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Abstract
We consider the problem of connected coordinated motion planning for a large collective 
of simple, identical robots: From a given start grid configuration of robots, we need to 
reach a desired target configuration via a sequence of parallel, collision-free robot motions, 
such that the set of robots induces a connected grid graph at all integer times. The objective 
is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in 
a minimum amount of time. We show that this problem is NP-complete, even for deciding 
whether a makespan of 2 can be achieved, while it is possible to check in polynomial time 
whether a makespan of 1 can be achieved. On the algorithmic side, we establish simulta-
neous constant-factor approximation for two fundamental parameters, by achieving con-
stant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of 
a given object by the same multiplicative factor) have been considered in previous semi-
nal work on self-assembly, often with unbounded or logarithmic scale factors; we provide 
methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm 
achieves a constant stretch factor: If mapping the start configuration to the target configu-
ration requires a maximum Manhattan distance of d, then the total duration of our overall 
schedule is O(d) , which is optimal up to constant factors.

Keywords  Motion planning · Parallel motion · Group coordination · Swarm robotics · 
Bounded stretch · Scaled shape · Makespan · Connectivity

1  Introduction

Coordinating the motion of a set of objects is a fundamental problem that occurs in a large 
spectrum of theoretical contexts and practical applications. A typical challenge arises from 
relocating a large collection of agents from a given start into a desired goal configuration 
in an efficient manner, while respecting a number of natural constraints, such as avoid-
ing collisions or disrupting the coherence of the arrangement. This problem was also the 
subject of the 2021 Computational Geometry Challenge, highlighting the high relevance 
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for the algorithmic community; see  [21] for an overview and  [9, 27, 44] for successful 
contributions.

In this paper, we consider a connected configuration of objects, e.g., a (potentially 
large) collective of mobile robots or blocks of building material that can be moved by a 
large group of robots, which needs to be transformed into a desired target configuration 
by a sequence of parallel, collision-free motions that keeps the overall arrangement con-
nected at all integer times. Problems of this type occur in many contexts requiring reloca-
tion of autonomous agents; the connectivity constraint arises naturally, e.g., for assemblies 
in space, where disconnected pieces cannot regain connectivity, or for small-scale swarm 
robots (such as catoms in claytronics [22]) which need connectivity for local motion, elec-
tric power and communication; see Fig. 1.

A crucial algorithmic aspect is efficiency: How can we coordinate the robot motions, 
such that a target configuration is reached in timely or energy-efficient manner? Most pre-
vious work has largely focused on sequential schedules, where one robot moves at a time, 
with objectives such as minimizing the number of moves. In practice, however, robots usu-
ally move simultaneously, so we desire a parallel motion schedule, with a natural objective 
of minimizing the time until completion, called makespan. How well can we exploit par-
allelism in a robot swarm to achieve an efficient schedule? As illustrated in Fig. 2, this is 
where the connectivity constraints make a tremendous difference.

A critical parameter in self-assembly is the robustness of the involved shapes, corre-
sponding to sufficient local connectivity to prevent fragility. This leads to the concept of 
scaled shapes; intuitively, a scale factor of c corresponds to replacing each pixel of a poly-
omino shape by a quadratic c × c array of pixels. This has fundamental connections to Kol-
mogorov and runtime complexity, as shown by Soloveichik and Winfree  [36]: “Further-
more, the independence of scale in self-assembly theory appears to play the same crucial 
role as the independence of running time in the theory of computability… [we] show that 
the running-time complexity, with respect to Turing machines, is polynomially equivalent 
to the scale complexity of the same function implemented via self-assembly by a finite set 
of tile types.” As a consequence, limiting scale has received considerable attention: While 
Soloveichik and Winfree established unbounded scale in general self-assembly, other work 
has managed to achieve logarithmic and even (in specific scenarios) constant scale.

As we demonstrate in this paper, achieving optimal makespan for connected recon-
figuration is provably hard, even in relatively basic cases. On the positive side, we pre-
sent methods that are capable of achieving a constant-factor approximation, assuming not 

Fig. 1   (Top left) An autonomous, sphere-shaped catom, changing location by rotating around a second 
catom used as a pivot [30]. (Bottom left) A collective of catoms building a wall [30]. (Right) A configura-
tion of catoms in the process of building a scaffold structure [41]
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more than a generalization of constant scale of start and target configurations. In fact, our 
method realizes constant stretch: If mapping the start configuration to the target configura-
tion requires a maximum Manhattan distance of d, then the total duration of our overall 
schedule is O(d) . As can be seen from Fig. 2a (where d corresponds to trajectory A), this is 
less straightforward than in a non-connected setting, even in very basic instances. Instead, 
this quickly requires coordination of the whole arrangement, as sketched in Fig. 2b.

1.1 � Our results

We provide a spectrum of new results for questions arising from efficiently reconfiguring 
a connected, unlabeled collective of robots from a start configuration Cs into a target con-
figuration Ct , aiming for minimizing the overall makespan and maintaining connectivity 
in each step. We obtained all of our results in obstacle-free 2D space, and discuss possible 
extensions as well as open questions in the conclusion. Some of these results are featured 
in a video [4].

•	 Deciding whether there is a schedule with a makespan of 1 transforming Cs into Ct can 
be done in polynomial time, see Theorem 1.

•	 Deciding whether there is a schedule with a makespan of 2 transforming Cs into Ct is 
NP-complete, see Theorem 2. This implies NP-hardness of approximating the mini-
mum makespan within a constant of ( 3

2
− �) , for any 𝜀 > 0 , see Corollary 2.

•	 As our main result, we show that there is a constant c∗ such that for any pair of start 
and target configurations with a (generalized) scale of at least c∗ , a schedule with con-
stant stretch can be computed in polynomial time, see Theorem 3 and Corollary 3. This 
implies that there is a constant-factor approximation for the problem of computing 

Fig. 2   Reconfiguration with and without connectivity constraints. a Relocating the colored particle from s 
to t, without (red trajectory A) and with connectivity constraint (blue trajectory B). b Coordinating many 
particles to quickly deliver a specific particle to a desired location, while preserving connectivity. Both ver-
tical lines of robots move in parallel towards each other, staying connected to the horizontal line. c Recon-
figuring an arrangement of identical particles in a single, parallel, connected step. In this case, it is possible 
that the whole arrangement rotates one step, as the robots are indistinguishable; the top-rightmost robot 
moves onto the goal location and all other robots follow. d Reconfiguring an arch-shaped arrangement 
of identical particles into a U-shaped one, without (motion plan A, shown in red) and with connectivity 
(motion plan B, shown in blue). Motion plan A splits the configuration, resulting in a makespan of length 
half the amount of robots in the top horizontal row. In motion plan B everything stays connected, but the 
horizontal row has to move all the way to the bottom, what results in longer makespan (Color figure online)
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schedules with minimal makespan restricted to pairs of start and target configurations 
with a scale of at least c∗ , see Corollary 4.

1.2 � Related work

Coordinating the motion of many agents plays a central role when dealing with large num-
bers of moving robots, vehicles, aircraft, or people. How can each agent choose an efficient 
route that avoids collisions with other agents as they simultaneously move to their desti-
nations? These basic questions arise in many applications, such as ground swarm robot-
ics [32, 33], aerial swarm robotics [8, 43], air traffic control [11], and vehicular traffic net-
works [19, 34].

Multi-robot coordination dates back to the early days of robotics and computational 
geometry. The seminal work by Schwartz and Sharir [35] from the 1980 s considers coor-
dinating the motion of disk-shaped objects among obstacles. Their algorithms are polyno-
mial in the complexity of the obstacles, but exponential in the number of disks. Hopcroft 
et al. [24] and Hopcroft and Wilfong [25] proved PSPACE-completeness of moving multi-
ple robots to a target configuration, showing the significant challenge of coordinating many 
robots.

There is a vast body of other related work dealing with multi-robot motion planning, 
both from theory and practice. For a more extensive overview, see [13]. In both discrete 
and geometric variants of the problem, the objects can be labeled, colored or unlabeled. In 
the labeled case, the objects are all distinguishable and each object has its own, uniquely 
defined target position. In the colored case, the objects are partitioned into k groups and 
each target position can only be covered by an object with the right color. This was consid-
ered by Solovey and Halperin [37], who present and evaluate a practical sampling-based 
algorithm. In the unlabeled case, objects are indistinguishable and target positions can 
be covered by any object. This was first considered by Kloder and Hutchinson [26], who 
presented a practical sampling-based algorithm. Turpin  et  al.  [42] give an algorithm for 
finding a solution in polynomial time, if one exists. This is optimal with respect to the 
longest distance traveled by any one robot, but only holds for disk-shaped robots under 
additional restrictive assumptions on the free space. For unit disks and simple polygons, 
Adler et al. [1] provide a polynomial-time algorithm under the additional assumption that 
the start and target positions have some minimal distance from each other. Under similar 
separability assumptions, Solovey et al. [39] provide a polynomial-time algorithm that pro-
duces a set of paths that is no longer than OPT + 4m , where m is the number of robots, 
and OPT denotes the total length of a set of paths of an optimal solution. However, they 
do not consider the makespan, but only the total path length. On the negative side, Solovey 
and Halperin  [38] prove that the unlabeled multiple-object motion planning problem is 
PSPACE-hard, even when restricted to unit square objects in a polygonal environment.

For an extensive overview of multi-agent path planning, refer to  [40]. Yu and LaV-
alle [45] discuss the relationship of multi-agent path planning and flow problems in colli-
sion-free unit-distance graphs. These are unit-distance graphs having the additional prop-
erty that two discs of radius 

√
2∕4 do not collide when traveling with unit speed on two 

paths that do not contain the same vertex for the same time step. They consider different 
problems settings and show, among other results, that if the goal locations can be assigned 
to arbitrary agents, a solution always exists and the longest path has at most n + V − 1 
edges, where n and V are the number of agents and vertices of the graph, respectively. 
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They also mention NP-hardness of the decision problem in case goals are pre-assigned to 
agents. Charrier et  al.  [5–7] study reachability and coverage planning problems for con-
nected agents. They show different complexity results for different topological graphs, 
consisting of vertices and two kinds of edges, one for robot motion, the other for com-
munication. They also introduce sight-movable graphs, which are undirected topological 
graphs for which there is a movable path between any pair of vertices if these vertices can 
communicate with each other. They show that this class admits efficient algorithms for the 
reachability and coverage problem. Queffelec, Sankur, and Schwarzentruber [31] study the 
connected multi-agent path finding problem in partially known environments in which the 
graph is not known entirely in advance, and show PSPACE-completeness of the problem. 
Despite the fact that all of this is related to our work, a crucial difference is that we con-
sider the stretch factor as the main performance measure.

There is also a wide range of practical related work. Self-configuration of robots as 
active agents was studied by Naz et al.  [29]. A basic model in which robots are used as 
building material was introduced by Derakhshandeh et al. [16, 17]. This resembles Clay-
tronics robots like Catoms, see Goldstein and Mowry [22]. In more recent work, Thalamy 
et al. [41] consider using scaffolding structures for asynchronous reconfiguration.

For an instance of parallel reconfiguration, a lower bound for the time required for all 
robots to reach their destinations is the time it takes to move just one robot to its destina-
tion in the absence of other robots, i.e., by the maximum distance between a robot’s origin 
and destination. Moving a dense arrangement of robots to their destinations while avoiding 
collisions may require substantially more time than this lower bound. This motivates the 
stretch factor, which is defined to be the ratio of the time taken by a parallel motion plan 
divided by the simple lower bound.

In recent work, Demaine et  al.  [13] provide several fundamental insights into these 
problems of coordinated motion planning for the scenario with labeled robots without a 
connectivity constraint. They were able to develop algorithms that (under relatively mild 
assumptions on the separation between robots) can achieve constant stretch factors that 
are independent of the number of robots. Thus, these algorithms provide an absolute per-
formance guarantee on the makespan of the parallel motion schedule, which implies that 
the schedule is a constant-factor approximation of the best possible schedule. For densely 
packed arrangements of robots (without separation assumptions), they prove that a constant 
stretch factor is no longer possible, and give upper and lower bounds on the worst-case 
stretch factor. Note that the approaches of [13] cannot be adapted, thus our demand for con-
nectivity requires new algorithmic ideas.

In the methods developed in  [3, 13], elementary pieces can achieve arbitrary rela-
tive configurations, as shown in Fig. 3, in which colors indicate the final destinations of 
components.

As discussed in [3, 13], it is straightforward to adapt this to geometric reconfigurations: 
“Filled” pixels (corresponding to material) get assigned one color (e.g., “black”), while 
“empty” pixels (corresponding to void) get a second color (e.g., “white”). However, in real-
world scenarios (such as in space, or for swarm robots as shown in Figs. 1 and 2), basic 
components need to stay connected to keep them from drifting apart. How can we develop 
efficient parallel connected reconfiguration schedules, in which all “black” pixels remain 
connected throughout the process? (Note that we aim for efficient schedules, i.e., constant 
stretch, so approaches like the recent one by Akitaya et al. [2] for transforming any arrange-
ment into the same base configuration are insufficient.)

The concept of scale complexity has received a considerable amount of attention in the 
context of self-assembly; in all settings, achieving constant scale has required special cases 
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or operations. As shown by Soloveichik and Winfree [36], the minimal number of distinct 
tile types necessary to self-assemble a shape, at some scale, can be bounded both above and 
below in terms of the shape’s Kolmogorov complexity, leading to unbounded scale in gen-
eral. As shown by Demaine et al. [15], allowing additional operations that allow destroying 
tiles can be exploited to achieve a scale that is only bounded by a logarithmic factor, beat-
ing the linear bound without such operations. In a setting of recursive, multi-level staged 
assembly with a logarithmic number of stages (i.e., “hands” for handling subassemblies), 
Demaine  et  al.  [12] achieved logarithmic scale, and constant scale for more constrained 
classes of polyomino shapes; this was later improved by Demaine et al.  [14] to constant 
scale for a logarithmic number of stages. More recently, Luchsinger et al. [28] employed 
repulsive forces between tiles to achieve constant scale in two-handed self-assembly.

2 � Preliminaries

We consider robots at integer grid positions. A set of n unlabeled robots forms a configu-
ration C, corresponding to a vertex-induced subgraph H of the infinite integer grid, with 
an edge between two grid vertices v1, v2 ∈ C if and only if v1 and v2 are on adjacent grid 
positions, i.e., a distance of 1 apart. A configuration is connected, if H is connected. Two 
configurations C1 and C2 overlap, if they have at least one position in common. Two robots 
are adjacent if their positions v1, v2 are adjacent, and diagonally adjacent if their positions 
are adjacent with a common vertex v such that (v1, v) and (v, v2) lie orthogonal.

A robot can move in discrete time steps by changing its location from a grid position 
v to an adjacent grid position w; denoted by v → w . Two moves v1 → w1 and v2 → w2 
are called collision-free if v1 ≠ v2 and w1 ≠ w2 . A transformation between two con-
figurations C1 = {v1,… , vn} and C2 = {w1,… ,wn} is a set of collision-free moves 
{vi → wi ∣ i = 1,… , n} . Furthermore, robots are allowed to remain in their current posi-
tion, i.e., we allow the move v → v . However, even though this is unproblematic for the 
unlabeled scenario, we do not allow swaps between robots, i.e., the two parallel moves 
v1 → v2 and v2 → v1 cause a collision.

For M ∈ ℕ , a schedule is a sequence C1 → ⋯ → CM+1 (also denoted as C1 ⇉ CM+1 ) 
of transformations, with a makespan of M. A stable schedule C1 ⇉� CM+1 uses only con-
nected configurations. Let Cs,Ct be two connected configurations with equally many robots 
called start and target configuration, respectively. A matching is a one-to-one mapping 
between vertices from Cs and Ct . The diameter of a matching is the maximal Manhattan 

Fig. 3   Parallel reconfiguration, established by [13]: a Start configuration. b A feasible, parallel reconfigura-
tion move. c Parallel reconfiguration moves. d Target configuration. See https://​www.​ibr.​cs.​tu-​bs.​de/​users/​
fekete/​Videos/​Coord​inate​dMoti​onPla​nning.​mp4 for a video [3]

https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4
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distance between two matched vertices. A bottleneck matching is, among all possible 
matchings, a matching with minimal diameter. The diameter d of (Cs,Ct) is the diameter 
of a bottleneck matching. The stretch (factor) of a (stable) schedule is the ratio between its 
makespan M and the diameter d of (Cs,Ct).

We consider the Connected Coordinated Motion Planning Problem that is stated as 
follows; see Fig. 2 for an illustration. Given a pair (Cs,Ct) of unlabeled connected start and 
target configurations, and an integer k, we are ask to decide whether there is a stable sched-
ule with a makespan of k that transforms Cs into Ct.

3 � Makespan 1 and 2

As a first observation we note that it can be decided in polynomial time whether there is a 
schedule Cs → Ct with a makespan of 1 between a start and a target configuration.

Theorem 1  For a pair of configurations Cs and Ct , each with n vertices, it can be decided 
in polynomial time whether there is a schedule with a makespan of 1 transforming Cs into 
Ct.

Proof  Given two connected configurations Cs and Ct , each with n vertices. We compute the 
bipartite graph GCs ,Ct

= (Vs ∪ Vt,E) , where Vs and Vt consist of all occupied positions in Cs 
and Ct . For E, we add an edge if and only if an occupied position in Ct is adjacent (or iden-
tical) to an occupied position in Cs.

Consider a perfect matching in GCs ,Ct
 . By construction, the edges in GCs ,Ct

 only connect 
positions from start and target configuration that are at most one unit step apart. As there 
is a perfect matching, no two robots want to occupy the same position. Furthermore, two 
paths of length 1 can only cross at a common vertex; this cannot happen, as we consider a 
perfect matching; therefore, all robots can move along there respective matching edges in 
parallel without collisions.

If there is no perfect matching in GCs ,Ct
 , at least one robot would have to move to a posi-

tion further away. Thus, a makespan of 1 would not be achievable. So, there is a schedule 
of makespan 1 if and only if GCs ,Ct

 admits a perfect matching. Because the graph is sparse, 

this can be checked in O(n1.5) time, using the method of Hopcroft and Karp [23]. 	�  ◻

Note that, because Cs and Ct have to be connected, a schedule with a makespan of 1 is 
always stable. Furthermore, it is easy to see that the method described in the proof of The-
orem 1 can be applied iteratively to verify whether a suggested schedule with makespan 
k ∈ ℕ is stable, and indeed transforms the given start configuration in the respective goal 
configuration. Hence, we conclude that the problem is contained in NP.

Corollary 1  For any pair of configurations, any given (stable) schedule with makespan 
k ∈ ℕ can be verified in polynomial time, i.e., this problem is in NP.

However, even for a makespan of 2, the same problem becomes provably difficult. We 
show the following theorem.
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Theorem 2  For a pair of configurations Cs and Ct , each with n vertices, deciding whether 
there is a stable schedule with a makespan of 2 transforming Cs into Ct is NP-complete.

The proof is based on a reduction from the NP-hard problem Planar Monotone 
3Sat  [10], which asks to decide whether a Boolean 3-CNF formula � is satisfiable, for 
which in each clause the literals are either all unnegated or all negated. Note that a gen-
eral instance of Planar Monotone 3Sat may contain clauses with three literals as well as 
clauses with only two literals.

For the following, we refer to Fig. 4. The reduction works as follows: For every instance 
� of Planar Monotone 3Sat, we construct an instance I� , consisting of a start configura-
tion Cs and a target configuration Ct . In the figure, we use three different colors to indicate 
occupied positions in the start configuration (red), in the target configuration (dark cyan), 
and in both configurations (gray). Therefore, we consider a rectilinear planar embedding 
of the variable-clause incidence graph G� of � where the variable vertices are placed hori-
zontally in row, and clauses containing unnegated and negated literals are placed above 
and below, respectively. All variables of � are represented by a horizontal variable gadget 
(light red). Furthermore, we position two additional auxiliary gadgets (light blue) at the 
top and at the bottom boundary of the instance, which are connected to the variable gadget 
via bridges at the right boundary. There will be a separation gadget (yellow) between 
each adjacent and nested pair of clause gadgets (blue). All clause gadgets are connected 
via bridges to separation gadgets and possibly to the auxiliary gadgets. Further, there are 
bridges from a clause gadget to the respectively contained variables.

There is a stable schedule for I� transforming the start configuration Cs into the target 
configuration Ct with a makespan of 2, if and only if � is satisfiable. In order to transform 
Cs into Ct , the separation gadgets ensure that in the single intermediate configuration, all 
clause and auxiliary gadgets are disconnected from each other. Therefore, to satisfy the 
connectivity constraint, some robots of the variable gadget need to move to provide con-
nectivity between the variable gadget and the clause gadgets. At the same time, our con-
struction ensures that robots representing a variable can either keep connectivity to their 
unnegated or to their negated literal containing clauses within a makespan of 2, because 
otherwise the connectivity within the variable gadget would be broken; thus, these move-
ments can be used to determine a valid variable assignment for �.

3.1 � Construction of the gadgets

We start with some observations regarding the target neighborhood of a given robot, i.e., 
the positions that can be reached by moving a robot twice from a given start position.

Observation 1  For a given position, the set of positions reachable within two moves is 
given by Fig. 5a.

Because we can swap the roles of the start and the target configurations, an easy con-
sequence is that if there is only one start position in the reachable neighborhood of a tar-
get position, then the robot occupying this position in the target configuration is uniquely 
defined.

In our construction, we place gadgets in such a way that they are “sufficiently far 
apart”. The reason for this is that robots that belong to a certain gadget only can occupy 
target positions within the same gadget. In particular, we place our gadgets in such a 
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Fig. 4   Symbolic overview of the NP-hardness reduction. The depicted instance is due to the Planar Mono-
tone 3Sat formula � = (x
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different colors to indicate occupied positions in the start configuration (red), in the target configuration 
(dark cyan), and in both configurations (gray) (Color figure online)
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way that a robot belonging to some gadget would need at least 6 steps to reach another 
gadget. This allows us to make statements about the movement within gadgets, as well 
as their interaction with others. We refer to all positions that belong to a gadget as G , 
and to the positions between gadgets as B . In order for the gadgets to interact with each 
other, we place robots in B (the bridges) in such a way that their respective target posi-
tions are uniquely defined in B . With this, it is easy to see that gadgets are indeed inde-
pendent from each other. We call a gadget solvable, if there is a schedule that transforms 
the start configuration into the target configuration with a makespan of 2, and each robot 
in G is connected to a robot in B . Note that we do not necessarily require the intermedi-
ate configuration to be connected in order to say that a gadget is solvable; this will not 
be the case in the separation gadget. Consider any configuration C that is composed of 
gadgets constructed in this manner, then a necessary condition for the existence of a 
schedule for C with a makespan of 2 is that every gadget is solvable.

In the following, we introduce different gadgets that are used in the proof showing 
NP-hardness of the problem. We show that these gadgets are solvable, and we indicate 
explicit schedules.

Line Gadget A line gadget is a rectangular region of size � × 7 . It consists of 
� − 4 ≥ 3 horizontally adjacent robots that occupy the same positions in both, the start 
and the target configuration, as well as a variable number of bridges of length three, as 
depicted in Fig. 6.

In the NP-hardness proof, line gadgets are used in two ways: As clause gadgets, they 
represent the logic of the satisfiability instance; as auxiliary gadgets, they ensure con-
nectivity of the start and the target configuration, respectively.

Lemma 1  The line gadget is solvable.

Proof  All robots realizing bridges move two steps to the right or to the left to their respec-
tive target positions. The line robots do not move at all. Because no robot moves vertically, 
all configurations are connected. 	�  ◻

Separation Gadget A separation gadget is a rectangular region of size 14 × 6 , con-
taining the start and the target configuration as shown in Fig. 7a.

Fig. 5   a All positions that can 
be reached by moving the robot 
initially located on the red square 
twice. b This figure shows 
a bridge. Note that all white 
squares have to be free in Cs as 
well as in Ct (Color figure online)

Fig. 6   The gray positions indi-
cate the line gadget. The colored 
positions indicate the start and 
target configurations of the 
respective bridges
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Lemma 2  The separation gadget is solvable.

Proof  There is a unique schedule with a makespan of 2, as shown in Fig. 7b. This follows 
from applying Observation 1 to the different target positions. 	�  ◻

In the intermediate configuration of the unique schedule solving a separation gadget, 
each pair of bridges is not connected within the gadget, i.e., the intermediate configu-
ration is not connected. For that reason, these gadgets will be used to disconnect the 
connections between all clause gadgets. To guarantee a fully connected intermediate 
configuration, a specific movement within the variable gadget is necessary.

Variable Gadget Let n be the number of variables of the Planar Monotone 3Sat 
instance. The variable gadget is composed of the parts shown in Fig.  8, as follows: 
There is one left end followed by n horizontally aligned variable arm segments and 
one right end. In order to capture the respective number of clauses in which a variable 
is contained, we can independently adjust the width of each arm segment. Bridges are 
placed in the gray colored hatched parts. We refer to the top and the bottom parts of the 
arm segments as the unnegated and the negated arm segment, as they model the unne-
gated and negated literals, respectively. As an example, consider Fig. 9.

Fig. 7   a shows the separation gadget. b visualizes the unique schedule with a makespan of 2

Fig. 8   The variable gadget consists of a number n variable arm segments, and exactly one left and right end 
each. Bridges to the respective clauses are placed in the hatched areas
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Lemma 3  In the variable gadget, it is not possible that both, the unnegated and the negated 
arm segment of a variable arm segment are simultaneously connected to its respective 
bridges.

Proof  Without loss of generality, we assume that in the intermediate configuration the 
robots representing the unnegated arm segment are connected to the respective bridges. We 
use the labels shown in Fig. 10. We argue that the following properties hold after the first 
transformation.

•	 At least one robot of the unnegated arm segment ( p1,… , p
�
 ) moved up.

•	 Robot Ai moved left.
•	 Robot Ri moved up.

Assume for the sake of contradiction that no robot of the unnegated arm segment moved 
up. Because the top two bridge robots moved horizontally (by applying Observation 1), 
every movement of the bridge’s bottommost robot would not yield a connection to the 
arm segment.

The robot Ai has two possible target positions, namely Bi and Ci . Assume that Ai moved 
down. Then, Xi has the unique target position Yi , so it moved left—thus, it is isolated in the 
intermediate configuration. Therefore, p1 has also moved left. It follows by induction that 

Fig. 9   An example construction of the variable gadget with three variables. Note that each arm segment is 
of different width, due to the number of clauses in which the variable is contained

Fig. 10   The figure shows the 
labeling of specific robots of a 
variable arm segment for the 
proof of Lemma 3. The positions 
pi and ni denote the unnegated 
and negated arm segment, 
respectively
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every robot of the unnegated arm segment has moved left, which is a contradiction to the 
fact that at least one robot moved up. Thus, Ai moved left.

Assume that Ri did not move up. This is a contradiction to Ai having moved left, as oth-
erwise at least Ai would be part of an isolated component in the intermediate configuration.

Similar arguments hold for the case that the robots of the negated arm segment are con-
nected to its respective bridges. Therefore, Ri has to move both up and down in the first 
transformation. As this is impossible, this concludes the proof. 	�  ◻

Lemma 4  A variable gadget is solvable.

Proof  There is a valid schedule with a makespan of 2 given in Fig. 11. The depicted sched-
ule connects the unnegated arm segment with the respective bridges; a similar schedule 
exists for the negated case. 	�  ◻

3.2 � Completing the NP‑hardness reduction

Theorem 2  For a pair of configurations Cs and Ct , each with n vertices, deciding whether 
there is a stable schedule with a makespan of 2 transforming Cs into Ct is NP-complete.

Proof  Consider a rectilinear planar embedding of the variable-clause incidence graph G� 
of a given Planar Monotone 3Sat formula � . The horizontally aligned variables in G� 
are represented by a variable gadget—each variable is represented by an arm segment. For 
each clause, we introduce a line gadget with connecting bridges (and extend them if nec-
essary) to the contained variables. We add two or three bridges according to whether the 
clause contains two or three literals, respectively. Between every nested pair of adjacent 
clauses, we introduce a separation gadget and connect it to the clauses via bridges. As a 
last step, we place two additional line gadgets at the top and bottom of the construction, 
connect them via bridges to the variable gadget, and via separation gadgets to the respec-
tive topmost and bottommost line gadgets that represent clauses. For an example, see the 
bottom part of Fig. 4.

Claim 1  If the formula � has a satisfying assignment � , then there is a valid intermediate 
configuration for I� (i.e., the intermediate configuration is connected); therefore, there is a 
stable schedule transforming Cs into Ct (both given by I� ) with a makespan of 2.

Fig. 11   The figure shows a stable schedule with a makespan of 2 as indicated in Lemma 4. Positions with 
less opacity show the respectively occupied positions in the previous step. a shows that start configuration, 
while b indicates the single intermediate configuration, and c depicts the respective target configuration
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Proof  Let � be a satisfying assignment of � . A valid intermediate configuration for I� can 
be constructed as follows: All separation, line, and variable gadgets are transformed by 
the schedules given in Lemmas 1, 2 and 4. For the assignment of variable xi the respective 
arm segment moves vertically. All bridge robots move to their respective target position 
due to Observation 1. In this configuration the helping line gadgets are directly connected 
to the variable gadget, and all clause gadgets are connected to the variable gadget as well. 
Because the disjoint parts of the separation gadgets are connected to a line gadget at one 
side, this configuration is connected.

Claim 2  If there is a connected intermediate configuration for I� (such that there is a sta-
ble schedule transforming Cs into Ct (both given by I� ) with a makespan of 2), then � is 
satisfiable.

Proof  Because the intermediate configuration is connected, each clause gadget has to be 
connected to the variable gadget. This is only possible via the bridges at the boundary of 
the gadget. Due to the construction of the separation gadgets, the clause gadgets have to be 
directly connected to the variable gadget, i.e., a shortest path connecting a robot of each 
clause gadget with a robot of the variable gadget passes no other gadget of the construc-
tion. Thus, at least one of the three bridges of each clause is connected to a respective arm 
segment of the variable gadget. Because of Lemma 3, for each variable either its unnegated 
or its negated arm segment can be connected to their respective bridges. Therefore, there is 
an assignment of {1, 0,⊥} for � , given by the movement of each variable arm segment. We 
set a variable in � to 1, if the respective arm segment is connected to the unnegated side, 0 
if it is connected to its negated side, and ⊥ otherwise. For each ⊥ we arbitrarily choose 0 or 
1. Due to the construction, this assignment satisfies �.

Claims 1 and 2 complete the proof of Theorem 2. 	�  ◻

As a consequence of our construction in the proof of Theorem 2, even approximating 
the makespan is NP-hard.

Corollary 2  It is NP-hard to compute for a pair of configurations Cs and Ct , each with n 
vertices, a stable schedule that transforms Cs into Ct within a constant of ( 3

2
− �) (for any 

𝜀 > 0 ) of the minimum makespan.

To see this, consider an instance that derived from a Boolean formula as constructed in 
our NP-hardness reduction, and assume that the Boolean formula is satisfiable. Hence, the 
optimal makespan is 2. Consider a potential approximation algorithm that has a guaranteed 
approximation factor better than 3

2
 . As the makespan is a natural number, and the minimum 

makespan of a false instance is 3, we would be able to decide with that algorithm whether 
the Boolean formula is satisfiable, having as a consequence that P=NP.

4 � Bounded stretch for arbitrary makespan

Now we describe our algorithm for computing stable schedules with constant stretch, for 
configurations of constant scale. Again, a scale factor of c corresponds to replacing each 
pixel of a polyomino shape by a quadratic c × c array of pixels; this will be defined in the 
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preliminaries for the algorithm. In the remainder of this section, we describe the different 
phases of our approach that together show the following.

Theorem 3  There is a constant c∗ such that for any pair of overlapping start and target 
configurations with a scale of at least c∗ , there is a stable schedule of constant stretch.

For clearer presentation, we do not focus on the specific value of the constant c∗ , but 
only argue its existence.

4.1 � Algorithm overview and preliminaries

We provide a high-level overview of our algorithm, as depicted in Fig. 12.
Our algorithm works in five phase, where the first two phases are preparation phases; 

note that these two phases are not visualized in Fig. 12. In Phase 1, we ensure that the pair 
(Cs,Ct) overlaps in at least one position. For this, we move Cs towards Ct along a bottle-
neck matching, such that the respective positions that realize the bottleneck distance, coin-
cide. (This overlap is crucial for successfully constructing the auxiliary structure in Phase 3 
of the approach, as we explain later.) Afterwards, in Phase 2, we use another bottleneck 
matching for mapping the start configuration Cs to the target configuration Ct , minimizing 
the maximum distance d between a start and a target location. Furthermore, we establish 

Fig. 12   Overview of the computed schedule: (Top) Constructing an auxiliary structure, called scaffold, in 
Phase 3 of our algorithm, (Right) the refilling phase (Phase 4), and (Bottom) deconstructing the scaffold in 
the final Phase 5
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the scale in both configurations, set c to be the minimum of both scale values, and compute 
a suitable tiling whose tile size is c ⋅ d , and that contain both Cs and Ct.

In Phase 3, we build a scaffolding structure around Cs and Ct , based on the boundaries 
of cd-tiles of the specific tiling. This structure enables simple connected reconfiguration 
procedures in the interior of tiles, as described in Phase 4 of our approach, yielding to a 
reconfiguration approach that consists of a connected configuration in each transformation 
step. Restricting robot motion to their current and adjacent tiles (due to the tile size) also 
ensures constant stretch. Note that, as the size of the tiles is related to d, the scaffolding 
structure is connected.

In Phase 4, we perform the actual reconfiguration of the arrangement. This consists of 
refilling the tiles of the scaffold structure, achieving the proper number of robots within 
each tile, based on elementary flow computations. As a subroutine, we transform the robots 
inside each tile into a canonical “triangle” configuration.

In the final Phase 5, we disassemble the scaffolding structure and move the involved 
robots to their proper destinations.

We proceed by providing the basic definitions, followed by summarizing the technical 
key components of our approach.

4.1.1 � Preliminaries for the algorithm

A configuration C is c-scaled, if it is the union of c × c pairwise disjoint squares of ver-
tices. The scale of a configuration C is the maximal c such that C is c-scaled; this notion 
reflects the idea of objects being composed of pixels at a certain resolution. (Note that this 
is a generalization of the uniform pixel scaling studied in previous literature, which consid-
ers a c-grid-based partition instead of an arbitrary union, so it supersedes that definition 
and leads to a more general set of results; for simplicity, we refrain from using “generalized 
scale” and stick to “scale” in the rest of the paper.) As we will establish, sufficient scale 
ensures sufficient locally available building material for connected rearrangement. Let 
c, d ∈ ℕ be the scale and the diameter of the pair (Cs,Ct) , respectively. For x, y ∈ ℕ , a cd-
tile T, or tile T for short, with anchor vertex (x ⋅ cd, y ⋅ cd) ∈ V(G) is a set of (cd)2 vertices 
from the grid G with x-coordinates from the range between x ⋅ cd and x ⋅ cd + cd − 1 and 
y-coordinates from the range between y ⋅ cd and y ⋅ cd + cd − 1 . Note that, by definition, 
two tiles are pairwise disjoint, and all anchor points have the same coordinates mod cd . 
The boundary of T is the set of vertices from T with an x-coordinate equal to x ⋅ cd or 
equal to x ⋅ cd + cd − 1 , or with a y-coordinate equal to y ⋅ cd or equal to y ⋅ cd + cd − 1 . 
The  interior of T is T without its boundary. The right, top, left, and bottom sides of T 
are the sets of vertices from the boundary of T with maximum x-coordinates, maximum 
y-coordinates, minimum x-coordinates, and minimum y-coordinates, respectively. The left 
and right sides of a tile are vertical sides and the top and bottom sides are horizontal sides. 
Two tiles T1, T2 are horizontal (vertical) neighbors if they have two horizontal (vertical) 
sides s1 ⊂ T1 and s2 ⊂ T2 , such that each vertex from s1 is adjacent in G to a vertex from s2 . 
Two tiles T1 and T2 are diagonal neighbors if there is another tile T, such that T and T1 are 
horizontal neighbors and T and T2 are vertical neighbors. The neighborhood of a tile T is 
the set of all neighbors of T.

A start tile is a tile containing a vertex from the start configuration. A target tile is a tile 
containing a vertex from the target configuration. The cd-tiling T  of (Cs,Ct) is the union 
of all start tiles including their neighborhoods and all target tiles. The scaffold Σ(T) is the 
union of all boundaries of tiles from T  . A cd-tiled configuration, or tiled configuration for 
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short, is a configuration that is a subset of the union of all tiles from T  and a superset of 
Σ(T) . The interior of a tiled configuration C is the set of all vertices from C not lying on 
Σ(T) . The filling level of a tile T ∈ T  is the number of robots in the interior of T. The filling 
level of a tiled configuration C is the mapping of each tile onto its filling level in C.

4.1.2 � Technical key components

On a technical level, the five phases can be summarized as follows; cf. Fig. 12.

(1)	 Guaranteeing Overlap Move the given configurations towards each other along a bot-
tleneck matching to ensure that the (new) pair (Cs,Ct) overlaps in at least one position.

(2)	 Preprocessing Apply the following three steps: (2.1) Set c to be the minimum of c∗ 
(that is a roughly estimated constant lower bound on the scale for which our approach 
works) and the minimum scale values of Cs and Ct . (2.2) Compute the diameter d of 
(Cs,Ct) . (2.3) Compute the tiling T  of (Cs,Ct).

	   The algorithmic core of our algorithm consists of the following three phases.
(3)	 Scaffold Construction Reconfigure the start configuration Cs to a tiled configuration C′

s
 

such that the interior of C′
s
 is a subset of the start configuration Cs.

(4)	 Refilling Tiles Reconfigure C′
s
 to a tiled configuration C′

t
 , such that the interior of C′

t
 is 

a subset of the target configuration Ct.
(5)	 Scaffold Deconstruction Reconfigure C′

t
 to Ct.

Note that the scaffold deconstruction is inverse to the scaffold construction. In the follow-
ing, we give the technical description of our algorithm, and the corresponding correctness 
analysis. In particular, we first assume that the start and target configurations overlap in at 
least one position, resulting in an algorithm guaranteeing constant stretch, and adapt this to 
the case in that an overlap initially does not exist, afterwards.

4.2 � Scaffold construction

Lemma 5  For any configuration Cs of scale c there is a stable schedule of makespan O(d) , 
transforming Cs into a tiled configuration C′

s
 , with the interior of C′

s
 being a subset of Cs.

Outline of the Construction For the construction, we consider 5 ⋅ 5 different classes, based 
on x- and y-coordinates modulo 5cd; see Fig. 13.

We process a single class as follows. For each tile T we consider its indirect neighbor-
hood N[T] consisting of all neighbors of T and all neighbors of neighbors of T, i.e., a 5 × 5 
arrangement of tiles centered at T. For constructing the boundary of T, we make use of 
robots from the interior of a tile in N[T].

Constructing the Boundary of T Works in Two Phases (3.1) Constructing the boundaries 
of all start tiles. (3.2) Constructing the boundaries of all neighbors of start tiles.

Note that it suffices to construct all boundaries of the start tiles and their neighboring 
tiles, because each target tile shares a side with a start tile or a side with a tile adjacent to 
a start tile. Furthermore, the scale condition is only necessary for the construction of the 
scaffold, i.e., we need to ensure that enough robots are available to build the scaffolding 
structure. Each additional step of the algorithm works independently of this condition.
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For Phase  3.1, we subdivide all start tiles into 5 ⋅ 5 classes of tiles, distinguishing 
between their anchors’ coordinates modulo 5cd; see the purple squares in Fig. 13. These 
classes are processed iteratively. In particular, we construct the boundaries of all tiles 
belonging to a specific class in parallel as follows. Without loss of generality, we assume 
that the union of Cs with all boundaries of start tiles is connected. Otherwise, Cs lies com-
pletely inside a single tile T, and we move all robots simultaneously down until the first 
robot lies on the boundary of T.

For each tile T of the current class, we consider a 5 × 5-neighborhood N[T] of T which 
consists of T, its neighbors, and all neighbors of neighbors of T, see Fig. 13. The scaffold 
Σ(N[T]) is the union of all boundaries of tiles from N[T]. The interior of N[T] is N[T] with-
out its scaffold, i.e., N[T] ⧵ Σ(N[T]) . The priority of a robot r from the interior of N[T] is 
the shortest-path distance inside the current configuration between r and any vertex from 
Σ(N[T]).

Let C be the current configuration, v be a vertex from the boundary of T that does not lie 
inside C but is adjacent to a robot from C, and r be a robot from the interior of N[T] with 
highest priority. If C is connected and the robot r lies in the interior of N[T], then there is a 
path P inside C connecting v and r, see the right of Fig. 13. We push all robots on P along 
P into the direction of v resulting in the connected configuration C ∪ {v} ⧵ {r} . This one-
step motion is repeated until the interior of N[T] is empty or the boundary of T is a subset 
of the current configuration.

Correctness of the Approach We need to argue that in Phase 3.1 the construction of the 
boundary of T stops because the boundary is completed and not because the interior of 
N[T] is empty.

Consider the vertices from N(T) ∶= N[T] ⧵ T  to be organized in squares nested inside 
each other as follows. All vertices v ∈ N(T) adjacent to the boundary of T belong to 
layer 1. Let N1(T) be the vertices from N(T) without the vertices from layer 1. All verti-
ces from Ni(T) that are adjacent to vertices from layer i belong to Layer i + 1 . Consider a 

Fig. 13   Constructing the scaffold. Tiles with currently constructed boundaries are marked in purple. The 
zoom into the start configuration Cs shows the indirect neighborhood N[T] of a tile T (middle) for which its 
boundary is currently constructed. A further zoom (right) into T with an associated robot motion. In each 
step a robot from the interior of a tile T � ∈ N[T] is swapped with a free position on the boundary of T based 
on a path P on a BFS-tree (Color figure online)
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path P ⊂ Cs connecting layer c with layer cd − c . As Cs is c-scaled, for each v ∈ P , there 
is a square S of side length c such that v ∈ S ⊂ Cs . Hence, there is a tile T � ∈ N[T] , such 
that all these squares cover at least (cd−2(c−2))(c−2)

2
≥

(c(d−2))(c−2)

2
 vertices from Cs , which 

is lower-bounded by c
2d

4
 for c ≥ 4 . Constructing the boundary of T takes at most 4cd − 4 

robots to be taken from the interior of N[T]. The tile T ′ is used as part of the interior of at 
most 5 ⋅ 5 = 25 tiles’ neighborhoods N[T]. Thus, at most (4cd − 4)25 < 100cd robots are 
required from the interior of the tile T � ∈ N[T] . Hence, for c

2d

4
≥ 100cd , i.e., c ≥ 400 the 

construction of the boundary of each start tile T is completed in Phase 3.1. Because there 
is a constant number of tile classes (where each class can be processed in parallel), and the 
moving distances are bounded by a constant times d, the construction in finishes in O(d) . 
Phase 3.2 is realized analogously.

4.3 � Refilling tiles

It remains to modify configurations within and between tiles. To this end, we first estab-
lish how to efficiently perform reconfigurations between any two tiled configurations with 
the same numbers of robots in the interior of respective tiles; see Sect. 4.3.1. As a second 
step, we describe how to relocate robots between tiles such that efficient reconfigurations 
between any two tiled configurations with different numbers of robots in the interior of 
respective tiles are achieved; see Sect. 4.3.2.

4.3.1 � Reconfiguration maintaining the number of robots in tiles

Lemma 6  Let C′
s
,C′

t
 be two tiled configurations such that for all tiles T, C′

s
 and C′

t
 have the 

same filling levels, i.e., for any tile, the corresponding start and target configurations con-
sist of the same respective numbers of robots. Then there is a stable schedule transforming 
C′
s
 into C′

t
 within a makespan of O(d).

In the following we describe reconfigurations that leave all robot movements within the 
interior of their respective tiles T; thus, all tiles can be reconfigured in parallel. Therefore, 
we only have to describe the approach for a start configuration Cs and a target configuration 

Ct within the interior of a single tile T of a tiled configuration C′
s
 . The idea is as follows: As 

the moves are reversible, it is sufficient to prove reachability of a canonical intermediate 
configuration in O(d) transformations, which allows us to simplify our argument. In the 
following, we define the properties of our canonical structure CΔ and provide the necessary 
means to reach it from an arbitrary initial state.

Outline of the Reconfiguration First, we compute two stable schedules Cs ⇉� Cm
s

 and 
Ct ⇉� Cm

t
 , where Cm

s
 and Cm

t
 are monotone configurations, where we call a configuration 

to be monotone, if for every robot r in the interior of T all positions to the left and to the 
bottom are occupied. These reconfigurations are achieved by a sequence of down and left 
movements, maintaining connectivity after each move (see Fig. 14, Phase 4.1). Proceeding 
from these monotone configurations, the robots are arranged into a triangular configura-
tion CΔ that occupies the lower left positions (defined by a diagonal line with a slope of 
−1 ) of the interior of T. This is achieved by swapping pairs of occupied and empty posi-
tions within a carefully defined area in several one-step moves along L-shaped paths (see 
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Fig. 14, Phase 4.2). The property of CΔ is that it is the same for all initial configurations 
with equally many robots. Thus, to get the stable schedule Cs ⇉� CΔ ⇉� Ct , we can sim-
ply revert Ct ⇉� CΔ and combine the result with Cs ⇉� CΔ.

Technically, the approach consists of the following four phases, see Fig. 14.

	(4.1)	 Monotone Start Configuration Reconfigure Cs into Cm
s

.
	(4.2)	 Canonical Triangle Reconfigure Cm

s
 into CΔ.

	(4.3)	 Monotone Target Configuration Reconfigure CΔ into Cm
t

.
	(4.4)	 Target Configuration Reconfigure Cm

t
 into Ct.

Phase 4.4 corresponds to a reversal of Phase 4.1, and Phase 4.3 to one of Phase 4.2, so 
we only have to describe the first two phases. We analyze them individually, leading 
to a proof of Lemma 6. Note that we exclude the corners of a tile, so the robots on the 
tile’s side now form four non-adjacent sides. Furthermore, only robots in a tile’s interior 
move.

Constructing the Monotone Start Configuration (Phase 4.1) In the first step, we only 
consider robots for which the right side of their tile T is the only one to which they are 

Fig. 14   Reconfiguring the configuration Cs (top) into the canonical triangle configuration CΔ (bottom). 
Phase  4.1 achieves a monotonic arrangement; light gray squares indicate previous positions of moved 
robots (shown in green). Phase 4.2 transforms the monotonic configuration into CΔ
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connected through the interior of T. We iteratively move these robots down until further 
movement is blocked, i.e., any further down move is not collision-free. In the second 
and third steps, we move all robots left, followed by moving all robots down, each time 
until further movement is blocked.

Claim 3  Phase 4.1 turns a configuration in a tiles’ interior into a monotone configuration.

Proof  It is straightforward to see that for, any configuration, Phase 4.1 results in a mono-
tone configuration, so we only argue that it yields a stable schedule.

Without loss of generality, we only consider the down movement of a robot. If the 
movement of a robot r resulted in a collision, there would be another robot on its target 
position that cannot move either. Because the robots only move down, it iteratively follows 
that this movement is blocked because of a robot that is either adjacent to the bottom side 
or for which the right side is not the only one to which it is connected.

We now argue that a down move of a robot r preserves connectivity to other robots. 
Assume that there is a robot r′ to which r was connected before the move (say, in Ci ), but 
not after it (in Ci+1 ). Consider a path from r to r′ in Ci , the last robot rj on that path which is 
not connected to r in Ci+1 , and its adjacent robot rj+1 on that path that is still connected to 
r′ ; note that this robot could be r′ itself. Because rj and rj+1 are not connected in Ci+1 , they 
were horizontally adjacent in Ci . Without loss of generality, this disconnection happened 
because rj moved down, whereas rj+1 did not. But then all positions below rj+1 had to be 
occupied. Thus, rj and rj+1 are still connected, a contradiction. 	�  ◻

By simply changing the direction of the robot’s movements from down to left, all 
arguments hold true for the entire phase.

For Phase 4.2, we use the following terminology. The level of a position in the tile’s 
interior is the sum of its coordinates. A level is filled, if all of its positions are occupied 
by a robot, and empty, if none is occupied by a robot. The highest filled level is denoted 
by L, the lowest empty level by U. Let M be the set of all positions on level U − 1 occu-
pied by a robot, and V be the set of all positions on level L + 1 that are not occupied by a 
robot; we call the positions of M and V mountains and valleys, respectively.

Constructing the Canonical Triangle (Phase 4.2) Choose two equally sized subsets 
M

′ ⊆ M and V′ ⊆ V and push each robot from M′ to a different position in V′ along 
an L-shaped path; this can be done simultaneously in one parallel move for all paths. 
To determine the paths, simply match mountains and valleys, iteratively, in a way that 
no pair of paths cross each other. This results in reducing U, and raising L, i.e., the two 
levels move towards each other. We distinguish two cases.

•	 U − L > 2 : If |M| ≥ |V| , choose an arbitrary subset M′ ⊂ M with |M�| = |V| . Oth-
erwise, choose an arbitrary subset V′ ⊂ V with |V�| = |M|.

•	 U − L = 2 : Note that mountains and valleys are on the same level, and |V| ≥ |M| 
hold. Choose V′ ⊂ V to be the subset of size |M| with smallest x-coordinates and set 
M

� = M.

Claim 4  Phase 4.2 yields a stable schedule for reconfiguring all monotone configurations 
with the same number of robots into the same triangular configuration.
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Proof  We show the following properties. 

1.	 The pushing paths do not cross.
2.	 After each iteration, U − L decreases by at least 1.
3.	 The approach terminates in a configuration that only depends on the number of robots.

For the non-crossing property of the paths, we show that the mountains and valleys have 
pairwise disjoint x- and y-coordinates. If U − L > 2 , assume for the sake of contradiction 
that a mountain and a valley have equal x-coordinate. These positions have to be adjacent, 
which would result in U − L = 1 , a contradiction. If U − L = 2 holds, mountains and val-
leys are already on the same level, so they have distinct x-coordinates. Similar arguments 
hold for the y-coordinates. It directly follows from the definition of levels that for all posi-
tions (x1, y1), (x2, y2) ∈ M ∪ V , x1 < x2 implies y1 > y2 . Together with the construction of 
the paths by matching adjacent mountains and valleys, it follows that these paths do not 
cross.

By construction, U > L always holds. If M� = M holds, level U − 1 gets empty; there-
fore, U is decreased. In any case, U cannot be increased, because all positions that get occu-
pied are at level L + 1 . A similar argument holds if V� = V holds, thus, U − L decreases by 
at least 1 in each iteration.

If U − L = 2 holds, there is at most one level that contains occupied and empty posi-
tions. All robots on this level will be positioned leftmost; all levels with greater values are 
empty, and all levels with lower values are full.

Because the paths are non-crossing, the computed schedule is stable. 	�  ◻

Proof of Lemma 6  Compute stable schedules consisting of Phases 4.1 and 4.2 for the start 
and the target configuration, Cs and Ct , to reconfigure them into CΔ . Reverting Ct ⇉� CΔ 
and combining it with Cs ⇉� CΔ results in the entire stable schedule transforming Cs into 
Ct . Because Phase 4.1 as well as Phase 4.2 can be realized in a makespan of O(d) (because 
a robot’s maximum distance to a side, and the maximum level difference are upper-
bounded by O(d) ), the makespan of Cs ⇉� Ct is in O(d) . 	�  ◻

4.3.2 � Refilling tiled configurations

Now we describe the final step for reconfiguring a tiled start configuration C′
s
 into a tiled 

target configuration C′
t
 ; because no robots are destroyed or created, this hinges on shifting 

robots between adjacent tiles, such that the required filling levels are achieved.

Lemma 7  We can efficiently compute a stable schedule transforming C′
s
 into C′

t
 within a 

makespan of O(d).

Outline of the Refilling Phase To compute the schedule of Lemma 7, we transfer robots 
between tiles, so that each tile T contains the desired number in C′

t
 . We model this robot 

transfer by a supply and demand flow, see Figs. 15 and 16, followed by partitioning the flow 
into O(1) subflows, such that each subflow can be realized within a makespan of O(d) . For 
realizing a single subflow, we use the approach of Sect. 4.3.1 as a preprocessing step, i.e., 
to rearrange robots participating in a specific subflow and place them at suitable positions.
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Modeling Transfer of Robots via a Supply and Demand Flow We model the transfer of 
robots between tiles as a flow F ∶ E(G) → ℕ , using the directed graph G = (T,E) which is 
dual to the tiling T  . Let B be the bottleneck matching between vertices from the original 
(non-tiled) Cs and vertices from the final (non-tiled) Ct . In G we have an edge (u, v) ∈ E , if 
there is at least one matching edge (ru, rv) ∈ B , such that ru lies in the interior of the tile u in 
configuration C′

s
 , and rv lies in the interior of the tile v in configuration C′

t
 . The flow value 

F((u, v)) of (u, v) is equal to the number of such edges (ru, rv) ∈ B . A vertex v ∈ V(G) has 
a demand of a > 0 if the sum of the flow values of outgoing edges from v plus a is equal 
to the sum of the flows of incoming edges to v. Analogously, v has a supply of a > 0 if the 
sum of flow values incoming to v plus a equals the sum of flow values outgoing from v.

Flow Partition and Algorithmic Computation We now define a flow partition of 
F. For k ∈ ℕ , a k-subflow of F is a supply and demand flow f ∶ E(G) → ℕ on G with 
f (e) ≤ min{k,F(e)} . A k-partition of the flow F is a set {f1,… , f

�
} of k-subflows of F, such 

that 
∑

i=1,…,� fi(e) = F(e) holds for all edges e ∈ E(G).
We describe our approach for computing a �-partition of F, with � ∶= ⌊ (cd−2)2

9
⌋ ; the 

value � arises from partitioning the interior (made up of (cd − 2)2 pixels) of each tile into 
9 almost equally sized subtiles that are used for realizing a single set of paths as described 
below, see Fig. 18.

Fig. 16   A pair of configura-
tions C′

s
 (red) and C′

t
 (cyan) and 

the resulting flow modeling the 
edges of the bottleneck matching. 
The left vertex of G has demand 
1, the right vertex has supply 1

Fig. 15   An overview of the schedule refilling tiles: transforming C′
s
 into C′

t
 by realizing a partition of a sup-

ply and demand flow that is computed in advance
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We compute a 1-partition of G, with each 1-subflow being either a cycle or a path that 
connects a supply vertex with a demand vertex. Because the robots are unlabeled, we can 
simplify G by eliminating all cyclic 1-subflows, as they are not necessary to realize this 
specific transfer of robots; note that this also applies to bidirectional edges. Furthermore, 
we replace diagonal edges (v,w) ∈ E(G) by a pair of adjacent edges (v, u), (u,w) ∈ E(G) . 
After all cyclic subflows are removed, G is a planar, directed forest consisting of 1-sub-
flows that are paths, see Fig. 17a. We process each tree A ⊂ G that is made up of paths 
P1,P2,… separately as follows: We choose an arbitrary vertex of A as its root and consider 
the link distance of Pi as the minimal length of the path between a vertex from Pi and the 
root of A. Let P1,P2,… ⊆ G be sorted by increasing link distances, which is important for 
our next argument, regarding that we can partition these paths into constant many subflows 
each of which is realizable in time linear in d. We greedily assign each path Pi = P1,P2,… 

Fig. 17   a We model the movements of robots between tiles as paths forming a tree. By greedily assigning 
these paths to sets (here highlighted by different colors), such that inside each set each edge is contained in 
no more than 3 paths, we obtain that at most Θ(d2) sets are needed. b An example of a set containing three 
paths (dark red, pink, and red; assigned in that order to Sj ) having a common edge e caused by a vertex v of 
e with an incoming degree of 3 (Color figure online)

Fig. 18   a A portion of a set of paths containing a vertex v: 56 paths are passing v from left to right, while 
40 + 56 = 96 paths are starting in v. b The configuration after realizing the set of paths shown in the previ-
ous figure. c How positions of robots have changed after realization
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to a set Sj , such that the first edge e1 of Pi is not part of another path inside Sj . If no such a 
set Sj exists, we create a new set S ← {Pi} . For each tree we use the same sets S1, S2,… of 
collected paths, because different trees of G are disjoint. Note, that the construction of the 
sets Sj allow that an edge is part of at most three paths inside Sj . This is due to the fact that 
the income degree of the head vertex of a directed edge is at most three in the setting of a 
grid graph, resulting in at most three outgoing edges.

Finally, we greedily partition {S1, S2,…} into subsets G1,G2,… called groups, made up of 
(cd−2)2

9⋅3
 sets. For each group Gi , we define a subflow fi by setting fi(e) as the number of paths 

from Gi containing the edge e. As for each set Si and each edge e, there are at most three paths 

inside Si containing e, each resulting subflow fi is a 
(

(cd−2)2

9⋅3
⋅ 3

)
= �-subflow. Finally, we 

have to upper-bound the number of resulting subflows, i.e., the number of groups.

Lemma 8  The constructed �-partition {f1, f2,…} consists of at most 28 subflows.

Proof  The number of robots in the interior of each tile is upper-bounded by (cd − 2)2 
which is the number of pixels in a tiles’ interior. Substituting at most two diagonal edges 
increases the number of robots leaving or entering a specific tile by at most 2(cd − 2)2 . 
Hence, the flow value of each edge is upper-bounded by 3(cd − 2)2 (⋆) after substituting 
diagonal edges.

Suppose our approach constructs 28 groups implying that our approach gets into con-

figuration with 27 ⋅ (cd−2)2

9⋅3
=∶ � constructed sets S1, S2,… and the current path Pi has to be 

assigned to a new set S�+1 . This implies that each set S1,… , S� contains a path Si contain-

ing the first edge e1 of Pi . Hence, there are at least 27 ⋅ (cd−2)2

9
+ 1 > 3(cd − 2)2 paths con-

taining e1 , contradicting (⋆) . 	�  ◻

Realizing a �-Partition Now we describe how to reconfigure a tiled configuration, such 
that a �-subflow is removed from G. A �-subflow fi is realized by transforming the current 
configuration into another configuration, such that for each edge e with fi((T , T �)) > 0 , the 
number of robots in the interior of tile T is decreased by fi((T , T �)) and the number of the 
robots in the interior of tile T ′ is increased by fi((T , T �)).

Next we realize a specific �-subflow within a makespan of O(d) . In particular, we parti-
tion the interior of each tile T into 9 subtiles with equal side lengths (up to rounding), see 
Fig. 18. For each subflow fi , we place fi((T , T �)) robots inside the middle subtile of T that 
shares an edge with the boundary of T adjacent to T ′ . In particular, robots placed in the 
same subtile are arranged in layers of width ⌊ cd−2

9
⌋ as close as possible to the boundary of 

the tile, see Fig. 18a. The resulting arrangement of robots inside the subtile of T is a cluster 
and T ′ the target tile of the cluster. By a single application of the approach from Sect. 4.3.1, 
all clusters of all tiles are arranged simultaneously within a makespan of O(d) . Finally, 
simultaneously pushing all clusters of all tiles into the direction of their target tiles realizes 
Si , see Fig. 18b. Note that not all robots are pushed into the target tile T ′ but some replace 
robots on the boundaries between T and T ′ , see Fig. 18c.

Repeating this approach for each subflow fi leads to a stable schedule that realizes the 
entire flow F within a makespan linear in d, i.e., transforms C′

s
 into C′

t
 within O(d) transfor-

mation steps, see Fig. 15.



	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 26 of 29

Proof of Lemma 7  The schedule described above (and illustrated in Fig.  18) is correct 
because of the following. For each tile T ∈ V(G) , the number of the paths starting in T 
equals the supply of T, while the number of paths ending in T equals the demand of T. As T 
has either a supply or a demand, but not both, so the tile T is never too full to receive addi-
tional robots, and never too empty to deliver robots as required by paths containing T. 	
� ◻

This concludes the proof of Theorem 3. Finally, we adapt the result to the general case, 
for which overlap of the start and target configuration is not guaranteed.

Corollary 3  There is a constant c∗ such that for any pair of start and target configurations 
with a scale of at least c∗ , there is a stable schedule of constant stretch.

Proof  In case of a pair (Cs,Ct) , consisting of a start and a target configuration, that does not 
overlap, our algorithm computes in a first step a minimum bottleneck matching mapping Cs 
to Ct resulting in a bottleneck distance d , and translates Cs into a configuration Cs overlap-
ping the target configuration within a makespan of d . This results in a bottleneck distance 
d between Cs and Ct which is at most 2d . As Theorem 3 guarantees a makespan linear in d, 
we obtain a makespan linear in d + d , i.e., linear in d for the overall algorithm. 	�  ◻

As the diameter of the pair (Cs,Ct) is a lower bound for the makespan of any schedule 
transforming Cs into Ct , we obtain the following.

Corollary 4  There is a constant-factor approximation for computing stable schedules with 
minimal makespan between pairs of start and target configurations with a scale of at least 
c∗ , for some constant c∗.

All steps in the overall algorithm can be computed in an efficient manner. Critical is the 
computation of matchings (Phase 2): the underlying geometry can be exploited for comput-
ing bottleneck matchings for a set of points in the plane in O(n1.5 log n) [18]. The required 
BFS tree (Phase 3) and flow decomposition (Phase 4) can both be computed in straightfor-
ward manner; note that Phase 4 does not require a smallest decomposition, and the edge 
capacities are strongly polynomial in the number n of robots.

5 � Conclusion

We have shown that connected coordinated motion planning is challenging even in rela-
tively simple cases, such as unlabeled robots that have to travel a distance of at most 2 
units, by establishing NP-completeness. On the other hand, we have shown that (assuming 
sufficient scale of the swarm), it is possible to compute efficient reconfiguration schedules 
with constant stretch.

It is straightforward to extend our approach to other scenarios, e.g., to three-dimensional 
configurations. Other questions appear less clear. Is it possible to achieve constant stretch 
for arrangements with very small scale factor? We believe that this may hinge on the ability 
to perform synchronized shifts on long-distance “chains” of robots without delay, which is 
not a valid assumption for many real-world scenarios. (A well-known example is a line of 
cars when a traffic light turns green.) As a consequence, the answer may depend on crucial 



Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 27 of 29  43

assumptions on motion control; we avoid this issue in our approach. Can we provide alter-
native approaches with either weaker scale assumptions or better stretch factors? Can we 
extend our methods to the labeled case? All these questions are left for future work.
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