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Abstract
We study mechanism design for nonexcludable and excludable binary public project prob-
lems. Our aim is to maximize the expected number of consumers and the expected agents’ 
welfare. We first show that for the nonexcludable public project model, there is no need 
for machine learning based mechanism design. We identify a sufficient condition on the 
prior distribution for the existing conservative equal costs mechanism to be the optimal 
strategy-proof and individually rational mechanism. For general distributions, we propose 
a dynamic program that solves for the optimal mechanism. For the excludable public pro-
ject model, we identify a similar sufficient condition for the existing serial cost sharing 
mechanism to be optimal for 2 and 3 agents. We derive a numerical upper bound and use it 
to show that for several common distributions, the serial cost sharing mechanism is close 
to optimality. The serial cost sharing mechanism is not optimal in general. We propose 
three machine learning based approaches for designing better performing mechanisms. 
We focus on the family of largest unanimous mechanisms, which characterizes all strat-
egy-proof and individually rational mechanisms for the excludable public project model. 
A largest unanimous mechanism describes an iterative mechanism, which is defined by 
an exponential number of mechanism parameters. Our first approach describes the larg-
est unanimous mechanism family using a neural network and training is carried out by 
minimizing a cost function that combines the mechanism design objective and the con-
straint violation penalty. We interpret the largest unanimous mechanisms as price-oriented 
rationing-free (PORF) mechanisms, which enables us to move the mechanisms’ iterative 
decision making off the neural network, to a separate simulation process, therefore avoid-
ing the vanishing gradient problem. We also feed the prior distribution’s analytical form 
into the cost function to achieve high-quality gradients for efficient training. Our second 
approach treats the mechanism design task as a Markov Decision Process with an expo-
nential number of states. During the Markov decision process, the non-consumers are grad-
ually removed from the system. We train multiple neural networks, each for a different 
number of remaining agents, to learn the optimal value function on the states. Training is 
carried out by supervised learning toward a set of manually prepared base cases and the 
Bellman equation. Our third approach is based on reinforcement learning for a Partially 
Observable Markov Decision Process. Each RL episode randomly draws a type profile, 
which is hidden from the RL agent (mechanism designer). The RL agent only observes 
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which cost share offers have been accepted under the largest unanimous mechanism under 
discussion. We use a continuous action space reinforcement learning approach to adjust 
the offer policy (i.e., adjust mechanism parameters). Lastly, our first two approaches use 
“supervision to manual mechanisms” as a systematic way for network initialization, which 
is potentially valuable for machine learning based mechanism design in general.

Keywords  Public Project · Cost Sharing · Automated Mechanism Design · Mechanism 
Design via Neural Networks · Mechanism Design via Reinforcement Learning

1  Introduction

Many multiagent system applications (e.g., crowdfunding) are related to the public project 
problem. The public project problem is a classic economic model that has been studied 
extensively in both economics and computer science [9, 11, 12, 19–21, 23, 32, 33]. Under 
this model, a group of agents decide whether or not to fund a nonrivalrous public project—
when one agent consumes the project, it does not prevent others from using it. We study 
both the nonexcludable and the excludable versions of the binary public project problem. 
The binary decision is either to build or not. If the decision is not to build, then no agents 
can consume the project. For the nonexcludable version, once a project is built, all agents 
can consume it, including those who do not pay.1 For example, if the public project is an 
open source software project, then once the project is built, everyone can consume it. For 
the excludable version, the mechanism has the capability to exclude agents from the built 
project. For example, if the public project is a swimming pool, then we could impose the 
restriction that only the paying agents have access to it.

Our aim is to design mechanisms that maximize expected performances. We consider 
two design objectives. One is to maximize the expected number of consumers (expected 
number of agents who are allowed to consume the project).2 The other objective is to max-
imize the agents’ expected welfare. We argue that maximizing the expected number of 
consumers is more fair in some applications—when maximizing the number of consumers, 
agents with lower valuations are treated as important as high-value agents.

Guo et.al. [12] studied an objective that is very similar to maximizing the expected num-
ber of consumers. The authors studied the problem of crowdfunding security information. 
There is a premium time period. If an agent pays more, then she receives the information 
earlier. If an agent pays less or does not pay, then she incurs a time penalty—she receives 
the information slightly delayed. The authors’ objective is to minimize the expected delay. 
If every agent either receives the information at the very beginning of the premium period, 
or at the very end, then minimizing the expected delay is equivalent to maximizing the 
expected number of consumers. The public project is essentially the premium period. 
It should be noted that when crowdfunding security information, it is desirable to have 
more agents protected, whether their valuations are high or low. Hence, in this application 
domain, maximizing the number of consumers is more suitable than maximizing social 
welfare. However, since any delay that falls strictly inside the premium period is not valid 

1  The nonexcludable binary public project model is loosely related to binary social choice models, where 
the agents have the ability to pay to increase their influence on the final election outcome, such as quadratic 
voting [7, 16, 31]. The main difference is that for our model, all agents prefer the outcome “build”. Addi-
tionally, there is a project cost that needs to be collectively covered by the agents.
2  For the nonexcludable version, this is simply to maximize the probability of building.
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for our binary public project model, the mechanisms proposed in [12] do not apply to our 
setting. For a survey on other game-theoretical models on cybersecurity, please refer to 
[15].

With slight technical adjustments, we adopt the existing characterization results from 
Ohseto [24] for strategy-proof and individually rational mechanisms for both the nonex-
cludable and the excludable public project problems. Under various conditions, we show 
that existing mechanisms or mechanisms derived via classic mechanism design approaches 
are optimal or near optimal. Before summarizing our results, we introduce the following 
notation. We assume the agents’ valuations are drawn independently and identically from a 
known distribution, with f being the probability density function.

For the nonexcludable public project problem, we propose the following sufficient con-
dition for the conservative equal costs mechanism [22]3 to be optimal. For maximizing the 
expected number of consumers, f being log-concave ( log f  being concave) is a sufficient 
condition. For maximizing social welfare, besides log-concavity, we propose a new condi-
tion on f called welfare-concavity. For distributions not satisfying the above conditions, we 
propose a dynamic program that solves for the optimal mechanism.

For the excludable public project problem, we also propose a sufficient condition for the 
serial cost sharing mechanism [22]4 to to be optimal. Our condition only applies to cases 
with 2 and 3 agents. For 2 agents, the condition is identical to the nonexcludable version. 
For 3 agents, we also need f to be nonincreasing. For more agents, we propose a numerical 
technique for calculating the objective upper bound. For a few example log-concave distri-
butions, including common distributions like uniform and normal, our experiments show 
that the serial cost sharing mechanism is close to optimality.

On the other hand, for general distributions (for example, without log-concavity), the 
serial cost sharing mechanism can be far away from optimality. We propose three machine 
learning based approaches for designing better performing mechanisms.

Mechanism design via machine learning/neural networks has been an emerging topic 
[6, 8, 10, 13, 18, 25, 27]. Duetting et.al. [6] proposed a general approach for revenue maxi-
mization via deep learning. The high-level idea is to manually construct often complex 
network structures for representing mechanisms for different auction types. The cost func-
tion is the negate of the revenue. By minimizing the cost function via gradient descent, 
the network parameters are adjusted, which leads to better performing mechanisms. The 
mechanism design constraints (such as strategy-proofness) are enforced by adding a pen-
alty term to the cost function. The penalty is calculated by sampling the type profiles and 
adding together the constraint violations. Due to this setup, the final mechanism is only 
approximately strategy-proof. The authors demonstrated that this technique scales better 
than the classic mixed integer programming based automated mechanism design approach 
[4]. Shen et.al. [27] proposed another neural network based mechanism design technique, 
involving a seller’s network and a buyer’s network. The seller’s network provides a menu of 
options to the buyers. The buyer’s network picks the utility-maximizing menu option. An 
exponential-sized hard-coded buyer’s network is used (e.g., for every discretized type pro-
file, the utility-maximizing option is pre-calculated and stored in the network). There are 
also studies focusing on mechanism design using reinforcement learning. Shen et al. [28] 
studied the mechanism design for dynamic pricing problems in sponsored search auctions, 
where the search engine may dynamically modify the reserve prices while interacting with 

3  The conservative equal costs mechanism is described in Example 1.
4  The serial cost sharing mechanism is described in Example 2.
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the bidders. The authors modelled the dynamic mechanism design problem as a Markov 
Decision Process and used reinforcement learning methods to solve the problem. Tang 
et al. [30] studied the design mechanism for industrial environments. The goal is to make 
the designer use the data generated during the process to improve future designs automati-
cally. The author formulated the mechanism design task as a Markov Decision Process and 
applied the deep deterministic policy gradient algorithm, to handle the continuous action 
space. Hu et al. [14] designed an inference-aided reinforcement mechanism that uses rein-
forcement learning techniques in order to learn the policies to incentivize high-quality 
labels from crowdsourcing. Another line of research is on using neural network to solve for 
equilibria for a given game [3].

Our first approach models the largest unanimous mechanism family using a neural net-
work and training is carried out by minimizing a cost function that combines the mecha-
nism design objective and the constraint violation penalty. One complication we face is 
that the largest unanimous mechanisms involve iterative binary decisions. A common way 
to model binary decisions on neural networks is by using the sigmoid function. Unfortu-
nately, stacking sigmoid functions to model iterative decision making leads to vanishing 
gradients and significant numerical errors. Instead, we rely on the price-oriented rationing-
free (PORF) interpretation [37]: every agent faces a set of options (outcomes with prices) 
determined by the other agents. We single out a randomly chosen agent i, and draw a sam-
ple of the other agents’ types v−i . We use a separate program (off the network) to calcu-
late the options i would face. We no longer need to construct complex network structures 
like the approach in [6] or resort to exponential-sized hard-coded buyer networks like the 
approach in [27]. After calculating i’s options, we link the options together using terms that 
contain network parameters, which enables backpropagation. Specifically, after calculating 
agent i’s options, we make use of the analytical form of i’s distribution (assumed to be dif-
ferentiable) to figure out the probabilities of all the options, and then derive the expected 
objective value from i’s perspective. The training gradient comes from the probabilities, 
which are calculated based on neural network outputs.

Our second approach treats the mechanism design task as a Markov Decision Process 
(MDP) with an exponential number of states, where states are the accepted cost share vec-
tors (by the agents) under the optimal largest unanimous mechanism. MDP typically can 
be solved using Dynamic Program (DP); however, considering the exponential-sized state 
space, it is computationally infeasible to solve our DP exactly. Therefore, we use neural 
networks to approximate the DP solution [35], where we train the NN, which acts as a 
value function, to learn toward a set of manually prepared base cases and the recursive 
relationship between the states (i.e., Bellman equation). During the Markov Decision Pro-
cess, the non-consumers are gradually removed from the system. We train multiple neural 
networks, each for a different number of remaining agents. That is, when there are i agents 
left during the execution of the largest unanimous mechanism, we use a neural network 
with i inputs as the value function, which determines the next round of offers. The combi-
nation of all these neural networks (i.e., a series of networks with 2 to n inputs) define the 
overall mechanism.

Our third approach is based on reinforcement learning. We model the mechanism 
design problem as a Partially Observable Markov Decision Process (POMDP). The state 
contains the agents’ type profile (true valuations) and also the agents’ current accepted cost 
share vector. The reinforcement learning agent (mechanism designer) can only observe the 
accepted cost share vector, but not the type profile. In each episode, the RL agent faces a 
newly generated type profile. The RL agent interacts with the environment repeatedly in 
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order to learn how to optimally set the cost share vectors for the agents. We use the deep 
deterministic policy gradient algorithm [17] to train the RL agent.

Lastly, our first two approaches both use “supervision to manual mechanisms” as 
a systematic way for network initialization, which we believe is potentially valuable for 
machine learning based mechanism design in general. Manual mechanisms refer to manu-
ally designed existing mechanisms. In our first approach, we teach the network to mimic an 
existing manual mechanism, and then leave it to gradient descent. In our experiments, we 
considered different heuristic-based manual mechanisms as starting points. One heuristic 
is feasible but not optimal, and the gradient descent process is able to improve its perfor-
mance. The second heuristic is not always feasible, and the gradient descent process is able 
to fix the constraint violations. In our second approach that approximates DP using NN, to 
speed up training, we first supervise the NN to learn toward the serial cost sharing mecha-
nism. This gives us a “not far off” value function as the starting point (instead of starting 
from a random function). Our experiments also show that this additional supervision step 
leads to better mechanism performances. We believe supervision to manual mechanisms is 
often better than random initializations, because the supervision step often pushes the per-
formance to a state that is already somewhat close to optimality—it may take a long time 
for random initializations to catch up.

2 � Model description

There are n agents who need to decide whether or not to build a public project. The project 
is binary (build or not build) and nonrivalrous (the cost of the project does not depend on 
how many agents are consuming it). We normalize the project cost to 1. We use vi to rep-
resent agent i’s private valuation for the public project. We assume an agent’s valuation for 
the public project is nonnegative, which is a standard assumption in public project mecha-
nism design literature [9, 11, 12, 19–21, 23, 32, 33]. That is, vi ∈ [0, 1] . We assume that 
the vi are drawn i.i.d. from a known prior distribution. Let F and f be the CDF and PDF, 
respectively. We assume that the distribution is continuous and f is differentiable.

•	 Agent i’s valuation is vi if she gets to consume the project, and 0 otherwise.
•	 For the nonexcludable public project model, agent i’s valuation is vi if the project is 

built, and 0 otherwise.
•	 For the excludable public project model, agent i’s valuation is vi if the project is built 

and i is selected as a consumer, and 0 otherwise.
•	 For the excludable model, the outcome space is {0, 1}n . We use ai to represent agent i’s 

allocation outcome. Under outcome (a1, a2,… , an) , agent i consumes the public project 
if and only if ai = 1 . If for all i, ai = 0 , then the project is not built. As long as ai = 1 for 
some i, the project is built.

Agent i’s payment pi is nonnegative. We require that pi = 0 for all i if the project is not 
built and 

∑
pi = 1 if the project is built. An agent’s payment is also referred to as her cost 

share. An agent’s utility is vi − pi if she gets to consume the project, and 0 otherwise. We 
focus on strategy-proof and individually rational mechanisms. Under a strategy-proof 
mechanism, it is a dominant strategy for an agent to truthfully report her valuation. Under 
an individually rational mechanism, an agent’s utility is at least 0.
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We study two objectives. One is to maximize the expected number of consumers. The 
other is to maximize the agents’ welfare.

Let v = (v1, v2,… , vn) be a type profile. Let M be a mechanism. We define the benefit 
function BM(v) as follows:

•	 If the objective is to maximize the expected number of consumers, then BM(v) denotes 
the number of consumers under M for type profile v.

•	 If the objective is to maximize the social welfare, then BM(v) denotes the agents’ total 
utility under M for type profile v.

Our goal is to maximize the expectation Ev∼f (BM(v)) . Here, v ∼ f  denotes that when cal-
culating the expectation of BM(v) , we assume that the type profile v is drawn based on the 
prior distribution f.

3 � Characterizations and bounds

We adopt a list of existing characterization results from [24], which characterizes strategy-
proof and individual rational mechanisms for both nonexcludable and excludable public 
project problems. A few technical adjustments are needed for the existing characterizations 
to be valid for our problem. The characterizations in [24] were not proved for quasi-linear 
settings. However, we verify that the assumptions needed by the proofs remain valid for 
our model setting. One exception is that the characterizations in [24] assume that every 
agent’s valuation is strictly positive. This does not cause issues for our objectives as we 
are maximizing for expected performances and we are dealing with continuous distribu-
tions.5 We are also safe to drop the citizen sovereign assumption mentioned in Theorem 1,6 
but not the other two minor technical assumptions called demand monotonicity and access 
independence.

3.1 � Nonexcludable public project: mechanism characterization

Definition 1  (Unanimous mechanism [24]) There is a constant cost share vector 
(c1, c2,… , cn) with ci ≥ 0 and 

∑
ci = 1 . The mechanism builds if and only if vi ≥ ci for all 

i. Agent i pays exactly ci if the decision is to build. The unanimous mechanism is strategy-
proof and individually rational.

Theorem  1  (Nonexcludable mech. characterization [24]) For the nonexcludable public 
project model, if a mechanism is strategy-proof, individually rational, and citizen sover-
eign, then it is weakly Pareto dominated by an unanimous mechanism.

Citizen sovereign: Build and not build are both possible outcomes.

5  Let M be the optimal mechanism. If we restrict the valuation space to [�, 1] , then M is Pareto dominated 
by an unanimous/largest unanimous mechanism M′ for the nonexcludable/excludable setting. The expected 
performance difference between M and M′ vanishes as � approaches 0. Unanimous/largest unanimous mech-
anisms are still strategy-proof and individually rational when � is set to exactly 0.
6  If a mechanism always builds, then it is not individually rational in our setting. If a mechanism always 
does not build, then it is not optimal.
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Mechanism 1 weakly Pareto dominates Mechanism 2 if every agent weakly prefers 
Mechanism 1 under every type profile.

Below we present an example unanimous mechanism:

Example 1  (Conservative equal costs mechanism [22]) We build the project if and only if 
every agent agrees to pay 1

n
.

3.2 � Excludable public project: mechanism characterization

Definition 2  (Largest unanimous mechanism [24]) For every nonempty coalition of agents 
S = {S1, S2,… , Sk} , there is a constant cost share vector CS = (cS1 , cS2 ,… , cSk ) with cSi ≥ 0 
and 

∑
1≤i≤k cSi = 1 . cSi is agent Si ’s cost share under coalition S. If agent i belongs to two 

coalitions S and T with S ⊊ T  , then i’s cost share under S must be greater than or equal to 
her cost share under T. Agents in S unanimously approve the cost share vector CS if and 
only if vSi ≥ cSi for all i ∈ S . The mechanism picks the largest coalition S∗ satisfying that 
CS∗ is unanimously approved. If S∗ does not exist, then the decision is not to build. If S∗ 
exists, then it is always unique, in which case the decision is to build. Only agents in S∗ are 
consumers and they pay according to CS∗ . The largest unanimous mechanism is strategy-
proof and individually rational.

The mechanism essentially specifies a constant cost share vector for every non-empty 
coalition. The cost share vectors must satisfy that if we remove some agents from a 
coalition, then under the remaining coalition, every remaining agent’s cost share must 
be equal or higher. The largest unanimously approved coalition become the consumers/
winners and they pay according to this coalition’s cost share vector. The project is not 
built if there are no unanimously approved coalitions.

Another way to interpret the mechanism is that the agents start with the grand coali-
tion of all agents. Given the current coalition, if some agents do not approve their cost 
shares, then they are forever removed. The remaining agents form a smaller coalition, 
and they face increased cost shares. We repeat the process until all remaining agents 
approve their shares, or when all agents are removed.

Theorem  2  (Excludable mech. characterization [24]) For the excludable public project 
model, if a mechanism is strategy-proof, individually rational, and satisfies the following 
assumptions, then it is weakly Pareto dominated by a largest unanimous mechanism.

Demand monotonicity: Let S be the set of consumers. If for every agent i in S, vi stays the 
same or increases, then all agents in S are still consumers. If for every agent i in S, vi stays 
the same or increases, and for every agent i not in S, vi stays the same or decreases, then 
the set of consumers should still be S.

Access independence: For all v−i , there exist vi and v′
i
 so that agent i is a consumer 

under type profile (vi, v−i) and is not a consumer under type profile (v�
i
, v−i).

Below we present an example largest unanimous mechanism:
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Example 2  (Serial cost sharing mechanism [22]) For every nonempty subset of agents S 
with |S| = k , the cost share vector is ( 1

k
,
1

k
,… ,

1

k
) . The mechanism picks the largest coali-

tion where the agents are willing to pay equal shares.

Deb and Razzolini [5] proved that if we further require an equal treatment of equals 
property (if two agents have the same type, then they should be treated the same), then 
the only strategy-proof and individually rational mechanism left is the serial cost shar-
ing mechanism. The experiments in this paper will show that, via machine learning 
approaches, we are able to derive mechanisms that outperform the serial cost sharing 
mechanism for a variety of distributions and for both objectives. That is, equal treatment 
of equals (or requiring anonymity) does hurt performances.

3.3 � Nonexcludable public project analysis

We start with an analysis on the nonexcludable public project. The results presented 
in this section will lay the foundation for the more complex excludable public project 
model coming up next.

Due to the characterization results, we focus on the family of unanimous mecha-
nisms. That is, we are solving for the optimal cost share vector (c1, c2,… , cn) , satisfying 
that ci ≥ 0 and 

∑
ci = 1.

Recall that f and F are the PDF and CDF of the prior distribution. The reliability 
function F is defined as F(x) = 1 − F(x) . We define w(c) to be the expected utility of an 
agent when her cost share is c, conditional on that she accepts this cost share.

One condition we will use is log-concavity: if log(f (x)) is concave in x, then f is log-con-
cave. We also introduce another condition called welfare-concavity, which requires w to be 
concave.

Theorem 3  If f is log-concave, then the conservative equal costs mechanism maximizes the 
expected number of consumers. If f is log-concave and welfare-concave, then the conserva-
tive equal costs mechanism maximizes the expected agents’ welfare.

Proof  Let C = (c1, c2,… , cn) be the cost share vector. Maximizing the expected number of 
consumers is equivalent to maximizing the probability of C getting unanimously accepted, 
which equals F(c1)F(c2)…F(cn) . Its log equals 

∑
1≤i≤n log(F(ci)) . When f is log-concave, 

so is F according to [1]. This means that when cost shares are equal, the above probability 
is maximized.

The expected agents’ welfare under the cost share vector C equals 
∑

w(ci) , conditional 
on all agents accepting their shares. This is maximized when shares are equal. Further-
more, when all shares are equal, the probability of unanimous approval is also maximized. 	
� ◻

We use the following example to better convey the idea behind Theorem 3:

w(c) =
∫ 1

c
(x − c)f (x)dx

∫ 1

c
f (x)dx
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Example 3  Let us consider 2 agents, whose prior distributions are from uniform U(0, 1). 
That is, f (x) = 1 , F(x) = x and F(x) = 1 − x.

Furthermore, w(c) = ∫ 1

c
(x−c)f (x)dx

∫ 1

c
f (x)dx

=
∫ 1

c
(x−c)dx

∫ 1

c
dx

=
1

2
+

c2

2
−c

1−c
=

1−c

2
.

For maximizing the expected number of consumers, we are essentially maximiz-
ing F(c1)F(c2) = (1 − c1)(1 − c2) . Since c1 + c2 = 1 , the expression is maximized when 
c1 = c2 =

1

2
 . That is, equal cost shares are optimal.

For maximizing the expected welfare, we are essentially maximizing
F(c1)F(c2)(w(c1) + w(c2)) = (1 − c1)(1 − c2)(

1−c1

2
+

1−c2

2
) = (1 − c1)(1 − c2)

1

2
 , which is 

the same as maximizing the number of consumers, ignoring the difference on the constant 
factor. Therefore, equal cost shares are also optimal for welfare maximization.

f being log-concave is also called the decreasing reversed failure rate condition [26]. 
Bagnoli and Bergstrom [1] proved log-concavity for many common distributions, including 
the distributions in Table 1 (for all distribution parameters). All distributions are restricted 
to [0, 1]. We also list some limited results for welfare-concavity. We prove that the uniform 
distribution is welfare-concave, but for the other distributions, the results are based on sim-
ulations. Finally, we include the conditions for f being nonincreasing, which will be used in 
the excludable public project model.

Even when optimal, the conservative equal costs mechanism performs poorly. We take 
the uniform U(0, 1) distribution as an example. Every agent’s cost share is 1

n
 . The prob-

ability of acceptance for one agent is n−1
n

 , which approaches 1 asymptotically. However, we 
need unanimous acceptance, which happens with much lower probability. For the uniform 
distribution, asymptotically, the probability of unanimous acceptance is only 1

e
≈ 0.368 . In 

general, we have the following bound:

Theorem  4  If f is Lipschitz continuous, then when n goes to infinity, the probability of 
unanimous acceptance under the conservative equal costs mechanism is e−f (0).

Without log-concavity, the conservative equal costs mechanism is not necessarily opti-
mal. We present the following dynamic program (DP) for calculating the optimal unani-
mous mechanism. We only present the formation for welfare maximization.7

We assume that there is an ordering of the agents based on their identities. We define 
B(k, u, m) as the maximum expected agents’ welfare under the following conditions:

Table 1   Example log-concave 
distributions

Welfare-Concavity Nonincreasing

Uniform U(0, 1) Yes Yes
Normal No ( � = 0.5, � = 0.1) � ≤ 0

Exponential Yes ( � = 1) Yes
Logistic No ( � = 0.5, � = 0.1) � ≤ 0

7  Maximizing the expected number of consumers can be viewed as a special case where every agent’s util-
ity is 1 if the project is built.
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•	 The first n − k agents have already approved their cost shares, and their total cost share is 
1 − m . That is, the remaining k agents need to come up with m.

•	 The first n − k agents’ total expected utility is u.

The optimal agents’ welfare is then B(n, 0, 1). Here, k = n , u = 0 and m = 1 . When k = n , 
we have n − k = 0 . When m = 1 , we have 1 − m = 0 . For B(n, 0, 1), 0 agents have already 
approved their cost shares, and the already approved cost share is 0 and the first 0 agents’ total 
expected utility is 0. Therefore, B(n, 0, 1) represents the original problem we aim to solve via 
DP. We recall that F(c) is the probability that an agent accepts a cost share of c, we have

The base case is B(1, u,m) = F(m)(u + w(m)) . In terms of implementation of this DP, we 
have 0 ≤ u ≤ n and 0 ≤ m ≤ 1 . We need to discretize these two intervals. If we pick a dis-
cretization size of 1

H
 , then the total number of DP subproblems is about H2n2.

To compare the performance of the conservative equal costs mechanism and our DP solu-
tion, we focus on distributions that are not log-concave (hence, uniform and normal are not 
eligible). We introduce the following non-log-concave distribution family:

Definition 3  (Two-Peak Distribution (�1, �1,�2, �2, p) ) With probability p, the agent’s val-
uation is drawn from the normal distribution N(�1, �1) (restricted to [0, 1]). With probabil-
ity 1 − p , the agent’s valuation is drawn from N(�2, �2) (restricted to [0, 1]).

The motivation behind the two-peak distribution is that there may be two categories of agents. 
One category is directly benefiting from the public project, and the other is indirectly benefiting. 
For example, if the public project is to build bike lanes, then cyclists are directly benefiting, and 
the other road users are indirectly benefiting (e.g., less congestion for them). As another exam-
ple, if the public project is to crowdfund a piece of security information on a specific software 
product (e.g., PostgreSQL), then agents who use PostgreSQL in production are directly benefit-
ing and the other agents are indirectly benefiting (e.g., every web user is pretty much using some 
websites backed by PostgreSQL). Therefore, it is natural to assume the agents’ valuations are 
drawn from two different distributions. For simplicity, we do not consider three-peak, etc.

For the two-peak distribution (0.1, 0.1, 0.9, 0.1, 0.5), DP significantly outperforms the con-
servative equal costs (CEC) mechanism.

E(no. of consumers) E(welfare)

n=3 CEC 0.376 0.200
n=3 DP 0.766 0.306
n=5 CEC 0.373 0.199
n=5 DP 1.426 0.591

3.4 � Excludable public project analysis

Due to the characterization results, we focus on the family of largest unanimous mech-
anisms. We start by showing that the serial cost sharing mechanism is optimal in some 
scenarios.

B(k, u,m) = max
0≤c≤m

F(c)B(k − 1, u + w(c),m − c)
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Theorem 5  2 agents case: If f is log-concave, then the serial cost sharing mechanism maxi-
mizes the expected number of consumers. If f is log-concave and welfare-concave, then the 
serial cost sharing mechanism maximizes the expected agents’ welfare.

3 agents case: If f is log-concave and nonincreasing, then the serial cost sharing mecha-
nism maximizes the expected number of consumers. If f is log-concave, nonincreasing, and 
welfare-concave, then the serial cost sharing mechanism maximizes the agents’ welfare.

For 2 agents, the conditions are identical to the nonexcludable case. For 3 agents, we 
also need f to be nonincreasing. Example distributions satisfying these conditions were 
listed in Table 1.

Proof  We only present the proof for welfare maximization when n = 3.
The largest unanimous mechanism specifies constant cost shares for every coali-

tion of agents. We use c123 to denote agent 2’s cost share when the coalition is {1, 2, 3} . 
Similarly, c23 denotes agent 2’s cost share when the coalition is {2, 3} . If the larg-
est unanimous coalition has size 3, then the expected welfare gained due to this case is: 
F(c123)F(c123)F(c123)(w(c123) + w(c123) + w(c123)) . Given log-concavity of F (implied 
by the log-concavity of f) and welfare-concavity and c123 + c123 + c123 = 1 , we have 
that the above is maximized when all agents have equal shares. If the largest unani-
mous coalition is {1, 2} , then the expected agents’ welfare gained due to this case is 
F(c12)F(c12)F(c123)(w(c12) + w(c12)) . F(c123) is the probability that agent 3 does not join in 
the coalition. The above is maximized when c12 = c12 , so it simplifies to 2F( 1

2
)2w(

1

2
)F(c123) . 

The welfare gain from all size 2 coalitions is then 2F( 1
2
)2w(

1

2
)(F(c123) + F(c123) + F(c123)) . 

Since f is nonincreasing, we have that F is concave, the above is again maximized when all 
cost shares are equal. Finally, the probability of coalition size 1 is 0. Therefore, throughout 
the proof, all terms referenced are maximized when the cost shares are equal. 	�  ◻

For 4 agents and uniform distribution, we have a similar result.

Theorem  6  Under the uniform distribution U(0,  1), when n = 4 , the serial cost sharing 
mechanism maximizes the expected number of consumers and the expected agents’ welfare.

For n ≥ 4 and for general distributions, we propose a numerical method for calculating the 
performance upper bound. A largest unanimous mechanism can be carried out by the following 
process: we make cost share offers to the agents one by one based on an ordering of the agents. 
Whenever an agent disagrees, we remove this agent and move on to a coalition with one less 
agent. We repeat until all agents are removed or all agents have agreed. We introduce the fol-
lowing mechanism formulated as a Markov Decision Process. The initial state is 
{(0, 0,… , 0
⏟⏞⏞⏟⏞⏞⏟

n

), n} , which represents that initially, we only know that the agents’ valuations are at 

least 0, and we have not made any cost share offers to any agents yet (there are n agents yet to 
be offered). We make a cost share offer c1 to agent 1. If agent 1 accepts, then we move on to 
state {(c1, 0,… , 0

⏟⏟⏟

n−1

), n − 1} . If agent 1 rejects, then we remove agent 1 and move on to reduced-

sized state {(0,… , 0
⏟⏟⏟

n−1

), n − 1} . In general, let us consider a state with t users {(l1, l2,… , lt), t} . 
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The i-th agent’s valuation lower bound is li . Suppose we make offers c1, c2,… , ct−k to the first 
t − k agents and they all accept, then we are in a state {(c1,… , ct−k

⏟⏞⏞⏞⏟⏞⏞⏞⏟

t−k

, lt−k+1,… , lt
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

k

), k} . The next 

offer is ct−k+1 . If the next agent accepts, then we move on to {(c1,… , ct−k+1
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

t−k+1

, lt−k+2,… , lt
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

k−1

), k − 1} . 

If she disagrees (she is then the first agent to disagree), then we move on to a reduced-sized 
state {(c1,… , ct−k

⏟⏞⏞⏞⏟⏞⏞⏞⏟

t−k

, lt−k+2,… , lt
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

k−1

), t − 1} . Notice that whenever we move to a reduced-sized 

state, the number of agents yet to be offered should be reset to the total number of agents in this 
state. Whenever we are in a state with all agents offered {(c1,… , ct), 0} , we have gained an 
objective value of t if the goal is to maximize the number of consumers. If the goal is to maxi-
mize welfare, then we have gained an objective value of 

∑
1≤i≤t w(ci) . Any largest unanimous 

mechanism can be represented via the above Markov Decision Process. So for deriving perfor-
mance upper bounds, it suffices to focus on this MDP.

Starting from a state, we may end up with different objective values. A state has an 
expected objective value, based on all the transition probabilities. We define U(t, k, m, l) as the 
maximum expected objective value starting from a state that satisfies:

•	 There are t agents in the state.
•	 There are k agents yet to be offered. The first t − k agents (those who accepted the offers) 

have a total cost share of 1 − m . That is, the remaining k agents are responsible for a total 
cost share of m.

•	 The k agents yet to be offered have a total lower bound of l.

The upper bound we are looking for is then U(n, n, 1, 0), which can be calculated via the fol-
lowing DP process:

In the above, there are k agents yet to be offered. We maximize over the next agent’s possi-
ble lower bound l∗ and the cost share c∗ . That is, we look for the best possible lower bound 
situation and the corresponding optimal offer. F(c

∗)

F(l∗)
 is the probability that the next agent 

accepts the cost share, in which case, we have k − 1 agents left. The remaining agents need 
to come up with m − c∗ , and their lower bounds sum up to l − l∗ . When the next agent does 
not accept the cost share, we transition to a new state with t − 1 agents in total. All agents 
are yet to be offered, so t − 1 agents need to come up with 1. The lower bounds sum up to 
1 − m + l − l∗.

There are two base conditions. When there is only one agent, she has 0 probability for 
accepting an offer of 1, so U(1, k,m, l) = 0 . When there is only 1 agent yet to be offered, the 
only valid lower bound is l and the only sensible offer is m. Therefore,

U(t, k,m, l) = max
0 ≤ l∗ ≤ l

l∗ ≤ c∗ ≤ m

(
F(c∗)

F(l∗)
U(t, k − 1,m − c∗, l − l∗)

+

(
1 −

F(c∗)

F(l∗)

)
U(t − 1, t − 1, 1, 1 − m + l − l∗)

)
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Here, G(t) is the maximum objective value when the largest unanimous set has size t. For 
maximizing the number of consumers, G(t) = t . For maximizing welfare,

The above G(t) can be calculated via a trivial DP.
Now we compare the performances of the serial cost sharing mechanism against the 

upper bounds. All distributions used here are log-concave. In every cell, the first number 
is the objective value under serial cost sharing, and the second is the upper bound. We see 
that the serial cost sharing mechanism is close to optimality in all these experiments. We 
include both welfare-concave and non-welfare-concave distributions (uniform and expo-
nential with � = 1 are welfare-concave). For the two distributions not satisfying welfare-
concavity, the welfare performance is relatively worse.

E(no. of consumers) E(welfare)

n=5 U(0, 1) 3.559, 3.753 1.350, 1.417
n=10 U(0, 1) 8.915, 8.994 3.938, 4.037
n=5 N(0.5, 0.1) 4.988, 4.993 1.492, 2.017
n=10 N(0.5, 0.1) 10.00, 10.00 3.983, 4.545
n=5 Exponential � = 1 2.799, 3.038 0.889, 0.928
n=10 Exponential � = 1 8.184, 8.476 3.081, 3.163
n=5 Logistic(0.5, 0.1) 4.744, 4.781 1.451, 1.910
n=10 Logistic(0.5, 0.1) 9.873, 9.886 3.957, 4.487

In summary, for the nonexcludable public project model, if the distribution satisfies the 
condition in Theorem 3, then the conservative cost sharing mechanism is optimal. For other 
distributions, we proposed a dynamic programming technique, which produces the optimal 
mechanism. For the excludable public project model, if the distribution and the number of 
agents satisfy the condition in Theorem 5 or Theorem 6, then the serial cost sharing mecha-
nism is optimal. For a few common distributions, we calculated the performance upper bound, 
and demonstrated that the serial cost sharing mechanism is close to optimality. However, there 
does exist distribution under which the serial cost sharing is far away from optimality.

Example 4  Here we provide an example to show that the serial cost sharing mechanism can 
be far away from optimality. Specifically, in the following constructed setting, the serial 
cost sharing mechanism’s expected number of consumers is n

2
 , while a trivial mechanism 

can achieve n − 2 . That is, the optimality gap approaches infinity as n increases. We pick 
a simple Bernoulli distribution, where an agent’s valuation is 0 with 0.5 probability and 1 

U(t, 1,m, l) =
F(m)

F(l)
G(t) + (1 −

F(m)

F(l)
)U(t − 1, t − 1, 1, 1 − m)

G(t) = max
c1, c2,… , ct

ci ≥ 0∑
ci = 1

�

i

w(ci)
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with 0.5 probability.8 Under the serial cost sharing mechanism, when there are n agents, 
only half of the agents are consumers (those who report 1s). So in expectation, the number 
of consumers is n

2
 . Let us consider another simple mechanism. We assume that there is an 

ordering of the agents based on their identities (not based on their types). The mechanism 
asks the first agent to accept a cost share of 1. If this agent disagrees, she is removed from 
the system. The mechanism then moves on to the next agent and asks the same, until an 
agent agrees. If an agent agrees, then all future agents can consume the project for free. 
The number of removed agents follows a geometric distribution with 0.5 success probabil-
ity. So in expectation, 2 agents are removed. That is, the expected number of consumers is 
n − 2.

For the rest of this paper, we focus on the excludable public project model and distribu-
tions that are not log-concave. Due to the characterization results, we only need to consider 
the largest unanimous mechanisms.

4 � Machine learning based mechanism design approach 1: modelling 
iterative mechanisms as price‑oriented rationing‑free mechanisms

We start with an overview of automated mechanism design (AMD) via neural networks. 
Our approach 1 and previous papers on mechanism design via neural networks [6, 8, 18, 
27] all fall into this general category.

•	 Use neural networks to represent the full (or a part of the) mechanism. Like mecha-
nisms, neural networks are essentially functions with multi-dimensional inputs and out-
puts.

•	 Training is essentially to adjust the network parameters in order to move toward a better 
performing network/mechanism. Training is just parameter optimization.

•	 Training samples are not real data. Instead, the training type profiles are generated 
based on the known prior distribution. We can generate infinitely many fresh samples. 
We use these generated samples to build the cost function, which is often a combina-
tion of mechanism design objective and constraint penalties. The cost function must be 
differentiable with respect to the network parameters.

•	 The testing data are also type profiles generated based on the known prior distribution. 
Again, we can generate infinitely many fresh samples, so testing is based on completely 
fresh samples. We average over enough samples to calculate the mechanism’s expected 
performance.

4.1 � Network structure

A largest unanimous mechanism specifies constant cost shares for every coalition of agents. 
The mechanism can be characterized by a neural network with n binary inputs and n out-
puts. The n binary inputs present the coalition, and the n outputs represent the constant cost 

8  Our paper assumes that the distribution is continuous, so technically we should be considering a 
smoothed version of the Bernoulli distribution. For the purpose of demonstrating an elegant example, we 
ignore this technicality.
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shares. We use b⃗ to denote the input vector (tensor) and c⃗ to denote the output vector. We 
use NN to denote the neural network, so NN(b⃗) = c⃗ . There are several network constraints:

•	 All cost shares are nonnegative: c⃗ ≥ 0.
•	 For input coordinates that are 1s, the output coordinates should sum up to 1. For exam-

ple, if n = 3 and b⃗ = (1, 0, 1) (the coalition is {1, 3} ), then c⃗1 + c⃗3 = 1 (agent 1 and 3 are 
to share the total cost).

•	 For input coordinates that are 0s, the output coordinates are irrelevant. We set these 
output coordinates to 1s, which makes it more convenient for the next constraint.

•	 Every output coordinate is nondecreasing in every input coordinate. This is to ensure 
that the agents’ cost shares are nondecreasing when some other agents are removed. If 
an agent is removed, then her cost share offer is kept at 1, which makes it trivially non-
decreasing.

All constraints except for the last is easy to achieve. We will simply use OUT(b⃗) as output 
instead of directly using NN(b⃗)9:

Here, 1000 is an arbitrary large constant. For example, let b⃗ = (1, 0, 1) and 
c⃗ = NN(b⃗) = (x, y, z) . We have

In the above, softmax((x, y − 1000, z)) becomes (x�, 0, y�) with x′, y′ ≥ 0 and x� + y� = 1 
because the second coordinate is very small so it (essentially) vanishes after softmax. Soft-
max always produces nonnegtive outputs that sum up to 1. Finally, the 0s in the output are 
flipped to 1s per our third constraint.

The last constraint is enforced using a penalty function. For b⃗ and b⃗′ , where b⃗′ is 
obtained from b⃗ by changing one 1 to 0, we should have that OUT(b⃗) ≤ OUT(b⃗�) , which 
leads to this penalty:

During training, the above ReLU penalties easily reach near 0. In the context of our model, 
a mechanism that slightly violates the ReLU penalties can be easily fixed by slightly per-
turbing the offers to ensure that the offers are monotone (i.e., during the execution of the 
mechanism, we can simply refuse to ever lower the offers). Since we assume continuous 
prior distributions, slight adjustments on the offers do not significantly hurt the objectives, 
as the objectives are defined in terms of expectations.

Another way to enforce the last constraint is to use the monotonic networks structure 
[29]. This idea has been used in [8], where the authors also dealt with networks that take 
binary inputs and must be monotone. However, we do not use this approach because it is 
incompatible with our design for achieving the other constraints. There are two other rea-
sons for not using the monotonic network structure. One is that it has only two layers. [38] 

(1)OUT(b⃗) = softmax(NN(b⃗) − 1000(1 − b⃗)) + (1 − b⃗)

OUT(b⃗) = softmax((x, y, z) − 1000(0, 1, 0)) + (0, 1, 0)

= softmax((x, y − 1000, z)) + (0, 1, 0)

= (x�, 0, z�) + (0, 1, 0) = (x�, 1, y�)

(2)ReLU(OUT(b⃗) − OUT(b⃗�))

9  This is done by appending additional calculation structures to the output layer.
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argues that having a deep model is important for performance in deep learning. The other 
is that under our approach, we only need a fully connected network with ReLU penalty, 
which is highly optimized in state-of-the-art deep learning toolsets (while the monotonic 
network structure is not efficiently supported by existing toolsets). In our experiments, 
we use a fully connected network with four layers (100 nodes each layer) to represent our 
mechanism.

4.2 � Cost function

For presentation purposes, we focus on maximizing the expected number of consumers. 
Only slight adjustments are needed for welfare maximization.

Previous approaches of mechanism design via neural networks used static networks 
[6, 8, 18, 27]. Our largest unanimous mechanism involves iterative decision making, and 
the number of rounds is not fixed, as it depends on the users’ inputs. To model iterative 
decision making via a static network, we could adopt the following process. The ini-
tial offers are OUT((1, 1,… , 1)) . The remaining agents after the first round are then 
S = sigmoid(v − OUT((1, 1,… , 1))) . Here, v is the type profile sample. The next round of 
offers are then OUT(S). The remaining agents afterwards are then sigmoid(v − OUT(S)) . 
We repeat this n times because the largest unanimous mechanism have at most n rounds. 
The final coalition is a converged state, so even if the mechanism terminates before the n-th 
round, having it repeat n times does not change the result (except for additional numerical 
errors). Once we have the final coalition Sf  , we include 

∑
x∈Sf x (number of consumers) in 

the cost function. However, this approach performs abysmally, due to the vanishing gradi-
ent problem and numerical errors caused by stacking n sigmoid functions.

We would like to avoid stacking sigmoid to model iterative decision making. Sigmoid 
is heavily used in existing works on neural network mechanism design, but it is the culprit 
of significant numerical errors. We propose an alternative approach, where decisions are 
simulated off the network using a separate program (e.g., any Python function). The advan-
tage of this approach is that it is now trivial to handle complex decision making. However, 
given a type profile sample v and the current network NN, if we simulate the mechanism 
off the network to obtain the number of consumers x, and include x in the cost function, 
then training will fail completely. This is because x is not a differentiable function of net-
work parameters and cannot support backpropagation at all.

One way to resolve this is to interpret the mechanisms as price-oriented rationing-free 
(PORF) mechanisms [37]. That is, if we single out one agent, then her options (outcomes 
combined with payments) are completely determined by the other agents and she simply 
has to choose the utility-maximizing option. Under a largest unanimous mechanism, an 
agent faces only two results: either she belongs to the largest unanimous coalition or not. 
If an agent is a consumer, then her payment is a constant due to strategy-proofness, and 
the constant payment is determined by the other agents. Instead of sampling over complete 
type profiles, we sample over v−i with a random i. To better convey our idea, we consider 
a specific example. Let i = 1 and v−1 = (⋅,

1

2
,
1

2
,
1

4
, 0) . We assume that the current state of 

the neural network is exactly the serial cost sharing mechanism. Given a sample, we use a 
separate program to calculate the following entries.

•	 The objective value if i is a consumer ( Os ). Under the example, if 1 is a consumer, then 
the decision must be 4 agents each pays 1

4
 . So the objective value is Os = 4.
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•	 The objective value if i is not a consumer ( Of  ). Under the example, if 1 is not a con-
sumer, then the decision must be 2 agents each pay 1

2
 . So the objective value is Of = 2.

•	 The binary vector that characterizes the coalition that decides i’s offer ( O⃗b ). Under the 
example, O⃗b = (1, 1, 1, 1, 0).

Os , Of  , and O⃗b are constants without network parameters. We link them together using 
terms with network parameters, which is then included in the cost function:

1 − F(OUT(O⃗b)i) is the probability that agent i accepts her offer. F(OUT(O⃗b)i) is then the 
probability that agent i rejects her offer. OUT(O⃗b)i carries gradients as it is generated by the 
network. We use the analytical form of F, so the above term carries gradients.10

The above approach essentially feeds the prior distribution into the cost function. We 
also experimented with two other approaches. One does not use the prior distribution. It 
uses a full profile sample and uses one layer of sigmoid to select between Os or Of :

The other approach is to feed “even more” distribution information into the cost function. 
We single out two agents i and j. Now there are 4 options: they both win or both lose, only i 
wins, and only j wins. We still use F to connect these options together.

In Sect. 4.4, in one experiment, we show that singling out one agent works the best. In 
another experiment, we show that even if we do not have the analytical form of F, using an 
analytical approximation also enables successful training.

Below we summarise our approach 1:

Summary of Approach 1

Neural network inputs: binary vector of size n that represents the coalition, where agent i belongs to the 
coalition if and only if the i-th coordinate is 1.

Neural network outputs: non-negative real vector of size n that represents the cost share vector, where 
the total cost share for agents in the coalition must sum up to 1 (achieved by Equation 1).

Cost function: Monotonicity violation penalty (Equation 2) minus the expected objective over the train-
ing batch (Equation 3).

4.3 � Supervision as initialization

We introduce an additional
supervision step in the beginning of the training process as a systematic way of initiali-

zation. We first train the neural network to mimic an existing manual mechanism, and then 
leave it to gradient descent. We considered three different manual mechanisms. One is the 
serial cost sharing mechanism. The other two are based on two different heuristics:

Definition 4  (One directional dynamic programming) We make offers to the agents one 
by one. Every agent faces an offer based on how many agents are left, the objective value 

(3)(1 − F(OUT(O⃗b)i))Os + F(OUT(O⃗b)i)Of

(4)sigmoid(vi − OUT(O⃗b)i)Os + sigmoid(OUT(O⃗b)i − vi))Of

10  PyTorch has built-in analytical CDFs of many common distributions.
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cumulated so far by the previous agents, and how much money still needs to be raised. If an 
agent rejects an offer, then she is removed. At the end of the algorithm, if we collected 1, 
the project is built and all agents not removed are consumers. This mechanism belongs to 
the largest unanimous mechanism family. This mechanism is not optimal because we can-
not go back and increase an agent’s offer.

Definition 5  (Myopic mechanism) For coalition size k, we treat it as a nonexcludable pub-
lic project problem with k agents. The offers are calculated based on the dynamic program 
proposed at the end of Subsection 3.3. This mechanism is not necessarily feasible, because 
the agents’ offers are not necessarily nondecreasing when some agents are removed.

4.4 � Experiments specific to approach 1

In this subsection, we present a few experimental results specific to our first machine learn-
ing approach. The experiments are conducted on a machine with Intel i5-8300H CPU. 
As mentioned earlier, we use a fully connected network with four layers (100 nodes each 
layer) to represent our mechanism. Random initializations are based on Xavier normal with 
bias 0.1.

In our experiments, unless otherwise specified, the distribution considered is two-peak 
(0.15,  0.1,  0.85,  0.1,  0.5). The x-axis shows the number of training rounds. Each round 
involves 5 batches of 128 samples (640 samples each round). Unless otherwise specified, 
the y-axis shows the expected number of nonconsumers (so lower values represent better 
performances).

Figure 1 (Left) shows the performance comparison of three different ways for construct-
ing the cost function: using one layer of sigmoid (without using distribution) based on (4), 
singling out one agent based on (3), and singling out two agents. All trials start from ran-
dom initializations. In this experiment, singling out one agent works the best. The sigmoid-
based approach is capable of moving the parameters, but its result is noticeably worse. 
Singling out two agents has almost identical performance to singling out one agent, but it is 
slower in terms of time per training step.

Figure  1 (Right) considers the Beta (0.1,  0.1) distribution. We use Kumaraswamy 
(0.1, 0.354)’s analytical CDF to approximate the CDF of Beta (0.1, 0.1). The experiments 
show that if we start from random initializations (Random) or start by supervision to 
serial cost sharing (SCS), then the cost function gets stuck. Supervision to one directional 
dynamic programming (DP) and Myoptic mechanism (Myopic) leads to better mecha-
nisms. So in this example scenario, approximating CDF is useful when analytical CDF is 
not available. It also shows that supervision to manual mechanisms works better than ran-
dom initializations in this case.

Figure  2 (Top-Left n = 3 , Top-Right n = 5 , Bottom-Left n = 10 ) shows the perfor-
mance comparison of supervision to different manual mechanisms. For n = 3 , supervision 
to DP performs the best. Random initializations is able to catch up but not completely close 
the gap. For n = 5 , random initializations caught up and actually became the best perform-
ing one. The Myopic curve first increases and then decreases because it needs to first fix 
the constraint violations. For n = 10 , supervision to DP significantly outperforms the oth-
ers. Random initializations closes the gap with regard to serial cost sharing, but it then gets 
stuck. Even though it looks like the DP curve is flat, it is actually improving, albeit very 
slowly. A magnified version is shown in Fig. 2 (Bottom-Right).
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Figure 3 shows two experiments on maximizing expected agents’ welfare (y-axis) under 
two-peak (0.2, 0.1, 0.6, 0.1, 0.5). For n = 3 , supervision to DP leads to the best result. For 
n = 5 , SCS is actually the best mechanism we can find (the cost function barely moves). 
It should be noted that all manual mechanisms before training have very similar welfares: 
0.7517 (DP), 0.7897 (SCS), 0.7719 (Myopic). Even random initialization before training 
has a welfare of 0.7648. In this case, there is just little room for improvement.

5 � Machine learning based mechanism design approach 2: neural 
network approximated dynamic program (NN_DP)

In this approach, we interpret the mechanism design task as a Markov Decision Process 
(MDP), which should not be confused with the MDP from Sect. 3.4, as the two MDP for-
mulations are different. We aim to design a mechanism that maximizes the expected per-
formances, i.e., the expected number of consumers and the agent’s expected social welfare. 
We consider the agents’ accepted cost share offer as a state that can be described as a vec-
tor of size n, where n is the number of alive agents.11 The initial state vector (accepted cost 
share offer) can be represented as:

Each coordinate in Eq. (5) represents each agent’s accepted cost share offer. Initially, each 
coordinate has a value of 0, which indicates that no offer has been made to the agents yet.

State transition process: Given a state vector as shown in Eq. (5), we make cost share 
offer to one of the agents. On being offered, the agent either accepts or rejects the offer, and 
we reach a new state, as illustrated in Fig. 4. If the agent’s cost share offer is less than her 
private valuation (drawn from the prior distribution), then the agent accepts the offer, oth-
erwise rejects it. When an agent rejects the offer, the corresponding agent is removed from 
the state vector. We repeatedly make cost share offers to the agents until we reach the base 
states. For our model, we have the following two base states: 

(5)
< 0, 0, 0, 0 >

�������������

Length of state vector =

# Alive agents

Fig. 1   Effect of Distribution Info on Training

11  Alive agents are the agents who have approved their cost share offers.
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1.	 When all the agents disagree with their cost share offer, the resulting state is an empty 
state vector. In this case, the final decision is not to build the project.

2.	 When the sum of accepted cost share offers of all agents is equal to 1. In this case, the 
final decision is to build the project.

In this manner, we get a sequence of states that decides whether or not to build a public 
project.

Fig. 2   Supervision to different manual mechanisms

Fig. 3   Maximizing agents’ welfare
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Converting the problem to Dynamic Program: For a state s, admissible set of actions 
A(s) are the agents who approve their current cost share offer (alive agents), and we can 
offer increased cost share to them. Notably, we do not consider the agents who have not 
approved their cost share offer and have been removed from the state vector.

Given a state s and an admissible set of actions A(s), we compute the future states (cost 
share offer) the agents may face while deciding whether or not to build a public project. 
The maximum size of the state space for this MDP can be ( 1

I
)n , where I represents a small 

constant offer increment (0.02 for our model). Notably, the size of this state space is very 
large. Besides, we do not consider all the possible states in the state space; instead, we 
only consider the states (cost share offers) that the agents may face while trying to reach a 
decision.

We can solve the above-described MDP for the public project problem using Dynamic 
Program. The principle of optimality [2] states that we can get the optimal overall solution 
to the problem by making optimal choices at each decision step. In addition, it provides 
us with a top-down instance to design a recursive relation that connects the solution of a 
problem and its subproblems. For a given state s and action a ∈ A(s) , the DP function for 
maximizing the expected performance can be written as:

Here, f(s) denotes the design objective we are considering at state s, i.e., either the num-
ber of consumers or social welfare, �(s, a) represents the set of future states that the agent 
encounter on performing action a on state s, Pr(s� | s, a) represents the transition probabil-
ity, i.e., action a on state s will result in state s′.

We can solve Eq. (6) using backward induction; however, it is computationally infea-
sible considering the exponential-sized state space. Therefore, we propose to use Neural 
Network to solve the DP function.

Neural Network:  The classical NN training is based on supervised learning, which 
requires a lot of training (s,  f(s)) pair samples. Nevertheless, the supervised learning 
method is not practical for our problem, as estimating even one exact f(s) may take expo-
nential time. Besides, it is computationally intractable to solve the DP considering the large 
state space. Therefore, we adopt an alternative learning approach and train the NN to learn 
the DP function [36], which involves learning; (1) base cases, (2) recursive relationship 
between states. Notably, during the initial training phases, the NN is inaccurate. Therefore, 
we supervise the NN to learn toward the serial cost sharing mechanism as the initializa-
tion step. Afterwards, we train the NN to learn the recursive relationship. The trained NN 
approximately solves the DP equation, and therefore, we call this approach as Neural Net-
work Approximated Dynamic Program (NN_DP). We then follow the policy (action sug-
gested by the trained NN) of the trained NN when implementing the mechanism. However, 
since it is an approximated solution, the result will not be optimal. The proposed NN_DP is 
a heuristic approach that we expect to work well.

(6)f (s) = max
a ∈ A(s)

( ∑

s� ∈ �(s, a)

Pr(s� | s, a) f (s�)
)

Fig. 4   Illustration of the state transition process
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Given a state vector (cost share offers) as input, the NN outputs agents’ social welfare 
(or the number of consumers). We start with an initial state vector as shown in Eq. (5) 
and generate learning samples using the state transition process. Learning samples are the 
sequence of states (cost share offers) obtained using the state transition process where we 
start from the initial state vector and keep transiting to a new state until we reach a base 
state, i.e., the final decision. We consider the collected states as the cost share offers that 
the agents may face while trying to reach a decision, and therefore, we use these states as 
learning samples in order to train the NN. To avoid the NN falling into local optima, espe-
cially in the initial training phases when our NN is highly inaccurate, we propose using the 
exploration technique for generating the learning samples. We set the value of exploration 
parameter � to 0.5. For every state, we either take an optimal action (the action suggested 
by the trained NN) with a probability of � or take an arbitrary action with a probability of 
1 − � . The action suggested by the NN may not always be optimal; therefore, we consider 
taking arbitrary action to explore other actions. We keep generating learning samples till 
we reach a decision (base state). We train the NN on the generated learning samples. We 
first supervise the NN to learn the DP base states and their corresponding values as follow:

•	 When all the agents disagree with their cost share offers and no agent is left willing 
to pay. In this case, the expected social welfare (or expected number of consumers) is 
always 0.

•	 When the sum of the agents’ accepted cost share offer is equal to 1, then the expected 
welfare is computed as the sum of the differences between the agent’s type (private 
valuation) and accepted cost share. In addition, the expected number of consumers is 
the number of agents who accepted their cost share offers.

For the rest of the states, the NN is trained to learn the recursive relation of the DP function 
(Eq. 6). Let f (s;�) represent the value estimated by the NN, where s is the input state, and � 
are model’s parameters. In the ideal situation, f (s;�) should strictly be a DP function; how-
ever, there is a gap between the right and left term in Eq. (7), and our goal is to minimize 
the gap. We train the NN using the mean squared error loss function, and the loss L(�) is 
computed as follows:

where S is a set of all states.
We generate learning samples assuming the current f is the accurate DP function and 

train the NN on the generated learning samples. The advantage of this approach is that as 
the DP function f improves with training, it is highly possible that these generated learning 
samples (states) are more likely to occur, i.e., the agents may face these offers while trying 
to reach a decision. Besides, instead of training only one NN for computing the expected 
performances, we train a series of NNs, one for each problem size, in order to enhance the 
approximation accuracy of NNs. For instance, for a problem with n agents, we train n neu-
ral networks.

Below we summarise our approach 2:

(7)L(�) =
∑

s∈S

(
f (s;�) − max

a ∈ A(s)

( ∑

s� ∈ �(s, a)

Pr(s� | s, a) f (s�)
))2
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Summary of Approach 2

Neural network inputs: There are multiple neural networks with different input dimensions. When there 
are k agents in the coalition, we use a non-negative real vector of size k as the input vector. The i-th 
coordinate of the input vector specifies the cost share offer agent i has already agreed to.

Neural network outputs: A single real value that represents the optimal state value. The optimal state 
value is the expected mechanism design objective under the optimal policy at the current state.

Cost function: Deviation from the Bellman equation (Eq. 7).

6 � Machine learning based mechanism design approach 3: 
reinforcement learning

In this approach, we treat the mechanism design task as a Partially Observable Markov 
Decision Process (POMDP). We propose a Reinforcement Learning based framework to 
learn a policy (for giving cost share offers) to maximize the expected performance for the 
public project problem. The overall idea of the proposed framework is to make the RL 
agent learn the policy by interacting with the designed environment. The designed reward 
function directs the RL agent to maximize the expected performance.

Our designed environment works as follows: In each episode, we randomly draw the 
agent’s type profile (private valuation) from the prior distribution. The initial observation 
considers all the agent’s initial accepted cost share offer to be 0 (i.e., all agents agreed to 
pay 0), and all the agents are alive. In each step, we increase one agent’s offer; the resulting 
observation is whether or not this agent has agreed to this offer and her newly accepted cost 
share offer. We aim to maximize the reward received during an episode, which equals to 
the mechanism design objective for the given type profile under the current RL policy. This 
section first describes the environment design and then the training algorithm.

Environment design: We describe the mechanism design task as a POMDP
(�, S,A,Tr,R) , where � is the observation space, S denotes the state space, A denotes 

the action space, Tr is the state transition function and R denotes the reward. In POMDP, 
the RL agent can not observe the states directly; instead, the agent only receives the obser-
vations and tries to learn the best decision based on the partial information (observations) 
received from the environment. The details of the environment are discussed below:

•	 Observation: Observation o is a vector of size 2n, where n is the total number of 
agents. For each agent, we keep track of two things. First is the agent’s already accepted 
cost share offer. The coordinate in the observation vector representing the agent’s 
accepted cost share offer ranges from 0 to 1. The second is whether or not the agent has 
approved her current cost share offer. If the agent has approved her current cost share 
offer, then the corresponding coordinate in the observation vector is 1, and we call such 
agents as alive agents. On the other hand, if the agent rejects the cost share offer, then 
the value of the corresponding coordinate is 0. We can represent the observation vector 
o as: 
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•	 State: State s is a vector of size 3n, consisting of observation and the agents’ private 
valuation. The state is not directly accessible to the RL agent; the agent only gets access 
to the observation, whereas the private valuation part of the state is hidden. Besides, we 
have following two base states: (1) when all the agents do not approve their cost share 
offers; hence, the final decision is not to build the project, (2) when the sum of accepted 
cost share offers of all the agents is equal to 1; hence, the decision is to build the pro-
ject. We can represent the state vector s as: 

•	 Action: An action a is a value from 0 to 1 and denotes the offer increment for the agent. 
For instance, an action a indicates increasing the corresponding agent’s offer by a.

•	 Transition function: For a given agent i (agent to make offer to) and the offer incre-
ment a (action), the new cost share offer c for the agent i is computed as below: 

 An agent i accepts the new cost share offer only when the new offer is less than the 
agent’s private valuation. If the agent accepts the offer, then the agent’s accepted cost 
share offer in the resulting observation is set to the new offer. On the other hand, if the 
agent does not accept the new offer, then both the agent’s accepted cost share offer and 
alive status are set to 0 in the resulting observation. In this way, we get a new observa-
tion. We keep transiting to a new observation until all the agents disagree or the sum of 
accepted cost share offer by alive agents is 1.

•	 Reward: We define the reward as below:

•	 For maximizing the number of consumers: We define the reward r(s, a) at state 
s on selecting action a as the number of alive agents, given the sum of cost share 
offers accepted by the agents is 1. Otherwise, the reward is 0.

•	 For maximizing the social welfare: We define the reward r(s, a) at state s on select-
ing action a as the sum of the difference between the agent’s private valuation and 
cost share offer, given that the sum of cost share offers accepted by the agents is 1. 
Otherwise, the reward is 0.

Training algorithm: The RL agent does not possess any prior expert knowledge about 
the environment in which it operates. For each episode, we draw agents’ private valuations 
independently and identically from a known distribution. Initial observation considers all 
the agents’ accepted cost share offer to 0 and agents’ alive status to 1. Besides, we always 
make cost share offer to the agents sequentially, starting from the first agent to the last, in 
a circular manner and skip those agents whose alive status is 0. It should be noted that this 
offering order is without loss of generality. Whenever any agent disagrees with their cost 
share offer, both her accepted cost share offer and alive status are set to 0, and the RL agent 

(8)

length of observation vector = 2

�������������������������������������������������

< 0, 0
���

Agent 1

, . . . , 0, 0
���

Agent n

>× number of agents

(9)

length of state vector = 3

�������������������������������������������������������

< Observation
�����������������

2n

Private valuation
�������������������

n

>× number of agents

(10)new c[i] = old c[i] +min

(
a, 1 −

∑

j∈Alive agents

c[j]

)
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starts again by offering to the first alive agent. Notably, the agent can not directly access the 
state but only the partial information from the state, i.e., observation.

At each timestamp t, the RL agent receives state st ; however, the RL agent can only 
access observation ot from state st and then selects an action at and obtains a reward rt+1 
according to the designed reward function, and move to the state st+1 according to the tran-
sition function. The process repeats till the base state is reached, i.e., all the agents disa-
gree, or the sum of all accepted cost share offers by the agents is 1. This way, we have a 
sequence of states, observations, actions and rewards that ends at the base state. The RL 
agent aims to learn a policy that maximizes the total reward received during an episode. 
We use Deep Deterministic Policy Gradient (DDPG) reinforcement learning algorithm, 
which is based on the actor-critic concept. The critic is used to learn the action value func-
tion, whereas the actor learns the policy. In this way, the critic provides the policy gradient 
to the actor.

Below we summarise our approach 3:

Summary of Approach 3 Reinforcement Learning

Neural network inputs (observation): A non-negative real vector of size 2n. We use two coordinates for 
each agent. For each agent, we keep track of whether she belongs to the coalition (binary) and the cost 
share offer she already agreed to.

Neural network outputs (action): In every step, the environment focuses on one agent (round-robin 
style). The action is a non-negative real value, which represents how much we should increase the 
focused agent’s cost share offer (Equation 10).

Summary of environment: In every episode, we randomly draw a type profile, which is hidden from the 
reinforcement learning agent. Episode ends when all agents in the coalition unanimously agree with 
their cost share offers or when no agents are left in the coalition. The reinforcement learning agent only 
collects the reward at the end of the episode, which is simply the mechanism design objective.

7 � Experiments comparing different approaches

In this section, we discuss the performance of the proposed approaches by performing 
exhaustive experiments. We performed the experiments on a high-performance cluster 
server with Intel Gold 6148/6248 CPUs. We implemented all the code in PyTorch.

The training parameters for approach 1 has been described in Sect. 4.4. Below we pre-
sent the parameters for the other two approaches.

Training parameters for neural network approximated dynamic program approach 
We use a simple fully connected NN, and a ReLU activation function follows each layer. 
The last layer of NN is followed by a sigmoid function, which maps the NN’s output to 
a value from 0 to 1; the value indicates the expected performance. We fix the number of 
layers to 4 and the size of each layer to 64. We use mean square error to calculate the 
loss. Parameters are trained using Adam optimizer with a learning rate of 0.001 and weight 
decay of 5e − 4 . We train the model for 200 rounds. In each round, we collect 256 states 
and then train the model in a batch of 16 states (therefore, we have 16 batches, each with 
16 states and overall 256 states in each round). We train a series of NNs, one for each prob-
lem size. We set the offer increment to a small constant of 0.02. We perform experiments 5 
times with a seed from 0 to 4; the average across all seed is the final expected performance.

It is impractical to use DP to evaluate the exact number of consumers or social welfare 
corresponding to the accepted cost share offers of the agents due to the large state space. 
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Besides, the trained NN might not output the accurate expected performance for a given 
accepted cost share offer (state vector). Consequently, we simulate the expected perfor-
mance (the number of consumers and social welfare) using the Monte Carlo simulations. 
We simulate the trained NN on the cost share offer (initially, all accepted cost share offers 
are 0) using Monte Carlo simulations over 20,000 runs to determine the number of con-
sumers and agents’ social welfare.

Training parameters for reinforcement learning approach We implement our RL envi-
ronment in the OpenAI Gym toolkit and utilize Tianshou [34] framework to train the RL 
model. We use a simple multi-layer perceptron NN and set the size of the hidden layer 
to 128. We train the model using the deep deterministic policy gradient algorithm, Adam 
optimizer with an actor learning rate of 0.0001, critic learning rate of 0.001 and batch size 
of 128 states. The model is trained for a maximum of 1000 epochs with 20,000 steps per 
epoch. The reward discount factor is set to 0.99, reward normalization to false, the target 
weight to 0.005 and the exploration noise to 0.1. The experience buffer can store 20,000 
samples.

To determine the performance of the trained policy in the designed environment, we 
collect states, observations, actions and rewards from the environment using the learnt pol-
icy. We simulate the environment for 1000 episodes, and the reward at the end of the epi-
sode is the required expected performance (the number of consumers or the social welfare).

We use DP, Random, SCS, Myopic to denote the performances of approach 1 when we 
start from these initializations (i.e., in SCS, we first use supervision to train the network to 
learn toward the serial cost sharing mechanism (SCS), and then perform gradient descent 
according to approach 1. NN_DP and RL refer to our approach 2 and 3, respectively. We 
use UB to denote the objective upper bound, calculated using the DP approach described 
in Sect. 3. Also, as comparison, we use SCS_Ori to denote the performance of the original 
serial cost sharing mechanism, which perform significantly worse than the best machine 
learning based mechanism.

Results Table  2 presents the comparison of proposed approaches for maximizing the 
number of consumers. We performed experiments for 3, 5, and 10 agents and have con-
sidered the two-peak distribution (0.15, 0.1, 0.85, 0.1, 0.5). Results from the table show 
that for n = 3 , the reinforcement learning approach RL performs the best with 1.58 num-
ber of consumers. Supervision to DP performs better than the other approaches by achiev-
ing 1.33 number of consumers but is still far away from the results of the RL approach. 
Besides, the RL approach outperforms all other approaches for n = 5 and 10. For n = 5 , 
the RL approach results in 3.7 number of consumers, whereas the second best performing 
approach is random initializations. Similarly, for n = 10 , RL performs the best with 8.88 
number of consumers. Our results demonstrate that the RL approach consistently achieves 
the best performance for maximizing the number of consumers. Approach 1 consistently 
achieves the second best performance and NN_DP performs poorly.

Table 3 presents the comparison of the proposed approaches for maximizing the social 
welfare under two-peak distribution (0.2, 0.1, 0.6, 0.1, 0.5). For this objective, we experi-
mented with 3 and 5 number of agents. Our results demonstrate that for n = 3 , our neu-
ral network approximated dynamic program technique NN_DP outperforms the RL and 
other techniques by a significant number. NN_DP results in 0.2821 welfare, whereas the 
second best performing approach is RL which results in 0.2589 welfare. These two tech-
niques perform considerably better than the other approaches for n = 3 . For n = 5 , the RL-
based approach performs significantly better than the rest of the approaches and results in 
social welfare of 0.9396, which is much higher than the second best performing approach 
NN_DP. Notably, for maximizing social welfare, NN_DP outperforms the RL approach for 
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3 agents. The reason for the high performance of NN_DP is that given unlimited computa-
tion power, NN_DP will provide us with optimal solutions. In addition, for maximizing 
social welfare, the reward is continuous rather than discrete; therefore, it is comparatively 
easy to learn the expected performance for this case. Another factor can be the small size of 
problem (only 3 agents), due to which NN_DP is able to achieve the near-optimal solution.

Based on the results presented above, RL emerges as the most effective approach for 
maximizing the expected number of consumers. Approach 1 also demonstrates commend-
able performance, positioning it as a viable alternative to RL. In contrast, the NN_DP 
approach underperforms, rendering it less suitable for maximizing the expected number 
of consumers. When it comes to maximizing the expected welfare, both NN_DP and RL 
exhibit comparable performances. There is no distinct advantage of one approach over the 
other for the objective of maximizing the expected welfare."

Table 2   Comparison of proposed 
approaches for maximizing the 
number of consumers

Bold results indicate the best results and the second best results are 
underlined

Approach ↓ #Agents →

n = 3 n = 5 n = 10

DP 1.33 3.37 8.60
Random 1.32 3.39 8.26
SCS 1.30 3.32 8.26
Myopic 1.33 3.36 8.25
NN_DP 1.04 1.38 4.31
RL 1.58 3.70 8.88
UB 1.63 3.92 9.15
SCS_Ori 0.52 1.40 4.24

Table 3   Comparison of proposed 
approaches for maximizing the 
social welfare

Bold results indicate the best results and the second best results are 
underlined

Approach ↓ #Agents →

n = 3 n = 5

DP 0.1870 0.7517
Random 0.1835 0.7648
SCS 0.1820 0.7897
Myopic 0.1840 0.7719
NN_DP 0.2711 0.8307
RL 0.2589 0.9396
UB 0.2744 1.1112
SCS_Ori 0.1982 0.8205
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8 � Conclusion

In this paper, we studied optimal-in-expectation mechanism design for nonexcludable 
and excludable binary public project problems. Under various conditions, we showed that 
existing mechanisms or mechanisms derived via classic mechanism design approaches are 
optimal or near optimal. For excludable public project problem, and especially for non-log-
concave prior distributions, we proposed three different machine learning approaches for 
deriving better performing mechanisms. Our techniques range from unsupervised learning, 
supervised learning, to reinforcement learning. Some of our training techniques have the 
potential to be applied to other machine learning based mechanism design models, such 
as modelling iterative mechanisms as PORF to avoid the vanishing gradient issue, directly 
feeding the analytical form of the prior distribution into the cost function to achieve higher-
quality gradient, and finally using supervision to manual mechanisms as a systematic way 
of initialization.
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