
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:43
https://doi.org/10.1007/s10458-023-09626-5

1 3

Connected coordinated motion planning with bounded
stretch

Sándor P. Fekete1 · Phillip Keldenich1 · Ramin Kosfeld1 · Christian Rieck1 ·
Christian Scheffer2

Accepted: 13 September 2023 / Published online: 17 October 2023
© The Author(s) 2023

Abstract
We consider the problem of connected coordinated motion planning for a large collective
of simple, identical robots: From a given start grid configuration of robots, we need to
reach a desired target configuration via a sequence of parallel, collision-free robot motions,
such that the set of robots induces a connected grid graph at all integer times. The objective
is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in
a minimum amount of time. We show that this problem is NP-complete, even for deciding
whether a makespan of 2 can be achieved, while it is possible to check in polynomial time
whether a makespan of 1 can be achieved. On the algorithmic side, we establish simulta-
neous constant-factor approximation for two fundamental parameters, by achieving con-
stant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of
a given object by the same multiplicative factor) have been considered in previous semi-
nal work on self-assembly, often with unbounded or logarithmic scale factors; we provide
methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm
achieves a constant stretch factor: If mapping the start configuration to the target configu-
ration requires a maximum Manhattan distance of d, then the total duration of our overall
schedule is O(d) , which is optimal up to constant factors.

Keywords  Motion planning · Parallel motion · Group coordination · Swarm robotics ·
Bounded stretch · Scaled shape · Makespan · Connectivity

1  Introduction

Coordinating the motion of a set of objects is a fundamental problem that occurs in a large
spectrum of theoretical contexts and practical applications. A typical challenge arises from
relocating a large collection of agents from a given start into a desired goal configuration
in an efficient manner, while respecting a number of natural constraints, such as avoid-
ing collisions or disrupting the coherence of the arrangement. This problem was also the
subject of the 2021 Computational Geometry Challenge, highlighting the high relevance

A preliminary abstract appears in the 32nd International Symposium on Algorithms and Computation
(ISAAC) [20]. This version contains the omitted proofs and further details.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09626-5&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 2 of 29

for the algorithmic community; see [21] for an overview and [9, 27, 44] for successful
contributions.

In this paper, we consider a connected configuration of objects, e.g., a (potentially
large) collective of mobile robots or blocks of building material that can be moved by a
large group of robots, which needs to be transformed into a desired target configuration
by a sequence of parallel, collision-free motions that keeps the overall arrangement con-
nected at all integer times. Problems of this type occur in many contexts requiring reloca-
tion of autonomous agents; the connectivity constraint arises naturally, e.g., for assemblies
in space, where disconnected pieces cannot regain connectivity, or for small-scale swarm
robots (such as catoms in claytronics [22]) which need connectivity for local motion, elec-
tric power and communication; see Fig. 1.

A crucial algorithmic aspect is efficiency: How can we coordinate the robot motions,
such that a target configuration is reached in timely or energy-efficient manner? Most pre-
vious work has largely focused on sequential schedules, where one robot moves at a time,
with objectives such as minimizing the number of moves. In practice, however, robots usu-
ally move simultaneously, so we desire a parallel motion schedule, with a natural objective
of minimizing the time until completion, called makespan. How well can we exploit par-
allelism in a robot swarm to achieve an efficient schedule? As illustrated in Fig. 2, this is
where the connectivity constraints make a tremendous difference.

A critical parameter in self-assembly is the robustness of the involved shapes, corre-
sponding to sufficient local connectivity to prevent fragility. This leads to the concept of
scaled shapes; intuitively, a scale factor of c corresponds to replacing each pixel of a poly-
omino shape by a quadratic c × c array of pixels. This has fundamental connections to Kol-
mogorov and runtime complexity, as shown by Soloveichik and Winfree [36]: “Further-
more, the independence of scale in self-assembly theory appears to play the same crucial
role as the independence of running time in the theory of computability… [we] show that
the running-time complexity, with respect to Turing machines, is polynomially equivalent
to the scale complexity of the same function implemented via self-assembly by a finite set
of tile types.” As a consequence, limiting scale has received considerable attention: While
Soloveichik and Winfree established unbounded scale in general self-assembly, other work
has managed to achieve logarithmic and even (in specific scenarios) constant scale.

As we demonstrate in this paper, achieving optimal makespan for connected recon-
figuration is provably hard, even in relatively basic cases. On the positive side, we pre-
sent methods that are capable of achieving a constant-factor approximation, assuming not

Fig. 1   (Top left) An autonomous, sphere-shaped catom, changing location by rotating around a second
catom used as a pivot [30]. (Bottom left) A collective of catoms building a wall [30]. (Right) A configura-
tion of catoms in the process of building a scaffold structure [41]

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 3 of 29  43

more than a generalization of constant scale of start and target configurations. In fact, our
method realizes constant stretch: If mapping the start configuration to the target configura-
tion requires a maximum Manhattan distance of d, then the total duration of our overall
schedule is O(d) . As can be seen from Fig. 2a (where d corresponds to trajectory A), this is
less straightforward than in a non-connected setting, even in very basic instances. Instead,
this quickly requires coordination of the whole arrangement, as sketched in Fig. 2b.

1.1 � Our results

We provide a spectrum of new results for questions arising from efficiently reconfiguring
a connected, unlabeled collective of robots from a start configuration Cs into a target con-
figuration Ct , aiming for minimizing the overall makespan and maintaining connectivity
in each step. We obtained all of our results in obstacle-free 2D space, and discuss possible
extensions as well as open questions in the conclusion. Some of these results are featured
in a video [4].

•	 Deciding whether there is a schedule with a makespan of 1 transforming Cs into Ct can
be done in polynomial time, see Theorem 1.

•	 Deciding whether there is a schedule with a makespan of 2 transforming Cs into Ct is
NP-complete, see Theorem 2. This implies NP-hardness of approximating the mini-
mum makespan within a constant of (3

2
− �) , for any 𝜀 > 0 , see Corollary 2.

•	 As our main result, we show that there is a constant c∗ such that for any pair of start
and target configurations with a (generalized) scale of at least c∗ , a schedule with con-
stant stretch can be computed in polynomial time, see Theorem 3 and Corollary 3. This
implies that there is a constant-factor approximation for the problem of computing

Fig. 2   Reconfiguration with and without connectivity constraints. a Relocating the colored particle from s
to t, without (red trajectory A) and with connectivity constraint (blue trajectory B). b Coordinating many
particles to quickly deliver a specific particle to a desired location, while preserving connectivity. Both ver-
tical lines of robots move in parallel towards each other, staying connected to the horizontal line. c Recon-
figuring an arrangement of identical particles in a single, parallel, connected step. In this case, it is possible
that the whole arrangement rotates one step, as the robots are indistinguishable; the top-rightmost robot
moves onto the goal location and all other robots follow. d Reconfiguring an arch-shaped arrangement
of identical particles into a U-shaped one, without (motion plan A, shown in red) and with connectivity
(motion plan B, shown in blue). Motion plan A splits the configuration, resulting in a makespan of length
half the amount of robots in the top horizontal row. In motion plan B everything stays connected, but the
horizontal row has to move all the way to the bottom, what results in longer makespan (Color figure online)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 4 of 29

schedules with minimal makespan restricted to pairs of start and target configurations
with a scale of at least c∗ , see Corollary 4.

1.2 � Related work

Coordinating the motion of many agents plays a central role when dealing with large num-
bers of moving robots, vehicles, aircraft, or people. How can each agent choose an efficient
route that avoids collisions with other agents as they simultaneously move to their desti-
nations? These basic questions arise in many applications, such as ground swarm robot-
ics [32, 33], aerial swarm robotics [8, 43], air traffic control [11], and vehicular traffic net-
works [19, 34].

Multi-robot coordination dates back to the early days of robotics and computational
geometry. The seminal work by Schwartz and Sharir [35] from the 1980 s considers coor-
dinating the motion of disk-shaped objects among obstacles. Their algorithms are polyno-
mial in the complexity of the obstacles, but exponential in the number of disks. Hopcroft
et al. [24] and Hopcroft and Wilfong [25] proved PSPACE-completeness of moving multi-
ple robots to a target configuration, showing the significant challenge of coordinating many
robots.

There is a vast body of other related work dealing with multi-robot motion planning,
both from theory and practice. For a more extensive overview, see [13]. In both discrete
and geometric variants of the problem, the objects can be labeled, colored or unlabeled. In
the labeled case, the objects are all distinguishable and each object has its own, uniquely
defined target position. In the colored case, the objects are partitioned into k groups and
each target position can only be covered by an object with the right color. This was consid-
ered by Solovey and Halperin [37], who present and evaluate a practical sampling-based
algorithm. In the unlabeled case, objects are indistinguishable and target positions can
be covered by any object. This was first considered by Kloder and Hutchinson [26], who
presented a practical sampling-based algorithm. Turpin et al. [42] give an algorithm for
finding a solution in polynomial time, if one exists. This is optimal with respect to the
longest distance traveled by any one robot, but only holds for disk-shaped robots under
additional restrictive assumptions on the free space. For unit disks and simple polygons,
Adler et al. [1] provide a polynomial-time algorithm under the additional assumption that
the start and target positions have some minimal distance from each other. Under similar
separability assumptions, Solovey et al. [39] provide a polynomial-time algorithm that pro-
duces a set of paths that is no longer than OPT + 4m , where m is the number of robots,
and OPT denotes the total length of a set of paths of an optimal solution. However, they
do not consider the makespan, but only the total path length. On the negative side, Solovey
and Halperin [38] prove that the unlabeled multiple-object motion planning problem is
PSPACE-hard, even when restricted to unit square objects in a polygonal environment.

For an extensive overview of multi-agent path planning, refer to [40]. Yu and LaV-
alle [45] discuss the relationship of multi-agent path planning and flow problems in colli-
sion-free unit-distance graphs. These are unit-distance graphs having the additional prop-
erty that two discs of radius

√
2∕4 do not collide when traveling with unit speed on two

paths that do not contain the same vertex for the same time step. They consider different
problems settings and show, among other results, that if the goal locations can be assigned
to arbitrary agents, a solution always exists and the longest path has at most n + V − 1
edges, where n and V are the number of agents and vertices of the graph, respectively.

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 5 of 29  43

They also mention NP-hardness of the decision problem in case goals are pre-assigned to
agents. Charrier et al. [5–7] study reachability and coverage planning problems for con-
nected agents. They show different complexity results for different topological graphs,
consisting of vertices and two kinds of edges, one for robot motion, the other for com-
munication. They also introduce sight-movable graphs, which are undirected topological
graphs for which there is a movable path between any pair of vertices if these vertices can
communicate with each other. They show that this class admits efficient algorithms for the
reachability and coverage problem. Queffelec, Sankur, and Schwarzentruber [31] study the
connected multi-agent path finding problem in partially known environments in which the
graph is not known entirely in advance, and show PSPACE-completeness of the problem.
Despite the fact that all of this is related to our work, a crucial difference is that we con-
sider the stretch factor as the main performance measure.

There is also a wide range of practical related work. Self-configuration of robots as
active agents was studied by Naz et al. [29]. A basic model in which robots are used as
building material was introduced by Derakhshandeh et al. [16, 17]. This resembles Clay-
tronics robots like Catoms, see Goldstein and Mowry [22]. In more recent work, Thalamy
et al. [41] consider using scaffolding structures for asynchronous reconfiguration.

For an instance of parallel reconfiguration, a lower bound for the time required for all
robots to reach their destinations is the time it takes to move just one robot to its destina-
tion in the absence of other robots, i.e., by the maximum distance between a robot’s origin
and destination. Moving a dense arrangement of robots to their destinations while avoiding
collisions may require substantially more time than this lower bound. This motivates the
stretch factor, which is defined to be the ratio of the time taken by a parallel motion plan
divided by the simple lower bound.

In recent work, Demaine et al. [13] provide several fundamental insights into these
problems of coordinated motion planning for the scenario with labeled robots without a
connectivity constraint. They were able to develop algorithms that (under relatively mild
assumptions on the separation between robots) can achieve constant stretch factors that
are independent of the number of robots. Thus, these algorithms provide an absolute per-
formance guarantee on the makespan of the parallel motion schedule, which implies that
the schedule is a constant-factor approximation of the best possible schedule. For densely
packed arrangements of robots (without separation assumptions), they prove that a constant
stretch factor is no longer possible, and give upper and lower bounds on the worst-case
stretch factor. Note that the approaches of [13] cannot be adapted, thus our demand for con-
nectivity requires new algorithmic ideas.

In the methods developed in [3, 13], elementary pieces can achieve arbitrary rela-
tive configurations, as shown in Fig. 3, in which colors indicate the final destinations of
components.

As discussed in [3, 13], it is straightforward to adapt this to geometric reconfigurations:
“Filled” pixels (corresponding to material) get assigned one color (e.g., “black”), while
“empty” pixels (corresponding to void) get a second color (e.g., “white”). However, in real-
world scenarios (such as in space, or for swarm robots as shown in Figs. 1 and 2), basic
components need to stay connected to keep them from drifting apart. How can we develop
efficient parallel connected reconfiguration schedules, in which all “black” pixels remain
connected throughout the process? (Note that we aim for efficient schedules, i.e., constant
stretch, so approaches like the recent one by Akitaya et al. [2] for transforming any arrange-
ment into the same base configuration are insufficient.)

The concept of scale complexity has received a considerable amount of attention in the
context of self-assembly; in all settings, achieving constant scale has required special cases

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 6 of 29

or operations. As shown by Soloveichik and Winfree [36], the minimal number of distinct
tile types necessary to self-assemble a shape, at some scale, can be bounded both above and
below in terms of the shape’s Kolmogorov complexity, leading to unbounded scale in gen-
eral. As shown by Demaine et al. [15], allowing additional operations that allow destroying
tiles can be exploited to achieve a scale that is only bounded by a logarithmic factor, beat-
ing the linear bound without such operations. In a setting of recursive, multi-level staged
assembly with a logarithmic number of stages (i.e., “hands” for handling subassemblies),
Demaine et al. [12] achieved logarithmic scale, and constant scale for more constrained
classes of polyomino shapes; this was later improved by Demaine et al. [14] to constant
scale for a logarithmic number of stages. More recently, Luchsinger et al. [28] employed
repulsive forces between tiles to achieve constant scale in two-handed self-assembly.

2 � Preliminaries

We consider robots at integer grid positions. A set of n unlabeled robots forms a configu-
ration C, corresponding to a vertex-induced subgraph H of the infinite integer grid, with
an edge between two grid vertices v1, v2 ∈ C if and only if v1 and v2 are on adjacent grid
positions, i.e., a distance of 1 apart. A configuration is connected, if H is connected. Two
configurations C1 and C2 overlap, if they have at least one position in common. Two robots
are adjacent if their positions v1, v2 are adjacent, and diagonally adjacent if their positions
are adjacent with a common vertex v such that (v1, v) and (v, v2) lie orthogonal.

A robot can move in discrete time steps by changing its location from a grid position
v to an adjacent grid position w; denoted by v → w . Two moves v1 → w1 and v2 → w2
are called collision-free if v1 ≠ v2 and w1 ≠ w2 . A transformation between two con-
figurations C1 = {v1,… , vn} and C2 = {w1,… ,wn} is a set of collision-free moves
{vi → wi ∣ i = 1,… , n} . Furthermore, robots are allowed to remain in their current posi-
tion, i.e., we allow the move v → v . However, even though this is unproblematic for the
unlabeled scenario, we do not allow swaps between robots, i.e., the two parallel moves
v1 → v2 and v2 → v1 cause a collision.

For M ∈ ℕ , a schedule is a sequence C1 → ⋯ → CM+1 (also denoted as C1 ⇉ CM+1 )
of transformations, with a makespan of M. A stable schedule C1 ⇉� CM+1 uses only con-
nected configurations. Let Cs,Ct be two connected configurations with equally many robots
called start and target configuration, respectively. A matching is a one-to-one mapping
between vertices from Cs and Ct . The diameter of a matching is the maximal Manhattan

Fig. 3   Parallel reconfiguration, established by [13]: a Start configuration. b A feasible, parallel reconfigura-
tion move. c Parallel reconfiguration moves. d Target configuration. See https://​www.​ibr.​cs.​tu-​bs.​de/​users/​
fekete/​Videos/​Coord​inate​dMoti​onPla​nning.​mp4 for a video [3]

https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 7 of 29  43

distance between two matched vertices. A bottleneck matching is, among all possible
matchings, a matching with minimal diameter. The diameter d of (Cs,Ct) is the diameter
of a bottleneck matching. The stretch (factor) of a (stable) schedule is the ratio between its
makespan M and the diameter d of (Cs,Ct).

We consider the Connected Coordinated Motion Planning Problem that is stated as
follows; see Fig. 2 for an illustration. Given a pair (Cs,Ct) of unlabeled connected start and
target configurations, and an integer k, we are ask to decide whether there is a stable sched-
ule with a makespan of k that transforms Cs into Ct.

3 � Makespan 1 and 2

As a first observation we note that it can be decided in polynomial time whether there is a
schedule Cs → Ct with a makespan of 1 between a start and a target configuration.

Theorem 1  For a pair of configurations Cs and Ct , each with n vertices, it can be decided
in polynomial time whether there is a schedule with a makespan of 1 transforming Cs into
Ct.

Proof  Given two connected configurations Cs and Ct , each with n vertices. We compute the
bipartite graph GCs ,Ct

= (Vs ∪ Vt,E) , where Vs and Vt consist of all occupied positions in Cs
and Ct . For E, we add an edge if and only if an occupied position in Ct is adjacent (or iden-
tical) to an occupied position in Cs.

Consider a perfect matching in GCs ,Ct
 . By construction, the edges in GCs ,Ct

 only connect
positions from start and target configuration that are at most one unit step apart. As there
is a perfect matching, no two robots want to occupy the same position. Furthermore, two
paths of length 1 can only cross at a common vertex; this cannot happen, as we consider a
perfect matching; therefore, all robots can move along there respective matching edges in
parallel without collisions.

If there is no perfect matching in GCs ,Ct
 , at least one robot would have to move to a posi-

tion further away. Thus, a makespan of 1 would not be achievable. So, there is a schedule
of makespan 1 if and only if GCs ,Ct

 admits a perfect matching. Because the graph is sparse,

this can be checked in O(n1.5) time, using the method of Hopcroft and Karp [23]. 	� ◻

Note that, because Cs and Ct have to be connected, a schedule with a makespan of 1 is
always stable. Furthermore, it is easy to see that the method described in the proof of The-
orem 1 can be applied iteratively to verify whether a suggested schedule with makespan
k ∈ ℕ is stable, and indeed transforms the given start configuration in the respective goal
configuration. Hence, we conclude that the problem is contained in NP.

Corollary 1  For any pair of configurations, any given (stable) schedule with makespan
k ∈ ℕ can be verified in polynomial time, i.e., this problem is in NP.

However, even for a makespan of 2, the same problem becomes provably difficult. We
show the following theorem.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 8 of 29

Theorem 2  For a pair of configurations Cs and Ct , each with n vertices, deciding whether
there is a stable schedule with a makespan of 2 transforming Cs into Ct is NP-complete.

The proof is based on a reduction from the NP-hard problem Planar Monotone
3Sat [10], which asks to decide whether a Boolean 3-CNF formula � is satisfiable, for
which in each clause the literals are either all unnegated or all negated. Note that a gen-
eral instance of Planar Monotone 3Sat may contain clauses with three literals as well as
clauses with only two literals.

For the following, we refer to Fig. 4. The reduction works as follows: For every instance
� of Planar Monotone 3Sat, we construct an instance I� , consisting of a start configura-
tion Cs and a target configuration Ct . In the figure, we use three different colors to indicate
occupied positions in the start configuration (red), in the target configuration (dark cyan),
and in both configurations (gray). Therefore, we consider a rectilinear planar embedding
of the variable-clause incidence graph G� of � where the variable vertices are placed hori-
zontally in row, and clauses containing unnegated and negated literals are placed above
and below, respectively. All variables of � are represented by a horizontal variable gadget
(light red). Furthermore, we position two additional auxiliary gadgets (light blue) at the
top and at the bottom boundary of the instance, which are connected to the variable gadget
via bridges at the right boundary. There will be a separation gadget (yellow) between
each adjacent and nested pair of clause gadgets (blue). All clause gadgets are connected
via bridges to separation gadgets and possibly to the auxiliary gadgets. Further, there are
bridges from a clause gadget to the respectively contained variables.

There is a stable schedule for I� transforming the start configuration Cs into the target
configuration Ct with a makespan of 2, if and only if � is satisfiable. In order to transform
Cs into Ct , the separation gadgets ensure that in the single intermediate configuration, all
clause and auxiliary gadgets are disconnected from each other. Therefore, to satisfy the
connectivity constraint, some robots of the variable gadget need to move to provide con-
nectivity between the variable gadget and the clause gadgets. At the same time, our con-
struction ensures that robots representing a variable can either keep connectivity to their
unnegated or to their negated literal containing clauses within a makespan of 2, because
otherwise the connectivity within the variable gadget would be broken; thus, these move-
ments can be used to determine a valid variable assignment for �.

3.1 � Construction of the gadgets

We start with some observations regarding the target neighborhood of a given robot, i.e.,
the positions that can be reached by moving a robot twice from a given start position.

Observation 1  For a given position, the set of positions reachable within two moves is
given by Fig. 5a.

Because we can swap the roles of the start and the target configurations, an easy con-
sequence is that if there is only one start position in the reachable neighborhood of a tar-
get position, then the robot occupying this position in the target configuration is uniquely
defined.

In our construction, we place gadgets in such a way that they are “sufficiently far
apart”. The reason for this is that robots that belong to a certain gadget only can occupy
target positions within the same gadget. In particular, we place our gadgets in such a

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 9 of 29  43

Fig. 4   Symbolic overview of the NP-hardness reduction. The depicted instance is due to the Planar Mono-
tone 3Sat formula � = (x

1
∨ x

2
∨ x

4
) ∧ (x

2
∨ x

4
) ∧ (x

1
∨ x

4
∨ x

5
) ∧ (x

1
∨ x

3
) ∧ (x

3
∨ x

4
∨ x

5
) . We use three

different colors to indicate occupied positions in the start configuration (red), in the target configuration
(dark cyan), and in both configurations (gray) (Color figure online)

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 10 of 29

way that a robot belonging to some gadget would need at least 6 steps to reach another
gadget. This allows us to make statements about the movement within gadgets, as well
as their interaction with others. We refer to all positions that belong to a gadget as G ,
and to the positions between gadgets as B . In order for the gadgets to interact with each
other, we place robots in B (the bridges) in such a way that their respective target posi-
tions are uniquely defined in B . With this, it is easy to see that gadgets are indeed inde-
pendent from each other. We call a gadget solvable, if there is a schedule that transforms
the start configuration into the target configuration with a makespan of 2, and each robot
in G is connected to a robot in B . Note that we do not necessarily require the intermedi-
ate configuration to be connected in order to say that a gadget is solvable; this will not
be the case in the separation gadget. Consider any configuration C that is composed of
gadgets constructed in this manner, then a necessary condition for the existence of a
schedule for C with a makespan of 2 is that every gadget is solvable.

In the following, we introduce different gadgets that are used in the proof showing
NP-hardness of the problem. We show that these gadgets are solvable, and we indicate
explicit schedules.

Line Gadget A line gadget is a rectangular region of size � × 7 . It consists of
� − 4 ≥ 3 horizontally adjacent robots that occupy the same positions in both, the start
and the target configuration, as well as a variable number of bridges of length three, as
depicted in Fig. 6.

In the NP-hardness proof, line gadgets are used in two ways: As clause gadgets, they
represent the logic of the satisfiability instance; as auxiliary gadgets, they ensure con-
nectivity of the start and the target configuration, respectively.

Lemma 1  The line gadget is solvable.

Proof  All robots realizing bridges move two steps to the right or to the left to their respec-
tive target positions. The line robots do not move at all. Because no robot moves vertically,
all configurations are connected. 	� ◻

Separation Gadget A separation gadget is a rectangular region of size 14 × 6 , con-
taining the start and the target configuration as shown in Fig. 7a.

Fig. 5   a All positions that can
be reached by moving the robot
initially located on the red square
twice. b This figure shows
a bridge. Note that all white
squares have to be free in Cs as
well as in Ct (Color figure online)

Fig. 6   The gray positions indi-
cate the line gadget. The colored
positions indicate the start and
target configurations of the
respective bridges

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 11 of 29  43

Lemma 2  The separation gadget is solvable.

Proof  There is a unique schedule with a makespan of 2, as shown in Fig. 7b. This follows
from applying Observation 1 to the different target positions. 	� ◻

In the intermediate configuration of the unique schedule solving a separation gadget,
each pair of bridges is not connected within the gadget, i.e., the intermediate configu-
ration is not connected. For that reason, these gadgets will be used to disconnect the
connections between all clause gadgets. To guarantee a fully connected intermediate
configuration, a specific movement within the variable gadget is necessary.

Variable Gadget Let n be the number of variables of the Planar Monotone 3Sat
instance. The variable gadget is composed of the parts shown in Fig. 8, as follows:
There is one left end followed by n horizontally aligned variable arm segments and
one right end. In order to capture the respective number of clauses in which a variable
is contained, we can independently adjust the width of each arm segment. Bridges are
placed in the gray colored hatched parts. We refer to the top and the bottom parts of the
arm segments as the unnegated and the negated arm segment, as they model the unne-
gated and negated literals, respectively. As an example, consider Fig. 9.

Fig. 7   a shows the separation gadget. b visualizes the unique schedule with a makespan of 2

Fig. 8   The variable gadget consists of a number n variable arm segments, and exactly one left and right end
each. Bridges to the respective clauses are placed in the hatched areas

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 12 of 29

Lemma 3  In the variable gadget, it is not possible that both, the unnegated and the negated
arm segment of a variable arm segment are simultaneously connected to its respective
bridges.

Proof  Without loss of generality, we assume that in the intermediate configuration the
robots representing the unnegated arm segment are connected to the respective bridges. We
use the labels shown in Fig. 10. We argue that the following properties hold after the first
transformation.

•	 At least one robot of the unnegated arm segment ( p1,… , p
�
 ) moved up.

•	 Robot Ai moved left.
•	 Robot Ri moved up.

Assume for the sake of contradiction that no robot of the unnegated arm segment moved
up. Because the top two bridge robots moved horizontally (by applying Observation 1),
every movement of the bridge’s bottommost robot would not yield a connection to the
arm segment.

The robot Ai has two possible target positions, namely Bi and Ci . Assume that Ai moved
down. Then, Xi has the unique target position Yi , so it moved left—thus, it is isolated in the
intermediate configuration. Therefore, p1 has also moved left. It follows by induction that

Fig. 9   An example construction of the variable gadget with three variables. Note that each arm segment is
of different width, due to the number of clauses in which the variable is contained

Fig. 10   The figure shows the
labeling of specific robots of a
variable arm segment for the
proof of Lemma 3. The positions
pi and ni denote the unnegated
and negated arm segment,
respectively

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 13 of 29  43

every robot of the unnegated arm segment has moved left, which is a contradiction to the
fact that at least one robot moved up. Thus, Ai moved left.

Assume that Ri did not move up. This is a contradiction to Ai having moved left, as oth-
erwise at least Ai would be part of an isolated component in the intermediate configuration.

Similar arguments hold for the case that the robots of the negated arm segment are con-
nected to its respective bridges. Therefore, Ri has to move both up and down in the first
transformation. As this is impossible, this concludes the proof. 	� ◻

Lemma 4  A variable gadget is solvable.

Proof  There is a valid schedule with a makespan of 2 given in Fig. 11. The depicted sched-
ule connects the unnegated arm segment with the respective bridges; a similar schedule
exists for the negated case. 	� ◻

3.2 � Completing the NP‑hardness reduction

Theorem 2  For a pair of configurations Cs and Ct , each with n vertices, deciding whether
there is a stable schedule with a makespan of 2 transforming Cs into Ct is NP-complete.

Proof  Consider a rectilinear planar embedding of the variable-clause incidence graph G�
of a given Planar Monotone 3Sat formula � . The horizontally aligned variables in G�
are represented by a variable gadget—each variable is represented by an arm segment. For
each clause, we introduce a line gadget with connecting bridges (and extend them if nec-
essary) to the contained variables. We add two or three bridges according to whether the
clause contains two or three literals, respectively. Between every nested pair of adjacent
clauses, we introduce a separation gadget and connect it to the clauses via bridges. As a
last step, we place two additional line gadgets at the top and bottom of the construction,
connect them via bridges to the variable gadget, and via separation gadgets to the respec-
tive topmost and bottommost line gadgets that represent clauses. For an example, see the
bottom part of Fig. 4.

Claim 1  If the formula � has a satisfying assignment � , then there is a valid intermediate
configuration for I� (i.e., the intermediate configuration is connected); therefore, there is a
stable schedule transforming Cs into Ct (both given by I� ) with a makespan of 2.

Fig. 11   The figure shows a stable schedule with a makespan of 2 as indicated in Lemma 4. Positions with
less opacity show the respectively occupied positions in the previous step. a shows that start configuration,
while b indicates the single intermediate configuration, and c depicts the respective target configuration

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 14 of 29

Proof  Let � be a satisfying assignment of � . A valid intermediate configuration for I� can
be constructed as follows: All separation, line, and variable gadgets are transformed by
the schedules given in Lemmas 1, 2 and 4. For the assignment of variable xi the respective
arm segment moves vertically. All bridge robots move to their respective target position
due to Observation 1. In this configuration the helping line gadgets are directly connected
to the variable gadget, and all clause gadgets are connected to the variable gadget as well.
Because the disjoint parts of the separation gadgets are connected to a line gadget at one
side, this configuration is connected.

Claim 2  If there is a connected intermediate configuration for I� (such that there is a sta-
ble schedule transforming Cs into Ct (both given by I� ) with a makespan of 2), then � is
satisfiable.

Proof  Because the intermediate configuration is connected, each clause gadget has to be
connected to the variable gadget. This is only possible via the bridges at the boundary of
the gadget. Due to the construction of the separation gadgets, the clause gadgets have to be
directly connected to the variable gadget, i.e., a shortest path connecting a robot of each
clause gadget with a robot of the variable gadget passes no other gadget of the construc-
tion. Thus, at least one of the three bridges of each clause is connected to a respective arm
segment of the variable gadget. Because of Lemma 3, for each variable either its unnegated
or its negated arm segment can be connected to their respective bridges. Therefore, there is
an assignment of {1, 0,⊥} for � , given by the movement of each variable arm segment. We
set a variable in � to 1, if the respective arm segment is connected to the unnegated side, 0
if it is connected to its negated side, and ⊥ otherwise. For each ⊥ we arbitrarily choose 0 or
1. Due to the construction, this assignment satisfies �.

Claims 1 and 2 complete the proof of Theorem 2. 	� ◻

As a consequence of our construction in the proof of Theorem 2, even approximating
the makespan is NP-hard.

Corollary 2  It is NP-hard to compute for a pair of configurations Cs and Ct , each with n
vertices, a stable schedule that transforms Cs into Ct within a constant of (3

2
− �) (for any

𝜀 > 0 ) of the minimum makespan.

To see this, consider an instance that derived from a Boolean formula as constructed in
our NP-hardness reduction, and assume that the Boolean formula is satisfiable. Hence, the
optimal makespan is 2. Consider a potential approximation algorithm that has a guaranteed
approximation factor better than 3

2
 . As the makespan is a natural number, and the minimum

makespan of a false instance is 3, we would be able to decide with that algorithm whether
the Boolean formula is satisfiable, having as a consequence that P=NP.

4 � Bounded stretch for arbitrary makespan

Now we describe our algorithm for computing stable schedules with constant stretch, for
configurations of constant scale. Again, a scale factor of c corresponds to replacing each
pixel of a polyomino shape by a quadratic c × c array of pixels; this will be defined in the

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 15 of 29  43

preliminaries for the algorithm. In the remainder of this section, we describe the different
phases of our approach that together show the following.

Theorem 3  There is a constant c∗ such that for any pair of overlapping start and target
configurations with a scale of at least c∗ , there is a stable schedule of constant stretch.

For clearer presentation, we do not focus on the specific value of the constant c∗ , but
only argue its existence.

4.1 � Algorithm overview and preliminaries

We provide a high-level overview of our algorithm, as depicted in Fig. 12.
Our algorithm works in five phase, where the first two phases are preparation phases;

note that these two phases are not visualized in Fig. 12. In Phase 1, we ensure that the pair
(Cs,Ct) overlaps in at least one position. For this, we move Cs towards Ct along a bottle-
neck matching, such that the respective positions that realize the bottleneck distance, coin-
cide. (This overlap is crucial for successfully constructing the auxiliary structure in Phase 3
of the approach, as we explain later.) Afterwards, in Phase 2, we use another bottleneck
matching for mapping the start configuration Cs to the target configuration Ct , minimizing
the maximum distance d between a start and a target location. Furthermore, we establish

Fig. 12   Overview of the computed schedule: (Top) Constructing an auxiliary structure, called scaffold, in
Phase 3 of our algorithm, (Right) the refilling phase (Phase 4), and (Bottom) deconstructing the scaffold in
the final Phase 5

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 16 of 29

the scale in both configurations, set c to be the minimum of both scale values, and compute
a suitable tiling whose tile size is c ⋅ d , and that contain both Cs and Ct.

In Phase 3, we build a scaffolding structure around Cs and Ct , based on the boundaries
of cd-tiles of the specific tiling. This structure enables simple connected reconfiguration
procedures in the interior of tiles, as described in Phase 4 of our approach, yielding to a
reconfiguration approach that consists of a connected configuration in each transformation
step. Restricting robot motion to their current and adjacent tiles (due to the tile size) also
ensures constant stretch. Note that, as the size of the tiles is related to d, the scaffolding
structure is connected.

In Phase 4, we perform the actual reconfiguration of the arrangement. This consists of
refilling the tiles of the scaffold structure, achieving the proper number of robots within
each tile, based on elementary flow computations. As a subroutine, we transform the robots
inside each tile into a canonical “triangle” configuration.

In the final Phase 5, we disassemble the scaffolding structure and move the involved
robots to their proper destinations.

We proceed by providing the basic definitions, followed by summarizing the technical
key components of our approach.

4.1.1 � Preliminaries for the algorithm

A configuration C is c-scaled, if it is the union of c × c pairwise disjoint squares of ver-
tices. The scale of a configuration C is the maximal c such that C is c-scaled; this notion
reflects the idea of objects being composed of pixels at a certain resolution. (Note that this
is a generalization of the uniform pixel scaling studied in previous literature, which consid-
ers a c-grid-based partition instead of an arbitrary union, so it supersedes that definition
and leads to a more general set of results; for simplicity, we refrain from using “generalized
scale” and stick to “scale” in the rest of the paper.) As we will establish, sufficient scale
ensures sufficient locally available building material for connected rearrangement. Let
c, d ∈ ℕ be the scale and the diameter of the pair (Cs,Ct) , respectively. For x, y ∈ ℕ , a cd-
tile T, or tile T for short, with anchor vertex (x ⋅ cd, y ⋅ cd) ∈ V(G) is a set of (cd)2 vertices
from the grid G with x-coordinates from the range between x ⋅ cd and x ⋅ cd + cd − 1 and
y-coordinates from the range between y ⋅ cd and y ⋅ cd + cd − 1 . Note that, by definition,
two tiles are pairwise disjoint, and all anchor points have the same coordinates mod cd .
The boundary of T is the set of vertices from T with an x-coordinate equal to x ⋅ cd or
equal to x ⋅ cd + cd − 1 , or with a y-coordinate equal to y ⋅ cd or equal to y ⋅ cd + cd − 1 .
The interior of T is T without its boundary. The right, top, left, and bottom sides of T
are the sets of vertices from the boundary of T with maximum x-coordinates, maximum
y-coordinates, minimum x-coordinates, and minimum y-coordinates, respectively. The left
and right sides of a tile are vertical sides and the top and bottom sides are horizontal sides.
Two tiles T1, T2 are horizontal (vertical) neighbors if they have two horizontal (vertical)
sides s1 ⊂ T1 and s2 ⊂ T2 , such that each vertex from s1 is adjacent in G to a vertex from s2 .
Two tiles T1 and T2 are diagonal neighbors if there is another tile T, such that T and T1 are
horizontal neighbors and T and T2 are vertical neighbors. The neighborhood of a tile T is
the set of all neighbors of T.

A start tile is a tile containing a vertex from the start configuration. A target tile is a tile
containing a vertex from the target configuration. The cd-tiling T of (Cs,Ct) is the union
of all start tiles including their neighborhoods and all target tiles. The scaffold Σ(T) is the
union of all boundaries of tiles from T  . A cd-tiled configuration, or tiled configuration for

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 17 of 29  43

short, is a configuration that is a subset of the union of all tiles from T and a superset of
Σ(T) . The interior of a tiled configuration C is the set of all vertices from C not lying on
Σ(T) . The filling level of a tile T ∈ T is the number of robots in the interior of T. The filling
level of a tiled configuration C is the mapping of each tile onto its filling level in C.

4.1.2 � Technical key components

On a technical level, the five phases can be summarized as follows; cf. Fig. 12.

(1)	 Guaranteeing Overlap Move the given configurations towards each other along a bot-
tleneck matching to ensure that the (new) pair (Cs,Ct) overlaps in at least one position.

(2)	 Preprocessing Apply the following three steps: (2.1) Set c to be the minimum of c∗
(that is a roughly estimated constant lower bound on the scale for which our approach
works) and the minimum scale values of Cs and Ct . (2.2) Compute the diameter d of
(Cs,Ct) . (2.3) Compute the tiling T of (Cs,Ct).

	  The algorithmic core of our algorithm consists of the following three phases.
(3)	 Scaffold Construction Reconfigure the start configuration Cs to a tiled configuration C′

s

such that the interior of C′
s
 is a subset of the start configuration Cs.

(4)	 Refilling Tiles Reconfigure C′
s
 to a tiled configuration C′

t
 , such that the interior of C′

t
 is

a subset of the target configuration Ct.
(5)	 Scaffold Deconstruction Reconfigure C′

t
 to Ct.

Note that the scaffold deconstruction is inverse to the scaffold construction. In the follow-
ing, we give the technical description of our algorithm, and the corresponding correctness
analysis. In particular, we first assume that the start and target configurations overlap in at
least one position, resulting in an algorithm guaranteeing constant stretch, and adapt this to
the case in that an overlap initially does not exist, afterwards.

4.2 � Scaffold construction

Lemma 5  For any configuration Cs of scale c there is a stable schedule of makespan O(d) ,
transforming Cs into a tiled configuration C′

s
 , with the interior of C′

s
 being a subset of Cs.

Outline of the Construction For the construction, we consider 5 ⋅ 5 different classes, based
on x- and y-coordinates modulo 5cd; see Fig. 13.

We process a single class as follows. For each tile T we consider its indirect neighbor-
hood N[T] consisting of all neighbors of T and all neighbors of neighbors of T, i.e., a 5 × 5
arrangement of tiles centered at T. For constructing the boundary of T, we make use of
robots from the interior of a tile in N[T].

Constructing the Boundary of T Works in Two Phases (3.1) Constructing the boundaries
of all start tiles. (3.2) Constructing the boundaries of all neighbors of start tiles.

Note that it suffices to construct all boundaries of the start tiles and their neighboring
tiles, because each target tile shares a side with a start tile or a side with a tile adjacent to
a start tile. Furthermore, the scale condition is only necessary for the construction of the
scaffold, i.e., we need to ensure that enough robots are available to build the scaffolding
structure. Each additional step of the algorithm works independently of this condition.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 18 of 29

For Phase 3.1, we subdivide all start tiles into 5 ⋅ 5 classes of tiles, distinguishing
between their anchors’ coordinates modulo 5cd; see the purple squares in Fig. 13. These
classes are processed iteratively. In particular, we construct the boundaries of all tiles
belonging to a specific class in parallel as follows. Without loss of generality, we assume
that the union of Cs with all boundaries of start tiles is connected. Otherwise, Cs lies com-
pletely inside a single tile T, and we move all robots simultaneously down until the first
robot lies on the boundary of T.

For each tile T of the current class, we consider a 5 × 5-neighborhood N[T] of T which
consists of T, its neighbors, and all neighbors of neighbors of T, see Fig. 13. The scaffold
Σ(N[T]) is the union of all boundaries of tiles from N[T]. The interior of N[T] is N[T] with-
out its scaffold, i.e., N[T] ⧵ Σ(N[T]) . The priority of a robot r from the interior of N[T] is
the shortest-path distance inside the current configuration between r and any vertex from
Σ(N[T]).

Let C be the current configuration, v be a vertex from the boundary of T that does not lie
inside C but is adjacent to a robot from C, and r be a robot from the interior of N[T] with
highest priority. If C is connected and the robot r lies in the interior of N[T], then there is a
path P inside C connecting v and r, see the right of Fig. 13. We push all robots on P along
P into the direction of v resulting in the connected configuration C ∪ {v} ⧵ {r} . This one-
step motion is repeated until the interior of N[T] is empty or the boundary of T is a subset
of the current configuration.

Correctness of the Approach We need to argue that in Phase 3.1 the construction of the
boundary of T stops because the boundary is completed and not because the interior of
N[T] is empty.

Consider the vertices from N(T) ∶= N[T] ⧵ T to be organized in squares nested inside
each other as follows. All vertices v ∈ N(T) adjacent to the boundary of T belong to
layer 1. Let N1(T) be the vertices from N(T) without the vertices from layer 1. All verti-
ces from Ni(T) that are adjacent to vertices from layer i belong to Layer i + 1 . Consider a

Fig. 13   Constructing the scaffold. Tiles with currently constructed boundaries are marked in purple. The
zoom into the start configuration Cs shows the indirect neighborhood N[T] of a tile T (middle) for which its
boundary is currently constructed. A further zoom (right) into T with an associated robot motion. In each
step a robot from the interior of a tile T � ∈ N[T] is swapped with a free position on the boundary of T based
on a path P on a BFS-tree (Color figure online)

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 19 of 29  43

path P ⊂ Cs connecting layer c with layer cd − c . As Cs is c-scaled, for each v ∈ P , there
is a square S of side length c such that v ∈ S ⊂ Cs . Hence, there is a tile T � ∈ N[T] , such
that all these squares cover at least (cd−2(c−2))(c−2)

2
≥

(c(d−2))(c−2)

2
 vertices from Cs , which

is lower-bounded by c
2d

4
 for c ≥ 4 . Constructing the boundary of T takes at most 4cd − 4

robots to be taken from the interior of N[T]. The tile T ′ is used as part of the interior of at
most 5 ⋅ 5 = 25 tiles’ neighborhoods N[T]. Thus, at most (4cd − 4)25 < 100cd robots are
required from the interior of the tile T � ∈ N[T] . Hence, for c

2d

4
≥ 100cd , i.e., c ≥ 400 the

construction of the boundary of each start tile T is completed in Phase 3.1. Because there
is a constant number of tile classes (where each class can be processed in parallel), and the
moving distances are bounded by a constant times d, the construction in finishes in O(d) .
Phase 3.2 is realized analogously.

4.3 � Refilling tiles

It remains to modify configurations within and between tiles. To this end, we first estab-
lish how to efficiently perform reconfigurations between any two tiled configurations with
the same numbers of robots in the interior of respective tiles; see Sect. 4.3.1. As a second
step, we describe how to relocate robots between tiles such that efficient reconfigurations
between any two tiled configurations with different numbers of robots in the interior of
respective tiles are achieved; see Sect. 4.3.2.

4.3.1 � Reconfiguration maintaining the number of robots in tiles

Lemma 6  Let C′
s
,C′

t
 be two tiled configurations such that for all tiles T, C′

s
 and C′

t
 have the

same filling levels, i.e., for any tile, the corresponding start and target configurations con-
sist of the same respective numbers of robots. Then there is a stable schedule transforming
C′
s
 into C′

t
 within a makespan of O(d).

In the following we describe reconfigurations that leave all robot movements within the
interior of their respective tiles T; thus, all tiles can be reconfigured in parallel. Therefore,
we only have to describe the approach for a start configuration Cs and a target configuration

Ct within the interior of a single tile T of a tiled configuration C′
s
 . The idea is as follows: As

the moves are reversible, it is sufficient to prove reachability of a canonical intermediate
configuration in O(d) transformations, which allows us to simplify our argument. In the
following, we define the properties of our canonical structure CΔ and provide the necessary
means to reach it from an arbitrary initial state.

Outline of the Reconfiguration First, we compute two stable schedules Cs ⇉� Cm
s

 and
Ct ⇉� Cm

t
 , where Cm

s
 and Cm

t
 are monotone configurations, where we call a configuration

to be monotone, if for every robot r in the interior of T all positions to the left and to the
bottom are occupied. These reconfigurations are achieved by a sequence of down and left
movements, maintaining connectivity after each move (see Fig. 14, Phase 4.1). Proceeding
from these monotone configurations, the robots are arranged into a triangular configura-
tion CΔ that occupies the lower left positions (defined by a diagonal line with a slope of
−1 ) of the interior of T. This is achieved by swapping pairs of occupied and empty posi-
tions within a carefully defined area in several one-step moves along L-shaped paths (see

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 20 of 29

Fig. 14, Phase 4.2). The property of CΔ is that it is the same for all initial configurations
with equally many robots. Thus, to get the stable schedule Cs ⇉� CΔ ⇉� Ct , we can sim-
ply revert Ct ⇉� CΔ and combine the result with Cs ⇉� CΔ.

Technically, the approach consists of the following four phases, see Fig. 14.

	(4.1)	 Monotone Start Configuration Reconfigure Cs into Cm
s

.
	(4.2)	 Canonical Triangle Reconfigure Cm

s
 into CΔ.

	(4.3)	 Monotone Target Configuration Reconfigure CΔ into Cm
t

.
	(4.4)	 Target Configuration Reconfigure Cm

t
 into Ct.

Phase 4.4 corresponds to a reversal of Phase 4.1, and Phase 4.3 to one of Phase 4.2, so
we only have to describe the first two phases. We analyze them individually, leading
to a proof of Lemma 6. Note that we exclude the corners of a tile, so the robots on the
tile’s side now form four non-adjacent sides. Furthermore, only robots in a tile’s interior
move.

Constructing the Monotone Start Configuration (Phase 4.1) In the first step, we only
consider robots for which the right side of their tile T is the only one to which they are

Fig. 14   Reconfiguring the configuration Cs (top) into the canonical triangle configuration CΔ (bottom).
Phase 4.1 achieves a monotonic arrangement; light gray squares indicate previous positions of moved
robots (shown in green). Phase 4.2 transforms the monotonic configuration into CΔ

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 21 of 29  43

connected through the interior of T. We iteratively move these robots down until further
movement is blocked, i.e., any further down move is not collision-free. In the second
and third steps, we move all robots left, followed by moving all robots down, each time
until further movement is blocked.

Claim 3  Phase 4.1 turns a configuration in a tiles’ interior into a monotone configuration.

Proof  It is straightforward to see that for, any configuration, Phase 4.1 results in a mono-
tone configuration, so we only argue that it yields a stable schedule.

Without loss of generality, we only consider the down movement of a robot. If the
movement of a robot r resulted in a collision, there would be another robot on its target
position that cannot move either. Because the robots only move down, it iteratively follows
that this movement is blocked because of a robot that is either adjacent to the bottom side
or for which the right side is not the only one to which it is connected.

We now argue that a down move of a robot r preserves connectivity to other robots.
Assume that there is a robot r′ to which r was connected before the move (say, in Ci ), but
not after it (in Ci+1 ). Consider a path from r to r′ in Ci , the last robot rj on that path which is
not connected to r in Ci+1 , and its adjacent robot rj+1 on that path that is still connected to
r′ ; note that this robot could be r′ itself. Because rj and rj+1 are not connected in Ci+1 , they
were horizontally adjacent in Ci . Without loss of generality, this disconnection happened
because rj moved down, whereas rj+1 did not. But then all positions below rj+1 had to be
occupied. Thus, rj and rj+1 are still connected, a contradiction. 	� ◻

By simply changing the direction of the robot’s movements from down to left, all
arguments hold true for the entire phase.

For Phase 4.2, we use the following terminology. The level of a position in the tile’s
interior is the sum of its coordinates. A level is filled, if all of its positions are occupied
by a robot, and empty, if none is occupied by a robot. The highest filled level is denoted
by L, the lowest empty level by U. Let M be the set of all positions on level U − 1 occu-
pied by a robot, and V be the set of all positions on level L + 1 that are not occupied by a
robot; we call the positions of M and V mountains and valleys, respectively.

Constructing the Canonical Triangle (Phase 4.2) Choose two equally sized subsets
M

′ ⊆ M and V′ ⊆ V and push each robot from M′ to a different position in V′ along
an L-shaped path; this can be done simultaneously in one parallel move for all paths.
To determine the paths, simply match mountains and valleys, iteratively, in a way that
no pair of paths cross each other. This results in reducing U, and raising L, i.e., the two
levels move towards each other. We distinguish two cases.

•	 U − L > 2 : If |M| ≥ |V| , choose an arbitrary subset M′ ⊂ M with |M�| = |V| . Oth-
erwise, choose an arbitrary subset V′ ⊂ V with |V�| = |M|.

•	 U − L = 2 : Note that mountains and valleys are on the same level, and |V| ≥ |M|
hold. Choose V′ ⊂ V to be the subset of size |M| with smallest x-coordinates and set
M

� = M.

Claim 4  Phase 4.2 yields a stable schedule for reconfiguring all monotone configurations
with the same number of robots into the same triangular configuration.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 22 of 29

Proof  We show the following properties.

1.	 The pushing paths do not cross.
2.	 After each iteration, U − L decreases by at least 1.
3.	 The approach terminates in a configuration that only depends on the number of robots.

For the non-crossing property of the paths, we show that the mountains and valleys have
pairwise disjoint x- and y-coordinates. If U − L > 2 , assume for the sake of contradiction
that a mountain and a valley have equal x-coordinate. These positions have to be adjacent,
which would result in U − L = 1 , a contradiction. If U − L = 2 holds, mountains and val-
leys are already on the same level, so they have distinct x-coordinates. Similar arguments
hold for the y-coordinates. It directly follows from the definition of levels that for all posi-
tions (x1, y1), (x2, y2) ∈ M ∪ V , x1 < x2 implies y1 > y2 . Together with the construction of
the paths by matching adjacent mountains and valleys, it follows that these paths do not
cross.

By construction, U > L always holds. If M� = M holds, level U − 1 gets empty; there-
fore, U is decreased. In any case, U cannot be increased, because all positions that get occu-
pied are at level L + 1 . A similar argument holds if V� = V holds, thus, U − L decreases by
at least 1 in each iteration.

If U − L = 2 holds, there is at most one level that contains occupied and empty posi-
tions. All robots on this level will be positioned leftmost; all levels with greater values are
empty, and all levels with lower values are full.

Because the paths are non-crossing, the computed schedule is stable. 	� ◻

Proof of Lemma 6  Compute stable schedules consisting of Phases 4.1 and 4.2 for the start
and the target configuration, Cs and Ct , to reconfigure them into CΔ . Reverting Ct ⇉� CΔ
and combining it with Cs ⇉� CΔ results in the entire stable schedule transforming Cs into
Ct . Because Phase 4.1 as well as Phase 4.2 can be realized in a makespan of O(d) (because
a robot’s maximum distance to a side, and the maximum level difference are upper-
bounded by O(d) ), the makespan of Cs ⇉� Ct is in O(d) . 	� ◻

4.3.2 � Refilling tiled configurations

Now we describe the final step for reconfiguring a tiled start configuration C′
s
 into a tiled

target configuration C′
t
 ; because no robots are destroyed or created, this hinges on shifting

robots between adjacent tiles, such that the required filling levels are achieved.

Lemma 7  We can efficiently compute a stable schedule transforming C′
s
 into C′

t
 within a

makespan of O(d).

Outline of the Refilling Phase To compute the schedule of Lemma 7, we transfer robots
between tiles, so that each tile T contains the desired number in C′

t
 . We model this robot

transfer by a supply and demand flow, see Figs. 15 and 16, followed by partitioning the flow
into O(1) subflows, such that each subflow can be realized within a makespan of O(d) . For
realizing a single subflow, we use the approach of Sect. 4.3.1 as a preprocessing step, i.e.,
to rearrange robots participating in a specific subflow and place them at suitable positions.

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 23 of 29  43

Modeling Transfer of Robots via a Supply and Demand Flow We model the transfer of
robots between tiles as a flow F ∶ E(G) → ℕ , using the directed graph G = (T,E) which is
dual to the tiling T  . Let B be the bottleneck matching between vertices from the original
(non-tiled) Cs and vertices from the final (non-tiled) Ct . In G we have an edge (u, v) ∈ E , if
there is at least one matching edge (ru, rv) ∈ B , such that ru lies in the interior of the tile u in
configuration C′

s
 , and rv lies in the interior of the tile v in configuration C′

t
 . The flow value

F((u, v)) of (u, v) is equal to the number of such edges (ru, rv) ∈ B . A vertex v ∈ V(G) has
a demand of a > 0 if the sum of the flow values of outgoing edges from v plus a is equal
to the sum of the flows of incoming edges to v. Analogously, v has a supply of a > 0 if the
sum of flow values incoming to v plus a equals the sum of flow values outgoing from v.

Flow Partition and Algorithmic Computation We now define a flow partition of
F. For k ∈ ℕ , a k-subflow of F is a supply and demand flow f ∶ E(G) → ℕ on G with
f (e) ≤ min{k,F(e)} . A k-partition of the flow F is a set {f1,… , f

�
} of k-subflows of F, such

that
∑

i=1,…,� fi(e) = F(e) holds for all edges e ∈ E(G).
We describe our approach for computing a �-partition of F, with � ∶= ⌊ (cd−2)2

9
⌋ ; the

value � arises from partitioning the interior (made up of (cd − 2)2 pixels) of each tile into
9 almost equally sized subtiles that are used for realizing a single set of paths as described
below, see Fig. 18.

Fig. 16   A pair of configura-
tions C′

s
 (red) and C′

t
 (cyan) and

the resulting flow modeling the
edges of the bottleneck matching.
The left vertex of G has demand
1, the right vertex has supply 1

Fig. 15   An overview of the schedule refilling tiles: transforming C′
s
 into C′

t
 by realizing a partition of a sup-

ply and demand flow that is computed in advance

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 24 of 29

We compute a 1-partition of G, with each 1-subflow being either a cycle or a path that
connects a supply vertex with a demand vertex. Because the robots are unlabeled, we can
simplify G by eliminating all cyclic 1-subflows, as they are not necessary to realize this
specific transfer of robots; note that this also applies to bidirectional edges. Furthermore,
we replace diagonal edges (v,w) ∈ E(G) by a pair of adjacent edges (v, u), (u,w) ∈ E(G) .
After all cyclic subflows are removed, G is a planar, directed forest consisting of 1-sub-
flows that are paths, see Fig. 17a. We process each tree A ⊂ G that is made up of paths
P1,P2,… separately as follows: We choose an arbitrary vertex of A as its root and consider
the link distance of Pi as the minimal length of the path between a vertex from Pi and the
root of A. Let P1,P2,… ⊆ G be sorted by increasing link distances, which is important for
our next argument, regarding that we can partition these paths into constant many subflows
each of which is realizable in time linear in d. We greedily assign each path Pi = P1,P2,…

Fig. 17   a We model the movements of robots between tiles as paths forming a tree. By greedily assigning
these paths to sets (here highlighted by different colors), such that inside each set each edge is contained in
no more than 3 paths, we obtain that at most Θ(d2) sets are needed. b An example of a set containing three
paths (dark red, pink, and red; assigned in that order to Sj ) having a common edge e caused by a vertex v of
e with an incoming degree of 3 (Color figure online)

Fig. 18   a A portion of a set of paths containing a vertex v: 56 paths are passing v from left to right, while
40 + 56 = 96 paths are starting in v. b The configuration after realizing the set of paths shown in the previ-
ous figure. c How positions of robots have changed after realization

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 25 of 29  43

to a set Sj , such that the first edge e1 of Pi is not part of another path inside Sj . If no such a
set Sj exists, we create a new set S ← {Pi} . For each tree we use the same sets S1, S2,… of
collected paths, because different trees of G are disjoint. Note, that the construction of the
sets Sj allow that an edge is part of at most three paths inside Sj . This is due to the fact that
the income degree of the head vertex of a directed edge is at most three in the setting of a
grid graph, resulting in at most three outgoing edges.

Finally, we greedily partition {S1, S2,…} into subsets G1,G2,… called groups, made up of
(cd−2)2

9⋅3
 sets. For each group Gi , we define a subflow fi by setting fi(e) as the number of paths

from Gi containing the edge e. As for each set Si and each edge e, there are at most three paths

inside Si containing e, each resulting subflow fi is a
(

(cd−2)2

9⋅3
⋅ 3

)
= �-subflow. Finally, we

have to upper-bound the number of resulting subflows, i.e., the number of groups.

Lemma 8  The constructed �-partition {f1, f2,…} consists of at most 28 subflows.

Proof  The number of robots in the interior of each tile is upper-bounded by (cd − 2)2
which is the number of pixels in a tiles’ interior. Substituting at most two diagonal edges
increases the number of robots leaving or entering a specific tile by at most 2(cd − 2)2 .
Hence, the flow value of each edge is upper-bounded by 3(cd − 2)2 (⋆) after substituting
diagonal edges.

Suppose our approach constructs 28 groups implying that our approach gets into con-

figuration with 27 ⋅ (cd−2)2

9⋅3
=∶ � constructed sets S1, S2,… and the current path Pi has to be

assigned to a new set S�+1 . This implies that each set S1,… , S� contains a path Si contain-

ing the first edge e1 of Pi . Hence, there are at least 27 ⋅ (cd−2)2

9
+ 1 > 3(cd − 2)2 paths con-

taining e1 , contradicting (⋆) . 	� ◻

Realizing a �-Partition Now we describe how to reconfigure a tiled configuration, such
that a �-subflow is removed from G. A �-subflow fi is realized by transforming the current
configuration into another configuration, such that for each edge e with fi((T , T �)) > 0 , the
number of robots in the interior of tile T is decreased by fi((T , T �)) and the number of the
robots in the interior of tile T ′ is increased by fi((T , T �)).

Next we realize a specific �-subflow within a makespan of O(d) . In particular, we parti-
tion the interior of each tile T into 9 subtiles with equal side lengths (up to rounding), see
Fig. 18. For each subflow fi , we place fi((T , T �)) robots inside the middle subtile of T that
shares an edge with the boundary of T adjacent to T ′ . In particular, robots placed in the
same subtile are arranged in layers of width ⌊ cd−2

9
⌋ as close as possible to the boundary of

the tile, see Fig. 18a. The resulting arrangement of robots inside the subtile of T is a cluster
and T ′ the target tile of the cluster. By a single application of the approach from Sect. 4.3.1,
all clusters of all tiles are arranged simultaneously within a makespan of O(d) . Finally,
simultaneously pushing all clusters of all tiles into the direction of their target tiles realizes
Si , see Fig. 18b. Note that not all robots are pushed into the target tile T ′ but some replace
robots on the boundaries between T and T ′ , see Fig. 18c.

Repeating this approach for each subflow fi leads to a stable schedule that realizes the
entire flow F within a makespan linear in d, i.e., transforms C′

s
 into C′

t
 within O(d) transfor-

mation steps, see Fig. 15.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 26 of 29

Proof of Lemma 7  The schedule described above (and illustrated in Fig. 18) is correct
because of the following. For each tile T ∈ V(G) , the number of the paths starting in T
equals the supply of T, while the number of paths ending in T equals the demand of T. As T
has either a supply or a demand, but not both, so the tile T is never too full to receive addi-
tional robots, and never too empty to deliver robots as required by paths containing T. 	
� ◻

This concludes the proof of Theorem 3. Finally, we adapt the result to the general case,
for which overlap of the start and target configuration is not guaranteed.

Corollary 3  There is a constant c∗ such that for any pair of start and target configurations
with a scale of at least c∗ , there is a stable schedule of constant stretch.

Proof  In case of a pair (Cs,Ct) , consisting of a start and a target configuration, that does not
overlap, our algorithm computes in a first step a minimum bottleneck matching mapping Cs
to Ct resulting in a bottleneck distance d , and translates Cs into a configuration Cs overlap-
ping the target configuration within a makespan of d . This results in a bottleneck distance
d between Cs and Ct which is at most 2d . As Theorem 3 guarantees a makespan linear in d,
we obtain a makespan linear in d + d , i.e., linear in d for the overall algorithm. 	� ◻

As the diameter of the pair (Cs,Ct) is a lower bound for the makespan of any schedule
transforming Cs into Ct , we obtain the following.

Corollary 4  There is a constant-factor approximation for computing stable schedules with
minimal makespan between pairs of start and target configurations with a scale of at least
c∗ , for some constant c∗.

All steps in the overall algorithm can be computed in an efficient manner. Critical is the
computation of matchings (Phase 2): the underlying geometry can be exploited for comput-
ing bottleneck matchings for a set of points in the plane in O(n1.5 log n) [18]. The required
BFS tree (Phase 3) and flow decomposition (Phase 4) can both be computed in straightfor-
ward manner; note that Phase 4 does not require a smallest decomposition, and the edge
capacities are strongly polynomial in the number n of robots.

5 � Conclusion

We have shown that connected coordinated motion planning is challenging even in rela-
tively simple cases, such as unlabeled robots that have to travel a distance of at most 2
units, by establishing NP-completeness. On the other hand, we have shown that (assuming
sufficient scale of the swarm), it is possible to compute efficient reconfiguration schedules
with constant stretch.

It is straightforward to extend our approach to other scenarios, e.g., to three-dimensional
configurations. Other questions appear less clear. Is it possible to achieve constant stretch
for arrangements with very small scale factor? We believe that this may hinge on the ability
to perform synchronized shifts on long-distance “chains” of robots without delay, which is
not a valid assumption for many real-world scenarios. (A well-known example is a line of
cars when a traffic light turns green.) As a consequence, the answer may depend on crucial

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 27 of 29  43

assumptions on motion control; we avoid this issue in our approach. Can we provide alter-
native approaches with either weaker scale assumptions or better stretch factors? Can we
extend our methods to the labeled case? All these questions are left for future work.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Adler, A., de Berg, M., Halperin, D., & Solovey, K. (2015). Efficient multi-robot motion planning
for unlabeled discs in simple polygons. IEEE Transactions on Automation Science and Engineering,
12(4), 1309–1317. https://​doi.​org/​10.​1109/​TASE.​2015.​24700​96

	 2.	 Akitaya, H. A., Arkin, E. M., Damian, M., Demaine, E. D., Dujmovic, V., Flatland, R. Y., Korman,
M., Palop, B., Parada, I., van Renssen, A., & Sacristán, V. (2021). Universal reconfiguration of facet-
connected modular robots by pivots: The O(1) musketeers. Algorithmica, 83(5), 1316–1351. https://​
doi.​org/​10.​1007/​s00453-​020-​00784-6

	 3.	 Becker, A. T., Fekete, S. P., Keldenich, P., Konitzny, M., Lin, L., & Scheffer, C. (2018). Coordinated
motion planning: The video. In Symposium on computational geometry (SoCG), pp. 74:1–74:6. Video
at https://​www.​ibr.​cs.​tu-​bs.​de/​users/​fekete/​Videos/​oordi​nated​Motio​nPlan​ning.​mp4. https://​doi.​org/​10.​
4230/​LIPIcs.​SoCG.​2018.​74

	 4.	 Bourgeois, J., Fekete, S.P., Kosfeld, R., Kramer, P., Piranda, B., Rieck, C., & Scheffer C. (2022). Space
ants: Episode II—Coordinating connected catoms. In Symposium on computational geometry (SoCG),
pp. 65:1–65:6. Video at https://​youtu.​be/​m45jW​eCUt9Y. https://​doi.​org/​10.​4230/​LIPIcs.​SoCG.​2022.​
65

	 5.	 Charrier, T., Queffelec, A., Sankur, O., & Schwarzentruber, F. (2019). Reachability and coverage plan-
ning for connected agents. In International joint conference on artificial intelligence (IJCAI), pp. 144–
150. https://​doi.​org/​10.​24963/​ijcai.​2019/​21

	 6.	 Charrier, T., Queffelec, A., Sankur, O., & Schwarzentruber F. (2019). Reachability and coverage plan-
ning for connected agents. In International conference on autonomous agents and multiagent systems
(AAMAS), pp. 1874–1876. https://​dl.​acm.​org/​doi/​10.​5555/​33061​27.​33319​48

	 7.	 Charrier, T., Queffelec, A., Sankur, O., & Schwarzentruber, F. (2020). Complexity of planning for
connected agents. Autonomous Agents Multi Agent Systems, 34(2), 44. https://​doi.​org/​10.​1007/​
s10458-​020-​09468-5

	 8.	 Chung, S.-J., Paranjape, A. A., Dames, P., Shen, S., & Kumar, V. (2018). A survey on aerial swarm
robotics. IEEE Transactions on Robotics, 34(4), 837–855. https://​doi.​org/​10.​1109/​TRO.​2018.​28574​75

	 9.	 Crombez, L., da Fonseca, G. D., Gerard, Y., Gonzalez-Lorenzo, A., Lafourcade, P., & Libralesso, L.
(2021). Shadoks approach to low-makespan coordinated motion planning. In Symposium on computa-
tional geometry (SoCG), pp. 63:1–63:9. https://​doi.​org/​10.​4230/​LIPIcs.​SoCG.​2021.​63

	10.	 de Berg, M., & Khosravi, A. (2012). Optimal binary space partitions for segments in the plane. Inter-
national Journal on Computational Geometry and Applications, 22(3), 187–206. https://​doi.​org/​10.​
1142/​S0218​19591​25000​45

	11.	 Delahaye, D., Puechmorel, S., Tsiotras, P., & Féron, E. (2014). Mathematical models for aircraft trajec-
tory design: A survey. In Air traffic management and systems, pp. 205–247. https://​doi.​org/​10.​1007/​
978-4-​431-​54475-3_​12

	12.	 Demaine, E. D., Demaine, M. L., Fekete, S. P., Ishaque, M., Rafalin, E., Schweller, R. T., & Souvaine,
D. (2008). Staged self-assembly: Nanomanufacture of arbitrary shapes with O(1) glues. Natural Com-
puting, 7(3), 347–370. https://​doi.​org/​10.​1007/​s11047-​008-​9073-0

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TASE.2015.2470096
https://doi.org/10.1007/s00453-020-00784-6
https://doi.org/10.1007/s00453-020-00784-6
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/oordinatedMotionPlanning.mp4
https://doi.org/10.4230/LIPIcs.SoCG.2018.74
https://doi.org/10.4230/LIPIcs.SoCG.2018.74
https://youtu.be/m45jWeCUt9Y
https://doi.org/10.4230/LIPIcs.SoCG.2022.65
https://doi.org/10.4230/LIPIcs.SoCG.2022.65
https://doi.org/10.24963/ijcai.2019/21
https://dl.acm.org/doi/10.5555/3306127.3331948
https://doi.org/10.1007/s10458-020-09468-5
https://doi.org/10.1007/s10458-020-09468-5
https://doi.org/10.1109/TRO.2018.2857475
https://doi.org/10.4230/LIPIcs.SoCG.2021.63
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1142/S0218195912500045
https://doi.org/10.1007/978-4-431-54475-3_12
https://doi.org/10.1007/978-4-431-54475-3_12
https://doi.org/10.1007/s11047-008-9073-0

	 Autonomous Agents and Multi-Agent Systems (2023) 37:43

1 3

43  Page 28 of 29

	13.	 Demaine, E. D., Fekete, S. P., Keldenich, P., Meijer, H., & Scheffer, C. (2019). Coordinated motion
planning: Reconfiguring a swarm of labeled robots with bounded stretch. SIAM Journal on Comput-
ing, 48(6), 1727–1762. https://​doi.​org/​10.​1137/​18M11​94341

	14.	 Demaine, E. D., Fekete, S. P., Scheffer, C., & Schmidt, A. (2017). New geometric algorithms for fully
connected staged self-assembly. Theoretical Computer Science, 671, 4–18. https://​doi.​org/​10.​1016/j.​
tcs.​2016.​11.​020

	15.	 Demaine, E. D., Patitz, M. J., Schweller, R. T., & Summers, S. M. (2011). Self-assembly of arbitrary
shapes using RNAse enzymes: Meeting the Kolmogorov bound with small scale factor. In Sympo-
sium on theoretical aspects of computer science (STACS), pp. 201–212. https://​doi.​org/​10.​4230/​LIPIcs.​
STACS.​2011.​201

	16.	 Derakhshandeh, Z., Gmyr, R., Richa, A. W., Scheideler, C., & Strothmann, T. (2015) An algorithmic
framework for shape formation problems in self-organizing particle systems. In International conference
on nanoscale computing and communication, pp. 21:1–21:2, https://​doi.​org/​10.​1145/​28007​95.​28008​29

	17.	 Derakhshandeh, Z., Gmyr, R., Richa, A. W., Scheideler, C., & Strothmann, T. (2016). Universal shape
formation for programmable matter. In Symposium on parallelism in algorithms and architectures
(SPAA),, pp. 289–299. https://​doi.​org/​10.​1145/​29357​64.​29357​84

	18.	 Efrat, A., Itai, A., & Katz, M. J. (2001). Geometry helps in bottleneck matching and related problems.
Algorithmica, 31, 1–28. https://​doi.​org/​10.​1007/​s00453-​001-​0016-8

	19.	 Fekete, S. P., Hendriks, B., Tessars, C., Wegener, A., Hellbrück, H., Fischer, S., & Ebers, S. (2011).
Methods for improving the flow of traffic. Organic Computing-A Paradigm Shift for Complex Systems.
https://​doi.​org/​10.​1007/​978-3-​0348-​0130-0_​29

	20.	 Fekete, S. P., Keldenich, P., Kosfeld, R., Rieck, C., & Scheffer, C. (2021). Connected coordinated
motion planning with bounded stretch. In International symposium on algorithms and computation
(ISAAC), 9:1-9:16. https://​doi.​org/​10.​4230/​LIPIcs.​ISAAC.​2021.9

	21.	 Fekete, S. P., Keldenich, P., Krupke, D., & Mitchell, J. S. B. (2022). Computing coordinated motion
plans for robot swarms: The CG:SHOP challenge 2021. ACM Journal of Experimental Algorithmics,
27, 3.1:1-3.1:12. https://​doi.​org/​10.​1145/​35327​73

	22.	 Goldstein, S.C., Mowry, T.C. (2004). Claytronics: A scalable basis for future robots. In Robosphere
2004, http://​www.​cs.​cmu.​edu/​~clayt​ronics/​papers/​golds​tein-​robos​phere​04.​pdf

	23.	 Hopcroft, J. E., & Karp, R. M. (1973). An n5∕2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4), 225–231. https://​doi.​org/​10.​1137/​02020​19

	24.	 Hopcroft, J. E., Schwartz, J. T., & Sharir, M. (1984). On the complexity of motion planning for
multiple independent objects; PSPACE-hardness of the warehouseman’s problem. International
Journal of Robotics Research, 3(4), 76–88. https://​doi.​org/​10.​1177/​02783​64984​00300​405

	25.	 Hopcroft, J. E., & Wilfong, G. T. (1986). Reducing multiple object motion planning to graph
searching. SIAM Journal on Computing, 15(3), 768–785. https://​doi.​org/​10.​1137/​02150​55

	26.	 Kloder, S., & Hutchinson, S. (2006). Path planning for permutation-invariant multi-robot forma-
tions. IEEE Transactions on Robotics and Automation, 22(4), 650–665. https://​doi.​org/​10.​1109/​
TRO.​2006.​878952

	27.	 Liu, P., Spalding-Jamieson, J., Zhang, B., & Zheng, D. W. (2021). Coordinated motion planning
through randomized k-opt. In Symposium on computational geometry (SoCG),, pp. 64:1–64:8.
https://​doi.​org/​10.​4230/​LIPIcs.​SoCG.​2021.​64

	28.	 Luchsinger, A., Schweller, R. T., & Wylie, T. (2019). Self-assembly of shapes at constant
scale using repulsive forces. Natural Computing, 18(1), 93–105. https://​doi.​org/​10.​1007/​
s11047-​018-​9707-9

	29.	 Naz, A., Piranda, B., Bourgeois, J., & Goldstein, S. C. (2016). A distributed self-reconfiguration
algorithm for cylindrical lattice-based modular robots. In International Symposium on network
computing and applications (NCA), pp. 254–263. https://​doi.​org/​10.​1109/​NCA.​2016.​77786​28

	30.	 Pescher, F., Napp, N., Piranda, B., & Bourgeois, J. (2020). GAPCoD: A generic assembly planner
by constrained disassembly. In Autonomous agents and multiagent systems (AAMAS), pp. 1028–
1036. https://​dl.​acm.​org/​doi/​abs/​10.​5555/​33987​61.​33988​81.

	31.	 Queffelec, A., Sankur, O., & Schwarzentruber, F. (2023). Complexity of planning for connected
agents in a partially known environment. Theoretical Computer Science, 941, 202–220. https://​doi.​
org/​10.​1016/j.​tcs.​2022.​11.​015

	32.	 Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-
robot swarm. Science, 345(6198), 795–799. https://​doi.​org/​10.​1126/​scien​ce.​12542​95

	33.	 Şahin, E., & Winfield, A. F. T. (2008). Special issue on swarm robotics. Swarm Intelligence, 2(2),
69–72. https://​doi.​org/​10.​1007/​s11721-​008-​0020-6

	34.	 Schreckenberg, M., & Selten, R. (2013). Human behaviour and traffic networks. NewYork:
Springer. https://​doi.​org/​10.​1007/​978-3-​662-​07809-9

https://doi.org/10.1137/18M1194341
https://doi.org/10.1016/j.tcs.2016.11.020
https://doi.org/10.1016/j.tcs.2016.11.020
https://doi.org/10.4230/LIPIcs.STACS.2011.201
https://doi.org/10.4230/LIPIcs.STACS.2011.201
https://doi.org/10.1145/2800795.2800829
https://doi.org/10.1145/2935764.2935784
https://doi.org/10.1007/s00453-001-0016-8
https://doi.org/10.1007/978-3-0348-0130-0_29
https://doi.org/10.4230/LIPIcs.ISAAC.2021.9
https://doi.org/10.1145/3532773
http://www.cs.cmu.edu/%7eclaytronics/papers/goldstein-robosphere04.pdf
https://doi.org/10.1137/0202019
https://doi.org/10.1177/027836498400300405
https://doi.org/10.1137/0215055
https://doi.org/10.1109/TRO.2006.878952
https://doi.org/10.1109/TRO.2006.878952
https://doi.org/10.4230/LIPIcs.SoCG.2021.64
https://doi.org/10.1007/s11047-018-9707-9
https://doi.org/10.1007/s11047-018-9707-9
https://doi.org/10.1109/NCA.2016.7778628
https://dl.acm.org/doi/abs/10.5555/3398761.3398881
https://doi.org/10.1016/j.tcs.2022.11.015
https://doi.org/10.1016/j.tcs.2022.11.015
https://doi.org/10.1126/science.1254295
https://doi.org/10.1007/s11721-008-0020-6
https://doi.org/10.1007/978-3-662-07809-9

Autonomous Agents and Multi-Agent Systems (2023) 37:43	

1 3

Page 29 of 29  43

	35.	 Schwartz, J. T., & Sharir, M. (1983). On the piano movers’ problem: III. Coordinating the motion
of several independent bodies: the special case of circular bodies moving amidst polygonal barri-
ers. International Journal of Robotics Research, 2(3), 46–75. https://​doi.​org/​10.​1177/​02783​64983​
00200​304

	36.	 Soloveichik, D., & Winfree, E. (2007). Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6), 1544–1569. https://​doi.​org/​10.​1137/​S0097​53970​44467​12

	37.	 Solovey, K., & Halperin, D. (2014). k -color multi-robot motion planning. International Journal of
Robotics Research, 33(1), 82–97. https://​doi.​org/​10.​1177/​02783​64913​506268

	38.	 Solovey, K., & Halperin, D. (2016). On the hardness of unlabeled multi-robot motion planning.
International Journal of Robotics Research, 35(14), 1750–1759. https://​doi.​org/​10.​1177/​02783​
64916​672311

	39.	 Solovey, K., Jingjin, Yu., Zamir, O., & Halperin, D. (2015). Motion planning for unlabeled discs with
optimality guarantee. Robotics: Science and Systems. https://​doi.​org/​10.​15607/​RSS.​2015.​XI.​011

	40.	 Stern, R., Sturtevant, N. R., Felner, A., Koenig, S., Ma, H., Walker, T. T., Li, J., Atzmon, D., Liron
Cohen T. K., Kumar, S., Barták, R., & Boyarski, E. (2019). Multi-agent pathfinding: Definitions,
variants, and benchmarks. In Symposium on combinatorial search (SOCS), pp. 151–159. https://​
doi.​org/​10.​1609/​socs.​v10i1.​18510

	41.	 Thalamy, P., Piranda, B., & Bourgeois, J.. (2019). Distributed self-reconfiguration using a determin-
istic autonomous scaffolding structure. In Autonomous agents and multiagent systems (AAMAS),
pp. 140–148. https://​dl.​acm.​org/​doi/​abs/​10.​5555/​33061​27.​33316​85

	42.	 Turpin, M., Michael, N., & Kumar, V. (2013). Trajectory planning and assignment in multirobot
systems. In Algorithmic foundations of robotics X, pp. 175–190. https://​doi.​org/​10.​1007/​978-3-​642-​
36279-8_​11

	43.	 Turpin, M., Mohta, K., Michael, N., & Kumar, V. (2014). Goal assignment and trajectory planning
for large teams of interchangeable robots. Autonomous Robots, 37(4), 401–415. https://​doi.​org/​10.​
1007/​s10514-​014-​9412-1

	44.	 Yang, H., & Vigneron, A. (2021). A simulated annealing approach to coordinated motion planning.
In Symposium on computational geometry (SoCG). pp. 65:1–65:9. https://​doi.​org/​10.​4230/​LIPIcs.​
SoCG.​2021.​65

	45.	 Yu, J., & LaValle, S. M. (2012). Multi-agent path planning and network flow. In Workshop on the algo-
rithmic foundations of robotics (WAFR), pp. 157–173. https://​doi.​org/​10.​1007/​978-3-​642-​36279-8_​10

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Sándor P. Fekete1 · Phillip Keldenich1 · Ramin Kosfeld1 · Christian Rieck1 ·
Christian Scheffer2

 *	 Sándor P. Fekete
	 s.fekete@tu-bs.de

	 Phillip Keldenich
	 p.keldenich@tu-bs.de

	 Ramin Kosfeld
	 r.kosfeld@tu-bs.de

	 Christian Rieck
	 c.rieck@tu-bs.de

	 Christian Scheffer
	 christian.scheffer@hs-bochum.de

1	 Department of Computer Science, TU Braunschweig, Braunschweig, Germany
2	 Department of Electrical Engineering and Computer Science, Bochum University of Applied

Sciences, Bochum, Germany

https://doi.org/10.1177/027836498300200304
https://doi.org/10.1177/027836498300200304
https://doi.org/10.1137/S0097539704446712
https://doi.org/10.1177/0278364913506268
https://doi.org/10.1177/0278364916672311
https://doi.org/10.1177/0278364916672311
https://doi.org/10.15607/RSS.2015.XI.011
https://doi.org/10.1609/socs.v10i1.18510
https://doi.org/10.1609/socs.v10i1.18510
https://dl.acm.org/doi/abs/10.5555/3306127.3331685
https://doi.org/10.1007/978-3-642-36279-8_11
https://doi.org/10.1007/978-3-642-36279-8_11
https://doi.org/10.1007/s10514-014-9412-1
https://doi.org/10.1007/s10514-014-9412-1
https://doi.org/10.4230/LIPIcs.SoCG.2021.65
https://doi.org/10.4230/LIPIcs.SoCG.2021.65
https://doi.org/10.1007/978-3-642-36279-8_10

	Connected coordinated motion planning with bounded stretch
	Abstract
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	3 Makespan 1 and 2
	3.1 Construction of the gadgets
	3.2 Completing the NP-hardness reduction

	4 Bounded stretch for arbitrary makespan
	4.1 Algorithm overview and preliminaries
	4.1.1 Preliminaries for the algorithm
	4.1.2 Technical key components

	4.2 Scaffold construction
	4.3 Refilling tiles
	4.3.1 Reconfiguration maintaining the number of robots in tiles
	4.3.2 Refilling tiled configurations

	5 Conclusion
	References

