by learning
a mixing network. It adopts separate hypernetworks to produce weights and
bias of the mixing network, which guarantees the monotonicity of individual
value functions while conditioning joint action-value on extra state informa-
tion. Based on these methods, Su et al. [29] proposed value-decomposition
actor-critic (VDAC) to decompose global state-values instead of action-values,
to incorporate VDN and QMIX into actor-critic algorithms. As a policy-
based method, PPO also fits in the actor-critic framework, thus allowing us to
combine it with VDN and QMIX to improve the cooperation learning.

4 Full Communication Memory Networks

In this section, we describe the proposed models in details. We first describe
FCMNet, which is built on multiple directional RNNs, and where sent messages
are encoded from each agent’s current observation and received messages so far
at that timestep. We then introduce FCMTran, which is based on the encoder
of a modified transformer, and where the content of messages is self-generated
by the transformer based on information from the previous timestep (starting
from a zero vector input at the first step of each task).

We note that the two models are applicable to general multi-agent problems
if the following conditions are met:

• All agents in the environment are able to communicate with each other, and
communications are not hindered by any obstacles.

• For FCMNet, agents are able to have multiple rounds of communication
within one timestep (multi-hop capabilities).

• For FCMTran, the time delay from sending a message to receiving/using it
should be smaller than or equal to one timestep.

4.1 FCMNet

FCMNet is built on an actor-critic structure under the CTDE framework
where both the actor and critic of each agent only transmit information in the
communication layer. The remaining layers are separate, and all their param-
eters are shared among all team members. The CTDE framework enables the
critic to obtain additional information during training, resulting in a faster and
higher-quality convergence. Weight sharing also helps speed up the learning
process by relying on the bulk of experience from all agents. Finally, weight
sharing among agents also leads to a form of invariance in the agents’ policy.

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 7

Observation 𝒐𝟏𝒕 Observation 𝒐𝟐𝒕 Observation 𝒐𝟑𝒕
ሶ𝒐𝟏𝒕 ሶ𝒐𝟐𝒕 ሶ𝒐𝟑𝒕

ሷ𝒐𝟏𝒕 ሷ𝒐𝟐𝒕 ሷ𝒐𝟑𝒕

Fig. 1: Structure of the policy network in FCMNet, for an example task
with three agents and therefore three parallel communication channels (arrows
between agents in the middle of the network). Communications flow in the
direction of these arrows, connecting the agent’s LSTM units to form three
parallel, one-directional communication channels. There, the output hidden
state and cell state of each LSTM unit serve as messages. These messages are
sequentially transmitted between agents along each channel; all communica-
tions occur in the same timestep (i.e., multi-hop communications). Most of
the components of the independent critic network in FCMNet are the same
as described in this figure, but the output of each agent is a single state val-
ues estimate. We use parameter sharing among agents for both the actor and
critic networks, but no parameter sharing among these two networks.

That is, FCMNet can avoid learning inefficient policies where only one agent
is active and the other agents do not contribute to the team.

The neural network structure of the policy network in FCMNet is shown
in Figure 1. For agent i at timestep t, its local observation oti is first encoded
into ȯti via one fully connected layer, then be fed to a global multi-hop com-
munication mechanism as the content base of the generated messages. The
global multi-hop communication mechanism is the key of FCMNet. It is based
on parallel directed RNNs that connect agents along different sequences, thus
forming multiple different parallel communication channels. For a task with
n agents, we assign n Long Short-Term Memory (LSTM) units to each agent
and connect these LSTM units in a non-repetitive sequence to build n com-
munication channels of length n, where each agent only has a single LSTM
unit in each communication channel. Specifically, the LSTM units set of agent
i ∈ {1, 2, 3 . . . n} is denoted as Li =

(
l1i , l

2
i , l

3
i . . . l

n
i

)
. Communication channel

j ∈ {1, 2, 3 . . . n} is composed of a set of LSTM units,i.e., Cj = (lj1, l
j
2, l

j
3 . . . l

j
n),

where l
j
i represents the LSTM unit of agent i in communication channel j.

The parameters of the LSTM units in different communication channels are
different, but the parameters of the LSTM units in the same communication
channel are shared by all agents, i.e., the parameter of the LSTM units in Li

is different and the parameter of the LSTM units in Cj are the same. The

Springer Nature 2021 LATEX template

8 Full Communication Memory Networks for Team-Level Cooperation Learning

LSTM unit can be viewed as an information extractor/encoder in FCMNet,
the hidden state and cell state output by each LSTM unit are the messages
communicated between agents. The hidden state and cell state of the LSTM
unit of the preceding agent will be used as the initial hidden state and cell
state of the LSTM unit of the subsequent agent to offer an efficient way to
encode high-level information in latent space into a fixed-length message that
is sequentially transmitted among agents. That is, FCMNet enables agents to
learn to sequentially integrate their observations on top of information from
other upstream agents in that communication channel, allowing each to receive
and contribute to the ongoing information flow of the entire team.

For each agent to receive extracted information from all other agents, we
introduce a simple fixed connection topology for the LSTM units in these
communication channels. In communication channel i, the LSTM unit of agent
i is always in the last position of the channel, and other agents are connected
in front of it in a fixed and non-repetitive sequence (in practice, we let channel
ith follow the sequence 1, . . . , i − 1, i + 1, . . . , n, i) with zero vectors as initial
hidden and cell states. Consequently, the message received by agent i on the
ith communication channel contains information processed by all prior agents.
We experimentally found that the sequence of other agents in front of the
last position does not have a significant effect on the final performance of
FCMNet. The final output of the communication mechanism of agent i is the
concatenation of the output of its LSTM unit set Li = (l1i , l

2
i , l

3
i . . . l

n
i), since

the messages received by the agent in all communication channels all contain
useful information, even though some of these messages contain information
extracted by only a subset of the team. The output of the communication
mechanism is then concatenated with the output of an additional LSTM cell
(self-memory unit) into öti. The input hidden and cell states of the self-memory
unit are its output hidden state and cell state at the previous timestep, and its
input is the agent’s encoded current observation ȯti. Through the self-memory
unit, agents are able to integrate past information across time. Finally, öti after
a fully connected layer (and a softmax layer in the policy network) is used to
generate agents’ policy or predicted state value at the current timestep.

Since communications occur prior to action selection, agents’ decisions are
indeed conditioned on their own observation as well as on messages exchanged
team-wide. In addition, since transmitted messages are continuous-value vec-
tors and communication channels are differentiable, the whole communication
mechanism is trained by gradients from all agents’ policy and critic losses.
Such differentiable CL enables FCMNet agents to directly inform each other
of exactly how received messages drove them towards better/worse actions,
hence enhancing each other’s action selection through backpropagation dur-
ing centralized training. As a result, communication channels are trained to
capture more meaningful information that reduce agents’ losses, resulting in
enhanced-cooperation policies. The key capabilities to identify and share rel-
evant observation information and propagate gradients among all agents are
most likely reasons why we are able to report improved performance in highly

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 9

Layer Norm
Multi-head

Attention
GRU Layer Norm GRU

Feed

Forward

Position

Embedding

Transformer-based

Communication

Self-memory

LSTM

Fully

Connected

Fully

Connected

Fully

Connected
Concatenation Policy 𝒊Softmax

Observation 𝒐𝒊𝒕

𝑚1𝑡
𝑚𝑛𝑡
⋯𝑚𝑖𝑡⋯ ሶ𝑀𝑡 ሷ𝑀𝑡

𝑚1𝑡+1
𝑚𝑛𝑡+1
⋯𝑚𝑖𝑡+1⋯

Fig. 2: Structure of the policy network for agent i at timestep t in FCMTran.
The red modules belong to the transformer-based communication mechanism.
The details of communication mechanism are shown in the red dashed box at
the bottom of the figure. Its input is the output of the transformer encoder at
the previous timestep and, its output is sent to every agent (one message per
agent), to be concatenated with the output of the self-memory LSTM and the
output of the previous fully connected layer.

cooperative tasks, which can only be achieved when agents consensually act
as a single coherent unit. Futhermore, since the final output of the communi-
cation mechanism is derived from multiple communication channels, received
messages have been processed multiple times by other agents. Therefore, even
if one received message contains inaccurate/noisy information, this message
will likely be diluted in the set of other, more accurate messages, often still
allowing efficient decision-making. In conclusion, the global, multi-hop com-
munication features of FCMNet endow agents with a natural resistance to
interference by introducing a form of messaging redundancy over the multiple
parallel communication channels.

4.2 FCMTran

FCMTran also aims to augment additional knowledge to the agents through
a differentiable communication mechanism trained by the losses of all agents,
thus mitigating limitations that arise from partial observability and enhanc-
ing team-level cooperation. Part of the neural network structure and training
techniques of FCMTran are similar to that of FCMNet and enjoy the same
benefits. For example, FCMTran is also based on the actor-critic structure
under the CTDE framework and trained using the multi-agent version of PPO.
FCMTran agents transmit information only in the communication layer of the
policy net (the critic network is simplified to four fully connected layers with
one self-memory unit), and other layers remain separate with weight sharing
among agents. The final communication output is concatenated with the input
of the communication layer and the output of the self-memory unit as the basis
for decision making.

The two important differences between FCMTran and FCMNet are
that: first, FCMTran uses the encoder of a modified transformer as the
communication layer, in which all weights are shared among agents (instead
of multiple RNNs with communication-channel-specific weights in FCMNet);

Springer Nature 2021 LATEX template

10 Full Communication Memory Networks for Team-Level Cooperation Learning

Second, the input of the communication layer of FCMTran (i.e., the con-
tent of messages) is the output of the communication layer from the previous
timestep (the first step input of each task is a zero vector) rather than the
encoded current observation in FCMNet. Therefore, communication in FCM-
Tran helps integrate history knowledge among all agents, which can be seen
as an enhanced version of the self-memory LSTM unit in FCMNet, which
also uses the output of the previous step as the input for the current step.
Since transformers have shown considerably stronger performance over RNNs
in other areas, we expect that the summary memory and message aggregation
function of the transformer should also be stronger than RNNs in MARL. How-
ever, utilizing transformers in online RL also poses several unique challenges.
Different from supervised learning, online RL is plagued by inefficient data
utilization and limited data quantity. But RL models must be able to swiftly
adapt to changing tasks, making it hard to optimize classical transformers
and frequently causing their performance to only be comparable to stochastic
strategies [30]. Moreover, transformer-based architectures suffer from enor-
mous memory footprints and high computational costs, which make training
and inference expensive throughout the RL learning process. Therefore, in this
work, we use only one encoder block and follow the instructions of GTrXL [23]
to remove dropout layers, rearrange the placement of layer normalization in
the submodule, and additionally add a Gate Recurrent Unit (GRU) in place
of the residual connection of the vanilla transformer to provide a “skip” path
from the temporal input to the output of the transformer, thus stabilizing the
training.

The neural network structure of FCMTran for agent i at timestep t is
shown in Figure 2. The multi-head self-attention is the core component of the
communication layer in FCMTran. The multi-head self-attention mechanism
at timestep t reads:

M̈ t = concat (head 1, · · · , head h)Wo (1)

where head i = softmax

W

i
qṀ

t ·
(
W

i
kṀ

t
)⊤

√
dK

W i

vṀ
t, (2)

Ṁ t = [ṁt
1, . . . ṁ

t
n] is the packed matrix of all agents’ messages after processing

by the previous layers; W i
q ,W

i
k,W

i
v and Wo are the learnable weights used to

linearly project matrices into the query, key, and value of head i, and the final
attention output; dk is the dimension of the key used as a scaling factor used
to mitigate the gradient vanishing problem of the Softmax function; M̈ t is the
final joint output matrix from different heads (i.e., representation subspace)
whose sub-vectors are then processed by the subsequent fully connected layers
to be the n fused message received by the n agents (one message per agent).

Unlike other CL methods that use fixed aggregation functions (e.g., aver-
age function [17], maximum function [9]), in FCMTran, agents are able to
combine multiple messages into a single message using learnable weights in

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 11

an attention mechanism. Thus, complex pairwise relationships between mes-
sages can be captured, useless/harmful messages can be eliminated by giving
an attention weight close to zero, and conversely, important messages can be
specifically attended to. FCMNet also allows messages to be merged by learn-
able weights, but FCMTran is more intuitive. Furthermore, because FCMTran
uses positional embedding to insert the agents’ ID into the input messages,
the order of communication is no longer a limitation. FCMTran allows a
one timestep delay between sending and receiving messages, further relaxing
the assumptions of FCMNet towards real-life deployments. Finally, FCMNet
requires different weights for different communication channels, and the num-
ber of channels increases linearly with the number of agents. This feature limits
the scalability of FCMNet and, when the number of agents is too large, the
model size becomes excessively large as well, making optimization and com-
plete training difficult. In contrast, all weights of FCMTran are shared among
all agents, and the size of the model is independent of the number of agents,
thus solving the team size limitations and scalability problems.

5 Experiments

In this section, we first benchmark FCMNet, FCMTran, and their variants with
value decomposition technique1 against a set of value decomposition-based
and communication-based baseline algorithms in a standardized partially-
observable StarCraft II micromanagement environment with shared reward,
called SMAC [12]. We then investigate the robustness of FCMNet under
three realistic communication disturbances in a collaborative multi-agent
pathfinding task with individual rewards. The experimental setup and the
hyperparameters of our models are detailed in Appendix 6.

5.1 Performance Experiments

5.1.1 StarCraft II Micromanagement with Shared Reward

SMAC is a partially-observable environment with shared rewards and discrete
action space built on the strategy game StarCraft II. The environment only
simulates a battle between two platoons of units to assess how well indepen-
dent agents are able to collaborate to solve complex skirmish tasks. In each
scenario, one army is controlled by a RL algorithm, in which each unit is an
independent learning agent. The opposing army is controlled by the built-
in, non-learned, heuristics game AI. SMAC has been widely used in MARL
research as a standard environment. Some recent work has improved algo-
rithm performance significantly by modifying the output of the environment or
proposing clever task-specific tricks [31, 32]. In order to compare our approach
fairly, in this work we preserved the default setting of SMAC and did not
introduce any additional tricks such as reward-shaping, death agent masking,
etc. We consider the following standard SMAC tasks in our experiments, in

1The full code will be made available publicly upon paper acceptance.

Springer Nature 2021 LATEX template

12 Full Communication Memory Networks for Team-Level Cooperation Learning

FCMNet

Critic 𝟏
FCMNet

Critic 𝒏

⋯𝑜𝑡1, 𝑠𝑡
𝑜𝑡𝑛, 𝑠𝑡

𝑉(𝑜𝑡1, 𝑠𝑡)
𝑉(𝑜𝑡𝑛, 𝑠𝑡) 𝑉𝑡𝑜𝑡(𝑠𝑡)Value

Mixing

Network

𝑠𝑡

(a) FCMNet with QMIX

FCMTran
Critic 𝟏
FCMTran
Critic 𝒏

⋯𝑜𝑡1, 𝑠𝑡
𝑜𝑡𝑛, 𝑠𝑡

𝑉(𝑜𝑡1, 𝑠𝑡)
𝑉(𝑜𝑡𝑛, 𝑠𝑡) 𝑉𝑡𝑜𝑡(𝑠𝑡)

(b) FCMTran with VDN

Fig. 3: Combination of value decomposition methods (QMIX and VDN) with
FCMNet and FCMTran.

ascending order of difficulty: 2m vs 1z, 3m, 3s vs 3z, 3s vs 4z, 10m vs 11m,
5m vs 6m. These are all fully cooperative and homogeneous multi-agent tasks,
but the units assigned to the two platoons differ. The overall objective is
to eliminate enemy units, namely, maximize the win rate (the percentage of
episodes in which agents defeat all enemy units within the time limit).

5.1.2 Result and Analysis

We compare FCMNet, FCMTran, FCMNet-QMIX, and FCMTran-VDN with
5 standard baselines in the field, namely CommNet [17], G2ANet [10], Sched-
Net [9], VDN [33] and QMIX [13] on the 6 different SMAC tasks considered.
CommNet, G2ANet, and SchedNet are all differentiable CL approaches, closer
to our methods. CommNet uses the average value of hidden states from all
agent modules as a communication message and allows multiple rounds of
communication between agents per timestep. G2AN employs hard- and soft-
attention to first determine if there is communication between two agents and
then calculate the importance of the communication. SchedNet chooses k out
of n agents to broadcast their encoded messages in each timestep by estimating
the significance of each agent’s partial observation to the team. In our exper-
iments, we always set the hyperparameter k = n − 1, i.e., only one agent is
unable to broadcast its messages in each timestep. We let agents in FCMNet,
FCMTran, Commnet, G2ANet, and SchedNet communicate n, 1, 3, 1, and 1
time(s) per timesteps, respectively. Both VDN and QMIX belong to the class
of Q-learning-based value decomposition approaches. They implement differ-
ent monotonicity constraints to explicitly solve the credit assignment problem
in team reward tasks but do not endow agents with communication abilities.
Recent work has shown that these approaches can be combined with actor-
critic algorithms to yield high-performance solutions [29]. For more details
about them, we refer the reader to Section 3.2. In this work, to further improve
the performance of our CL approaches, we combine our models with VDN and
QMIX. Here, we only report the results of FCMNet-QMIX and FCMTran-
VDN, as they show the best performance of all four possible combinations.
Figure 3 briefly illustrates how VDN and QMIX are combined with the critic(s)
of FCMNet and FCMTran.

The specific results are present in Table 1 and Figure 4. Overall, FCM-
Net, FCMTran, FCMNet-QMIX, and FCMTran-VDN all solve the four easy

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 13

Table 1: Mean evaluation win rate and standard deviation on all the SMAC
tasks considered after convergence of different algorithms. Results are calcu-
lated by running 16 tasks 10 times each. The score of the best-performing
algorithm(s) for each task is highlighted in bold.

2m vs 1z 3m 3s vs 3z 3s vs 4z 10m vs 11m 5m vs 6m
FCMNet 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 88.1(9.9) 75.0(12.5)
FCMTran 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 79.4(7.9) 72.5(8.9)
FCMNet-QMIX 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 95.6 (4.0) 85.6 (10.5)
FCMTran-VDN 100.0(0.0) 100.0(0.0) 100.0(0.0) 100.0(0.0) 90.6(7.5) 98.9(3.8)
CommNet 93.8(10.8) 90.6(3.1) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
G2ANet 100.0(0.0) 100.0(0.0) 0.0(0.0) 0.0(0.0) 1.6(2.7) 0.0(0.0)
SchedNet 100.0(0.0) 100.0(0.0) 100.0(0.0) 89.1(5.2) 0.7(0.3) 0.0(0.0)
VDN 96.9(5.4) 100.0(0.0) 100.0(0.0) 98.4(2.7) 78.1(7.0) 18.8(0.0)
QMIX 96.9(3.1) 100.0(0.0) 98.4(2.7) 98.4(2.7) 85.9(5.2) 59.4(3.1)

FCMNet FCMNet-QMIXFCMTran FCMTran-VDN CommNet G2ANet SchedNet VDN QMIX

0.0 0.2 0.4 0.6 0.8 1.0
Training step 107

0

20

40

60

80

100

Ev
al

ua
tio

n
wi

n
ra

te
 %

(a) 2m vs 1z

0.0 0.2 0.4 0.6 0.8 1.0
Training step 107

0

20

40

60

80

100

Ev
al

ua
tio

n
wi

n
ra

te
 %

(b) 3m

0.0 0.2 0.4 0.6 0.8 1.0
Training step 107

0

20

40

60

80

100

Ev
al

ua
tio

n
wi

n
ra

te
 %

(c) 3s vs 3z

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training step 107

0

20

40

60

80

100

Ev
al

ua
tio

n
wi

n
ra

te
 %

(d) 3s vs 4z

0.0 0.2 0.4 0.6 0.8 1.0
Training step 107

0

20

40

60

80

100

Ev
al

ua
tio

n
wi

n
ra

te
 %

(e) 10m vs 11m

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training step 107

0

20

40

60

80

100

Ev
al

ua
tio

n
wi

n
ra

te
 %

(f) 5m vs 6m

Fig. 4: Training curves of different algorithms on SMAC tasks, showing the
average win rate. The confidence interval (shaded area) shows one standard
deviation over 160 evaluation episodes. We adopt the following evaluation pro-
cedure until the algorithm converges: the training is paused after every data
collection during which 16 evaluation episodes are run with agents performing
greedy action selection in a decentralized fashion.

tasks with a 100% win rate and performe excellently in the two harder tasks.
Compared with FCMTran and its variants, FCMNet and FCMNet-QMIX con-
verge faster and have better final performance when solving tasks with large
team size, e.g., FCMNet has a 8.7% higher win rate than FCMTran in the
10m vs 11m task. Furthermore, we note that the value decomposition tech-
niques improve the performance of both FCMNet and FCMTran by nearly
10% win rate. It is worth noting that FCMTran-VDN obtained a win rate

Springer Nature 2021 LATEX template

14 Full Communication Memory Networks for Team-Level Cooperation Learning

of 98.9% in the most challenging 5m vs 6m task, which not only signifi-
cantly outperformed the methods evaluated in the paper but, to the authors’
limited knowledge, achieved the SOTA performance of the MARL commu-
nity in this very difficult task. Moreover, all our methods outperformed the
communication-based baseline by a considerable margin in all tasks. The gap
between them is more pronounced for harder tasks, such as the 10m vs 11m
and 5m vs 6m tasks, where our approaches still perform quite efficiently, while
the final win rate of these communication-based baselines drops to about 0%.
We believe that this is due to the fact that our models allow agents to learn
how to fuse messages, which is more flexible and powerful than CommNet with
fixed average operations. Additionally, in contrast to G2AN and SchedNet,
we allow all agents to communicate with each other at every timestep, rather
than only a selected subset of agents; such global communications seem cru-
cial to achieve the type of near-joint decision making required in the SMAC
tasks. The two value decomposition methods performed relatively effectively
in all tasks, with QMIX having a 6.5% higher win rate than FCMTran in the
10m vs 11m task. The reason is that value decomposition provides agents with
more accurate learning signals that effectively identify single-agent contribu-
tions to the team reward, which often leads to agents’ easier identification of
individual strategies that help improve teamwork. We also note that, although
the final evaluation results of FCMTran are impressive, its training curves are
more unstable. The number of timesteps required for its convergence is approx-
imately 5 times higher than other evaluated baselines in the 5m vs 6m task
and the final convergence values are much more sensitive to random weight
initialization. This suggests that further improvement techniques may still be
needed to fully exploit the power of transfomers in data-limited online RL.

5.2 Robustness Experiments

5.2.1 Multi-Agent Pathfinding with Individual Rewards

To further investigate the robustness of FCMNet, we consider the simple,
partially-observable, cooperative multi-agent pathfinding task with individual
rewards and discrete action space introduced in [15] (Hidden-Goal Path-

Finding). There are 5 agents in this task, and each agent has a unique target
location it needs to reach as soon as possible, and the target location may
change randomly at every timestep. Each agent’s observation includes the
location of other agents’ targets but not its own target. Therefore, effective
communication is required to solve this problem.

We also investigated the performance of FCMTran in this task using the
default hyperparameters of FCMNet, however, even under normal conditions
without interference, FCMTran was not able to train until convergence (i.e.,
never learned to solve the task). We believe this outcome may be due to the
fact that transformers are inherently more difficult to optimize, and can exhibit
unstable training processes; further hyperparameter tuning may be necessary,
and is left to future work.

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 15

LSTM Encoder Binarization

New real-

valued

message
Decoder LSTM

Binary

message

Real-

valued

message

Fig. 5: Binarization/De-binarization process, implemented between each two
consecutive LSTMs (i.e., between communicating agents) in the FCMNet vari-
ant with binary messages.

5.2.2 Binarized Messages

The communication mechanism in FCMNet is differentiable and optimized by
backpropagation, where gradients flow between agents via the communication
channels. This provides richer feedback to agents, so our model tends to con-
verge faster and to higher-quality policies than reinforced CL techniques [16]
that treat communication as actions, and observe their effect from subse-
quent rewards. However, the majority of modern communication technologies
rely on discrete communication channels, for which continuous communication
cannot be directly applied (i.e., bitwise/digital communications). To further
examine the practicality of FCMNet under such realistic constraints, we con-
vert the original continuous real-valued message of FCMNet (i.e., the hidden
state and cell state of each agent’s LSTM units) with a length of 128, into a
binary message with a length of 20 by introducing a stacked autoencoder and
a binarization step into the actor’s communication channels.

The neural network structure between two LSTM units of FCMNet with
binarized messages is depicted in Figure 5, where the weights of the autoen-
coder are shared among agents in the same communication channel, but can
be different among different communication channels. The two-step binariza-
tion process we employ is inspired by [34–36]. In the first step, the encoder
generates the desired length of outputs in the continuous interval [−1, 1], using
a fully-connected layer with a tanh activation function. In the second step,
the binarization process produces discrete data in the set {−1, 1} from the
continuous output of the encoder:

b(x) = x + ϵ ∈ {−1, 1},

where ϵ ∈ {1−x,−x− 1} is a random variable distributed according to P (ϵ =
1 − x) = 1+x

2 and P (ϵ = −x− 1) = 1−x
2 . Therefore, the complete binarization

process is:
B(x) = b

(
tanh

(
ωt−1x + bt−1

))
,

where ωt−1 and bt−1 are the weights and bias of the fully-connected layer with
tanh activation function.

The process of message transmission is shown in Figure 5, the message
sender first converts a real-valued message into a binary message through the
encoding and binarization processes. The receiver agent then inputs the binary
message into a symmetrical decoder to generate a new real-valued message.
In accordance with the standard FCMNet architecture, the new real value
message is utilized as the input hidden state and cell state of the subsequent
LSTM unit.

Springer Nature 2021 LATEX template

16 Full Communication Memory Networks for Team-Level Cooperation Learning

0.0 0.2 0.4 0.6 0.8 1.0
Training step 108

0

200

400

600

800

1000

Ep
iso

de
 le

ng
th

Real value message
Binary message

(a) Binarized messages

0.0 0.2 0.4 0.6 0.8 1.0
Training step 108

0

200

400

600

800

1000

Ep
iso

de
 le

ng
th

Complete message
Loss 1%
Loss 2%
Loss 3%
Loss 3.5%
Loss 4.5%

(b) Lost messages

0.0 0.2 0.4 0.6 0.8 1.0
Training step 108

0

200

400

600

800

1000

Ep
iso

de
 le

ng
th

Fixed connection order
Random connection order

(c) Random order

Fig. 6: Training curves for our robustness investigation. Evaluations are per-
formed after every data collection, and the number of episodes per evaluation
is 16. The confidence interval (shaded region) displays one standard devia-
tion over 80 evaluation episodes. These plots demonstrate the average number
of steps required to complete a pathfinding task, where shorter episodes are
better. Our results indicate that FCMNet still converges to the same level of
performance, even under three communication disturbances: binarized mes-
sages, random message loss, and randomized communication orders at each
timestep.

Figure 6a shows the learning speed and final episode length of FCMNet
with binarized messages in the simple multi-agent pathfinding task, which
remain similar to FCMNet with real-valued messages. However, we note that
the training of FCMNet with binarized messages is more unstable, even if the
general performance is improved with training. This is likely because the bina-
rization processing interrupts the gradient propagation between agents, and a
large quantity of information is lost during the conversion and de-conversion
processes. They both raise the difficulty of learning collaboration between
agents.

5.2.3 Lost Messages

In wireless digital communication, many factors can cause information loss,
including noise interference, transmission delay, occlusions, device damage, etc.
We believe that the performance of FCMNet under random message loss is
crucial towards practical applications. In these experiments, we assume that
agents have a fixed probability of losing a whole message at every message
transmission, which is subsequently substituted by a zero vector of the same
length.

In order to determine the model collapse threshold, we ran multiple tests
with varying message loss probabilities in the multi-agent pathfinding task.
The primary results are presented in Figure 6b. These demonstrate that when
the probability of message loss is less than or equal to 3%, the final converged
episode length and converge speed are unaffected and equivalent to the stan-
dard FCMNet model without message loss. However, when the probability of
message loss exceeds 3.5%, FCMNet stops working entirely. In this second sce-
nario, both the actor and critic losses remain volatile and cannot be reduced

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 17

via training. Therefore, we conclude that FCMNet can naturally resist (lim-
ited) random message loss, where the probability threshold for this task is
between 3%-3.5%.

5.2.4 Random Communication Order

In prior experiments, the topology of FCMNet was fixed, meaning that agents
always transmit messages along each communication channel in a prede-
termined, fixed sequence. However, we believe this fixed sequence may not
be flexible enough for practical applications. In this experiment, we further
explore the performance of FCMNet when the transmission order of messages
varies randomly at every timestep.

The evaluation curves of standard FCMNet and FCMNet with random con-
nection order are shown in Figure 6c. Our results indicate that FCMNet with
random connection order not only converges to the same performance level
as standard FCMNet but also exhibits faster convergence in the multi-agent
pathfinding task. We believe that this increased training speed may be due
to the fact that randomizing the communication order increases the diversity
of messages in the communication channel and makes communications richer,
thus allowing agents to explore their cooperative policy space more extensively.

6 Conclusion

Learning team-level cooperation can be particularly challenging in partially
observable multi-agent environments, where each agent’s knowledge about the
system is limited and the environment is unstable from the perspective of a
single agent. To mitigate these risks, in this work, we proposed two RL mod-
els that simultaneously learn a global communication mechanism to increase
the information available to individual agents and a decentralized policy con-
dition upon the message received. The first model, named FCMNet, learns a
communication mechanism where agents sequentially transmit and encode the
current observation-based message sent by every other agent at each timestep
through multiple directed RNNs. Our second model, FCMTran, relies on the
encoder of a modified transformer to parallely weight fuse self-generated mes-
sages sent by all agents at the previous timestep. In our results on the SMAC
tasks with shared rewards, FCMNet and FCMTran both outperform recent
communication-based methods and value decomposition methods in almost all
tasks tested. Our models’ performance can be further improved by combining
them with existing value decomposition techniques (here, VDN and QMIX).
The FCMTran variant combined with value decomposition even achieved
strongly-above SOTA performance without task-specific tricks in one of the
hardest SMAC tasks. Additionally, we further investigated the robustness of
FCMNet in a multi-agent pathfinding task under three realistic communica-
tion disturbances (i.e., binarized messages, random message loss, and random
communication order). Our work has been mostly simulation-based at this

Springer Nature 2021 LATEX template

18 Full Communication Memory Networks for Team-Level Cooperation Learning

stage, and our future work will focus on deploying the two models to practical,
robotics applications under realistic communication constraints.

Supplementary information. The supplementary material file of this
paper contains the following videos: 1.) Fully trained FCMNet agents win the
5m vs 6m task by the ”focus-fire” skill (kill enemies in sequence). 2.) Fully
trained FCMNet agents win the 2m vs 1z task by avoiding the limited range
of enemy’s attacks. There, agents exhibit advanced cooperative behavior, i.e.,
one of the agents has learned to attract the enemy’s fire through continuous
back-and-forth movements, allowing another agent to safely attack the enemy
(i.e., kiting behavior). 3.) Fully trained FCMNet agents win the 3s vs 3z task
by first dividing/scattering the enemy team and then eliminating them in turn.
4.) Fully trained FCMNet agents reach their target quickly, even if they do
not know the exact location of the targets and the targets’ location changes
randomly.

Acknowledgments. We would like to thank Mehul Damani and Benjamin
Freed for their feedback on earlier drafts of this paper. We are also grateful to
Benjamin Freed and Rohan James for very helpful research discussions.

Declarations

• Funding: This work was founded by the Singapore Ministry of Education
Academic Research Fund Tier 1.

• Conflict of interest/Competing interests: The authors have no relevant
conflict of interest/competing interests to disclose.

• Ethics approval: Not applicable.
• Consent to participate: Not applicable.
• Consent for publication: All authors approved the paper to be published;
• Availability of data and materials: Not applicable.
• Code availability: Code will be made available publicly upon paper accep-

tance.
• Authors’ contributions: Yutong Wang and Guillaume Sartoretti contributed

to the study conception and design. Code writing, data collection and analy-
sis were performed by Yutong Wang and Yizhuo Wang. The first draft of the
manuscript was written by Yutong Wang and all authors then commented
and edited the final manuscript.

Appendix A Experimental Setup

For both FCMNet and FCMTran, the code of the neural network part was
written in torch 1.9.0 and relied on Ray 1.2.0 to employ 16 processes to collect
data in parallel. The convergence speed of models varies with different tasks.
For the 5m vs 6m task, on a computer equipped with one Nvidia GeForce
RTX 2080 Ti GPUs and one Intel(R) Core(TM) i9-10900KF CPU (10 cores, 20
threads), using the standard hyperparameters listed in next section, FCMNet

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 19

Table B1: Hyperparameters table

Hyperparameter Value

Learning rate of policy net 3e-4 (1e-4 for 3m vs 4s task)
Learning rate of value net 3e-4 (1e-4 for 3m vs 4s task)
Discount factor 0.99
Gae lamda 0.95
Clip parameter for probability ratio ϵ 0.2
Gradient clip norm 20
Number of epoch 10
Number of processes 16
Mini batch size 512
Optimizer AdamOptimizer
Entropy coefficient 0.01
Dimension of the LSTM cell in policy net and value net 64
Dimension of the feed-forward network of the encoder 1024
Number of heads 8
Dimension of q,k,v 32
Dimension of the mixing network hidden layer (per agent) 64

converges within 3M timesteps (1.3 hours of wall clock time), FCMTran will
converge within 20M timesteps (6.5 hours).

Appendix B Hyperparameters

Table B1 presents the hyperparameters used to train our models evaluated
in Section 5.1 of this paper. These hyperparameters were obtained by coarse
and empirical hyperparameter tuning without detailed grid searches (i.e., we
believe that it is not fair to compare our models with fine-tuned QMIX), and
can be used for every SMAC task listed in the paper. The first 11 hyperpa-
rameters are general hyperparameters for training neural networks using PPO,
12-15 are unique hyperparameters for FCMNet and FCMTran, and the last
hyperparameter is for value decomposition.

References

[1] Arulkumaran, K., Cully, A., Togelius, J.: Alphastar: An evolutionary com-
putation perspective. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pp. 314–315 (2019)

[2] Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison,
C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C., et al.: Dota 2 with
large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680
(2019)

[3] Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A.A., Yoga-
mani, S., Pérez, P.: Deep reinforcement learning for autonomous driving:

Springer Nature 2021 LATEX template

20 Full Communication Memory Networks for Team-Level Cooperation Learning

A survey. IEEE Transactions on Intelligent Transportation Systems
(2021)

[4] Wang, S.-J., Chang, S.: Autonomous bus fleet control using multiagent
reinforcement learning. Journal of Advanced Transportation 2021 (2021)

[5] Damani, M., Luo, Z., Wenzel, E., Sartoretti, G.: Primal 2: Pathfinding via
reinforcement and imitation multi-agent learning-lifelong. IEEE Robotics
and Automation Letters 6(2), 2666–2673 (2021)

[6] Sartoretti, G., Wu, Y., Paivine, W., Kumar, T.S., Koenig, S., Choset, H.:
Distributed reinforcement learning for multi-robot decentralized collective
construction. In: Distributed Autonomous Robotic Systems (DARS 2018),
pp. 35–49 (2019)

[7] Wang, Y., Damani, M., Wang, P., Cao, Y., Sartoretti, G.: Distributed rein-
forcement learning for robot teams: a review. Current Robotics Reports
3(4), 239–257 (2022)

[8] Hernandez-Leal, P., Kartal, B., Taylor, M.E.: Is multiagent deep reinforce-
ment learning the answer or the question? a brief survey. learning 21, 22
(2018)

[9] Kim, D., Moon, S., Hostallero, D., Kang, W.J., Lee, T., Son, K., Yi,
Y.: Learning to schedule communication in multi-agent reinforcement
learning. arXiv preprint arXiv:1902.01554 (2019)

[10] Liu, Y., Wang, W., Hu, Y., Hao, J., Chen, X., Gao, Y.: Multi-agent game
abstraction via graph attention neural network. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 7211–7218 (2020)

[11] Jiang, J., Lu, Z.: Learning attentional communication for multi-agent
cooperation. Advances in neural information processing systems 31
(2018)

[12] Samvelyan, M., Rashid, T., De Witt, C.S., Farquhar, G., Nardelli, N.,
Rudner, T.G., Hung, C.-M., Torr, P.H., Foerster, J., Whiteson, S.: The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043 (2019)

[13] Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J.,
Whiteson, S.: Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning. In: International Conference on
Machine Learning, pp. 4295–4304 (2018). PMLR

[14] Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V.,
Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., et al.:
Value-decomposition networks for cooperative multi-agent learning. arXiv

Springer Nature 2021 LATEX template

Full Communication Memory Networks for Team-Level Cooperation Learning 21

preprint arXiv:1706.05296 (2017)

[15] Freed, B., Sartoretti, G., Hu, J., Choset, H.: Communication learning via
backpropagation in discrete channels with unknown noise. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 7160–7168
(2020)

[16] Foerster, J., Assael, I.A., De Freitas, N., Whiteson, S.: Learning to
communicate with deep multi-agent reinforcement learning. Advances in
neural information processing systems 29 (2016)

[17] Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication
with backpropagation. Advances in neural information processing systems
29 (2016)

[18] Peng, P., Wen, Y., Yang, Y., Yuan, Q., Tang, Z., Long, H., Wang, J.:
Multiagent bidirectionally-coordinated nets: Emergence of human-level
coordination in learning to play starcraft combat games. arXiv preprint
arXiv:1703.10069 (2017)

[19] Kong, X., Xin, B., Liu, F., Wang, Y.: Revisiting the master-slave
architecture in multi-agent deep reinforcement learning. arXiv preprint
arXiv:1712.07305 (2017)

[20] Niu, Y., Paleja, R.R., Gombolay, M.C.: Multi-agent graph-attention
communication and teaming. In: AAMAS, pp. 964–973 (2021)

[21] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. Advances in
neural information processing systems 30 (2017)

[22] Li, W., Luo, H., Lin, Z., Zhang, C., Lu, Z., Ye, D.: A survey on
transformers in reinforcement learning. arXiv preprint arXiv:2301.03044
(2023)

[23] Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jayakumar,
S., Jaderberg, M., Kaufman, R.L., Clark, A., Noury, S., et al.: Stabilizing
transformers for reinforcement learning. In: International Conference on
Machine Learning, pp. 7487–7498 (2020). PMLR

[24] Cao, Y., Wang, Y., Vashisth, A., Fan, H., Sartoretti, G.A.: CAt-
NIPP: Context-aware attention-based network for informative path
planning. In: 6th Annual Conference on Robot Learning (2022).
https://openreview.net/forum?id=cAIIbdNAeNa

[25] Cao, Y., Hou, T., Wang, Y., Yi, X., Sartoretti, G.: Ariadne: A rein-
forcement learning approach using attention-based deep networks for

Springer Nature 2021 LATEX template

22 Full Communication Memory Networks for Team-Level Cooperation Learning

exploration. arXiv preprint arXiv:2301.11575 (2023)

[26] Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel,
P., Srinivas, A., Mordatch, I.: Decision transformer: Reinforcement learn-
ing via sequence modeling. Advances in neural information processing
systems 34, 15084–15097 (2021)

[27] Shang, J., Kahatapitiya, K., Li, X., Ryoo, M.S.: Starformer: Transformer
with state-action-reward representations for visual reinforcement learn-
ing. In: European Conference on Computer Vision, pp. 462–479 (2022).
Springer

[28] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

[29] Su, J., Adams, S., Beling, P.: Value-decomposition multi-agent actor-
critics. Proceedings of the AAAI Conference on Artificial Intelligence
35(13), 11352–11360 (2021). https://doi.org/10.1609/aaai.v35i13.17353

[30] Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural
attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017)

[31] Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., Wu, Y.: The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint
arXiv:2103.01955 (2021)

[32] Hu, J., Jiang, S., Harding, S.A., Wu, H., Liao, S.-w.: Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent
reinforcement learning. arXiv preprint arXiv:2102.03479 (2021)

[33] Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V.,
Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., et al.:
Value-decomposition networks for cooperative multi-agent learning based
on team reward. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 2085–2087 (2018)

[34] Courbariaux, M., Bengio, Y., David, J.-P.: Binaryconnect: Training deep
neural networks with binary weights during propagations. In: Advances
in Neural Information Processing Systems, pp. 3123–3131 (2015)

[35] Williams, R.J.: Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine learning 8(3), 229–256 (1992)

[36] Toderici, G., O’Malley, S.M., Hwang, S.J., Vincent, D., Minnen, D.,
Baluja, S., Covell, M., Sukthankar, R.: Variable rate image compression
with recurrent neural networks. arXiv preprint arXiv:1511.06085 (2015)

https://doi.org/10.1609/aaai.v35i13.17353

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Supplementarymaterial.zip

https://assets.researchsquare.com/files/rs-2563058/v1/ae365bb5f200157f6eb04638.zip

	Introduction
	Related Work
	Communication Learning
	Transformers in Reinforcement Learning

	Background
	Proximal Policy Optimization Algorithms
	Value Decomposition

	Full Communication Memory Networks
	FCMNet
	FCMTran

	Experiments
	Performance Experiments
	StarCraft II Micromanagement with Shared Reward
	Result and Analysis

	Robustness Experiments
	Multi-Agent Pathfinding with Individual Rewards
	Binarized Messages
	Lost Messages
	Random Communication Order

	Conclusion
	Supplementary information
	Acknowledgments

	Experimental Setup
	Hyperparameters

