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Abstract
Communication is an effective mechanism for coordinating the behaviors of multiple 
agents, broadening their views of the environment, and to support their collaborations. In 
the field of multi-agent deep reinforcement learning (MADRL), agents can improve the 
overall learning performance and achieve their objectives by communication. Agents can 
communicate various types of messages, either to all agents or to specific agent groups, or 
conditioned on specific constraints. With the growing body of research work in MADRL 
with communication (Comm-MADRL), there is a lack of a systematic and structural 
approach to distinguish and classify existing Comm-MADRL approaches. In this paper, we 
survey recent works in the Comm-MADRL field and consider various aspects of commu-
nication that can play a role in designing and developing multi-agent reinforcement learn-
ing systems. With these aspects in mind, we propose 9 dimensions along which Comm-
MADRL approaches can be analyzed, developed, and compared. By projecting existing 
works into the multi-dimensional space, we discover interesting trends. We also propose 
some novel directions for designing future Comm-MADRL systems through exploring 
possible combinations of the dimensions.

Keywords  Multi-agent reinforcement learning · Deep reinforcement learning · 
Communication · Survey

1  Introduction

Many real-world scenarios, such as autonomous driving [1], sensor networks [2], robot-
ics [3] and game-playing [4, 5], can be modeled as multi-agent systems. Such multi-
agent systems can be designed and developed using multi-agent reinforcement learning 
(MARL) techniques to learn the behavior of individual agents, which can be cooperative, 
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competitive, or a mixture of them. As agents are often distributed in the environment where 
they only have access to their local observations rather than the complete state of the envi-
ronment, partial observability becomes an essential assumption in MARL [6–8]. Moreover, 
MARL suffers from the non-stationary issue [9], since each agent faces a dynamic environ-
ment that can be influenced by the changing and adapting policies of other agents. Com-
munication has been viewed as a vital means to tackle the problems of partial observability 
and non-stationary in MARL. Agents can communicate individual information, e.g., obser-
vations, intentions, experiences, or derived features, to have a broader view of the environ-
ment, which in turn allows them to make well-informed decisions [9, 10].

Due to the recent success of deep learning [11] and its application to reinforcement 
learning [12], multi-agent deep reinforcement learning (MADRL) has witnessed great 
achievements in recent years, where agents can process high-dimensional data and have 
generalization ability in large state and action spaces [7, 8]. We notice that a large number 
of research works focus on learning tasks with communication, which aim at learning to 
solve domain-specific tasks, such as navigation, traffic, and video games, by communicat-
ing and sharing information. To the best of our knowledge, there is a lack of survey litera-
ture that can cover recent works on learning tasks with communication in multi-agent deep 
reinforcement learning (Comm-MADRL). Early surveys consider the role of communica-
tion in MARL but assume it to be predefined rather than a subject of learning [13–15]. 
Most Comm-MADRL surveys cover only a small number of research works without pro-
posing a fine-grained classification system to compare and analyze them.1 In cooperative 
scenarios, Hernandez-Leal et  al. [16] use learning communication to denote the area of 
learning communication protocols to promote the cooperation of agents.2 The only survey 
that we found classifying some early works in Comm-MADRL is from Gronauer and Die-
pold [17], which is based on distinguishing whether messages are received by all agents, 
a set of agents, or a network of agents. However, other aspects of Comm-MADRL, such 
as the type of messages and training paradigms, which are essential for communication 
and can help characterize existing communication protocols, are ignored. As a result, the 
reviewed papers in recent surveys regarding learning tasks with communication are rather 
limited and the proposed categorizations are too narrow to distinguish existing works in 
Comm-MADRL. On the other hand, there is a closely related research area, emergent lan-
guage/communication, which also considers learning communication through various rein-
forcement learning techniques [18]. Different from Comm-MADRL, the primary goal of 
emergent language studies is to learn a symbolic language.3 However, a subset of emer-
gent language research works pursues an additional goal to leverage learnable symbolic 
language to enhance task-level performance. Notably, these research works have not been 
encompassed within existing Comm-MADRL surveys but included in our survey, referred 
to learning tasks with emergent language. In summary, our survey overlaps in scope with 
surveys of emergent language (i.e., in learning tasks with emergent language), but our sur-
vey focuses on different primary goals (i.e., achieving domain-specific tasks rather than 

1  We provide a detailed comparison of recent surveys on MADRL which involves communication in 
Sect. 2.3.
2  In our survey, we extend the concept of learning communication to general multi-agent tasks and use the 
term learning tasks with communication to emphasize that the primary goal of recent research, which is 
centered on solving specific domain tasks through the use of communication.
3  In the literature, emergent language and emergent communication are used interchangeably. In our survey, 
we use emergent language for referring to both terms.



Autonomous Agents and Multi-Agent Systems            (2024) 38:4 	

1 3

Page 3 of 48      4 

learning a symbolic language). We further clarify the differences between learning tasks 
with communication and emergent language in Sect. 2.2.

In our survey paper, we review the Comm-MADRL literature by focusing on how com-
munication can be utilized to improve the performance of multi-agent deep reinforcement 
learning techniques. Specifically, we focus on learnable communication protocols, which 
are aligned with recent works that emphasize the development of dynamic and adaptive 
communication, including learning when, how, and what to communicate with deep rein-
forcement learning techniques. Through a comprehensive review of recent Comm-MADRL 
literature, we propose a systematic and structured classification methodology designed to 
differentiate and categorize various Comm-MADRL approaches. Such a methodology will 
also provide guidance for the design and advancement of new Comm-MADRL systems. 
Suppose we plan to develop a Comm-MADRL system for a domain task at hand. Starting 
with the questions of when, how, and what to communicate, the system can be character-
ized from various aspects. Agents need to learn when to communicate, with whom to com-
municate, what information to convey, how to integrate received information, and, lastly, 
what learning objectives can be achieved through communication. We propose 9 dimen-
sions that correspond to unique aspects of Comm-MADRL systems: Controlled Goals, 
Communication Constraints, Communicatee Type, Communication Policy, Communi-
cated Messages, Message Combination, Inner Integration, Learning Methods, and Training 
Schemes. These dimensions, which form the skeleton of a Comm-MADRL system, can be 
used to analyze and gain insights into designed Comm-MADRL approaches thoroughly. 
By mapping recent Comm-MADRL approaches into this multi-dimensional structure, we 
not only provide insight into the current state of the art in this field but also determine 
some important directions for designing future Comm-MADRL systems.

The remaining sections of this paper are organized as follows. In Sect. 2 the preliminar-
ies of multi-agent RL are discussed, together with existing extensions regarding commu-
nication and a detailed comparison of recent surveys. In Sect. 3, we present our proposed 
dimensions, explaining how we group the recent works in the categories of each dimen-
sion. In Sect. 4, we discuss the trends that we found in the literature, and, driven by the 
proposed dimensions, we propose possible research directions in this research area. We 
finalize the paper with some conclusions in Sect. 5.

2 � Background

In this section, we first provide the necessary background on multi-agent reinforcement 
learning. Then, we show how multi-agent reinforcement learning can be extended to con-
sider communication between agents. Finally, we present and compare recent surveys 
involving communication, from which we can directly see our motivations to fill the gaps 
among existing surveys.

2.1 � Multi‑agent reinforcement learning

Real-world applications often contain more than one agent that operate in the environ-
ment. Agents are generally assumed to be autonomous and required to learn their strat-
egies for achieving their goals. A multi-agent environment can be formalized in sev-
eral ways [6], depending on whether the environment is fully observable, how agents’ 
goals are correlated, etc. Among them, the Partially Observable Stochastic Game 



	 Autonomous Agents and Multi-Agent Systems            (2024) 38:4 

1 3

    4   Page 4 of 48

(POSG) [19, 20] is one of the most flexible formalizations. A POSG is defined by a 
tuple 

⟨
I,S, �0,

{
Ai

}
,P,

{
Oi

}
,O,

{
Ri

}⟩
 , where I  is a (finite) set of agents indexed as 

{1, ..., n} , S is a set of environment states, �0 is the initial state distribution over state 
space S , Ai is a set of actions available to agent i, and Oi is a set of observations of 
agent i. We denote a joint action space as A = ×i∈IAi and a joint observation space 
of agents as O = ×i∈IOi . Therefore, P ∶ S ×A → Δ(S) denotes the transition probabil-
ity from a state s ∈ S to a new state s� ∈ S given agents’ joint action a⃗ = ⟨a1, ..., an⟩ , 
where a⃗ ∈ A . With the environment transitioning to the new state s′ , the probability 
of observing a joint observation o⃗ = ⟨o1, ..., on⟩ (where o⃗ ∈ O ) given the joint action 
a⃗ is determined according to the observation probability function O ∶ S ×A → Δ(O) . 
Each agent then receives an immediate reward according to their own reward func-
tions Ri ∶ S ×A × S → ℝ . Similar to the joint action and observation, we could denote 
r⃗ = ⟨r1, ..., rn⟩ as a joint reward. If agents’ reward functions happen to be the same, i.e., 
they have identical goals, then r1 = r2 = ... = rn holds for every time step. In this setting, 
the POSG is reduced to a Dec-POMDP [6]. If at every time step the state is uniquely 
determined from the current set of observations of agents, i.e., s ≡ o⃗ , the Dec-POMDP 
is reduced to a Dec-MDP. If each agent knows what the true environment state is, the 
Dec-MDP is reduced to a Multi-agent MDP. If there is only one single agent in the set 
of agents, i.e., I = {1} , then the Multi-agent MDP is reduced to an MDP and the Dec-
POMDP is reduced to a POMDP. Due to the partial observability, MARL methods often 
use the observation-action history �i,t = {oi,0, ai,0, oi,1, ..., oi,t} up to time step t for each 
agent to approximate the environment state. Note that time step t is often omitted for the 
sake of simplification.

In the multi-agent reinforcement learning setting, agents can learn their policies in 
either a decentralized or a centralized fashion. In decentralized learning (e.g., decen-
tralized Q-learning [21, 22]), an n-agent MARL problem is decomposed into n decen-
tralized single-agent problems where each agent learns its own policy by considering 
all other agents as a part of the environment [23, 24]. In such a decentralized setting, 
the learned policy of each agent is conditioned on its local observation and history. A 
major problem with decentralized learning is the so-called non-stationarity of the envi-
ronment, i.e., the fact that each agent learns in an environment where other agents are 
simultaneously exploring and learning. Centralized learning enables the training of 
either a single joint policy for all agents or a centralized value function to facilitate the 
learning of n decentralized policies. While centralized (joint) learning removes or miti-
gates issues of partial observability and non-stationarity, it faces the challenge of joint 
action (and observation) spaces that expand exponentially with the number of agents 
and their actions. For a deeper dive into various training schemes used in MARL, we 
recommend the comprehensive survey by [17], which offers valuable insights into the 
training and execution of policies. Based on whether policies are derived from value 
functions or directly learned, multi-agent reinforcement learning methods can be cat-
egorized into value-based and policy-based methods. Both methods have been largely 
utilized in Comm-MADRL.

Value-based
Value-based methods in the multi-agent case borrow considerable ideas from the 

single-agent case. As one of the most popular value-based algorithms, the decentralized 
Q-learning learns a local Q-function for each agent. In the cooperative setting where 
agents share a common reward, the update rule for agent i is as follows:
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where r is the shared reward, and a′
i
 is the action with the highest Q-value in the next state 

s′ . In partially observable environments, the environment state is not fully observable and 
is usually replaced by the individual observation or history of each agent. The Q-values 
for each state-action pair are incrementally updated according to the TD error. This error, 
i.e., r + � maxa�

i
Qi(s

�, a�
i
) − Qi(s, ai) , represents the difference between a new estimate (i.e., 

r + � maxa�
i
Qi(s

�, a�
i
) ) and the current estimate (i.e., Qi(s, ai) ) based on the Bellman equa-

tion [25]. As the state and action space could be too large to be encountered frequently 
for accurate estimation, function approximation methods, like deep neural networks, have 
become popular for endowing value or policy models with generalization abilities across 
both discrete and continuous states and actions [12]. For example, the Deep Q-network 
(DQN) [12] minimizes the difference between the new estimate calculated from sampled 
rewards and the current estimate of a parameterized Q-function. In DQN-based methods, 
the Q-function in Eq. 1 is notated as Qi(s, ai;�i) , which depends on learnable parameters �i . 
On the other hand, centralized learning in value-based methods learns a joint Q-function 
Q(s, a⃗;𝜃) with parameters � . However, this approach can be challenging to scale with an 
increasing number of agents. Value decomposition methods [26–29] are popular MARL 
methods that decompose a joint Q-function to enable efficient training. These methods are 
also widely employed in research works in Comm-MADRL [30–32]. In partially observ-
able environments, linear value decomposition methods decompose history-based joint 
Q-functions as follows:

where the joint Q-function is based on the joint history of all agents and is decomposed 
into local Q-functions based on individual histories. The weight wi can either be a fixed 
value [26, 28] or a learnable parameter subject to certain constraints [29]. Advantage func-
tions can also replace the Q-function in the above equation to reduce variance [33].

Policy-based
Policy-based methods directly search over the policy space instead of obtaining the pol-

icy through value functions implicitly. The policy gradient theorem [25] provides an analyt-
ical expression of the gradients for a stochastic policy with learnable parameters in single-
agent cases. In the multi-agent case with centralized learning, the policy gradient theorem is 
expressed as follows:

where J(�) represents the learning objective, and 𝜋(a⃗ ∣ s;𝜃) denotes a stochastic policy 
parameterized by � (abbreviated as � ). Additionally, �� signifies the state distribution 
under the policy � , and ∇�J(�) represents the expected gradient with respect to all pos-
sible actions and states. Due to the computational intractability of the expected gradient, 
stochastic gradient ascent can be applied to update the parameters � at every learning step 
l as follows:

(1)
Qi(s, ai) ← Qi(s, ai) + �(r + � max

a�
i

Qi(s
�, a�

i
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
new estimate

− Qi(s, ai)
⏟⏟⏟

current estimate

)

(2)Qjoint(𝜏, a⃗) =
n∑

i

wiQ
i(𝜏i, ai)

(3)∇𝜃J(𝜃) = �a⃗∼𝜋(⋅∣s),s∼𝜌𝜋 [∇𝜃 log𝜋(a⃗ ∣ s;𝜃)Q𝜋(s, a⃗)]
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where � is the learning rate, and ∇̂�J(�) is an estimate of the expected gradient based on 
sampled actions and states. Moreover, the Q-function in Eq. 3 can be replaced by average 
returns over episodes to form REINFORCE algorithms [25], or by an estimated value func-
tion to form actor-critic algorithms [34, 35]. In actor-critic methods, the policy and value 
function are termed the actor and the critic, respectively. The critic will, therefore, guide 
the learning of the actor.

Actor-critic methods have undergone various adaptations for multi-agent environments 
[7, 8, 36, 37]. A typical extension is the multi-agent deep deterministic policy gradient 
(MADDPG) [7]. In MADDPG, the critic is a centralized Q-function designed to capture 
global information and coordinate learning signals. Meanwhile, the actors are local poli-
cies, ensuring decentralized execution. MADDPG assumes deterministic actors with con-
tinuous actions, allowing for the backpropagation of gradients from the value function to 
the policies. The gradient of each parameterized actor ��i

(ai ∣ oi) with learnable parameters 
�i , abbreviated as �i , is defined as follows:

where D is the experience buffer that contains joint observation-action tuples ⟨o⃗, a⃗, r⃗, o⃗′⟩ . 
Each agent’s Q-function, denoted as Q𝜇

i
(o⃗, a1,… , aN) , takes joint observations and actions 

as inputs, while decentralized actors use local observations as inputs. Contrary to Eq. 3, 
gradients with respect to the current action of agent i (specifically, �i(oi) ) are utilized to 
guide the update of the policy parameter �i . Both MADDPG and its single-agent counter-
part, DDPG, have seen widespread application in Comm-MADRL [38–42].

2.2 � Extensions with communication

In the MADRL literature where communication is used, we notice two closely related 
research areas, which we will refer to with the terms emergent language and learning tasks 
with communication. The emergent language research area [18, 43–46] aims at learning 
a language grounded on symbols in communities of interacting/communicating agents. 
This line of research tries to understand the evolution of the language in agents equipped 
with neural networks. On the other hand, learning tasks with communication [16, 47–49] 
focuses primarily on solving multi-agent reinforcement learning tasks with the aid of com-
munication. Communication is often regarded as information exchange rather than learn-
ing a (human-like) language. Despite the distinction, when using MADRL techniques on 
specific domain tasks, languages might emerge, which can potentially enhance the learning 
system’s explainability in accomplishing those tasks. We illustrate the research areas, emer-
gent language and learning tasks with communication, along with their intersection learn-
ing tasks with emergent language in Fig. 1. Notably, our survey focuses on learning tasks 
with communication in multi-agent deep reinforcement learning, including the intersec-
tion with emergent language.4 Within this focus, multiple agents often operate in partially 
observable environments and learn to share information encoded through neural networks. 

�l+1 = �l + �∇̂�J(�)

∇𝜃i
J
(
𝜃i
)
= �o⃗,a⃗∼D

[
∇𝜃i

𝜇i

(
ai ∣ oi

)
∇ai

Q
𝜇
i

(
o⃗, a1,… , aN

)
∣ai=𝜇i(oi)

]

4  Throughout the remainder of our survey, Comm-MADRL will be used to specifically refer to the areas of 
our focus.
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Furthermore, communication protocols, determining when and with whom to communi-
cate, often leverage deep learning models to find the optimal choices that minimize com-
munication overhead and yield more targeted communication. A multitude of works have 
been proposed to handle these subproblems inherent in Comm-MADRL. Most research 
works model only one or a few aspects of Comm-MADRL while selecting a default 
approach for other aspects. Given that the common goal of Comm-MADRL approaches 
is to design an effective and efficient communication protocol to improve agents’ learn-
ing performance in the environment, the proposed Comm-MADRL approaches inevitably 
share similarities to some extent. Consequently, establishing a classification system for 
Comm-MADRL becomes crucial. Such a system would aid in categorizing critical ele-
ments like contributions, targeted problems, and learning objectives, from which we can 
compare and analyse existing Comm-MADRL approaches.

In the emergent language literature, numerous works employ various forms of the Lewis 
game, often referred to as referential games and operate under a cheap-talk setting [50], 
as highlighted in several surveys [10, 18].5 In these games, a goal, often represented as 
a target location, an image, or a semantic concept, is given to a sender agent but remains 
unrevealed from a receiver agent. The receiver agent must then either identify the correct 
goal based on the sender’s signaling [46, 51–57] or accomplish its single-agent task using 
the received signals (messages) [58, 59]. Research works in learning tasks with emergent 
language are grounded in a multi-agent environment where the joint actions of both sender 
and receiver agents impact environment transitions. Consequently, the learning tasks with 
emergent language literature considers multi-agent domain tasks [60–64], building on 
foundational concepts from MARL such as Dec-POMDPs or POSGs.

We further distinguish explicit versus non-explicit communication [6] in the literature of 
MADRL with communication. Explicit communication refers to communication through 
a set of messages separate from domain-level actions. Here, agents’ action policies are 

Fig. 1   An illustration depicting the scope of this survey. The focus of our survey is represented by the blue 
part

5  In the emergent language research area, research works that do not adopt the cheap-talk setting but com-
municate through observable (domain-level) actions, are not included in our survey. Our survey focuses on 
explicit message transfer between agents.
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influenced by both their observations and the messages they receive. Such messages, cru-
cial for supporting agents’ decision-making, are essential in both the training and execution 
phases. MADRL frameworks without explicit communication can still allow for commu-
nication through domain-level actions, such as the act of influencing the observations of 
one agent through the actions of another. Furthermore, without explicit communication, 
agents can transmit gradient signals, which facilitate centralized training (and decentral-
ized execution) but are not utilized during execution phases. Specifically, in our survey, we 
focus on explicit and learnable communication.

Dec-POMDPs and POSGs are often extended to accommodate explicit communica-
tion. The communication can be integrated into the action set, adding a collection of com-
munication acts alongside domain-level actions. Alternatively, a Dec-POMDP or a POSG 
can be extended to explicitly include a set of messages [6]. For instance, the POSG can 
be expanded with a (shared) message space M , resulting in a POSG-Comm, defined as ⟨
I,S, �0,

{
Ai

}
,P,

{
Oi

}
,O,

{
Ri

}
,M

⟩
 , where all components remain unchanged except 

for the added message space M . A Dec-POMDP-Comm can be defined as similar to the 
POSG-Comm with shared rewards. In both POSG-Comm and Dec-POMDP-Comm, action 
policies take into account both environmental observations and inter-agent messages. 
Research works in Comm-MADRL that expand upon a POSG or a Dec-POMDP can be 
seen in references such as [60, 62, 64–66].

2.3 � Communication in recent surveys

Communication has attracted much attention in the field of multi-agent reinforcement 
learning (MARL). Previous surveys mentioning communication in MARL primarily focus 
on providing an overview of MARL’s development. These surveys view communication 
as a subfield in MARL, and no extensive and substantial progress is reported. In an early 
survey, Stone and Veloso [13] classify MARL based on whether agents communicate and 
whether agents are homogeneous or not.6 They view learnable communication as a future 
research opportunity. Busoniu et  al. [15] consider communication as a means to negoti-
ate action choices and select equilibrium in the research direction of explicit coordina-
tion, without further classifying communication. With the advancement of deep learning, 
MARL has gradually incorporated deep neural networks such that recent developments are 
dominated by multi-agent deep reinforcement learning (MADRL). In the MADRL context, 
Hernandez-Leal et  al. [16], Nguyen et  al. [67], and Papoudakis et  al. [9] briefly review 
early Comm-MADRL methods, which have now become baselines in many recent works. 
Specifically, Hernandez-Leal et  al. [16] use learning communication to denote a new 
branch in MADRL. Papoudakis et al. [9] consider communication as an approach to handle 
the non-stationary problem in MADRL, as agents can exchange information to stabilize 
their training. Compared to the aforementioned surveys, OroojlooyJadid and Hajinezhad 
[36] provide a more detailed review of Comm-MADRL, covering a significant number of 
existing works. They view communication as a way to solve cooperative MADRL prob-
lems but did not propose a categorization model for Comm-MADRL. Zhang et al. [68] and 
Yang et al. [20] review communication from a theoretical perspective. Their primary focus 
is on communication within networked multi-agent systems. In these systems, agents share 

6  Homogeneous agents have the same internal structure including goals, domain knowledge, and possible 
actions.



Autonomous Agents and Multi-Agent Systems            (2024) 38:4 	

1 3

Page 9 of 48      4 

information through a time-varying network, aiming to reach consensus on learned value 
functions or policies. Despite this, no further classification of communication is made.

Two more recent surveys in MADRL, proposed by Gronauer and Diepold [17] and 
Wong et  al. [69], focus on classifying existing works on communication. Gronauer and 
Diepold classify early research works in Comm-MADRL into Broadcasting, Targeted, and 
Networked communication, based on whether messages are received from all agents, a 
subset of agents, or a network of agents. Wong et al., similar to the survey of Papoudakis 
et al. [9], view communication as a method to address the issues of non-stationarity and 
partial observability. In the survey of Wong et al., research works on communication are 
categorized into three groups from a high-level perspective: communication as the primary 
learning goal, communication as an instrument to learn a specific task, and peer-to-peer 
teaching. However, they do not delve into how agents utilize communication to enhance 
learning. These surveys focus on limited aspects of communication, making their catego-
rizations too narrow to distinguish recent works effectively, given the fact that many exist-
ing works share similar assumptions and conditions. To the best of our knowledge, only 
one survey [70] exclusively focuses on communication issues in MADRL. They review 
algorithms for communication and cooperation, including efforts to interpret languages 
developed through communication. Despite this, their survey mainly covers early models 
without proposing a categorization framework.

The literature has investigated communication from other perspectives. Shoham and 
Leyton-Brown [71] investigate communication from a game-theoretic perspective. They 
introduce several theories of communication in multi-agent systems, with the particu-
lar concern that agents can be self-motivated to convey information, driven by underly-
ing incentives (e.g., the knowledge of game structure), or communicate in a pragmatic 
way analogous to human communication. Deep neural networks and deep reinforce-
ment learning techniques have greatly widened the scope of language development in 
multi-agent systems. Lazaridou and Baroni [18] provide an extensive survey focused on 
emergentlanguage , aiming to establish effective human–machine communication. As high-
lighted in Sect. 2.2, the primary goal of emergent language research is to learn a human-
like language from scratch. The goal of our survey is, however, to classify the literature on 
learning tasks with communication that aims at exploiting communication to accomplish 
multi-agent tasks.

In summary, existing surveys in Comm-MADRL lack coverage of the latest develop-
ments. These surveys also do not elaborate on the fact that communication itself is a com-
binatorial problem. Importantly, communication models engage with MADRL algorithms 
across various processes, including learning and decision-making. To effectively distin-
guish between existing Comm-MADRL approaches, it is crucial to analyze and classify 
them from a wider range of perspectives. In the following section, we delve into the field 
of Comm-MADRL through multiple dimensions, each linked to a unique research question 
pertinent to system design. These dimensions allow us to provide a fine-grained classifica-
tion, highlighting the differences between Comm-MADRL approaches even within similar 
domains.
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3 � Learning tasks with communication in MADRL

In our survey, we consider explicit communication where action policies of agents are con-
ditioned on communication that is learnable and dynamic, rather than static and predefined. 
Therefore, both the content of the messages and the chances of communication occurrences 
are subject to learning. As agents engage in multi-agent tasks, they learn domain-specific 
action policies and their communication protocols concurrently. As a result, learning tasks 
with communication becomes a joint learning challenge, where agents employ reinforce-
ment learning to maximize environmental rewards and simultaneously utilize various 
machine learning techniques to develop efficient and effective communication protocols.

Learning tasks with communication in multi-agent deep reinforcement learning 
(Comm-MADRL) is a significant research problem, particularly as communication can 
lead to higher rewards. Numerous studies have emerged, developing effective and efficient 
Comm-MADRL systems, often sharing similarities. Our review begins with the seminal 
works such as DIAL [72], RIAL [72], and CommNet [47], and then expands to include the 
most relevant research works presented at major AI conferences and journals like AAMAS, 
AAAI, NeurIPS, and ICML, totaling 41 models in Comm-MADRL. To better distinguish 
among these models, we propose classifying them based on several dimensions in Comm-
MADRL system design. These dimensions aim to comprehensively cover the current 
literature, allowing us to project the research works into a space where their similarities 
and differences become clear. We start by focusing on three key components of Comm-
MADRL systems: problem settings, communication processes, and training processes. 
Problem settings encompass both communication-specific settings (e.g., communication 
constraints) and non-communication-specified settings (e.g., reward structures). Commu-
nication processes include common communication procedures, such as deciding whether 
to communicate and what messages to communicate. Training processes cover the learning 
of both agents and communication within MADRL. Based on the three key components, 
we identify and summarize 9 research questions that commonly arise in Comm-MADRL 
system design, corresponding to 9 dimensions as detailed in Table 1. These research ques-
tions and dimensions are designed to capture various aspects of Comm-MADRL, covering 
the learning objectives of agents and communication, the processes by which messages are 
generated, transmitted, integrated, and learned within the MADRL framework. We out-
line a systematic procedure for providing a guideline to effectively navigate through these 
dimensions when developing Comm-MADRL systems. The procedure allows us to organ-
ize the dimensions, demonstrate their relevance in system design, and guide the creation of 
customized Comm-MADRL systems in a step-by-step manner.

As outlined in Procedure 1, N reinforcement learning agents employ communication 
throughout their learning and decision-making. Initially, the learning objective for the N 
agents is set, defining rewards that induce cooperative, competitive, or mixed behaviors, 
as captured by dimension 1. We then consider potential communication-specified settings 
like limited resources, addressing the need for realistic scenarios as described in dimension 
2. Dimension 3 identifies potential communicatees, determining the agents for messages 
to be received, which varies across domains. At each time step, agents decide when and 
with whom to communicate, as highlighted in dimension 4. The patterns of communica-
tion occurrences are structured like a graph, where links, either undirected or directed, aid 
information exchange. Subsequently, messages that encapsulate agents’ understanding of 
the environment are generated and shared, relating to dimension 5. Given that agents often 
receive multiple messages, they must decide on how to combine these messages effectively. 
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This process, crucial for integrating messages into their policies or value functions, is cap-
tured in dimensions 6 and 7. In cases of Comm-MADRL studies focusing on emergent lan-
guage (i.e., learning tasks with emergent language), where messages are modeled as com-
municative acts emitted alongside domain-level actions, a specific rearrangement of the 
procedure is required. Here, messages are not observed by other agents until the next time 
step. Therefore, the processes outlined in dimensions 6 and 7 (lines 8 and 9) are moved to 
the front of those in dimension 4 (line 6). This rearrangement allows agents to combine and 
integrate messages from the previous time step before initiating new communication. As 
a result, agents make decisions and perform actions in the environment based not only on 
their environmental observations but also on information obtained from other agents (lines 
10 and 11). During the training phase, experiences from both environmental interactions 
and inter-agent communication are utilized to train how agents will behave and communi-
cate, i.e., agents’ policies, value functions, and communication processes, as characterized 
in dimensions 8 and 9 (line 14).

In the following sections, we make an extensive survey on Comm-MADRL based 
on each dimension and classify the literature when we focus on a specific dimension. 
We finally provide a comprehensive table to frame recent works with the aid of the 9 
dimensions.

Agent

Model

Centralized Critic

Proxy
Agent

Model

Messages Messages

Local Information

Gradients Gradients

Messages

Local Information

Procedure 1    A guideline of Comm-MADRL systems

3.1 � Controlled goal

With a given reward configuration, reinforcement learning agents are guided to achieve 
their designated goals and interests. As agents communicate in order to obtain higher 
rewards, the goal of communication and the goal of achieving domain-specific tasks are 
inherently aligned. The emergent behaviors of agents can be summarized into three types: 
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cooperative, competitive, and mixed [22, 94], each corresponding to different reward con-
figurations and goals. Notably, some Comm-MADRL methods have been tested in more 
than one benchmark environment to show their flexibility and scalability, where the reward 
configurations may vary [48, 76, 80, 88, 91]. Furthermore, a multi-agent environment may 
consist of both fixed opponents and teammates, which typically do not participate in com-
munication. Therefore, we exclude fixed agents when identifying reward configurations. 
Consequently, we focus on (learnable) agents involved in communication and classify their 
behaviors that are desired to emerge, aligning them with associated reward configurations 
(summarized in Table 2).

Cooperative
In cooperative scenarios, agents have the incentive to communicate to achieve better 

team performance. Cooperative settings can be characterized by either a global reward that 
all agents share or a sum of local rewards that could be different among agents. Communi-
cation is usually used to promote cooperation as a team. Thus, in the literature, a team of 
agents can receive a global reward [30–32, 38–40, 42, 47, 60, 62, 63, 65, 72–79, 87–93], 
which does not account for the contribution of each agent. The agents can also receive 
local rewards, with designs to make the reward depend on teammates’ collective perfor-
mance [41, 48, 49, 80–82, 86, 87, 90], to penalize collisions [38, 80–82, 85, 89, 91, 92], or 
to share the reward with other agents for encouraging mutual cooperation [64, 83, 84].

There are a variety of cooperative environments where communication has shown per-
formance improvements, from small-scale games to complex video games. In early works, 
Foerster et al. [72] developed two simple games, named Switch Riddle and MNIST Games, 
for their proposed models, DIAL and RIAL. Sukhbaatar et al. [47] used Traffic Junction 
for evaluating CommNet, which has become a popular testbed in recent works [48, 78, 
82, 87–89, 91]. Among them, MAGIC [91] achieved higher performance on Traffic Junc-
tion with local rewards compared to two early works, CommNet [47], IC3Net [48], and 
one recent work, GA-Comm [82]. StarCraft [95–97] is another benchmark environment 
in cooperative MARL with relatively flexible settings. BiCNet [49] and MS-MARL-GCM 
[87] are evaluated on an early version of StarCraft [95]. Then, a new version of StarCraft, 
SMAC, has become popular in recent works [30–32, 65, 74, 93]. By controlling a team of 
agents, the cooperative goal in SMAC is to defeat enemies on easy, hard, and super hard 
maps. FCMNet [93] and MAIC are two recent works that surpass multiple communica-
tion methods and value decomposition methods (e.g., QMIX) on different maps. Google 
research football [98] is an even more challenging game with a physics-based 3D soc-
cer simulator. Only MAGIC has reported performance on this platform with communi-
cation, and more investigations on this environment are needed. Compared to the above 
approaches in Comm-MADRL, ATOC [38] has been examined using a significantly larger 
number of learning agents in the predator–prey domain. Predator–prey is a grid world 
game with a long history in MARL. It has been developed with several versions [7, 99, 
100], while still viewed as a standard test environment due to its flexibility and customiza-
bility. ATOC reports performance on this platform with continuous state and action spaces. 
In the subfield learning tasks with emergent language, cooperative scenarios are popularly 
used. They are mostly based on grid world or particle environments and have explicit role 
assignments, e.g., senders and receivers [60, 62–64].

Competitive
In case agents need to compete with each other to occupy limited resources, they are 

assigned competitive learning objectives. In some competitive games, such as zero-sum 
games, one player wins and the others lose and therefore rational agents do not have the 
incentive to communicate. Nevertheless, in other competitive scenarios where agents 
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compete for long-term goals, communication can allow for low-level cooperation among 
agents before the (long-term) goals are achieved. Based on our observations, only one 
work, IC3Net [48], tests competitive settings and enables agents to compete for rewards.7 
IC3Net shows that competitive agents communicate only when it is profitable, e.g., before 
catching prey in the predator–prey domain. ℜ-MACRL [66] considers communication 
from malicious agents to improve the worst-case performance. In ℜ-MACRL, the whole 
environment is cooperative while agents learn to defend against malicious messages. 
Although the environment is cooperative, we classify this work under the competitive cat-
egory as the learning goal between malicious agents and other agents is competitive.

Mixed
For a MAS where we care about self-interest agents, individual rewards can be designed 

and distributed to each agent [48, 74, 76, 80, 88, 91, 93]. Therefore, cooperative and com-
petitive behaviors coexist during learning, which may show more complex communication 
patterns. Specifically, DGN [80] considers a game where each agent gets positive rewards 
by eating food but gets higher rewards by attacking other agents. However, being attacked 
will get a high punishment. With communication, agents can learn to share resources col-
laboratively rather than attacking each other. IC3Net [48], TarMAC [88] and MAGIC 
[91] are evaluated on a mixed version of Predator-prey, and agents learn to communicate 
only when necessary. NDQ [74] is examined in an independent search scenario, where 
two agents are rewarded according to their own goals, and shows that agents learn to not 
communicate in independent scenarios. IC [61] considers a scenario in which sender and 
receiver agents have different abilities to complete the goal. The sender agents have more 
vision but cannot clean obstacles, while receiver agents have limited vision but are able to 
clear obstacles. With communication, agents show collaborative behaviors to get higher 
rewards.

Table 3   The category of communication constraints

Types Subtypes Methods

Unconstrained Communication CommNet [47]; BiCNet [49]; MS-MARL-GCM 
[87]; ATOC [38]; DGN [80]; TarMAC [88]; 
MAGNet-SA-GS-MG [39]; MADDPG-M [40]; 
IC3Net [48]; MD-MADDPG [41]; DCC-MD 
[81]; Agent-Entity Graph [73]; GA-Comm [82]; 
LSC [76]; NeurComm [83]; IP [84]; I2C [78]; 
IS [89]; HAMMER [90]; MAGIC [91]; Flow-
Comm [92]; GAXNet [79]; FCMNet [93]

Constrained Communication Limited Bandwidth RIAL [72]; DIAL [72]; GCL [60]; IC [61]; 
SchedNet [42]; VBC [30]; NDQ [74]; IMAC 
[65]; Gated-ACML [75]; Bias [62]; ETCNet 
[85]; Variable-length Coding [86]; TMC [31]; 
AE-Comm [64]; MAIC [32]

Corrupted Messages DIAL [72]; Diff Discrete[77]; DCSS [63]; ℜ
-MACRL [66]

7  IC3Net has been tested in several settings, including cooperative, competitive, and mixed scenarios, with 
different reward configurations.
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3.2 � Communication constraints

Practical concerns such as communication cost and noisy environment impair Comm-
MADRL systems from embracing realistic applications more than simulations. This 
dimension, Communication Constraints, determines which type of communication con-
cerns are handled in a Comm-MADRL system. We categorize recent works on this dimen-
sion into the following categories (summarized in Table 3).

Unconstrained communication
In this category, communication processes, including communication channels, the con-

tent and transmission of messages, and the decisions of whether to communicate or not, are 
not explicitly restricted. In principle, agents can communicate as much as information they 
can without any decision to disallow communication in order to prevent communication 
overhead [39, 41, 47, 49, 79, 80, 87–90, 93]. Specifically, several works consider block-
ing communication through predefined or learnable decisions of whether to communicate 
or not, while aiming to differentiate useful communicated information [38, 40, 48, 73, 76, 
78, 81–84, 91, 92]. We also put those works under this category as they do not explicitly 
assume that communication is limited by cost.

Constrained communication
In this category, communication processes are explicitly constrained by cost or noise. 

Thus, agents need to utilize communication resources efficiently to promote learning. We 
further identify two practical concerns that have been considered in the literature.

•	 Limited Bandwidth. In this category, communication bandwidth is limited by chan-
nel capacity. Thus, communication needs to be used more efficiently, both in the num-
ber of times that agents can communicate and the size of communicated information. 
Early works focus on transmitting succinct messages to avoid communication over-
head. RIAL and DIAL [72] are proposed to communicate very little information (i.e., a 
binary value or a real number) at every time step to reduce the bandwidth needed. MD-
MADDPG [41] considers a fixed-size memory, which is shared by all agents. Agents 
communicate through the shared memory instead of ad hoc channels. VBC [30] and 
TMC [31] reduce communication costs by using predefined thresholds to filter unnec-
essary communication, and both show lower communication overhead. NDQ [74] cuts 
80% of messages by ordering the distributions of messages according to their means 
and drops accordingly to prevent meaningless messages. MAIC [32] also cuts messages 
by examining several message pruning rates. In MAIC, messages are encoded to con-
sider their respective importance. Sent messages are ordered and then pruned with a 
given pruning rate. IMAC [65] explicitly models bandwidth limitation as a constraint to 
optimization. An upper bound of the mutual information between messages and obser-
vations is derived according to bandwidth constraint, which turns out to minimize the 
entropy of messages. Then agents learn not only to maximize cumulative rewards but 
also to generate low-entropy messages. The number of agents to communicate can also 
be restricted to reduce the total amount of communication. SchedNet [42] considers a 
scenario of a shared channel together with limited bandwidth. Only a subset of agents 
are chosen to convey their messages according to their importance. Gated-ACML [75] 
learns a probabilistic gate unit to block messages transmitting between each agent 
and a centralized message coordinator, with the extra cost of learning optimal gates. 
Inspired by Gated-ACML and IMAC, ETCNet [85] puts constraints on the behaviors 
of deciding whether to send messages or not. A penalty term is added to the environ-
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ment rewards, and an additional reinforcement learning algorithm is used to optimize 
the sending behaviors. Variable-length Coding [86] also utilizes a penalty term while 
encouraging short messages. When learning tasks with emergent language, symbolic 
languages are acquired for communication through a limited number of tokens. There-
fore, we classify those works under limited bandwidth [60–62, 64].

•	 Corrupted Messages. In this category, messages transmitted among agents can be 
corrupted due to environmental noise or malicious intentions. DIAL [72] shows that 
during training, adding Gaussian noise to the communication channel can push the 
distribution of messages into two modes to convey different types of information. Diff 
Discrete [77] considers how to backpropagate gradients through a discrete communi-
cation channel (between 2 agents) with unknown noise. An encoder/channel/decoder 
system is modeled, where the encoder is used to discretize a real-valued signal into a 
discrete message to pass through the discrete communication channel, and the decoder 
is used to compute an approximation of the original signal. Later they show that the 
encoder/channel/decoder system is equivalent to an analog communication channel 
with additive noise. With the additional assumption that training is centralized, the gra-
dient of the receiver with respect to real-value messages from the sender can be com-
puted to allow backpropagation. DCSS [63] also considers a noisy setting. They prove 
that representing messages as one-hot vectors may not be optimal when the environ-
ment becomes noisy. Inspired by word embedding in the NLP field, they propose to 
generate a semantic representation of discrete tokens that are communicated among 
agents. The results show that such representation is robust in noisy environments and 
benefits human understanding of communication. Different from noisy environments, 
ℜ-MACRL [66] assumes that an agent holds a malicious messaging policy, producing 
adversarial messages that can mislead other agents’ action selections. Therefore, other 
agents need to prevent being exploited by learning a defense policy in order to filter the 
messages.

3.3 � Communicatee type

Communicatee Type determines which type of agents are assumed to receive messages in 
a Comm-MADRL system. We found that in the literature, communicatee type can be clas-
sified into the following categories based on whether agents in the environment communi-
cate with each other directly or not.

Agents in the MAS
In this category, the set of communicatees consists of agents in the environment, and 

they directly communicate with each other. Nevertheless, due to partial observability, 
agents may not be able to communicate with every agent in the MAS, and thus we further 
distinguish the types of communicatees as follows:

•	 Nearby Agents. In many Comm-MADRL systems, communication is only allowed 
between neighbors. Nearby agents can be defined as observable agents [79], agents 
within a certain distance [73, 76, 80] or neighboring agents on a graph [83]. GAXNet 
[79] labels observable agents and enables communication between them. DGN [80] 
limits communication within 3 closest neighbors while using a distance metric to find 
them. Agent-Entity Graph [73] also uses distance to measure whether agents are nearby 
or not. As long as two agents are close to each other, they will be allowed to commu-
nicate. LSC [76] enables agents within a cluster radius to decide whether to become 
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a leader agent. Then all non-leader agents in the same cluster will only communicate 
with the leader agent. NeurComm [83] and IP [84] preset a graph structure among 
agents built upon networked multi-agent systems. In both NeurComm and IP, com-
municatees are restricted to neighbors on the graph. MAGNet-SA-GS-MG [39] uses a 
pre-trained graph to limit communication and restricts communication on neighboring 
agents. Neighboring agents can also emerge during learning instead of being prede-
termined, as proposed in GA-Comm [82], MAGIC [91] and FlowComm [92], which 
explicitly learn a graph structure among agents. Specifically, in GA-Comm [82] and 
MAGIC [91], a central unit (e.g., GNN) learns a graph inside and coordinates messages 
based on the (complete) graph simultaneously. In this case, agents do not communicate 
with each other directly; instead, they communicate through a virtual agent who does 
not affect the environment. Therefore, we categorize these two works into the proxy 
category.

•	 Other (Learning) Agents. If nearby agents are not identified, the set of communicatees 
typically consists of other (learning) agents. Specifically, IC3Net [48] enables commu-
nication between learning agents and their opponents. Experiments indicate that these 
opponents eventually learn to not communicate to avoid being exploited. Some works 
assume explicit role assignments, i.e., senders and receivers. The role of the receiver 
can be taken by a disjoint set of agents separate from the senders [61–63] or by all other 
agents in the environment [60, 64]. In both cases, agents communicate with each other 
directly.

Proxy
A proxy is a virtual agent that plays an essential role (e.g., as a medium) in facilitating 

communication but does not directly affect the environment. Using a proxy as the com-
municatee means that agents will not directly communicate with each other, instead view-
ing the proxy as a medium, coordinating and transforming messages for specific purposes. 
MS-MARL-GCM [87] utilizes a master agent that collects local observations and hidden 
states from agents in the environment and sends a common message back to each of them. 
Similarly, HAMMER [90] employs a central proxy that gathers local observations from 
agents and sends a private message to each agent. MD-MADDPG [41] maintains a shared 
memory among agents, learning to selectively store and retrieve local observations from 
the memory. IMAC [65] defines a scheduler that aggregates encoded information from 
all agents and sends individual messages to each agent. These works primarily focus on 
how to encode messages through the proxy without determining whether to send or receive 
messages. By contrast, ATOC [38], Gated-ACML [101], GA-Comm [82] and MAGIC [91] 
are all designed for agents to decide whether to communicate with a message coordinator. 
In ATOC and Gated-ACML, each agent’s decisions are made locally based on individual 
observations, with messages aggregated from nearby agents and from the entire MAS, 
respectively. Both GA-Comm and MAGIC develop a global communication graph, cou-
pled with a graph neural network (GNN) to aggregate messages by weights and send new 
messages back to each agent, informing action selection in the environment.

Table 4 summarizes recent works on communication types in MAS. To illustrate these 
categories, we present an example of different communication methods used in a Comm-
MADRL system in Fig. 2. The system consists of five agents and one proxy. Agent 3 is 
the nearby agent of Agent 1, while Agent 4 is the nearby agent of Agent 2. Agent 5 is out 
of the view range of Agents 1 and 2. If communication is limited to nearby agents, Agent 
1 will communicate only with Agent 3, and Agent 2 will communicate only with Agent 
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4. However, if communication involves a proxy, all agents can send their messages to the 
proxy and receive coordinated messages.

3.4 � Communication policy

Communication Policy determines when and with which agents (i.e., communicatees) to 
communicate in order to enable message transmission. A Communication Policy defines 
a set of communication actions, which can be modeled in different ways. For example, a 
communication action can be represented as a vector of binary values, where each value 
indicates whether communication with one of the other agents is allowed at a certain time 
step. These actions form communication links between pairs of agents, which can be repre-
sented as a communication graph among agents. In the literature, communication policies 
can be either predefined or learned, allowing communication with all other agents or only 
a subset of agents. Furthermore, communication policies can be centralized, controlling 
communication among all agents, or decentralized, enabling individual agents to control 
whether to communicate. Therefore, we first categorize the literature based on whether 
communication policies are predefined or learned. We find that in predefined communica-
tion policies, the literature often uses either full communication among agents, where the 
communication graph becomes complete, or a partial graph structure to incorporate con-
straints on communication policies. On the other hand, in learnable communication poli-
cies, we identify two distinct categories: individual control and global control. In individ-
ual control, communication policies are learned by each agent independently, whereas in 
global control, these policies are learned and implemented centrally, applying to all agents 
in Comm-MADRL systems. As a result, we have identified four subcategories within the 
dimension of communication policy: Full Communication, (Predefined) Partial Structure, 
Individual Control, and Global Control. These categorizations are summarized in Table 5.

We present examples of how agents form communication links in the four categories of 
communication policy, as illustrated in Fig. 3. Both Full Communication and Partial Struc-
ture rely on a predefined communication policy to determine communication actions. In 
contrast, Individual Control and Global Control involve the learning of a local communica-
tion policy and a global communication policy, respectively, to establish communication 
links between agents or a potential proxy. If a proxy is involved, it coordinates messages 
from agents choosing to communicate through this proxy. The categories and their associ-
ated research works are introduced as follows:

Fig. 2   Three communicatee types in the same system
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Full communication
In this category, every pair of agents is connected so that messages are transmitted 

in a broadcast manner. Full communication can be regarded as a fully connected graph, 
often used in early works on Comm-MADRL. DIAL [72], RIAL [72], CommNet [47], and 
BiCNet [49] learn a communication protocol which connect all agents together. Inspired 
by BiCNet, FCMNet [93] uses multiple RNNs to link all agents together with different 
sequences, allowing agents to benefit from communication flow from various directions. In 
contrast, Diff Discrete [77] and Variable-length Coding [86] focus on two-agent cases but 
do not learn to block messages from each other. TarMAC [88] and IS [89] learn meaningful 
messages while using a broadcast way to share messages, thus still adhering to full com-
munication. DCC-MD [81] and ℜ-MACRL [66] introduce a strategy to drop out received 
messages without specifying whether to send messages. Specifically, DCC-MD drops out 
messages with a fixed probability to reduce input dimensions, and ℜ-MACRL learns to 
drop out adversary messages through a defense policy. In Comm-MADRL methods like 
IMAC [65], MS-MARL-GCM [87] and HAMMER [90], a central proxy that receives local 
observations or encoded messages is always connected with agents in the MAS. In addi-
tion, GCL [60] and AE-Comm [64] learn a language grounded on discrete tokens among 
agents, where all agents have the capability to send and receive messages.

(Predefined) Partial structure
In this category, the communication between agents is captured by a predetermined par-

tial graph to reduce overall communication. Then, each agent communicates with a limited 
number of agents within the MAS, rather than with every agent. NeurComm [83] and IP 
[84] operate in a networked multi-agent environment, randomly generating a communica-
tion network while maintaining a fixed average number of connections per agent during the 
learning process. DGN [80], MAGNet-SA-GS-MG [39], and GAXNet [79] restrict com-
munication to a certain proximity of agents. The Agent-Entity Graph [73] employs a pre-
trained graph to capture agent relationships. Comm-MADRL approaches like VBC [30], 
NDQ [74], TMC [31], and MAIC [32] utilize handcrafted thresholds or pruning rates to 
limit communication opportunities. In IC [61], Bias [62], and DCSS [63], disjoint sets of 
agents are designated as either senders or receivers, facilitating unidirectional communica-
tion from senders to receivers only.

Individual control
In this category, each agent actively and individually determines whether to communi-

cate with other agents, implicitly forming a graph structure. A common method employed 
in Comm-MADRL studies within this category is a learnable gate mechanism, which aids 
agents in making the decision to communicate. For instance, IC3Net [48] and ATOC [38] 

Fig. 3   Four types of communication policy with agents (shown as A) in the environment and a possible 
proxy (shown as P)
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use a gate mechanism that enables agents to decide whether to broadcast their messages, 
in a deterministic and probabilistic manner, respectively. ETCNet [85] also implements a 
gate unit but limits the overall probability of message-sending behaviors. If a proxy, such 
as a message coordinator, is present, Gated-ACML [75] introduces a learning mechanism 
for each agent to decide whether to communicate with the proxy, as opposed to direct com-
munication with other agents. Diverging from the gate function approach, I2C [78] allows 
each agent to unilaterally decide on communication with other agents, based on evaluating 
the impact of those agents on its own policy. LSC [76] allows each group of agents, defined 
by a specific radius, to compare their weights in order to elect a leader. This system then 
facilitates communication from each group to their respective leaders and from leader to 
leader. Notably, the leader agent in this model is not considered a proxy, as it still directly 
interacts with the environment.

Global control
In this category, a globally shared communication policy is learned, providing more 

complete control over the communication links between agents. SchedNet [42] employs 
a global scheduler that limits the number of agents allowed to broadcast their messages, 
thereby reducing overall communication. FlowComm [92] learns a directed graph among 
agents, enabling unilateral or bilateral communication between them. Similarly, GA-Comm 
[82] and MAGIC [91] develop an undirected and a directed graph for communication, 
respectively. These Comm-MADRL systems incorporate an additional message coordina-
tor to coordinate and transform messages sent by the agents.

3.5 � Communicated messages

After establishing communication links among agents through a communication policy, 
agents should determine which specific information to communicate. This information can 
derive from historical experiences, intended actions, or future plans, enriching the mes-
sages with valuable insights. Consequently, the communicated information can expand the 
agents’ understanding of the environment and enhance the coordination of their behav-
iors. In the dimension of communicated messages, an important consideration is whether 
the communication includes future information, such as intentions and plans. This kind 
of information, being inherently private, often requires an (estimated) model of the 

Table 6   The category of communicated messages

Types Methods

Existing Knowledge DIAL [72]; RIAL [72]; CommNet [47]; GCL [60]; 
BiCNet [49]; MS-MARL-GCM [87]; IC [61]; 
DGN [80]; TarMAC [88]; MAGNet-SA-GS-MG 
[39]; MADDPG-M [40]; IC3Net [48]; MD-
MADDPG [41]; SchedNet [42]; DCC-MD [81]; 
Agent-Entity Graph [73]; VBC [30]; NDQ [74]; 
IMAC [65]; GA-Comm [82]; Gated-ACML [75]; 
Bias [62]; LSC [76]; Diff Discrete[77]; I2C [78]; 
ETCNet [85]; Variable-length Coding [86]; TMC 
[31]; HAMMER [90]; MAGIC [91]; FlowComm 
[92]; AE-Comm [64]; GAXNet [79]; DCSS [63]; 
R-MACRL [66]; MAIC [32]; FCMNet [93]

Imagined Future Knowledge ATOC [38]; NeurComm [83]; IP [84]; IS [89]
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environment to effectively simulate and generate conjectured intentions and plans. Accord-
ingly, we categorize recent studies in this dimension into two categories, as summarized in 
Table 6.

Existing knowledge
In this category, agents share their knowledge of the environment (e.g., past observa-

tions), previous movements, or policies to assist other agents in selecting actions. As his-
torical information accumulates, agents use a low-dimensional encoding of their knowledge 
as messages to reduce communication overhead. Notably, the RNN family (e.g., LSTM and 
GRU) is commonly used as an encoding function, capable of selectively retaining and for-
getting historical observations [32, 41, 47–49, 78, 82, 87, 88, 91–93], action-observation 
histories [49, 72], or action-observation-message histories [61, 62]. When a proxy is pre-
sent, messages are generated and transformed from agents to the proxy, and then from the 
proxy to agents. Thus, local observations can either be encoded [41, 65, 75, 82, 91] or 
directly sent [87, 90] to the proxy. The proxy, after gathering these local (encoded) obser-
vations, can generate a unified message for all agents [87], or individualized messages for 
each agent [41, 65, 75, 82, 90, 91]. Both methods provide a message containing global 
information, relieving agents from the task of combining multiple received messages. In 
Comm-MADRL systems without a proxy, messages are sent directly to each agent. Specifi-
cally, in MADDPG-M [40], agents communicate local observations without an encoding 
of them. On the other hand, DIAL and RIAL [72] encode past observations, actions, and 
current observations as messages. BiCNet [49] encodes both local observations of each 
agent and a global view of the environment. Other research works employ various methods 
such as simple feed-forward networks [42, 77, 85, 86], MLP [30, 31, 39, 66], autoencod-
ers [81], CNNs [80], RNNs [32, 47, 48, 78, 88, 92, 93], or GNNs [73, 76] to encode local 
observations as messages. Furthermore, agents can communicate more specific informa-
tion, such as in GAXNet [79], where agents coordinate their local attention weights, inte-
grating hidden states from neighboring agents. Messages can also be modeled as random 
variables, as seen in NDQ [74], where messages are drawn from a multivariate Gauss-
ian distribution to maximize expressiveness by maximizing mutual information between 
messages and receivers’ action selection. In learning tasks with emergent language, agents 
often communicate goal-related information, such as the goal’s location [60–64].

Imagined future knowledge
In this context, Imagined Future Knowledge refers to aspects such as intended actions 

[38], policy fingerprints (i.e., action probabilities in a given state) [83, 84], or future plans 
[89]. Since intentions are related to the current environment state, recent works often com-
bine intended actions with local observations to produce more relevant messages. The 
concept of future plans extends this idea further by utilizing an approximated model of 
the environment and the behavior models of other agents. This approach enables the gen-
eration of a sequence of possible future observations and actions [89]. Such knowledge is 
shared among agents, allowing the receivers to consider the potential future outcomes of 
the senders’ actions.

3.6 � Message combination

When agents receive more than one message, current works often aggregate all received 
messages to reduce the input for the action policy. Message Combination determines how 
to integrate multiple messages before they are processed by an agent’s internal model. If a 
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proxy is involved, each agent receives already coordinated and combined messages from 
the proxy, eliminating the need for further message combination. If no proxy is presented, 
each agent independently determines how to combine multiple messages. Since communi-
cated messages encode the senders’ understanding of the learning process or the environ-
ment, some messages can be more valuable than others. As shown in Table 7, recent works 
in the dimension of message combination are categorized based on how agents prioritize 
received messages.

Equally valued
In this category, messages received by agents are treated without preference, mean-

ing they are assigned equal weights or simply no weights at all. Without having prefer-
ences, agents can concatenate all messages, ensuring no loss of information, though it 
may significantly expand the input space for the action policy [40, 42, 60, 61, 72, 74, 
77, 85, 86, 89]. Recent research involving concatenated messages typically represent 
the sent messages either as single values [61, 72, 85, 86] or as short vectors [40, 42, 
60, 74, 77, 89]. Alternatively, messages can be combined by averaging [30, 47, 48] 
or summing [92], under the assumption that messages from different agents have the 
same dimension. In some cases, particularly in two-agent scenarios, no explicit prefer-
ences are assigned to messages [62–64].

Unequally valued
In this category, messages are assigned distinct preferences, which potentially 

impose differences on sender agents. DCC-MD [81] and TMC [31] use handcrafted 
rules to prune received messages. In DCC-MD, each received message can be dropped 
out with a certain probability. TMC stores the received messages and checks whether 
they are expired or not within a preset time window. Only valid messages are inte-
grated into an agent’s model. Instead of using fixed rules, ℜ-MACRL [66] learns a 
gate unit to decide whether to use a received message. An attention mechanism can 

Table 7   The category of message 
combination

Types Methods

Equally Valued DIAL [72]; RIAL [72]; CommNet 
[47]; GCL [60]; IC [61]; 
MADDPG-M [40]; IC3Net 
[48]; SchedNet [42]; VBC [30]; 
NDQ [74]; Bias [62]; Diff Dis-
crete[77]; IS [89]; ETCNet [85]; 
Variable-length Coding [86]; 
FlowComm [92]; AE-Comm 
[64]; DCSS [63]

Unequally Valued BiCNet [49]; MS-MARL-GCM 
[87]; ATOC [38]; DGN [80]; 
TarMAC [88]; MAGNet-SA-
GS-MG [39]; MD-MADDPG 
[41]; DCC-MD [81]; Agent-
Entity Graph [73]; IMAC [65]; 
GA-Comm [82]; Gated-ACML 
[75]; LSC [76]; NeurComm [83]; 
IP [84]; I2C [78]; TMC [31]; 
HAMMER [90]; MAGIC [91]; 
GAXNet [79]; R-MACRL [66]; 
MAIC [32]; FCMNet [93]
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also be learned to assign weights to received messages and then combine them, rather 
than filtering messages out, as seen in research works [32, 39, 73, 88]. Moreover, a 
neural network can aggregate received messages into a single message or a low-dimen-
sional vector, which implicitly imposes preferences on messages during the mapping. 
Feedforward neural networks [65, 75, 90], CNNs [80], LSTMs (or RNNs) [38, 41, 49, 
78, 79, 83, 87, 93], and GNNs [76, 82, 84, 91] have been used as aggregators. Among 
them, GNNs utilize a learned graph structure of agents and assign different weights to 
neighboring agents.

3.7 � Inner integration

Inner Integration determines how to integrate (combined) messages into an agent’s learn-
ing model, such as a policy or a value function. In most existing literature, messages are 
viewed as additional observations. Agents take messages as extra input to a policy func-
tion, a value function, or both. Thus, in the dimension of inner integration, we classify 
recent works into categories based on the learning model that is used to integrate mes-
sages. These categories are summarized in Table 8.

Policy-level
By exploiting information from other agents, each agent will no longer act indepen-

dently. Policies can be learned through policy gradient methods like REINFORCE, as seen 
in studies [47, 48, 60, 82, 87], which collect rewards during episodes and train the policy 
models at the end of episodes. Moreover, the Comm-MADRL approaches that utilize actor-
critic methods [38, 39, 41, 42, 65, 66, 75, 77–79, 84–86, 89, 90, 92] assume that a critic 
model (i.e., a Q-function) guides the learning of an actor model (i.e., a policy network).

Value-level
In this category, a value function incorporates messages as input, and a policy is derived 

by selecting the action with the highest Q-value. Most works in this category employ 
DQN-like methods to train their value functions [30–32, 72, 74, 76, 80, 81]. Specifically, 
Comm-MADRL approaches like VBC [30], NDQ [74], TMC [31], and MAIC [32] are 
based on value decomposition methods in cooperative scenarios (with global rewards). 
These methods involve learning to decompose a joint Q-function.

Policy- and value-level
Integrating messages using both a policy function and a value function typically relies 

on actor-critic methods. In Comm-MADRL approaches within this category, received 

Table 8   The category of inner integration

Types Methods

Policy-level CommNet [47]; GCL [60]; MS-MARL-GCM [87]; ATOC [38]; MAGNet-SA-
GS-MG [39]; IC3Net [48]; MD-MADDPG [41]; SchedNet [42]; IMAC [65]; 
GA-Comm [82]; Gated-ACML [75]; Diff Discrete[77]; IP [84]; I2C [78]; IS 
[89]; ETCNet [85]; Variable-length Coding [86]; HAMMER [90]; Flow-
Comm [92]; GAXNet [79]; R-MACRL [66]

Value-level DIAL [72]; RIAL [72]; DGN [80]; DCC-MD [81]; VBC [30]; NDQ [74]; LSC 
[76]; TMC [31]; MAIC [32]

Policy- and Value-level BiCNet [49]; IC [61]; TarMAC [88]; MADDPG-M [40]; Agent-Entity Graph 
[73]; Bias [62]; NeurComm [83]; MAGIC [91]; AE-Comm [64]; DCSS [63]; 
FCMNet [93]
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messages can be treated as extra inputs for both the actor and critic models [49, 63, 73]. 
Alternatively, messages can be combined with local observations to generate new internal 
states, which are then shared with both the actor and critic models [40, 61, 62, 64, 83, 88, 
91, 93].

3.8 � Learning methods

Learning methods determine which type of machine learning techniques is used to learn a 
communication protocol. The learning of communication is at the center of modern Comm-
MADRL and can benefit from the advancements in the machine learning field. If proper 
assumptions about communication are made, such as being able to calculate the derivatives 
with respect to the message generator function and the communication policy, then the 
training of communication can be integrated into the overall learning process of agents. 
This integration allows for the use of fully differentiable methods for backpropagation. 
Other machine learning techniques, including reinforcement learning, supervised learn-
ing, and regularizations, can also be utilized to incorporate our requirements and available 
ground truth into the learning of communication, each carrying respective assumptions. 
The assumptions used in the literature are summarized in Table  9. For instance, super-
vised methods require defining true labels for communication (e.g., the correct informa-
tion to share or the right agents to communicate with). In contrast, reinforced methods 

Table 9   The assumptions behind different learning methods

Types Assumptions

Fully differentiable The messages or the communication actions are generated by a differentiable 
function and thus backpropagation is used everywhere

Supervised learning True labels (or the ground truth) are assumed to be given or defined to guide the 
learning of communication policy or messages

Reinforcement learning Environment rewards or self-defined rewards are used to update communication 
policy or messages incrementally

Regularizers Regularizations such as entropy inspired from information theory are added to 
agents’ optimization objectives to regularize the learning of communication

Table 10   The category of learning methods

Types Methods

Differentiable GCL [60]; DIAL [72]; CommNet [47]; BiCNet [49]; MS-MARL-
GCM [87]; DGN [80]; TarMAC [88]; MAGNet-SA-GS-MG [39]; 
MD-MADDPG [41]; DCC-MD [81]; Agent-Entity Graph [73]; 
VBC [30]; GA-Comm [82]; Diff Discrete[77]; NeurComm [83]; IP 
[84]; IS [89]; Variable-length Coding [86]; TMC [31]; MAGIC [91]; 
FlowComm [92]; GAXNet [79]; DCSS [63]; FCMNet [93]

Supervised DCSS [63]; ATOC [38]; Gated-ACML [75]; I2C [78]; R-MACRL [66]
Reinforced GCL [60]; RIAL [72]; IC [61]; MADDPG-M [40]; IC3Net [48]; 

SchedNet [42]; LSC [76]; ETCNet [85]; HAMMER [90]
Regularized NDQ [74]; IMAC [65]; Bias [62]; AE-Comm [64]; MAIC [32]
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use rewards as learning signals. Regularized methods, which use neither true labels nor 
rewards, employ an additional learning objective by using regularizers, such as minimizing 
the entropy of messages to reduce stochasticity. Therefore, we classify recent works based 
on how they differ in the learning of communication (summarized in Table 10).

Differentiable
In this category, communication is learned and improved by backpropagating gradients 

from agent to agent. When the communication policy is predefined, such as in full com-
munication [41, 47, 49, 60, 72, 77, 81, 86–89, 93] or by communicating with a subset of 
agents [30, 31, 39, 63, 73, 79, 80, 83, 84], agents learn the content of messages through 
backpropagation. Several recent studies [60, 63, 82, 91, 92] address the issue of non-dif-
ferentiable communication actions by utilizing gradient estimators like Gumbel-softmax 
[102], which replaces non-differentiable samples with a differentiable approximation dur-
ing training, albeit requiring additional parameter tuning. Specifically, both GCL [60] and 
DCSS [63] employ a differential message function in their approaches. Additionally, GCL 
integrates auxiliary rewards, and DCSS utilizes labeled messages for training communica-
tion policies. Thus, they are categorized under the Differentiable category, each addition-
ally aligning with the Reinforced and Supervised categories respectively. Freed et al. [77] 
propose an alternative method, Diff Discrete, to address the challenge of continuous mes-
sages versus discrete channels. This method models message transmitting as an encoder/
channel/decoder system, where the receiver decodes the messages and reconstructs the 
original signals. These reconstructed signals enable the calculation of derivatives with 
respect to the sender, allowing gradients to be sent back to the sender.

Supervised
In this category, additional efforts need to be made to define the true label for when and 

what information to communicate. ATOC [38] and Gated-ACML [75] use the difference 
in Q-values between actions chosen with and without a message to define a label of com-
munication actions. If the difference exceeds a threshold, the message is deemed valuable, 
indicating a high probability of sending it; otherwise, the probability is 0. This process sets 
up a classification task to decide whether to communicate. Similarly, I2C [78] trains a clas-
sifier to determine communication but relies on the causal effect between two agents, using 
a threshold to tag effective communication. ℜ-MACRL [66] learns a classifier to identify 
malicious messages, using the status of a message (malicious or not) as a label. DCSS [63] 
learns message content by using a small dataset that maps observations to desired com-
munication symbols. In DCSS, the gradient from the supervised loss is added to the policy 
loss, leading agents to use communication that aligns with the grounding data and enables 
high task performance.

Reinforced
In this category, reinforcement learning is utilized to train communication in addition 

to the learning of action policies. RIAL [72] and HAMMER [90] focus on learning the 
content of messages through reinforcement learning, without addressing the decision of 
whether to communicate. In GCL [60], auxiliary rewards are used for predicting goals and 
consolidating symbols, facilitating the development of a compositional language for com-
munication. IC [61] employs the difference in outcomes from using and not using com-
munication on action policies as rewards. Maximizing the rewards can enhance the influ-
ence of communication on the receivers’ action policies. Other studies [40, 42, 48, 76, 85] 
consider both the learning of communication content and the decision to communicate. 
Notably, MADDPG-M [40] suggests using intrinsic rewards to train the communication 
policy instead of relying solely on environmental rewards. ETCNet [85] shapes environ-
mental rewards by introducing a penalty term to discourage unnecessary communication.
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Regularized
Regularized methods are used to reduce redundant information in communication [32, 

65, 74]. NDQ [74] calculates a lower bound of the mutual information between received 
messages and the receivers’ action selection. This approach suggests that messages can 
be optimized to decrease the uncertainty in the action-value functions of the receivers. 
IMAC [65] establishes an upper bound on the mutual information between messages and 
the senders’ observations, and minimizing this upper bound helps agents send messages 
with lower uncertainty. MAIC [32] employs an estimated model of teammates and aims to 
maximize the mutual information between teammates’ actions and hidden variables from 
this model. This model then guides the encoding of messages, resulting in tailored com-
munications for different agents. Bias [62] focuses on the long-term impact of messages on 
agents’ decision-making to enhance signaling and listening effectiveness. AE-Comm [64] 
adopts an autoencoder to learn a low-dimensional encoding of observations.

3.9 � Training schemes

This dimension focuses on how to utilize the collected experiences (such as observations, 
actions, rewards, and messages) of agents to train their action policies and communication 
architectures in a Comm-MADRL system. Agents can train their models in a fully decen-
tralized manner using only their local experience. Alternatively, when global information is 
accessible, the experiences of all agents can be collected to centrally train a single (central-
ized) model that controls all agents. However, each approach has inherent challenges. Fully 
decentralized learning must cope with a non-stationary environment due to the changing 
and adapting behaviors of agents, while fully centralized learning faces the complexities 
of joint observation and policy spaces. As a balanced solution, Centralized Training and 
Decentralized Execution (CTDE) [72, 103] has emerged as a popular training schemes in 
MADRL. CTDE approaches allow agents to learn their local policies using guidance from 
central information. Therefore, in the dimension of training schemes, we categorize recent 
works based on how agents’ experiences are collected and utilized, as detailed in Table 11.

Centralized learning
As shown in Fig. 4a, experiences are gathered into a central unit, then learning to con-

trol all agents. Based on our observations, recent works on Comm-MADRL usually do not 
assume a central controller.

Fully decentralized learning
As illustrated in Fig. 4b, in fully decentralized learning, experiences are collected indi-

vidually by each agent, and they undergo independent training processes. Recent works in 
this category often employ actor-critic based methods for each agent [39, 40, 66, 73, 81, 
83, 84]. Specifically, decentralized learning has gained much attention in learning tasks 
with emergent language, as it most closely resembles language learning in nature [61, 62, 
64].

Centralized training and decentralized execution
In CTDE approaches, the experiences of all agents are collectively used for optimiza-

tion. Gradients derived from the joint experiences of agents guide the learning of local pol-
icies. However, once training is complete, only the policies are needed and gradients can be 
discarded, facilitating decentralized execution. When agents are assumed to be homogene-
ous, meaning they have identical sensory inputs, actuators, and model structures, they can 
share parameters. Parameters sharing reduces the overall number of parameters, potentially 



	 Autonomous Agents and Multi-Agent Systems            (2024) 38:4 

1 3

    4   Page 30 of 48

Ta
bl

e 
11

  
Th

e 
ca

te
go

ry
 o

f t
ra

in
in

g 
sc

he
m

es

Ty
pe

s
Su

bt
yp

es
M

et
ho

ds

Fu
lly

 D
ec

en
tra

liz
ed

 L
ea

rn
in

g
IC

 [6
1]

; M
A

G
N

et
-S

A
-G

S-
M

G
 [3

9]
; M

A
D

D
PG

-M
 [4

0]
; D

C
C

-M
D

 [8
1]

; A
ge

nt
-E

nt
ity

 G
ra

ph
 [7

3]
; B

ia
s 

[6
2]

; N
eu

rC
om

m
 [8

3]
; I

P 
[8

4]
; A

E-
C

om
m

 [6
4]

; R
-M

A
C

R
L 

[6
6]

C
en

tra
liz

ed
 T

ra
in

in
g 

an
d 

D
ec

en
tra

l-
iz

ed
 E

xe
cu

tio
n

In
di

vi
du

al
 P

ar
am

et
er

s
M

S-
M

A
R

L-
G

C
M

 [8
7]

; S
ch

ed
N

et
 [4

2]
; I

M
A

C
 [6

5]
; G

at
ed

-A
C

M
L 

[7
5]

; G
A

X
N

et
 [7

9]
; D

C
SS

 [6
3]

Pa
ra

m
et

er
 S

ha
rin

g
D

IA
L 

[7
2]

; R
IA

L 
[7

2]
; C

om
m

N
et

 [4
7]

; G
C

L 
[6

0]
; B

iC
N

et
 [4

9]
; A

TO
C

 [3
8]

; D
G

N
 [8

0]
; T

ar
M

A
C

 [8
8]

; 
IC

3N
et

 [4
8]

; V
B

C
 [3

0]
; N

D
Q

 [7
4]

; G
A

-C
om

m
 [8

2]
; L

SC
 [7

6]
; D

iff
 D

is
cr

et
e[

77
]; 

I2
C

 [7
8]

; E
TC

N
et

 
[8

5]
; V

ar
ia

bl
e-

le
ng

th
 C

od
in

g 
[8

6]
; T

M
C

 [3
1]

; H
A

M
M

ER
 [9

0]
; M

A
G

IC
 [9

1]
; F

lo
w

C
om

m
 [9

2]
; M

A
IC

 
[3

2]
; F

C
M

N
et

 [9
3]

C
on

cu
rr

en
t

M
D

-M
A

D
D

PG
 [4

1]
; I

S 
[8

9]



Autonomous Agents and Multi-Agent Systems            (2024) 38:4 	

1 3

Page 31 of 48      4 

enhancing learning efficiency compared to training in separate processes. Despite sharing 
parameters, agents can still exhibit distinct behaviors because they are likely to receive dif-
ferent observations at the same time step. Based on these considerations, recent works in 
this field can be further divided into the following subcategories.

•	 Independent Policies. In this category, each local policy is trained with its own set 
of learning parameters. A central unit collects experiences from all agents to provide 
global information and guidance, such as gradients, as depicted in Fig. 4c. The training 
of the entire system can employ policy gradient algorithms (e.g., using REINFORCE) 
[87], or actor-critic methods [42, 63, 65, 75, 79].

•	 Parameter Sharing. In this category, all local policies (or local value functions) 
utilize a shared set of parameters, as illustrated in Fig.  4d. Commonly used algo-
rithms in this scenario include DQN-like algorithms, actor-critic methods, and pol-

Fig. 4   Five types of training schemes
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icy gradient algorithms with REINFORCE. When employing a DQN-like algorithm, 
a shared local Q-function, which processes each agent’s individual experience, is 
learned collectively across agents [72, 76, 80]. Additionally, DQN-based methods 
can be integrated with value decomposition models (e.g., QMIX [27]) in coopera-
tive environments, which enable learning from factorized rewards (value functions) 
[30–32, 74]. In the case of actor-critic methods, a shared actor (i.e., policy model) is 
trained using all individual experiences, supported by gradient guidance from a cen-
tral critic [38, 49, 77, 78, 85, 86, 88, 90–93]. Policy gradient with REINFORCE can 
alternatively be used, requiring the collection of sampled rewards over episodes [47, 
48, 60, 82].

•	 Concurrent. In scenarios where storing all experiences in a central unit is not feasi-
ble, agents can alternatively create backups of all experiences, with the assumption 
that they are able to observe other agents’ actions and observations. The concurrent 
approaches differ inherently from fully decentralized learning. In CTDE with con-
current approaches, each agent maintains an individual set of policy parameters and 
receives the guidance from a local unit that collects global information (with additional 
assumptions on observability), as depicted in Fig. 4e. Concurrent CTDE often employs 
actor-critic methods, where each agent has its own central critic to guide its local actor 
(policy) [41, 89].

3.10 � Possible relations of dimensions

We have introduced 9 dimensions for Comm-MADRL and identified a range of categories 
within each dimension. It is crucial to consider the potential interdependencies among 
these dimensions. We realize that the dimensions do not inherently depend on one another 
based on the criteria used for classifying the literature. However, specific implementations 
of Comm-MADRL systems may create dependencies between dimensions. For instance, 
limited bandwidth constraints (defined in the communication constraints dimension) can 
be realized by setting a limited number of times to communicate, rendering the full com-
munication category (within the communication policy dimension) infeasible. This sce-
nario illustrates how the dimensions of communication constraints (Sect. 3.2) and com-
munication policy (Sect.  3.4) become interdependent due to specific implementations. 
Another example about communicated messages shows that the classification criteria 
we used do not depend on each other. During implementation, a proxy (in the commu-
nicatee type dimension) or corrupted message constraints (in the communication con-
straints dimension) may change the value of message content. However, we categorize 
communicated messages as Existing Knowledge or Imagined Future Knowledge, based 
on whether future knowledge is simulated and utilized. This classification criterion is 
not inherently linked to a specific type of communicatee or communication constraint. 
Thus, the dimensions of communicatee type (Sect.  3.3) and communication constraints 
(Sect.  3.2) are independent from the viewpoint of classification criteria. Consequently, 
the proposed categories and dimensions effectively encapsulate the literature from their 
unique perspectives.
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4 � Findings, discussions, and research directions

In this section, we discuss the trend of the current literature and provide our observations 
and findings based on the proposed dimensions and categorizations. We also dive into the 
dimensions and suggest possible future research directions.

4.1 � Findings and discussions

To provide a more comprehensive overview of the literature, we have utilized the proposed 
9 dimensions to categorize existing works, thereby creating an extensive table. For ease 
of reference, we introduce notations for these dimensions and their associated categories 
in Table 12. These notations are subsequently employed to categorize research works in 
Table  13. In Table  13, research works are sorted based on their publication or archival 
dates (e.g., on arXiv). Our proposed 9 dimensions offer different perspectives for analyzing 
and comparing recent works in the field of Comm-MADRL. Through these dimensions 
and categories, we have observed several intriguing findings.

•	 In the dimension of Controlled Goals, recent research has focused on various coopera-
tive settings, together with a few mixed scenarios. Communication in non-cooperative 
multi-agent tasks, however, has not been extensively explored. In such (non-coopera-
tive) environments, the goals of different agents may conflict. In the emergent language 
literature, Noukhovitch et  al. [46] have investigated how communication emerges 
between sender and receiver agents when they exhibit different levels of competitive-
ness, ranging from full cooperation to full competition. The results reveal that both 
sender and receiver agents can obtain higher rewards through communication when the 
level of competition is not high. However, their research primarily focuses on a simpli-
fied game without considering state transitions. The effectiveness of communication in 
MARL tasks with large state spaces, particularly in partial competitive settings where 
agents can still gain mutual benefits through low-level cooperation, remains an area for 

Table 12   The notations of all categories

Dimensions Notations

Controlled Goals (CG) Coo : Cooperative; Com : Competitive; M : Mixed
Communication Constraints (CC) U : Unconstrained Communication;Lb : Limited Bandwidth; Cm : Cor-

rupted Messages
Communicatee Type (CT) Na : Nearby Agents; A : Other (Learning) Agents; P : Proxy
Communication Policy (CP) Fc : Full Communication; Ps : Predefined (Partial) Structure; Ic : Indi-

vidual Control; Gc : Global Control
Communicated Messages (CM) E : Existing Knowledge; I  : Imagined Future Knowledge
Message Combination (MC) Ve : Equally Valued; Vu : Unequally Valued
Inner Integration (II) Pl : Policy-level; Vl : Value-level; PV : Policy-level & Value-level
Learning Methods (LM) D : Differentiable; Sp : Supervised; Re : Reinforced; Rg : Regularized
Training Schemes (TS) CL : Centralized Learning; DL : Decentralized Learning; CTDEip : CTDE 

with Individual (Policy) Parameters; CTDEps : CTDE with Parameter 
Sharing; CTDEc : Concurrent CTDE
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Table 13   An overview of recent works in Comm-MADRL

a + b denotes that the research work considers categories a and b simultaneously in the environment. a/b 
denotes that the research work has been examined in multiple categories but in separate environments or 
settings

Methods CG CC CT CP CM MC II LM TS

DIAL [72] Coo Lb+Cm A Fc E Ve Vl D CTDEps

RIAL [72] Coo Lb A Fc E Ve Vl Re CTDEps

CommNet [47] Coo U A Fc E Ve Pl D CTDEps

GCL [60] Coo Lb A Fc E Ve Pl D+Re CTDEps

BiCNet [49] Coo U A Fc E Vu PV D CTDEps

MS-MARL-GCM [87] Coo U P Fc E Vu Pl D CTDEip

ATOC [38] Coo U P Ic I Vu Pl Sp CTDEps

IC [61] Coo Lb A Fc E Ve PV Re DL

DGN [80] Coo/M U Na Ps E Vu Vl D CTDEps

TarMAC [88] Coo/M U A Fc E Vu PV D CTDEps

MAGNet-SA-GS-MG [39] Coo U Na Ps E Vu Pl D DL

MADDPG-M [40] Coo U A Ic E Ve PV Re DL

IC3Net [48] Coo/Com/M U A Ic E Ve Pl Re CTDEps

MD-MADDPG [41] Coo U P Fc E Vu Pl D CTDEc

SchedNet [42] Coo Lb A Gc E Ve Pl Re CTDEip

DCC-MD [81] Coo U A Fc E Vu Vl D DL

Agent-Entity Graph [73] Coo U Na Ps E Vu PV D DL

VBC [30] Coo Lb A Ps E Ve Vl D CTDEps

NDQ [74] Coo/M Lb A Ps E Ve Vl Rg CTDEps

IMAC [65] Coo Lb P Fc E Vu Pl Rg CTDEip

GA-Comm [82] Coo U P Gc E Vu Pl D CTDEps

Gated-ACML [75] Coo Lb P Ic E Vu Pl Sp CTDEip

Bias [62] Coo Lb A Fc E Ve PV Rg DL

LSC [76] Coo/M U Na Ic E Vu Vl Re CTDEps

Diff Discrete[77] Coo Cm A Fc E Ve Pl D CTDEps

NeurComm [83] Coo U Na Ps I Vu PV D DL

IP [84] Coo U Na Ps I Vu Pl D DL

I2C [78] Coo U A Ic E Vu Pl Sp CTDEps

IS [89] Coo U A Fc I Ve Pl D CTDEc

ETCNet [85] Coo Lb A Ic E Ve Pl Re CTDEps

Variable-length Coding [86] Coo Lb A Fc E Ve Pl D CTDEps

TMC [31] Coo Lb A Ps E Vu Vl D CTDEps

HAMMER [90] Coo U P Fc E Vu Pl Re CTDEps

MAGIC [91] Coo/M U P Gc E Vu PV D CTDEps

FlowComm [92] Coo U Na Gc E Ve Pl D CTDEps

AE-Comm [64] Coo Lb A Fc E Ve PV Rg DL

GAXNet [79] Coo U Na Ps E Vu Pl D CTDEip

DCSS [63] Coo Cm P Fc E Ve PV D+Sp CTDEip

R-MACRL [66] Com Cm A Fc E Vu Pl Sp DL

MAIC [32] Coo Lb A Ps E Vu Vl Rg CTDEps

FCMNet [93] Coo U A Fc E Vu PV D CTDEps
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further exploration. Moreover, in non-cooperative settings, agents may be motivated 
to deceive or manipulate the communication channel to mislead others. The notion of 
trust in multi-agent systems introduces the possibility of establishing a truthful com-
munication protocol [104, 105]. Agents could assess the reliability of opponents and 
defend against malicious messages. Additionally, agents might evaluate interactions of 
opponents with other agents to determine their reputations, which could influence the 
priorities of communicating with other agents.

•	 In the dimension of Communication Constraints, many existing works do not account 
for communication constraints, which may limit their applicability in realistic scenarios 
that have such limitations. For instance, transmitting messages in a large multi-agent 
system across long distances can result in delays, losses, or even be infeasible. Commu-
nication might be asynchronous, requiring several time steps for information exchange. 
These factors introduce new challenges to Comm-MADRL systems, such as validating 
previously sent messages and integrating messages from different time steps. Moreo-
ver, if communication resources are limited due to budget or capacity constraints, 
agents must decide how to allocate these resources effectively, especially when their 
goals vary. Conveying too much information might benefit others while sacrificing the 
agent’s own learning opportunities. The concept of fairness, which has been exten-
sively studied in multi-agent systems, focuses on developing fair solutions for resource 
allocation. The ideas of maximizing the utility of worse-off agents and decreasing the 
difference in utilities between agents in the fairness study can be utilized to distrib-
ute communication resources equally. For instance, agents with lower utilities could be 
allotted more resources to facilitate their communication with others.

•	 In the dimension of Communicatee Type, the concept of a proxy is utilized to facilitate 
message coordination. When global observability is available, a proxy often considers 
all agents within the environment. This proxy can be particularly effective and targeted 
by utilizing the independence among agents, coordinating messages among only a sub-
set of agents as necessary.

•	 In the dimension of Communication Policy, current works often assume a binary 
communication action regarding whether or not to communicate with other agents 
(or a specific agent). However, communication actions can be more fine-grained and 
descriptive. For instance, agents might opt to send only a portion of their messages due 
to uncertainty or lack of confidence. Additionally, a communication action could be 
defined more specifically, such as communicate with others if the budget exceeds a pre-
determined threshold. Thus, a communication policy can encompass a variety of com-
munication actions, tailored to align with human heuristics and specific system require-
ments.

•	 In the dimension of Communicated Messages, various methods have been proposed to 
utilize the existing knowledge of agents for message generation. Some existing works 
consider incorporating agents’ intentions or future plans. However, intentions or future 
plans may lead to catastrophic errors due to insufficient understanding of the underlying 
(transition) dynamics. Model-based Reinforcement Learning (RL) could assist agents 
in making more accurate predictions about future situations, thereby enabling the 
agents to communicate information with more certainty regarding upcoming changes. 
Additionally, current literature often assumes that messages are conveyed as single 
values or vectors. In contrast, modern devices allow for more complex formats, such 
as graphs and logical expressions. These formats can convey a substantial amount of 
knowledge or facts concisely, facilitating fast coordination. However, the challenge lies 
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in effectively encoding and decoding complex information structures, which requires 
more sophisticated learning signals.

•	 In the dimension of Message Combination, as messages often contain information 
related to each agent’s individual experiences, goals, etc., many recent works consider 
the varying importance of these messages. These research works mostly rely on atten-
tion mechanisms to impose weights on received messages. Furthermore, agents can 
incorporate their prior knowledge or preferences about other agents’ capabilities into 
these weights, enhancing the relevance and effectiveness of message combination.

•	 In the dimension of Inner Integration, many recent works have focused on integrat-
ing messages into the policy model. This trend is likely due to the growing interest in 
policy-based methods, particularly actor-critic algorithms, within the field of MADRL, 
where significant advancements have been achieved. Given that neural networks typi-
cally feature a hierarchical structure, there is potential for agents to effectively integrate 
messages into different layers. This approach would allow for considering varying lev-
els of abstraction, potentially enhancing the decision-making process.

•	 In the dimension of Learning Methods, the learning process for communication typ-
ically requires instantaneous feedback from agents who receive and act upon mes-
sages. This feedback could be in the form of gradient information or changes in the 
policies or rewards of the receiving agents. However, obtaining instantaneous feed-
back from other agents might not always be feasible in real-time decision-making 
systems. Despite this challenge, agents can still observe changes in the environment 
and their rewards to self-evaluate the effectiveness of their communication. This 
self-evaluation process enables agents to update and learn their communication pro-
tocols over time.

•	 In the dimension of Training Schemes, parameter sharing combined with centralized 
training and decentralized execution is widely adopted in Comm-MADRL to reduce the 
number of learning parameters. However, accessing other agents’ memories and param-
eters might raise privacy concerns. On the other hand, fully decentralized learning pre-
sents significant challenges and remains a key research area in MARL. In fully decen-
tralized learning, agents have limited knowledge about the environment and must deal 
with non-stationarity, a problem that intensifies with an increasing number of agents. 
Nonetheless, Comm-MADRL can benefit from advancements in MARL, potentially 
leading to the development of novel training paradigms that better balance knowledge 
sharing, privacy, and learning efficiency.

Based on the proposed dimensions, we have identified a range of findings and potential 
issues in the field of Comm-MADRL. Among these issues, achieving fully decentralized 
learning and self-evaluated communication protocols remains a significant challenge. This 
difficulty arises because each agent has access only to their own data collected from the 
environment, adding complexity to message evaluation without the help of other agents. 
Decentralized action policies and self-evaluated communication protocols, however, could 
be advantageous in areas like Electronic Commerce [106], Networks [107], and Blockchain 
[108], where synchronizing knowledge and information among users or agents can be com-
putationally demanding. Another open question involves how to effectively communicate 
using more complex message formats and implement efficient training methods, potentially 
leading to more sophisticated communication architectures. Importantly, advancements in 
multi-agent systems and multi-agent reinforcement learning can significantly contribute to 
the progress of Comm-MADRL.
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In addition to these findings, the evaluation metrics used in Comm-MADRL research 
are of significant interest. It is noteworthy that existing works have been evaluated across 
various platforms and games, employing different metrics to assess performance. Crucially, 
Comm-MADRL studies often use varying settings of experiments, such as the number of 
agents or the use of parameter sharing. These settings can make it challenging to fairly 
compare the relative strengths and limitations of algorithms based on their performance 
outcomes [109]. We have identified four evaluation metrics commonly used in Comm-
MADRL studies as follows:

•	 Reward-based: This metric employs the converged return or average rewards per epi-
sode or time step to demonstrate the profit gained by agents.

•	 Win or Fail Rate: This metric calculates the percentage that agents achieve their goal or 
fail the game during learning. It is often used in episodic tasks.

•	 Steps Taken: This metric evaluates the number of time steps learned to reach the goal. 
It is often used in episodic tasks and essential in scenarios where time efficiency is key.

•	 Communication Efficiency: This metric evaluates how much communication resource 
has been used, such as the frequency of communication between agents.

•	 Emergence Degree: Originating from the field of emergent language, this metric eval-
uates and detects the emergence of language [44, 110]. It is often used in learning 
tasks with emergent language. Positive signaling and positive listening are two com-
mon approaches. Positive signaling measures the correlation between a message and 
the sender’s observation or intended action. Positive listening assesses the impact of an 
observed message on the receiver’s beliefs or behavior.

We have analyzed the number of times that the above performance metrics are used in 
existing Comm-MADRL studies, as illustrated in Fig.  5. It is shown that the metric of 
communication efficiency has not been extensively used in the literature, requiring further 
investigation into the use of communication resources in Comm-MADRL approaches. The 
Emergence Degree metric, intended to measure whether a language is emergent, is primar-
ily utilized in emergent language studies. Nonetheless, this metric can also yield significant 
insights for other Comm-MADRL systems. By analyzing the correlation between commu-
nication and the observations and behaviors of both senders and receivers, we could obtain 
a deeper understanding and explanation of communication for Comm-MADRL.

Fig. 5   The Statistics of Evaluation Metrics in existing Comm-MADRL systems
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In the next section, inspired by the proposed dimensions, we demonstrate the potential 
for discovering new ideas through our survey. We identify several possible research direc-
tions that jointly explore multiple dimensions, aiming to bridge the gaps in current works.

4.2 � Research directions

Comm-MADRL is a young but rapidly enlarging field. There are still lots of possibilities 
to develop new Comm-MADRL systems. Our proposed dimensions encapsulate several 
aspects of Comm-MADRL, from which we can identify new research directions. There-
fore, we showcase four research directions motivated by leveraging the possible combi-
nations of dimensions and the extensions of corresponding categories. We also point out 
further challenges for Comm-MADRL.

4.2.1 � Multimodal communication

A versatile robot can hear by sound sensors, read text or talk with human partners. Intel-
ligent agents may be surrounded by different data sources and act based on multimodal 
input. By jointly considering the dimensions of communicatee type and communicated 
messages, we can imagine a fertile scenario where communication is not limited to images 
or handcrafted features but encompasses multimodal data, such as speech, videos, and text 
from humans or domestic robots, to prosper applications like smart home. To the best of 
our knowledge, existing works in Comm-MADRL do not consider communicating multi-
modal data or encoding them. Recent works often use encoded images as messages, which 
only cover visually-based applications. Therefore, we believe exploring multimodal com-
munication represents a promising research direction and introduces several challenges that 
need to be addressed. In multimodal communication, agents have to coordinate heterogene-
ous modalities and encode various types of information into messages. A possible solution 
is to use separate channels to communicate specific modalities, while agents must decide 
on the right channel to communicate and merge data from different channels. A more effi-
cient way is to learn a joint representation of multimodal observations and communicate 
on one channel. Due to the progress of Multimodal machine learning [111], we can bring 
ideas from this area to equip agents with the ability to create a single representation of mul-
timodal data. Nevertheless, it is unclear how the solutions from Multimodal machine learn-
ing can be extended to multi-agent reinforcement learning. Poklukar et al. [112] propose 
learning an aligned representation from multiple modalities, although their tests are con-
ducted in a single-agent reinforcement learning task. The multi-agent scenarios, however, 
may need to consider the individual abilities and preferences of different agents. For exam-
ple, a voice-activated agent may favor voice data for interaction, while a monitoring agent 
may only access video data. Therefore, in multi-agent settings, agents need to align their 
individual preferences regarding multimodality when learning a joint representation of 
the multimodal data. Another crucial technical issue is how to represent multimodal mes-
sages in low-dimensional vectors without losing essential information from each modal-
ity, as Comm-MADRL systems often consider reducing communication costs. Eventually, 
we expect the progress of multimodal communication will benefit human-agent interaction 
and diverse communicating agents.

The emergence of new research works would introduce new categories under each 
dimension. For example, with developments in multimodal communication, we can 
extend the categories of communicated messages with speech, image, text, and video data. 
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Nevertheless, our proposed dimensions can be adaptive and robust to cover new Comm-
MADRL research in this direction.

4.2.2 � Structural communication

Through the Internet, electronic devices like routers can process and transmit informa-
tion. On social media, chatbots can be community members [113, 114], to engage in 
conversations with users and share information/opinions. In those large-scale multi-
agent systems [115, 116], agents may belong to different groups, where their relation-
ships can be complicated. For example, local area networks create boundaries of com-
munication and interaction between devices. Chatbots may not be able to reach some 
users because of limited permission or the lack of friendship relations. These restricted 
connectivities among agents require more efficient usage of communication structure. 
Therefore, we think that the research direction focusing on structural communication 
opens up possibilities for enabling communication among a larger number of agents. In 
the current literature in Comm-MADRL, ATOC [38] and LSC [76] have investigated 
communication with multiple groups, where agents can only communicate with other 
agents who belong to the same group. In both approaches, different groups may share 
common member agents, i.e., bridge agents, which are used to enable information to 
flow from group to group. However, communication through bridge agents is not tar-
geted and each agent unconsciously shares their information with other groups. In terms 
of the dimension of controlled goals, agents may have individualized goals and require 
collaboration with a specific set of agents. Therefore, an important future direction of 
structural communication is to send critical information and opinions to target agents. 
For example, agent 1 may observe the goal location of agent 2 while they belong to 
different groups. If agent 3 happens to be a common friend of agents 1 and 2, agent 1 
can actively send the goal information to agent 2 with the help of agent 3. If commu-
nication is costly and information is private, agents need to make thoughtful decisions 
about which bridge agents to be used to find the shortest and safe path to reach targeted 
agents. At the same time, bridge agents need to agree on the communication path to 
transmit information successfully. If a complex and hierarchical friendship network is 
identified, another important question is how to prioritize and schedule different com-
munication paths to make communication fluent. Regarding communicated messages, 
agents need to build a common protocol with targeted agents so that information can 
be encoded and decoded successfully. As a result, agents can more actively utilize the 
communication structure among agents to achieve better collaboration and agreements.

4.2.3 � Robust centralized unit

Robustness has been widely considered in the field of reinforcement learning [117, 118], 
where an agent needs to cope with disturbances in learning in order to achieve a robust pol-
icy that can generalize under changes in training/test data. In MARL, agents’ policies can 
be sensitive to environmental noise or malicious intentions of opponents, and thus robust 
policies are required [119, 120]. With communication, opponents may produce mali-
cious messages, implying adversary intentions. Preventing malicious messages is impor-
tant in non-cooperative settings as adversary agents may manipulate communication to 
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achieve their own goals at the expense of other agents’ benefits. Existing works on Comm-
MADRL, such as ℜ-MACRL [66], have investigated how to detect adversary information 
and reconstruct original messages. However, as we discussed in the dimensions of com-
municatee type and training paradigm, proxy and critics are often centralized and gather 
information from all agents. Robustness becomes essential for these centralized units as all 
agents involved in communication can be misled by polluted feedback, for example, incor-
rect gradient signals from critics or malicious messages from a proxy. Moreover, malicious 
messages can easily spread through the (centralized) proxy. Therefore, we think building a 
robust centralized unit is a promising and underdeveloped direction for safe communica-
tion in MADRL, where proxies and critics need to avoid communication being exploited 
by adversaries or affected by harmful environmental changes. By considering the dimen-
sion of communication policy, sender agents can learn a versatile communication policy. 
For example, the communication policy can be defined to select different encoding proto-
cols for different groups of agents, in case malicious agents may easily find a solution to 
cheat on a specific encoding protocol. Besides, as malicious or noisy messages can be hid-
den in the centralized proxy, it is important to figure out which messages are malicious and 
how to reconstruct the original messages. Nonetheless, developing robust centralized units 
is vital for reliable and protected Comm-MADRL systems.

4.2.4 � Learning tasks with emergent language

In this survey, we have identified the intersection between learning tasks with communica-
tion and emergent language in the field of MADRL, which we have called learning tasks 
with emergent language. We also observed that there is only a limited number of research 
works concerning this sub-area learning tasks with emergent language, which learns a lan-
guage while achieving a MADRL task. We believe this area can be further expanded and 
investigated, by considering several dimensions proposed by our survey. First, the com-
municated messages, as we discussed earlier, can be encoded into more complex symbolic 
formats, such as graphs or logical expressions. Existing works in the field only learn how 
to communicate through atomic symbols or a combination [60, 62, 63]. However, it is 
important to learn the relation between symbols. For example, symbol A is on the left of 
symbol B. Those messages can express facts about what agents know or conjecture. There-
fore, receivers can quickly adapt their behaviors by successfully decoding the messages. 
The important question is how to learn both encoding and decoding with complex expres-
sions of messages, which can have a significant number of possibilities. The senders should 
also properly encapsulate their knowledge and the receivers should reason on the messages 
correctly. In addition, how complex symbolic formats can emerge in non-cooperative set-
tings is an interesting but unexplored research area. What’s more, the combination of com-
plex messages will not be as easy as handling single values or vectors. Therefore, learning 
together with complicated communication is still challenging.

4.2.5 � Further challenges

In the field of Comm-MADRL, there are further challenges. For instance, the design of 
neural network architectures plays a critical role in performance and communication. A 
deeper neural network may be effective in some domains while failing in other domains. 
For example, LSTM is effective in capturing history information while may require much 
time to train the parameters [121, 122], which could greatly slow down the learning in 
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tasks with high complexity. The choice of architectures and fine-tuning hyperparameters 
are significant problems of Comm-MADRL. With communication, another crucial issue is 
the explainability of communicated messages. Emergent language has made a step towards 
human-like language. However, whether machines communicate in a human-like way and 
can learn a human-interpretable language is still unclear. A great number of existing works 
regarding learning tasks with communication seek hidden, deep, and obscure codes for 
messages [47, 48, 78, 91], which still need to be further interpreted and understood.

5 � Conclusions

Our survey proposes to classify the literature based on 9 dimensions. These dimensions 
constitute the basis of designing Comm-MADRL systems. We further categorize exist-
ing works under each dimension, where readers can easily compare research works from 
a unique perspective. Based on those dimensions, we also observe findings through the 
trend of the literature and identify new research directions by filling the gap among recent 
works. Our survey concludes that while the number of works in Comm-MADRL is notable 
and represents significant achievements, communication can be more fruitful and versa-
tile to incorporate non-cooperative settings, heterogeneous players, and many more agents. 
Agents can communicate information not only from raw image inputs or handcrafted 
features but also from diverse data sources such as voice and text. Furthermore, we can 
explore novel metrics to better understand the contribution of communication to the overall 
learning process. Ultimately, Comm-MADRL can benefit from the MARL community and 
take advantage of good solutions from MARL.
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