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Abstract

The advancement of technologies for autonomous vehicles (AVs) provides great
potential for intelligent traffic control and management in the future. The
deployment of Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and
Vehicle-to-Everything (V2X) communications enable traffic control on road
segments, intersections or regional road networks with more options, either cen-
tralized or decentralized. However, choosing these options is not purely technical
but a trade-off between autonomous decision-making and system optimization.
One useful quantitative criterion for such a trade-off is the price of anarchy
(PoA) of autonomous decision-making. This paper analyses the price of anarchy
for road networks with traffic of autonomous vehicles. We model a traffic net-
work as a routing game in which vehicles are selfish agents who choose routes to
travel autonomously to minimize travel delays caused by road congestion. Unlike
existing research in which the latency function of road congestion was based
on polynomial functions like the well-known BPR function, we focus on routing
games where an exponential function can specify the latency of road traffic. We
first calculate a tight upper bound for the price of anarchy for this class of games
and then compare this result with the tight upper bound of the PoA for routing
games with the BPR latency function. The comparison shows that as long as the
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traffic volume is lower than the road capacity, the tight upper bound of the PoA
of the games with the exponential function is lower than the corresponding value
with the BPR function. Finally, numerical results based on real-world traffic data
demonstrate that the exponential function can approximate road latency as close
as the BPR function with even tighter exponential parameters, which results in
a relatively lower upper bound.

Keywords: Price of Anarchy, Congestion Game, Traffic Assignment, Multi-agent
System

1 Introduction

Cities worldwide are confronted with numerous challenges in the context of sustain-
ability and the livability of their environments. A study by the United Nations (UN)
estimated that 68% of the world’s population will live in cities by 2050 (Organization
et al., 2019). Consequently, the increase in urban mobility places significant demand
on urban traffic systems. The importance of sustainable management of the complex
traffic system is amplified by the ecological footprint on the environment such as air
quality, carbon dioxide emissions and overloaded infrastructure, as well as people’s
well-being related to traffic chaos, jams, noise and parking issues. These challenges
pose practical resource allocation problems, among which traffic management is the
highest priority.

Over the last decade, research on autonomous vehicles (AVs) has made revolution-
ary progress, bringing a promising solution to much safer, more convenient and more
efficient transportation. Most significantly, advanced artificial intelligence (AI) allows
self-driving cars to learn and adapt to complex road situations with millions of accumu-
lated driving hours, much more than any experienced human driver could reach. The
traffic assignment problem (Dafermos & Sparrow, 1969) is a typical resource allocation
problem widely studied in transportation. This problem deals with how vehicles in a
given road network choose their routes from their origins to their destinations. These
vehicles, like human drivers, are assumed to make self-interested decisions to minimize
the time they need to reach their destination. However, self-interested decision-making
may be counter-productive since it may cause the total travel time to increase sig-
nificantly compared to the globally optimal traffic assignment. The main motivation
for our emphasis on autonomous driving is that vehicles have more powerful means of
communication than humans to access more information about the road, which helps
them make more rational decisions. However, we assume that vehicles decide which
route to take when multiple routes are available for a specific origin-destination (OD)
pair. This is a game-theoretical decision because if one route is shorter and all cars
take that route, they only go slower due to congestion. The advent of self-driving vehi-
cles and the gradual improvement of vehicle-to-everything (V2X) technologies make
it possible to optimize vehicle routing on the road network globally.

The traffic assignment problem is usually defined formally using the congestion
game model (Gibbons et al., 1992), in which the cost of each player is determined by
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the resources it selects and the number of other players who make the same choice.
Each road in the road network has an independent cost function that outputs the
travel time of this road using the number of vehicles travelling on that road as input.
In such a transportation system, the travel time of a vehicle depends on the chosen
roads and the number of vehicles on the same road (Wang, Xiao, Xie, Frazzoli, & Rus,
2015).

In a road network, each vehicle is assumed as a non-cooperative agent (i.e. behav-
ing selfishly) based on the assumption of a congestion game, aiming to find the best
route with minimum cost (travel time) to reach its destination without considering the
whole road network’s performance. Traffic will reach a so-called user equilibrium (UE)
if all vehicles decide selfishly, namely Wardrop’s first principle (Wardrop, 1952a). At
the user equilibrium state, no vehicle can achieve a shorter travel time by changing its
route, implying that all vehicles with the same OD pair will have the same travel time.
The selection of global optimization routes for a road network is called the system
optimum (SO), known as Wardrop’s second principle (Wardrop, 1952a), which reflects
that the total travel time of all vehicles on the road network is minimized. This paper
discusses the social aspects of autonomous driving, in particular, the behaviour of
vehicles in different traffic conditions, including selfish behaviour and centralized con-
trol, from the game-theoretical point of view. Self-decision can be seen as decentralized
control, whereas the pursuit of global optimization is centralized control.

It is well known that the self-interested decision-making of intelligent agents can
cause degradation in the performance of the whole network (Akella, Seshan, Karp,
Shenker, & Papadimitriou, 2002; Johari & Tsitsiklis, 2004). The Price of Anarchy
(PoA), introduced by Koutsoupias and Papadimitriou (1999), is a concept in game
theory that refers to the inefficiencies that arise in a system when individuals make
decisions independently of each other without taking into account the overall impact
of their actions. The PoA in transportation is the ratio between the optimal outcome
that could be achieved if all individuals acted coordinated and efficiently and the actual
outcome when individuals act independently. This concept is particularly relevant as
it can lead to congestion and delays, which can be costly for individuals, businesses,
and the economy as a whole. Understanding the PoA is crucial for transportation plan-
ners and policymakers seeking to optimize mobility and reduce the negative impacts
of transportation on the environment and society. By identifying the sources of inef-
ficiencies and developing strategies to mitigate them, transportation systems can be
designed and managed more effectively and sustainably. In this study, PoA is adopted
as an index to determine under what traffic situations individual decisions and cen-
tralized control are needed, respectively. The upper bound of PoA is investigated in
this study for the worst-case over a large family of road networks with the same types
of cost function (O’Hare, Connors, & Watling, 2016).

This paper aims to develop an expression of the tight upper bound of PoA for
traffic assignment with exponential cost functions. We compare it with the expression
of PoA when using the Bureau of Public Roads (BPR) function. This expression is
related to the change in traffic demand. The final results show vehicles can make selfish
decisions with low traffic volume. In contrast, global optimisation is taken when the
traffic volume becomes higher. To achieve this, we first present a traffic assignment
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model with related notation and properties about PoA. Then, we express changing
traffic demand on the tight upper bound PoA with exponential cost functions in Table
1. After that, we simplify the complex expression to a more straightforward format.
Next, we compare the differences between using the BPR and exponential functions
to calculate PoA. In addition to the theoretical results, we use real-life traffic data
from major Australian roads to explain the relevance of the exponential function and
corroborate the theoretical results mentioned in the paper. The analysis results show
that the exponential cost flow function matches the extracted data better than the
previously studied cost flow functions.

The rest of this paper is organized as follows. Section 2 gives an overview of existing
research related to our topic. In Section 3, we formally introduce the traffic assign-
ment model and related notation. Section 4 gives a brief explanation and theoretical
calculation to obtain the expression of the tight upper bound of the PoA for the road
network with exponential cost functions. We present numerical examples and real-
world data analysis to support the exponential cost function and theoretical results in
Section 5. Finally, we summarize this paper and discuss future work in Section 6.

2 Related Work

Traffic assignment is a resource allocation problem, introduced by Wardrop (1952b),
which describes how traffic demand is assigned to different routes when given the
topology of the road network. It is one of the important research topics in the field of
transportation. The congestion game, introduced by Rosenthal (1973), is a common-
use model for formulating traffic assignments.

Many different cost flow functions have been proposed and used in practice. All
these cost flow functions follow the basic principles of traffic flow theory, which state
that speed decreases as the traffic flow or saturation rate increases. The saturation
rate of a road is calculated as the relationship between traffic flow and capacity, where
capacity is unknown and is a problem of estimation in transportation research (Chen,
Yang, Lo, & Tang, 1999; Dheenadayalu, Wolshon, & Wilmot, 2004; Morlok & Chang,
2004). Before summarising the cost flow functions, we have to define some general
concepts for the rest of this paper. The saturation ratio is x = f

φ
, where f is the traffic

flow and ϕ is the capacity of the road. The unit of road capacity and traffic flow is the
number of vehicles per hour (Division, 1964). t0 = l

s
represents the free-flow travel

time, where l is the length of the road and s the speed limit.
As an initial work, the cost flow function proposed by Smock (1962) was described

as an exponential curve in the Detroit Area Transportation Study, and the value of the
cost flow function shown in Equation (1) was estimated by averaging the intersection
capacities at the ends.

t(x) = t0 · e
x (1)

In 1965, Soltman (1966) proposed an exponential cost flow function, which is almost
the same as the Smock function shown in Equation (1), in an integrated distribution-
assignment model with application to the Pittsburgh Area Transportation Study.
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t(x) = t0 · 2
x (2)

where x ≤ 2. In 1967, Overgaard (1967) proposed another function in the form
below.

t(x) = t0 · ae
xb

(3)

Among the well-developed cost flow functions, the BPR function is the most com-
monly used one (Division, 1964). Since its first publication in 1964, this model has
been widely used among researchers in various traffic models due to its good balance
between simplicity and effectiveness. In the BPR function shown in Equation (4), the
ratio of travel time (or average travel speed) per unit of distance at practical capacity
to free flow is defined by the parameter a. In contrast, the change of the average travel
speed from free-flow to crowded conditions is determined by the parameter b (Mtoi &
Moses, 2014).

t(x) = t0 · (1 + axb) (4)

The default values of the parameters a and b are 0.15 and 4, respectively. However,
these numbers do not reflect traffic conditions on all types of roads or in all traffic
control methods (Márquez, Garćıa, & Guaŕın, 2014). In the actual applications, the
parameters need to be adjusted accordingly. Therefore, a calibration process with
extensive and accurate field data is needed. Despite its simplicity, unfortunately, this
paradigm also comes with inherent drawbacks, mainly when the value of parameter b
is high. Firstly, it suffers from overloaded links, meaning that the traffic flow is greater
than the link capacity, appearing in the first few iterations of the traffic assignment
when using the Method of Successive Averages (MSA) (Liu, He, & He, 2009). It slows
the convergence by giving undue weight to overloaded links with a high value of b.
Second, for connections far below capacity, the BPR function, especially under a high
value of b, always produces free-flow travel time independent of the actual traffic flow.

Besides the BPR function, another widely used cost flow function is the Akcelik
function (Akcelik, 1978) shown in Equation (5), a variant of the function proposed
initially by Taylor (1997).

t(x) = t0 +
3600

4
a[(x− 1) +

√

(x− 1)2 +
8bx

da
] (5)

where in the default values are a = 1, b = 1, c = 1 and d = 1800. In addition to the
aforementioned functions in literature, there are several other functions, such as the
Vatzek function (Jastrzebski, 2000), the conical function (Spiess, 1990) and Mosher
functions (Mosher Jr, 1963).

A great number of research on PoA from a game-theoretical point of view has
been done(Aland, Dumrauf, Gairing, Monien, & Schoppmann, 2011; Christodoulou
& Koutsoupias, 2005; Feldman, Immorlica, Lucier, Roughgarden, & Syrgkanis, 2016).
The PoA in traffic assignment was first investigated by Roughgarden and Tardos
(2002b). It is shown that the price of anarchy is precisely equal to 4

3 with linear cost
functions. Roughgarden (2003) provides a theoretically tight upper bound of PoA
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Description Representative Price of Anarchy

Linear ax+ b 4
3 ≈ 1.333

Quadratic ax2 + bx+ c 3
√
3

3
√
3−2

≈ 1.626

Cubic ax3 + bx2 + cx+ d 4 4√4
4 4√4−3

≈ 1.896

Polynomial
p
∑

i=0
aix

i (1− p(p+ 1)−
p+1
p )−1

M/M/1 delay functions (u− x)−1 1
2 (1 +

√

umin

umin−Rmax
)

Exponential aebx + c 2b̂r̂
log(b̂r̂+1)

Table 1: The Upper Bound of PoA for Common Cost Functions (the last
row (see Theorem 3) represents the proposed function in this paper).

to different cost functions, which are satisfy the continuous, non-negative, and non-
decreasing, shown in Table 1. In previous studies, the main results of the upper bound
of PoA depend on the characteristics of the cost function. For example, suppose a
road network with polynomial cost functions, then the PoA is the maximum anarchy
value of a road, which only depends on the exponent of the cost function on that road
(Roughgarden, 2003). O’Hare et al. (2016) shows four mechanisms describing how PoA
varies with traffic demand. More studies try to find PoA in terms of traffic demand. For
example, a function that describes the relationship between traffic demand and PoA
in the routing game is presented in (Cominetti, Dose, & Scarsini, 2021). In addition,
there is some data-driven approach to estimate PoA (Zhang, Pourazarm, Cassandras,
& Paschalidis, 2016, 2018).

3 Problem Formulation

In this section, we present a formal model to describe traffic assignment based on the
definition of congestion game. This model is essentially the same as the one used in
(Roughgarden, 2003) but rewritten in our notation. In short, we consider a network
of roads with multiple origins and destinations. For each OD pair, a group of vehicles
wants to travel from the origin to the destination. The number of vehicles for each
OD pair is called the traffic demand.

We define a road network as a directed multigraph G = (V, P ) with a set of
positions V and a set of edges (roads) P 1. In addition, parallel roads between two
positions are allowed by the definition of a multigraph, but we do not allow self-loops.

An origin-destination (OD) (o, d) ∈ V × V is a pair of locations (i.e., a pair
of vertices of the graph G) and OD = {(oi, di) : ∀i ∈ [1, k], oi ∈ V, di ∈ V \ {oi}}
denotes the set of all such origin-destinations in the road network G. For each origin-
destination (oi, di), γ is a sequence of roads called a route, which is a simple path
(a path with no cycles) that links its origin oi to its destination di. Let Γi denote
all possible routes for (oi, di) and Γ =

⋃

i∈[1,k]

Γi define all possible routes according to

1Here, we change the notation of the graph theory’s edge from E to P . The main reason is to avoid
confusing the representation of the exponential function and the edge representation since the calculation
related to the exponential function e is used extensively in the remainder of this paper.
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the given topology of the road network G. We assume that for any i ∈ [1, k], Γi ̸= ∅.
Traffic flow f : Γ → R

+ is a function that maps each route γ to a positive number
that represents the traffic volume of that route, measured in the number of vehicles
per hour. We use fγ as a shorthand for f(γ) to simplify notation. For each OD (oi, di),
we define the traffic demand ri ∈ R to be the total number of vehicles per hour
that are travelling between oi and di. We say that a flow f is feasible if and only if
it satisfies

∑

γ∈Γi

f(γ) = ri for all i ∈ [1, k], and we let F denote the set of all feasible

flows. Furthermore, we define fp =
∑

γ∈Γ:p∈γ

fγ as the traffic flow of the road p for a

feasible flow f .
It is worth noting that all vehicles are assumed to have the same attributes, such

as length and acceleration. Hence, homogeneous vehicle type is considered to focus
on the time parameter, which is the only parameter affecting the travel cost function.
Furthermore, we assume that vehicles do not have any special routing preference. For
instance, if all vehicles are focused on reaching their destination in the shortest possible
time, then only the time parameter is shown in the cost functions. Conversely, if trucks
on the road seek only the minimum fuel consumption to reach their destination, SUVs
demand the shortest path, and cars want the shortest travel time. This would make
the cost function contain different units, fuel consumption, road length and time and
use additional methods to transfer them to a unique unit.

Each road p ∈ P has a cost function lp : R → R that takes the traffic flow fp
of that road as its input and that outputs the travel time (in seconds) for a vehicle to
drive along that road. The cost function should be non-negative, differentiable, and
non-decreasing for obvious reasons; traffic leads to more road congestion and, thus,
higher travel times. We use L to denote a set of all possible cost functions, and, for
some given road network G, we use L : P → L to denote the function that maps each
road p to its corresponding cost function lp. The travel time of a route γ ∈ Γ given a
feasible traffic flow f ∈ F can be calculated as the sum of the travel times of the edges
contained in the route, given by lγ(fγ) =

∑

p∈γ

lp(fp). The cost of a vehicle is the travel

time of the route it selected. It should be noted that the travel time for each route
is the average travel time of all vehicles that use the route. Furthermore, we define
C(f) =

∑

p∈P

lp(fp)fp as the social cost incurred by the feasible flow f , which is the

total travel time of all vehicles in the road network.
An instance of the traffic assignment problem is now defined as a tuple (G, #»r , L),

where G and L are as above, and #»r = (r1, . . . , rk) is a tuple containing the traffic
demand ri of each origin-destination (oi, di).

In transportation, Wardrop’s first principle, also known as user equilibrium (UE),
has been accepted as a simple and sound principle to explain the distribution of traffic
among alternative routes due to congestion. Traffic flows that adhere to this principle
are referred to as equilibrium flows. Intuitively, each vehicle travels along the route
with the minimum travel time. Otherwise, this vehicle would re-select other routes
with lower travel time. The equilibrium flow is the result of purely self-interested
decision-making. Formally, UE is defined as follows:
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Definition 1. Given an instance (G, #»r , L), a feasible flow f ∈ F is a user equilib-

rium (UE) flow if and only if for any OD i ∈ [1, k] and any γ ∈ Γi with fγ > 0, we
have lγ(fγ) ≤ lγ′(fγ′) for any γ′ ∈ Γi.

If all traffic is divided over the roads according to a UE flow, each vehicle cannot
unilaterally change to a different route to obtain a shorter travel time. This means
that when the traffic flow is at UE, for each origin-destination (oi, di), the travel time
along each route between oi and di that has a positive traffic flow is the same.

From existing work, it is known that any traffic assignment problem in the form
of a congestion game is a potential game, and therefore there exists at least one pure
strategy UE (Sandholm, 2010).

Furthermore, we note that if there exist two or more UE flows f and f ′, then
C(f) = C(f ′) for any instance (G, #»r , L) (Roughgarden, 2005). Specifically, the UE
flow of an instance is a traffic flow that minimizes the potential function, which can
be calculated from a non-linear program (Sandholm, 2001).

A traffic flow is said to satisfy Wardrop’s second principle (also known as System
Optimum (SO)) if the average travel time of a feasible flow is at a minimum, achieving
the global optimum of an instance (G, #»r , L). In other words, a SO flow is feasible with
minimal social cost C(SO) among all feasible flows. Note that a System Optimum
can only be reached if all vehicles choose their paths cooperatively to ensure the most
efficient utilization of the system as a whole.
Definition 2. Given an instance (G, #»r , L), a feasible flow f∗ ∈ F is a system

optimum (SO) flow if and only if C(f∗) = min
f∈F

C(f).

To explain how the minimal social cost can be calculated, the following definition
is introduced.
Definition 3. For any cost function l its corresponding marginal cost function l∗

is defined by l∗(x) := d
dx
(x · l(x)).

It is known from existing research (Beckmann, McGuire, & Winsten, 1956; Dafer-
mos & Sparrow, 1969; Roughgarden & Tardos, 2002a), that for any instance (G, #»r , L)
a flow f ∈ F is an SO flow if and only if f is the UE flow for the corresponding
instance (G, #»r , L∗), where L∗ : P → L is a function that maps each road p to a cost
function l∗p, which is the marginal cost function corresponding to lp. Therefore, we can
get the SO flow of instance (G, #»r , L) by finding the traffic flow with the minimum
value of the potential function for instance (G, #»r , L∗).

The price of anarchy (PoA) is defined as the ratio between the social cost of the
UE flow and the social cost of the SO flow for instance (G, #»r , L):

PoA(G, #»r , L) := C(UE)
C(SO)

4 Price of Anarchy with Exponential Cost Functions

In this section, we derive an expression for an upper bound of the PoA in case all
cost functions in the road network are exponential and show that this upper bound is
tight. Furthermore, we present a more straightforward expression of the upper bound,
which is not tight. It is worth mentioning that we only look at the theoretical results
and proofs related to the exponential function in this section. The next section uses
real-life traffic data to validate the proposed function further.
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4.1 Exponential Cost Function

In this study, the travel cost on the road p ∈ P is expressed as an exponential function
below:

lp(fp) = aebfp + c (6)

where fp is the traffic flow of road p and a, b and c are non-negative coefficients.
These coefficients may differ for each road, so in the rest of the paper, if necessary, we
will sometimes stress this by writing them as ap, bp, and cp instead. Furthermore, the
values of a, b, and c have ‘seconds’ as their unit (and since fp was measured in the
number of vehicles per hour, the product b · fp is unit-free).

The sum a + c is the free-flow travel time of road p, which depends on the speed
limit and length of the road. We use Lexp to denote the set of all possible cost functions
of the form Eq.(6). Furthermore, we use (G, #»r , Lexp) to represent an instance with
only exponential cost functions, so Lexp : P → Lexp is a function that maps each road
to an exponential cost function, and we write lp instead of Lexp(p) in the rest of this
paper.

Roughgarden (2003) defined the notion of a standard function. A function l is
standard if x · l(x) is convex for x ≥ 0. It is easy to see that any function of the form
l(x) = aebx + c with non-negative coefficients is indeed standard. This fact will be
useful to us later on. Furthermore, we note that an instance (G, #»r , Lexp) with only
exponential cost functions has the special property of having a unique user equilibrium
solution, as shown in the following theorem.
Lemma 1. For any instance (G, #»r , Lexp), there is a unique user equilibrium flow.

Proof. From existing work (Aashtiani & Magnanti, 1981; Konishi, 2004; Milchtaich,
2005), it is known that a unique user equilibrium flow exists for any instance with
monotonically increasing cost functions.

4.2 Anarchy Value and Price of Anarchy

This subsection explores how to find the upper bound of the PoA for instances with
exponential functions. We need to define the ‘anarchy value’ for each road, which is a
cost ratio between the UE flow and SO flow of that road. The idea of anarchy value
was proposed in Roughgarden (2003). The motivation to define the anarchy value is
to find the worst-case ratio between the cost of UE flow and SO flow for a given set
of cost functions.

It is worth mentioning that our definition of ‘anarchy value’ differs from the original
one. The first main difference is that our definition depends on the traffic demand
#»r of the instance, while Roughgarden’s original definition took the supremum over
all possible values of the traffic demand. The motivation for this difference is that
otherwise, the upper bound of the PoA would go to infinity in the case of exponential
cost functions. Secondly, our definition assumes that traffic is at user equilibrium.
Formally, our definition of anarchy value is as follows.
Definition 4. Let (G, #»r , Lexp) be an instance with exponential cost functions, and
let f denote its user equilibrium flow. Then the anarchy value ϕp(

#»r ) of a road p is
defined as follows:
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ϕp(
#»r ) := [λpµp + (1− λp)]

−1 (7)

where λp ∈ [0, 1] is the solution of the equation l∗p(λpfp) = lp(fp), and µp is defined

as µp :=
lp(λpfp)
lp(fp)

∈ [0, 1].

Note that the user equilibrium flow f∗ depends on the traffic demand #»r , so λp and
µp depend on #»r , and therefore ϕp also depends on #»r . We need the following lemma
to show that the anarchy value is well-defined.
Lemma 2. For any function l of the form of Eq.(6) and for any positive value x ∈ R

+,
there is a unique value λ ∈ [0, 1] that solves the equation l∗(λx) = l(x) (where l∗(·) is
the marginal cost function of l(·), see Def.3)

Proof. To prove this, we first note that

l∗(x) = aebx + abx · ebx + c (8)

Secondly, we note that l and l∗ monotonically increase on the domain x > 0. The
idea is then to show that l∗(0) = l(0) ≤ l(x) ≤ l∗(x) is true for any positive x. It is easy
to see that indeed we have l∗(0) = a+ c = l(0). Furthermore, since l is monotonically
increasing, we have l(0) ≤ l(x). And finally, since a, b and x are all non-negative, we
have:

l(x) = aebx + c ≤ aebx + abxebx + c = l∗(x)

Since l and l∗ are monotonically increasing and l∗(0) = l(0), it is now easy to see that
there exists a unique value x′ ≤ x such that l∗(x′) = l(x). Then, we can simply define

λ := x′

x
∈ [0, 1], so that indeed we have l∗(λx) = l(x).

This lemma shows that λp and µp of Def. 4 are well-defined. We now define
ϕ(Lexp) := max

p∈P
ϕp(

#»r ) as the anarchy value of the instance (G, #»r , Lexp). We can

now show the relationship between the anarchy value and the PoA of an instance
(G, #»r , Lexp) in the following Lemma.
Lemma 3. For any instance (G, #»r , Lexp), we have:

PoA(G, #»r , Lexp) ≤ ϕ(Lexp)

Proof. Let f and f∗ be UE flow and SO flow, respectively, for the given instance
(G, #»r , Lexp). From the Lemma 3.5 to Lemma 3.7 in Roughgarden (2003), it is easy to
rewrite the social cost of SO in a form that is easier to relate to the social cost of UE
as follows:

C(f∗) ≥
∑

p∈P

[lp(λpfp)λpfp + (f∗
p − λpfp)lp(fp)]

≥
∑

p∈P

[µpλp + (1− λp)]lp(fp)fp
(9)
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with λp, µp and fp as in Def.4. Thus, we can rewrite this inequality as follows.

C(f∗) ≥
∑

p∈P

lp(fp)fp
[µpλp + (1− λp)]−1

=
∑

p∈P

lp(fp)fp
ϕp(

#»r )

≥

∑

p∈P lp(fp)fp

maxp∈P ϕp(
#»r )

=
C(f)

ϕ(Lexp)

(10)

Eq.(10) leads to

PoA(G, #»r , Lexp) =
C(f)

C(f∗)
≤ ϕ(Lexp) (11)

From Lemma 3, we see that the PoA of any instance is always less than or equal
to the maximum anarchy value over all roads in that instance.

4.3 The Lambert W Function

Before continuing with the rest of the paper, we here need to briefly discuss the
Lambert W function (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996). For any positive
real number x, the value W (x) ∈ R is defined as the unique real number that satisfies:2

W (x)eW (x) = x (12)

The Lambert W function is monotonically increasing and satisfies the following
well-known properties (Hoorfar & Hassani, 2007; Weisstein, 2002), which will be useful
to us later on:

W (e) = 1 (13)

d

dx
W (x) =

W (x)

x · (1 +W (x))
(14)

For any x ≥ e:

log(x)− loglog(x) ≤ W (x) ≤ log(x)−
1

2
loglog(x) (15)

4.4 Upper Bound of the PoA

At this point, we have defined all the concepts required to calculate our upper bound of
the PoA over the set of all instances (G, #»r , Lexp) with exponential cost functions. We
present this upper bound below, in Theorem 1, which depends on two more lemmas.
Lemma 4. For any instance (G, #»r , Lexp), let f denote its user equilibrium flow. The
anarchy value ϕp(

#»r ) of any road p ∈ P with cost functions of the form l(x) = aebx+c,
where a, b, and c are non-negative coefficients, satisfies:

2For real numbers x ∈ [− 1
e
, 0] this equation actually has two solutions, which are denoted as W−1(x)

and W0(x) respectively, but in this paper, we are not interested in such values.
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ϕp(
#»r ) ≤

bx∗

bx∗ + 2−W (ebx∗+1)− 1
W (ebx∗+1)

(16)

where W (·) is the Lambert W function and x∗ = fp is the UE flow of the road p.

Proof. Recall that the anarchy value is defined as ϕ( #»r ) = [λµ + (1 − λ)]−1, and to
calculate λ we have to solve l∗(λx∗) = l(x∗), with l∗ given by Eq.(8). That is, we have
to solve:

aeλbx
∗

+ aλbx∗ · eλbx
∗

+ c = aebx
∗

+ c (17)

Subtracting c from both sides and then dividing by a on both sides, we get:

eλbx
∗

+ λbx∗ · eλbx
∗

= ebx
∗

(1 + λbx∗) · eλbx
∗

= ebx
∗

(1 + λbx∗) · eλbx
∗+1 = ebx

∗+1

Next, if we replace (λbx∗ +1) by δ, then we get δeδ = ebx
∗+1, which can be solved

using the Lambert W function. This gives us: δ = W (ebx
∗+1). Now, if we substitute

λbx∗ + 1 back for δ, and solve for λ, then we get the following:

λ =
W (ebx

∗+1)− 1

bx∗ (18)

Next, recall that µ was defined as l(λx∗)
l(x∗) , so we have:

µ = aeλbx∗

+c
aebx

∗+c

We note that µ therefore satisfies:

µ ≥
aeλbx

∗

aebx∗
= e(λ−1)bx∗

(19)

Plugging these expressions (18) and (19) for λ and µ back into [λµ + (1 − λ)]−1,
we obtain:

ϕ( #»r ) = [λµ+ (1− λ)]−1

≤ [
W (ebx

∗+1)− 1

bx∗ · e(
W (ebx

∗+1)−1
bx∗ −1)bx∗

+ 1−
W (ebx

∗+1)− 1

bx∗ ]−1

= [
W (ebx

∗+1)− 1

bx∗ · e(W (ebx
∗+1)−1−bx∗) +

bx∗

bx∗ −
W (ebx

∗+1)− 1

bx∗ ]−1

=
bx∗

(W (ebx∗+1)− 1) · e(W (ebx∗+1)−1−bx∗) + bx∗ − (W (ebx∗+1)− 1)

We see from Eq.(12) that for any x > 0 we have eW (x) = x
W (x) , so we have

12



eW (ebx
∗+1)−1−bx∗

= ebx
∗+1

W (ebx∗+1)
· e−1−bx∗

= 1
W (ebx∗+1)

From this, we get the following:

ϕ(r⃗) ≤
bx

(W (ebx+1)− 1) · 1
W (ebx+1)

+ bx− (W (ebx+1)− 1)

=
bx

bx+ 2−W (ebx+1)− 1
W (ebx+1)

(20)

The following two lemmas give us a better idea of how the expression at the end
of Eq.(20) behaves.
Lemma 5. The following equation holds: limx→0

x
x+2−W (ex+1)− 1

W (ex+1)

= 1

Proof. Instead of proving this directly, we will prove the ‘reversed’ equation, which is
equivalent:

lim
x→0

x+ 2−W (ex+1)− 1
W (ex+1)

x
= 1 (21)

This means we need to prove the following:

lim
x→0

2−W (ex+1)− 1
W (ex+1)

x
= 0 (22)

Now, note that since limx→0 W (ex+1) = 1, we can multiply this by W (ex+1). So,
equivalently we can prove the following:

lim
x→0

2 ·W (ex+1)−W (ex+1)2 − 1

x
= 0 (23)

Note that, in this equation, the limit of both the numerator and the denominator
is 0, so we can calculate this limit using L’Hopital’s rule. Indeed, using Eq.(14) we get:

lim
x→0

2W (ex+1)−W (ex+1)2 − 1

x
= lim

x→0

d
dx
(2W (ex+1)−W (ex+1)2 − 1)

d
dx
x

= lim
x→0

d
dx
(2W (ex+1)−W (ex+1)2 − 1)

1

= lim
x→0

d

dx
(2W (ex+1)−W (ex+1)2 − 1)

= lim
x→0

(
2W (ex+1)

W (ex+1) + 1
−

2W (ex+1)2

W (ex+1) + 1
)

(24)
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Then, applying Eq.(13) we get:

lim
x→0

2W (ex+1)−W (ex+1)2 − 1

x
= lim

x→0
(

2W (ex+1)

W (ex+1) + 1
−

2W (ex+1)2

W (ex+1) + 1
)

= lim
x→0

(
2W (e)

W (e) + 1
−

2W (e)2

W (e) + 1
)

= lim
x→0

(
2

2
−

2

2
)

= 0

(25)

Lemma 6. The expression x
x+2−W (ex+1)− 1

W (ex+1)

is monotonically increasing for x >

0.

Proof. To prove this, we calculate its derivative and show that it is non-negative for
any positive x.

d

dx

x

x+ 2−W (ex+1)− 1
W (ex+1)

=
(x+ 1−W (ex+1)) · (W (ex+1)− 1) ·W (ex+1)

(W (ex+1)2 − (x+ 2) ·W (ex+1) + 1)2

(26)

It is easy to see that the denominator is non-negative. For the numerator, we divide
into three parts: x+ 1−W (ex+1), W (ex+1)− 1, and W (ex+1). Since the Lambert W
function is monotonically increasing and W (e) = 1, we can easily see that W (ex+1)−1
and W (ex+1) are both non-negative. For the remaining expression, we note that it is
0 when x = 0, and that (by Eq.(14)) we have

d

dx
(x+ 1−W (ex+1)) =

1

W (ex+1) + 1
≥ 0

From this, it follows that x+ 1−W (ex+1) is also non-negative for any positive value
of x.

The following theorem gives us an upper bound for the PoA of any instance
(G, #»r , Lexp) with exponential cost functions. We first need to introduce the following

notation: r̂ :=
∑

i∈[1,k] ri and b̂ := maxp∈P bp
Theorem 1. For any instance (G, #»r , Lexp) with exponential cost functions, the price
of anarchy satisfies the following.

PoA(G, #»r , Lexp) ≤
b̂r̂

b̂r̂ + 2−W (eb̂r̂+1)− 1

W (eb̂r̂+1)

(27)

Proof. We know from Lemma 3 that:
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PoA(G, #»r , Lexp) ≤ ϕ(Lexp) = maxp∈P ϕp(
#»r )

Then, we know from Lemma 4 that ϕp(
#»r ) can be replaced by the right-hand side

of Eq.(16). Furthermore, thanks to Lemma 6 and the fact that f∗
p ≤ r̂ we can replace

f∗
p by r̂. Similarly, again thanks to Lemma 6 and the fact that bp ≤ b̂ we can remove

the maximization over p ∈ P and instead simply replace bp by b̂. Hence, we obtain
Eq.(27).

4.5 Tightness of the Upper Bound

The following Theorem shows that the expression we presented in Theorem 1 is, in
fact, a tight upper bound for the set of all instances with exponential functions.
Theorem 2. For any positive numbers b̂ and r̂, there exists an instance (G, #»r , Lexp)
with exponential cost functions, for which PoA(G, #»r , Lexp) is exactly equal to

b̂r̂

b̂r̂+2−W (eb̂r̂+1)− 1

W (eb̂r̂+1)

.

Proof. We prove this theorem using a simple road network, which is an adaptation
of a road network known as Pigou’s example (Pigou & Aslanbeigui, 2017), shown in
Fig.1. Network (a) in this figure is the network for which we will calculate the PoA.
We can choose any arbitrary number r as the traffic demand for this network (i.e.
#»r = (r)). Network (b) is the same network but with the cost functions replaced by
their corresponding marginal cost functions. To calculate the PoA of the network (a),
we first need to calculate its UE flow. As explained above, to do this, we need to set
the latency lp′ of the lower road p′ equal to the latency lp of the upper road p. That
is, we need to solve equation ebr = ebx, which leads to x = fp′ = r. This means that
all traffic is choosing the lower road p′. The total cost C(UE) is then given by:

C(UE) = fp′ · lp′(fp′) = r · lp′(r) = r · ebr

Next, we need to calculate the SO flow for network (a), which is equal to the UE
flow of network (b). So, we need to set the latency of the two roads in network (b)
equal. That is, we need to solve: ebr = ebx(bx+ 1), for which the solution is given by:

x = W (ebr+1)−1
b

.This means that in the SO flow, the total number of vehicles choosing

the lower road is given by fp′ = W (ebr+1)−1
b

and the total number of vehicles choosing

the upper road is fp = r− W (ebr+1)−1
b

. The total cost of C(SO) for all vehicles is then
given by:

C(SO) = fp · lp(fp) + fp′ · lp′(fp′)

=
W (ebr+1)− 1

b
· eW (ebr+1)−1 + (r −

W (ebr+1)− 1

b
) · ebr

where p is the upper road of the network and p′ is the lower road. Combining these
two results we get:
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PoA =
r · ebr

W (ebr+1)−1
b

· eW (ebr+1)−1 + (r − W (ebr+1)−1
b

) · ebr

=
br · ebr

(W (ebr+1)− 1) · eW (ebr+1)−1 + (br −W (ebr+1) + 1) · ebr

From Eq.(12) we see that for any x > 0 we have eW (x) = x
W (x) , so we have

eW (ebr+1)−1 = ebr+1

e·W (ebr+1)
= ebr

W (ebr+1)

Using this, we get:

PoA =
br · ebr

(W (ebr+1)− 1) · ebr

W (ebr+1)
+ (br −W (ebr+1) + 1) · ebr

=
br

(W (ebr+1)− 1) · 1
W (ebr+1)

+ (br −W (ebr+1) + 1)

=
br

br + 2−W (ebr+1)− 1
W (ebr+1)

Finally, since this example only had one value bp and one value ri, we have b̂ = b and
r̂ = r, so we have indeed wave obtained the expression mentioned in the theorem.

Fig. 1: A Variant of Pigou’s example

4.6 Alternative Upper Bound

The tight upper bound we presented in Theorem 1 has a rather complex expression.
Therefore, we will now derive two simpler expressions that form a lower- and upper-
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bound for this expression. It shows that the original expression grows less than linearly
as a function of b̂ and r̂.
Lemma 7. For any non-negative x, we have

x
log(x+1) ≤

x
x+2−W (ex+1)− 1

W (ex+1)

≤ 2x
log(x+1)

Proof. Since x is non-negative we have ex+1 ≥ e, so we can substitute ex+1 for x in
Eq.(15) and obtain:

x+ 1− log(x+ 1) ≤ W (ex+1) ≤ x+ 1−
1

2
log(x+ 1)

From this we get:

x

x+ 2−W (ex+1)− 1
W (ex+1)

≤
x

1
2 log(x+ 1) + 1− 1

x+1−log(x+1)

≤
2x

log(x+ 1)

(28)

where we used the fact that 1
x+1−log(x+1) < 1, and we get:

x

x+ 2−W (ex+1)− 1
W (ex+1)

≥
x

log(x+ 1) + 1− 1
x+1− 1

2 log(x+1)

≥
x

log(x+ 1)

(29)

where we used the fact that 1
x+1− 1

2 log(x+1)
< 1.

It is worth mentioning that the function in Eq.(28) and Eq.(29) is monotonically
increasing for non-negative x. From Lemma 7, we can easily obtain the following
theorem.
Theorem 3. For any instance (G, #»r , Lexp) with exponential cost functions, its price
of anarchy satisfies:

PoA(G, #»r , Lexp) ≤
2b̂r̂

log(b̂r̂+1)

Proof. This is simply the combination of Theorem 1 and Lemma 7.

5 Data and Numerical Results

To further validate the proposed function, real-world data is adopted for numerical
experiments in this section. It is worth mentioning that the basic assumption in this
chapter is to consider an administrative region as a road segment of the road network.
First, we introduce the Australian traffic database involved in this paper and the basis
for data selection. Next, we review the parameters related to data analysis. Then the
accuracy of the exponential function, the BPR function and the Akcelik function are
fitted and analyzed separately for different periods. Last, we compare the expression
of tight upper bound PoA between the BPR function and the exponential function.
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5.1 Data Description

In this study, Insight, a traffic database provided by Intelematic, is employed, which
covers more than 40, 000 km of roads in New South Wales (NSW) and Victoria (VIC)
in Australia with traffic flow data and speed data from 2019 to date. In terms of data
frequency, it records data every 15 minutes. Regarding the coverage scope, it ranges
from individual link-based data (microscopic level) to Local Government Area (LGA)
(macroscopic level). The data used in this paper is within NSW, covering 39 LGAs,
1058 suburbs and nearly 5000 covered roads in NSW, which have a total length of
nearly 19, 500 km. Located on the southeast coast of Australia, the Greater Sydney
region is the capital of the Australian state of New South Wales. It is the largest
and most populous city in Australia. The Sydney metropolitan area has an area of
approximately 1687 km2 and a population of approximately 5.73 million in 2019. The
data between January 2019 and March 2022 are used in time intervals of years, months,
weeks, days and even 15 minutes. We filter the data following the criteria below to
derive more accurate traffic and travel time correlation functions.

• To best fit the cost function, the sampling region must include as many types of
roads as possible, including viaducts, freeways, and urban roads.

• The absence of overlapping areas in the sampling area ensures the regional road
network’s independence and distinctive topological features.

• The sampling region must feature a variety of land uses, including commercial-
ized areas, high-density office sectors, residential areas with a mix of high and low
densities, and a well-connected road system.

• Fitting function data must be sampled over a wide time interval to prevent the
impact of crises on traffic data, such as automobile accidents, special holidays, and
lengthy traffic control.

• The selected area needs to have prevailing traffic conditions.

After filtering, three LGAs (i.e., Sydney, North Sydney and Parramatta) belong-
ing to the Greater Sydney Area with high traffic flow and population density are
selected for analysis considering that these areas can cover a wide range of traffic con-
ditions. In addition to the three LGAs, we also select a suburb from each with similar
characteristics as described above.

5.1.1 Sydney

The City of Sydney is a local government district in the Sydney Metropolitan Area
of NSW, comprising the Sydney Central Business District (CBD) and 31 adjacent
suburbs. The City of Sydney has a population of approximately 170, 000 and a land
area of 6.19 square kilometres. The area is a major financial, commercial and tourist
centre with a large transient population and an extensive road network. As a result,
the traffic situation is complex, consisting of many urban roads, underground tunnels
and highways connecting neighbouring areas. The data we use covers 461 roads in
Sydney’s local government area, which are a total of 433 km long.
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5.1.2 North Sydney

North Sydney is a local government area on the Lower North Shore of Sydney. It has
a population of 67, 658 and covers an area of approximately 10.9 square kilometres.
The area has many high-density commercial areas, complex urban roads, toll roads
and free expressways that connect the rest of Sydney. The North Sydney LGA data
covers 156 roads with 166 km total length and 14 suburbs under its jurisdiction.

5.1.3 Parramatta

The City of Parramatta spans 84 square kilometres. According to the 2016 census,
Parramatta has a population of 226, 149 and contains 38 suburbs within its jurisdic-
tion. This busy area covers several highways that run through the Sydney area, as
well as complex urban roads. Parramatta LGA’s database includes 222 roads with a
total length of 470 km.

5.1.4 Suburb Selection

For the selection of suburban data, we use the traffic data from the central city of the
three LGAs mentioned above as base data for comparison. The study area includes
a central business district with multiple high-rise buildings, a mixed commercial and
residential high-density region, a relatively low-density residential neighbourhood, and
a substantial urban highway network. Even under identical traffic conditions, the
transportation networks in the selected areas have different traffic capacities and road
conditions due to differences in topographic characteristics.

5.2 Data Structure

The data in the Insight database was collected from numerous sources and validated
to provide road and traffic statistics. Real-time detectors (GPS hardware) from com-
mercial and private fleets of road vehicles and millions of nodal sensors at highways
and intersections are used to collect real-time traffic flow and speed. Real-time data
on road conditions from emergency services and road management provide the con-
text for further calibration of the data sources. Cross-validation of 24/7 field control
groups and machine learning algorithms ensures the validity of the data. We use vehi-
cle data from the Insight database in multiple NSW LGAs, and suburbs to compare
the proposed exponential function to other existing cost flow functions. The LGA and
suburban data from January 1, 2019, to February 28, 2022, consisting of speed data
and traffic flow data. The speed data contains the average speed, average delay time,
average travel time, road ID, area ID, the total length of the entire road, and the aver-
age speed limit for the peak and non-peak periods within the area during the time
interval. The flow data contains the total traffic flow in an area, road ID, area ID, and
total length of roads throughout the area during peak and off-peak periods within the
time interval.

The data is obtained by integrating the data of all road sections in the jurisdiction
every 15 minute. The relevant data is divided into peak and off-peak periods by day.
The peak period is 8 hours in total, including 7 am to 10 am and 3 pm to 6 pm from
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Monday to Friday, while the off-peak period is 16 hours (excluding the peak period)
plus 24 hours per day on weekends (Saturday and Sunday). It is worth noting that in
the data analysis section, data on public holidays is merged into the off-peak period.
Section 3 averages the data and uses the traffic flow per hour as the base unit. The
peak period data is averaged over all 8 hours, the weekday off-peak data is divided by
16 to obtain the hourly average, and the non-working day and holiday data are divided
by 24 hours to obtain the average. In addition, the traffic flow and road capacity
mentioned in this paper are macro parameters within a region. They are obtained by
summing the capacity or flow of all regional road segments.

5.3 Evaluation Criteria

For comparison, we use the data set on the commonly used BPR and Akcelik functions.
The aim is to identify and analyze the advantages and disadvantages of each function.
To compare with a unified standard, we simplify the three functions in the following
way.

l(x) = axb + c (BPR) (30)

l(x) = c+
3600

4
a[(x− 1) +

√

(x− 1)2 +
8b · x

Φ · a
] (Akcelik) (31)

where Φ is the capacity of the road, and the coefficient of determination, abbrevi-
ated R2, is the proportion of variation in the dependent variable that the independent
variable can predict in statistics. It is a statistical criterion used to predict future out-
comes or to evaluate hypotheses based on other data. Based on the fraction of the
total variation of effects explained by the model, it measures how well the observed
results are represented by the model (Carpenter, 1960; Glantz & Slinker, 2001).

The function fit analysis uses traditional R2 and root-mean-square error (RMSE).
We use the R-squares of different equations in the same region to illustrate how well
the function fits.

R2 = 1−

∑N
i=0(yi − ŷi)

2

∑N
i=0(yi − yi)

2
(32)

where N is the number of samples, yi is a dependent variable, ŷi is the output of
the regression model, both indexed by data set i and yi is the mean of the dependent
variable. R2 is always less than or equal to 1; the larger it is, the more the variance of
the dependent variable is explained by the regression model.

The RMSE is a commonly used metric for comparing predicted and observed values
(sample or population values) by a model or estimator (Li, Zhao, Zhou, Palicot, &
Zhang, 2014; Xie, Zhang, & Ye, 2007). It is also one of the parameters commonly
used in the transportation field for the degree of fit between functions and data. The
square root of the second sample moment of the discrepancies between anticipated
and observed values, or the quadratic mean of these differences, is represented by
the RMSE. The RMSE combines the magnitudes of prediction mistakes for different
data points into a single measure of predictive capacity. To compare the forecasting
mistakes of other models, the RMSE measures accuracy.
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(a) Before processing (b) After processing

Fig. 2: Daily Data in Sydney

RMSE =

√

∑N
i=0(yi − ŷi)2

N
(33)

where N is the number of samples, yi is a dependent variable, ŷi is the output of the
regression model. We use R2 and RMSE as reference quantities for the degree of fit
of the data to the function. The closer the R2 is to 1, the better the function fits the
data; conversely, the higher the RMSE, the worse the function fits the data.

5.4 Curve Fitting Results

This section analyses the differences between the different cost flow functions in differ-
ent regions. Firstly, we perform statistical analysis and function fitting on peak-hour
and nonpeak-hour data at the LGA level. Then we narrow down the regions from LGAs
to suburbs. The results of our preliminary analysis indicate a clear data stratification
based on the data set. The phenomenon can be described as a clear regionalization
of the data point set. We cut the Y-axis data within the same X-axis interval into
multiple mutually independent fetches. We used data from Sydney as an example to
explain data stratification.

The average velocity of different time intervals is used as raw data for processing.
The average travel time required to complete one kilometre in different traffic flows is
obtained using the equation relating speed to road length. Fig.2a shows the daily data
in Sydney LGA from January 1, 2019, to February 28, 2022. The X-axis represents
the traffic flow per hour, while the Y-axis represents the average time (in seconds) it
takes a car to drive one kilometre. The upper stratification (blue points) is composed
of weekdays (Monday-Friday), while the lower one (red points) consists of weekends
(Saturday-Sunday) and public holidays. Since the data are divided into multiple data
point sets, the data can be split into multiple independent areas. The daily data are
unsuitable for data fitting by a single cost flow function. In this case, we split the data
into peak and off-peak periods. Fig.2b shows the set of data points after splitting the
data. Each point in the figure shows the traffic flow (Veh/hour) and the travel time
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(s / km) during the peak and off-peak periods. As can be seen in the figure, there are
three clusters. Further analysis of the data reveals that the top group (blue points) is
the set of data points during peak hours on weekdays; the bottom group (red points)
is the set of data points during off-peak hours on weekdays, and the middle group
(green points) is the set of data points on weekends or holidays. The data in Fig. 2
indicate that the travel time varies between partitions for the same traffic. During
that period, the volume of traffic within a specific period will be significantly higher
than at other times. Although the average flows are similar, the distribution of traffic
in specific hourly intervals is different. We can use an easy-to-understand example
to explain that the distribution of traffic during peak hours is more like a normal
distribution, whereas the distribution of traffic during off-peak hours and holidays is
like a uniform distribution. Although the average values of traffic flows are the same,
the average travel times are different because the relationship between traffic flows
and travel times is non-linear from observations. Furthermore, traffic control schemes
are inconsistent over time, resulting in variation. Additionally, some temporary traffic
controls are implemented during off-peak hours. Therefore, we fit the Sydney LGA
traffic data into three cases, as mentioned above.

In the following of this section, we first fit the data for the three LGA peak hours
to three different cost flow functions. Second, we fit the data for the Sydney LGA
as an example to distinguish between working off-peak hours and holidays&weekend
by comparing the exponential function, the BPR function, and the Akcelik function.
Next, we reduce the area size from LGA to suburbs and use the same approach to fit
the data and compare the related functions. Finally, we summarize the results of the
data analysis. It is worth mentioning that the fitting results covered in this section are
the average travel time required to complete one kilometre in the area under different
traffic flow conditions.

5.4.1 Working Day Peak Hours

First, we fit the functions using the working day peak hour data for the three regions
mentioned in Section 2. Peak hours on working days are defined as between 7am and
10am, and 3pm and 6pm from Monday to Friday. Fig.3 synthetically shows how the
three cost flow functions fit the peak hours in the three LGAs. Figs.3(a) shows the
geographic information of the three LGAs. Fig.3(b)-(d) show the road data fitted by
different functions in the Sydney, Parramatta, and North Sydney LGAs, respectively.
It can be observed that the fit of the exponential function is very similar to the BPR
function. On the contrary, the second half of the Akcelik function differs significantly
from the remaining two functions regarding areas not covered by the data. However,
the fits of the three functions to the data intervals are similar, differing in the gradient
after exceeding the area capacity. One of the exponential functions has a bigger gra-
dient change than the BPR function. Therefore, it can be seen that the exponential
function is the best fit of the three functions in the fit of the data in the peak period.

Table 2 shows the capacity and function factors of the different LGAs. It can be
seen that different LGAs have different maximum capacities. The value of c in the
table reflects a surprising consistency between different equations in the same region.
This value represents the average free-flow travel time for all roads in the region, which
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Fig. 3: LGA Peak Hour Results

Table 2: Results in the LGA Peak Hours

Region Model Capacity (V/H) a b c R
2 RMSE

Sydney BPR 900000 6.494 8.12 139 0.7847 2.971
Akcelik 900000 0.06193 60.88 138.4 0.7813 2.994

Exponential 900000 0.004602 7.325 138.5 0.7856 2.965
Parramatta BPR 580000 3.463 5.598 100.7 0.6434 1.062

Akcelik 580000 0.01983 535.5 100.3 0.6438 1.059
Exponential 580000 0.02734 4.956 100.3 0.6443 1.058

North Sydney BPR 280000 5.735 8.592 128.2 0.7562 2.088
Akcelik 280000 0.051 371 127.6 0.756 2.089

Exponential 280000 0.001908 8.049 128.1 0.7568 2.08

implies the time it takes a vehicle to travel on a road at the maximum allowed speed.
It can be concluded that the exponential function has the best R2, and the value of
RMSE is inversely proportional to the growth of R2. Since the different distribution
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of data concentrations in each region can lead to an irregular variation of R2, we only
compare the fit between different functions in the same region rather than performing
a uniform analysis of all regions.

We use the parameters in Table 2 to analyze the fit in different traffic flows. Traffic
flows are divided into three cases: low flow (0 ≤ x < 0.5), high flow (0.5 ≤ x < 1), and
overflow (x > 1). Table 3 shows the results obtained by partitioning and refining the
data using the fit functions of the data to the BPR and exponential functions. From
the results, it can be seen that the fit results of the exponential function are always
higher than the results of the BPR function, indicating that the exponential function
is better matched to the real data under different flow conditions.

Table 3: Curve Fitting Results

Region Functions Low flow High flow Overflow Overall

Sydney BPR 0.2926 0.241 0.5151 0.7847
Exponential 0.3053 0.2438 0.5161 0.7856

Parramatta BPR 0.6121 0.4822 0.5846 0.6434
Exponential 0.6141 0.4838 0.5850 0.6443

North Sydney BPR 0.2884 0.1755 0.6398 0.7562
Exponential 0.2979 0.1768 0.6418 0.7568

5.4.2 Working Day Off-peak Hours

Fig.4 shows all the data during the working day off-peak period and holidays in the
Sydney LGA, from which it can be seen that the data are divided into several different
groups due to different road conditions on working days and weekends&holidays. It is
worth mentioning that since there are still different categories in the off-peak data for
public holidays and weekends and workdays, we analyze the data for off-peak days on
weekdays and weekends&holidays separately.

Fig.5(a) shows the results of the road data and the adjustment of the function
for off-peak weekday hours, and Fig.5(b) shows the results of the road data and the
adjustment of the function for holidays and weekends. Compared to the peak period,
the traffic flow variation interval is relatively small during the weekday off-peak period,
leading to the conclusion that traffic flow is also relatively stable during the weekday
off-peak period. However, data for weekends and holidays show a distribution similar
to that of the peak period, indicating that traffic flow is relatively more variable at
different times.

Table 4 shows the coefficients and parameters fitted for each function in different
cases. In terms of parameters and fits, they are essentially the same as for the LGA
zone data, except that the Akcelik function fits slightly better than the other two
functions on weekends, which is caused by the small sample size of the data and the
relative dispersion of the data in the intermediate stream. It is worth mentioning
that the volume of Sydney LGA is different in the two sets of data analysis because
weekdays are 16 hours of data, while non-working days are 24 hours of data.
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Fig. 4: Sydney LGA Off-peak Summary

(a) (b)

Fig. 5: Sydney LGA Off Peak Hour Fitting Results

5.4.3 Peak Hours in Suburb

Fig.6 summarizes the fit results in the suburban area. Fig.6(a) shows the geographic
information of the three suburban areas. Fig.6(b) is a different function for Sydney
suburban road data. Fig.6(c) is a separate function for the Parramatta suburban road
data, and Fig.6(d) is a different function fit for the North Sydney suburban road
data. Each point represents the value of the off-peak travel time for weekdays. The
distribution of these data is similar to that of the LGAs. The results are also identical
to those obtained in all three LGAs.
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Table 4: Results in the Sydney LGA Off-peak Hour

Off-peak Hour Model Capacity (V/H) a b c R
2 RMSE

Working day BPR 900000 5.526 5.26 126.7 0.6666 1.82
Akcelik 900000 0.0463 1492 126.7 0.6668 1.809

Exponential 900000 0.07374 4.497 125.9 0.6672 1.793
Weekend&Holiday BPR 900000 5.01 5.048 127.7 0.6784 2.002

Akcelik 900000 0.03381 2273 127.5 0.6795 1.990
Exponential 900000 0.04448 4.846 127.2 0.6793 1.992

Table 5 provides detailed information on the function parameters and the suburb
capacity. In the parameters, the value continues to express the travel time under ideal
conditions. In the matching of the fit, it can be seen in the data of the three suburbs
that the fit of the BPR and the exponential function is very similar, whereas the
Akcelik function will be relatively lower than the other two functions.

Table 5: Results of the Suburb Peak Hour

Suburb Model Capacity(V/H) a b c R
2 RMSE

Sydney BPR 180000 15.94 7.383 137.2 0.6857 5.982
Akcelik 180000 0.1329 592.5 136.2 0.6862 5.979

Exponential 180000 0.0249 6.559 136.1 0.6864 5.973
Parramatta BPR 75000 3.106 8.1 131.6 0.4501 1.714

Akcelik 75000 0.02815 29.78 131.6 0.4452 1.772
Exponential 75000 0.003403 6.95 131.2 0.4505 1.715

North Sydney BPR 110000 8.682 9.426 113.5 0.6967 3.308
Akcelik 110000 0.09292 93.04 113.6 0.6973 3.31

Exponential 110000 0.002008 8.451 112.5 0.6974 3.305

5.4.4 Summary

In general, R2 greater than 0.5 can be considered a moderate fit, while when R2

is greater than 0.7, the function is a stronger fit. The variance of the data can be
interpreted as the data floating in a certain range. If the degree of data variance is
large, it means that the data float in a wide range; on the contrary, if the degree of
data variance is small, it means that the floating range is small. From the perspective
of data variance, the larger the region, the smaller the dispersion of the data, while
the smaller the region, the larger the data variance. This is the main reason for the
large variance of the adjustment parameters. At a deeper level, large regions are more
tolerant of unexpected events than small regions. For example, if a small region has a
serious traffic accident, the travel time in that region will increase significantly without
changing traffic. However, the average post-travel time in large regions will not change
much due to the high overall traffic flow. Additionally, when comparing suburban and
LGA data, it can be seen that the extent of traffic construction has a much greater
impact on suburban data than on LGA data.

26



(a) (b)

(c) (d)

Fig. 6: Peak Hour Results at the Suburb Level

The data analysis shows that the exponential function has certain advantages in
describing the regional cost flow function. Note that the results in this paper are fitted
to data at different time intervals. To formally describe the cost flow function for the
whole region, we use a split function and divide it into three parts. One of these periods
is the peak time on weekdays, the second period is the off-peak time on weekdays, and
the other is holidays and weekends. However, this property is derived from the fitting
results of exponential functions; piecewise functions can also explain other functions.
Here, we use the Sydney LGA as an example as follows.

tsydney(x) =







0.004602 · e7.325x + 138.5(s/km) Working day peak hour
0.07374 · e4.497x + 125.9(s/km) Working day non-peak hour
0.009562 · e4.846x + 127.2(s/km) Holiday&weekend

(34)

The above function is the Sydney LGA cost flow function with specific coefficients
for different time intervals. With such data analysis, getting the travel time for different
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periods is easy from a realistic perspective. If the travel time is specific to each vehicle,
it must be calculated based on the distance the vehicle travels in the region. In addition,
the data analysis from Sydney LGA shows that although different time intervals have
different functions, the capacity of the whole region is fixed.

5.5 Comparing with the Upper Bound for BPR functions and

Exponential Function

This section claims that the PoA is lower under realistic circumstances when roads
have exponential cost functions than BPR cost functions. Each road p ∈ P has a
traffic capacity Φp ∈ R, which represents the maximum number of vehicles that can
pass the road in an hour, assuming “traffic flow is not so great as to cause unreasonable
delay, hazard or restriction to the driver” (Olcott, 1955; Schleicher, Gelau, et al.,
2011). This definition of traffic capacity is also known in the literature as the practical
capacity. Here, we assume this value is the same for every road p, which we denote as
Φ. Note that, by definition of the traffic capacity, in the real world, the actual traffic
flow cannot exceed the traffic capacity by much.

As explained above, the most common cost function used in the literature is the
Bureau of Public Roads (BPR) function (Division, 1964), which has the form.

l(f) = t0(1 +m · (
f

Φ
)n) (35)

where t0 is free-flow travel time.
It is known from the literature, Roughgarden (2003) shows that a tight upper

bound ˆPoABPR for the PoA over the set of all instances where the cost functions are
BPR functions with the degree at most n̂ is given by the following:

ˆPoABPR = (1− n̂(n̂+ 1)−
n̂+1
n̂ )−1 (36)

In the next section, we will show that if we try to model the actual cost functions
of a real-world road network using the BPR function or by using exponential cost
functions, then the respective values of Φ, b̂, and n̂ that we get will typically satisfy
Φ · b̂ ≤ n̂, which is an essential assumption for the rest of this section.

We are now ready to state our main claim in this section. A formal proof of this
conjecture is left for future work.
Conjecture 1. Given a road network G and any traffic demand #»r , we have
(G, #»r , LBPR) and (G, #»r , Lexp). If Φ · b̂ ≤ n̂ and f∗

p ≤ Φ for all p ∈ P (where f∗ is the
equilibrium flow of the instance with exponential functions), then PoA(G, #»r , Lexp) ≤
ˆPoABPR.
Proof Idea: We know from Lemma 3 that:

PoA(G, #»r , Lexp) ≤ ϕ(Lexp) = maxp∈P ϕp(
#»r )

Combining this with From Eq.(16) and Lemma 6 we get that
PoA(G, #»r , Lexp) ≤

β

β+2−W (eβ+1)− 1

W (eβ+1)

where β = maxp∈P bpf
∗
p , and from Eq.(36) we know that

ˆPoABPR ≤ (1− n̂(n̂+ 1)−
n̂+1
n̂ )−1
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Because of the assumption f∗
p ≤ Φ we have that bpf

∗
p ≤ bpΦ and therefore that

β ≤ b̂ · Φ. Then, since we also assumed that Φ · b̂ ≤ n̂ we have that β ≤ n̂. So, by
Lemma 6 we have

β

β + 2−W (eβ+1)− 1
W (eβ+1)

≤
n̂

n̂+ 2−W (en̂+1)− 1
W (en̂+1)

(37)

We then only need to show that, for any positive n̂ we have

(1− n̂(n̂+ 1)−
n̂+1
n̂ )−1 −

n̂

n̂+ 2−W (en̂+1)− 1
W (en̂+1)

≥ 0 (38)

Rather than formally proving this inequality, we argue that it is true by showing a
plot of the left-hand side of Eq.(38). This plot is displayed in Figure 7. The graph on
the left shows a range of n̂-values of 0− 10, and the graph on the right shows a range
of n̂-values of 0− 100.

Fig. 7: Plot Results for Conjecture 1

Besides the conjecture, we use the function fit results obtained in section 5.4 to
perform a PoA comparison between the BPR and exponential functions and show the
real-world meaning of the PoA in the rest of this subsection. From the definition of
anarchy value (see Def.4) and results of Lemma 3, we know that the highest anarchy
value in that road network determines the upper bound of the PoA of a road network.
Drawing on these results, we calculate anarchy values for the coefficients of the fit
function obtained for each data region and compare them.

For BPR functions, the anarchy value of a region is calculated as (1 − b(b +

1)−
b+1
b )−1 (Roughgarden, 2003), where b is the exponent of the polynomial func-

tion. And for exponential functions, the anarchy value of a region is calculated as
br

br+2−W (ebr+1)− 1

W (ebr+1)

(See Lemma 4). We selected the results of fitting the BPR

function and exponential function for the peak period data in Table 2 for different
regions as the basis for the calculations in Table 6. Traffic demand are divided into
four cases: Low (r = 0.25), Medium (r = 0.5) ,High (x = 0.75), and Full (x = 1).
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Table 6: Anarchy Value Comparison with different
traffic demand

Peak Hour Traffic Demand BPR Exponential

Sydney Low 3.10 1.45
Medium 3.10 1.88
High 3.10 2.30
Full 3.10 2.70

Parramatta Low 2.44 1.31
Medium 2.44 1.61
High 2.44 1.90
Full 2.44 2.18

North Sydney Low 3.21 1.49
Medium 3.21 1.97
High 3.21 2.42
Full 3.21 2.86

The results from Table 6 show that, in general, using the exponential function
instead of the BPR function as the cost function of the road network yields relatively
low PoA upper bounds. This result is affected by the restrictiveness of the PoA upper
bound of the BPR function, as it results from the coefficients of the function itself
only. And the PoA upper bound result of the exponential function is the result of
the joint action of the traffic demand and the function coefficient. Combining the
combined results of the data in Lemma 6 and Table 6 shows that the anarchy value of
the exponential function in a road network increases monotonically with the increase
in traffic demand. In summary, the anarchy value calculated using the real data fitting
exponential function corroborates Conjecture 1 from the perspective of real data when
the traffic demand is lower than the capacity.

6 Conclusions and Future Works

Traffic assignment with selfish routing is inefficient because it generally does not
achieve the optimal solution that could be achieved if all vehicles cooperated. The
price of anarchy describes this inefficiency. Since the traditional approach to calculat-
ing the PoA upper bound uses different types of functions for simplification, and the
results are related to only exponents, the impact of changes in traffic demand on it is
not addressed.

This paper focuses on the tight upper bound price of anarchy in road networks
using exponential cost functions and discusses the changes in the tight upper bound
due to changes in traffic demand. For the realistic case, traffic demand cannot be much
greater than capacity, so we compare the trend of PoA with traffic demand when
the same road network topology’s cost function is exponential or BPR function. We
have used a real traffic database as support to verify the validity of the exponential
cost function and found that the exponential function can provide higher accuracy
compared to the BPR function. And the results show that when the traffic rate is
lower than capacity, using the exponential cost function yields a tight upper bound
on PoA that is lower than the BPR function.
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The conjectures mentioned in this paper are not mathematically proven, and more
formal theoretical proofs as an aspect of future work. Second, extending the exponen-
tial function to a broader range of application scenarios is the focus of future work.
In addition, more research on PoA can be considered instead of simply considering
traffic scenarios.
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