A Design Framework for Metaheuristics
Colin G. Johnson

School of Computing
University of Kent
Canterbury, Kent, CT2 7TNF
C.G.Johnson@kent.ac.uk

Published in Artificial Intelligence Review, 29(2), April 2008, pp163-178.

Abstract

This paper is concerned with taking an engineering approach towards the application
of metaheuristic problem solving methods, i.e. heuristics that aim to solve a wide variety
of problems. How can a practitioner solve a problem using metaheuristic methods?
What choices do they have, and how are these choices influenced by the problem at
hand? Are there sensible universal choices which can be made, or are these choices
always problem-dependent? The aim of this paper is to address questions such as
these in the context of a (soft) engineering design framework for the application of
metaheuristics. The aim of this framework is to make explicit the choices which a
practitioner needs to make in applying these techniques, and to give some guidelines for
how metaheuristics might be tuned to problems by considering different problem- and
solution-types.

Keywords: Heuristics, Optimization, Artificial Intelligence, Genetic Algorithms,
Operational Research, Problem-Solving

1 Introduction

The aim of this paper is to introduce a design framework for the application of metaheuristic
algorithms; that is, algorithms that aim to provide a heuristic search technique that can be
applied to a wide class of problems. The aim of such a framework is to allow a pragmatic
engineering approach to the application of metaheuristics to specific problems, by making
explicit the decisions which have to be taken in tailoring the metaheuristic to the problem
and making clear the different problem types and how they relate to these decisions.

The first main section of the paper reviews the idea of problem-solving using metaheuris-
tics and introduces the idea of a design framework. The next three sections introduce the
three main aspects of the framework: problem types, exploration of the search space, and
solution types. This is followed by a conclusion which draws the various aspects together.

2 Problem Solving via Metaheuristics

Metaheuristics (Osman, 1996) provide a third approach to problem-solving, alongside exact
methods and problem-specific heuristics. By problem-solving we typically mean the solution
of problems via a search method over a well-defined search space. Canonical examples
are standard operational research problems such as timetabling, scheduling, combinatorial
optimization, et cetera. Other, interactive-type problems will also be considered later in
the paper.

Many problems can be solved exactly by specific exact methods: for example there
are various algorithms for calculating the shortest route through a graph (Wilson, 1996).
However for many problems such exact methods cannot be used. Sometimes such methods
are not known. Sometimes methods are known, but are impractical, perhaps because the

method is computationally intractable when used on problems of realistic size—in such a
1



case, the computational complexity of exact methods means that other methods must been
found that approximate the solution that could be found using exact methods.

Because of such difficulties, many problems are solved using problem-specific heuristic
methods. Heuristic methods are not guaranteed to find an exact best answer to a problem;
they may miss some good solutions. Nonetheless, a good heuristic will find good solutions
to most problems most of the time. Clearly “good” and “most” depend on the particular
requirements of the problem. One way to consider heuristics is as “rules of thumb” which
suggest how to deal with non-pathological problems in a sensible fashion. Often heuristic
methods will involve some element of randomness, in which case the performance from
run-to-run may vary too.

An example of such a problem-specific heuristic method is the Lin-Kernighan method
for the TSP (Lin and Kernighan, 1973). This makes a number of “sweeps” through the
graph, each attempting to improve the current solution by a number of local changes. Each
sweep through the graph finds the change which makes the best improvement; the nodes
involved in this are marked and the sweep begun again to find another local improvement
not involving those nodes. This is repeated until the nodes are exhausted, and then the
whole process is repeated until no more improvement takes place. This gives a good method
for finding such a route, but it can miss out on some larger-scale global changes which could
modify the route for the better.

Some heuristic techniques aim to be more generic. For example, combinatorial opti-
mization (Papadimitriou and Steiglitz, 2000) or heuristic methods for constraints (Freuder
and Wallace, 1992) provide sets of methods that can be applied to a wide range of problems.
One specific strategy that is commonly adopted in the application of these methods is to
reduce a new problem to an already solved problem in one of these kinds, and then solve it
using the known methods.

Despite the success of such heuristic methods where exact methods are not available,
an individual heuristic still needs to be devised for each problem. Whilst much effort is
likely to be dedicated to the production of heuristics for important or generic problems,
many problems are too specialized to be worth the expenditure of effort to create a specific
heuristic. Also one of the aims of computer science is to reduce the amount of individual
effort which needs to be put into the solution of particular problems. Whilst computational
efficiency is usually taken as synonymous with the amount of computational effort required
to solve a problem on the computer, it is often the complexity of setting up the computer to
solve the problem in the first place which provides the greatest challenge. For these reasons
the creation of metaheuristics is important.

Earlier we suggested that problem-specific heuristics are “rules of thumb” for solving
a particular problem. From a similar perspective metaheuristics can be seen as general
“rules of thumb” for solving a wide range of problems. At a naive level, at least, it is
reasonable to assume that such approaches exist. Examples are easy to produce: take an
existing solution-attempt and attempt to improve it by making a small change to it, or by
combining it with another; never throw away the best attempt you have found so far; try
generalizing an attempt; make an attempt more specific; introduce some random element
into the process to redirect thinking; et cetera. Such general metaheuristic ideas have been
used by writers such as Polya (1945) and De Bono (1990) in teaching people how to become
better problem solvers or creative thinkers.

Metaheuristics have also been created by abstracting from heuristic method. This ap-
proach proceedings by analysing a number of heuristic techniques applied in different prob-
lems and abstracting out the common features. This then provides a framework that can
be applied to a wider range of problems than any of the original problem-specific heuristics
from which the metaheuristic has been abstracted.

Another fecund source of inspiration for metaheuristics has been abstraction from the
2



natural world. Nature exhibits a rich complexity, and there are many systems in the world
which deal with that complexity, whether on a small timescale such as the reaction of the
immune system to an infection, or on a longer timescale such as the evolution of a species
to survive and reproduce (without planning or foresight) within a particular environmental
niche. The ways in which these systems adapt and process information about themselves and
their environment can be abstracted and used as the basis of a computational metaheuristic;
for example Genetic Algorithms (Goldberg, 1989; Mitchell, 1996), swarm search methods
such as Ant Colony Optimization and Particle Swarm Optimization (Bonabeau et al, 1999;
Kennedy et al, 2001), problem-solving with Artificial Immune Systems (de Castro and
Timmis, 2002), Ant Colony Optimization (Blum, 2005; Dorigo and Stiitzle, 2004) and Tabu
Search (Glover, 1989, 1990). The aim of the work in this paper is not to address specific
issues concerned with one of these algorithms as such, but to provide a general framework
for applying these methods.

One danger with metaheuristic methods is that it is easy to forget that there are many
of choices to be made in using such a metaheuristic well. It is easy to think that the process
to be followed is to describe the problem in a way which is canonical for the metaheuristic
at hand, run a program which implements the metaheuristic, and read off the proposed
solution. However, there are many choices to be made in using a metaheuristic, and it is
not clear how these choices can be made (though works such as the recent book by Goldberg
(2002) attempt to give a theoretically-grounded yet pragmatic attempt at this; a similar
point has been made in the context of mathematical programming methods, such as linear
programming, by Williams Williams (1999)). In particular the relationship between these
choices and problem-types needs to be made clearer.

The aim of this paper is to provide an (extensible) design framework for those choices.
Such a framework will consist of making explicit those choices and giving pragmatic and
theoretically-grounded advice about how these choices might be made. It will also challenge
some of the default assumptions where it is usually assumed that there is no choice to be
made. The aim of these choices will be to enhance the ability of practitioners to tune
metaheuristics to their particular problems, by providing a framework for thinking about
these choices and a number of methods to support that decision-making.

The aim of this is to provide a similar framework to that provided by Williams Williams
(1999) for mathematical programming methods. In that book, he provides several lists of
generic types of entities that play a role in building a model in mathematical programming:
for example, a list of constraint types together with advice on how they can be turned into
constraints of the kind handled by such methods, and a description of different ways in
which models can be combined.

This framework consists of three areas:

Describing problems how problems are presented to the metaheuristic.
Moving through the search space how the metaheuristic explores the search space.
Solution types The different kinds of generic problems that are tackled by metaheuristics

Within each of these areas we explore the decisions that need be made by the “metaheuristic
engineer” in adapting an off-the-shelf metaheuristic to their problem.

The approach taken is that of a “soft” engineering approach based on explicit enumera-
tion of the choices that need to be made at each stage in the application of a metaheuristic.
This is similar to the process used in methods such as Multiple Criteria Decision Analysis
(MCDA) (Belton and Stewart, 2002); however, in the example in this paper the various di-
mensions of decision criteria are orthogonal to one another, representing decisions taken at
different stages in the process of metaheuristic application. Therefore the MCDA methods
that attempt to minimize conflicts between digerent decision criteria are less relevant in this



framework than they would be in a framework with many interactions between the criteria.
However, such methods (in particular the Analytic Hierarchy Process (Saaty, 1980)) could
sensibly be applied to other areas in metaheuristic engineering that we do not consider
here, for example the choice of the core metaheuristic technique to be used in a particular
situation.

It is important to note that the framework is extensible. A number of choices which
seem to be of particular significance have been discussed here. However more choices can
be readily incorporated into an extended framework, and the scope of choices within each
choice extended.

3 Describing Problems

In the previous section we motivated the notion of metaheuristic using operational research-
style problems, as befits the history of the subject. In this section the notion of problem
will be broadened to encompass any problem which can be approached by a metaheuristic
approach. In particular we will focus on problems where the search space is well defined,
and where solving the problem can be viewed as searching that space. Orthogonally, we are
interested in those problems which do not admit an exact method of solution, and for which
the notion of an approximate or suboptimal solution is valid. Typically, these problems will
have some notion either of an objective function whereby a numerical solution quality can
be calculated, or at least a way in which to compare pairs of solutions. We will refer to this
as fitness in this paper.

An important part of solving a problem on a computer is giving some kind of description
of the problem to the machine. Clearly in general this encompasses the whole of computer
programming. We can narrow this down by asking a more focused question: what (if any)
is the best way to describe a particular problem to a metaheuristic algorithm?

One approach to this is to suggest that this process consists of taking some ill-defined
problem in the world and making the problem more “formal” or “exact”. Some problems
(or aspects thereof) are capable of being described compactly in such a format: a robot
should not be allowed to operate outside a particular area; a timetable should not expect
the same person to be in two places at once; a program should identify whether a particular
record is in a database or not. Problems which can most naturally be described in these
terms can be called specification-defined problems.

However not all problems fit into this category of specification-defined problems. Many
problems are essentially defined by data, as noted by Partridge and colleagues (Partridge,
1992, 1997; Partridge and Yates, 1997; Partridge and Galton, 1995). These can be termed
data-defined problems:

“Many problems, however, are manifest as little more than sets of input-
output data. They exist in systems of high complexity where our knowledge of the
underlying mechanisms is both crude and fragmentary. Some examples of data-
defined problems are: human face recognition; signature recognition; prediction
of periodic fluctuations in water consumption of electricity demand for a city;
optimal control of chemical processes and manufacturing plants; adjustment of
treatment dosage on the basis of bodily response to last dosage, etc. In all of
these cases, it is far easier to collect examples of the data (both good and bad
examples) than it is to determine in more than a very rough and fragmentary
manner precisely how the output depends on the input.” (Partridge and Yates,
1997)

The danger with such problems is that it is tempting to force them through a specification
bottleneck (Partridge’s term). In this situatioil the practitioner takes a number of examples



of the problem at hand and constructs an artificial specification which abstracts from the
original data. In some instances of this the process may be good, because in the process
of abstraction the practitioner-as-expert adds in expert knowledge which is not easily to
extract from the examples alone. Often, however, this is an entirely artificial exercise which
can easily remove aspects of the original data which are important but not obvious to the
specification-maker.

For example, in attempting to solve a problem concerned with recognizing handwritten
digits, the problem-solver might attempt to solve this problem by specifying the various
components that should be recognised by a solution to the problem. For example, the
solution should be able to identify a shape that contains two regions, and classifies this as
a figure 8. However, the simpler way to present these kinds of problems is simply to gather
a training set of images tagged with the number that they represent.

However there is a converse danger when dealing with specification-defined problems,
which could be termed a data bottleneck. This problem arises when the user takes a spec-
ification and trains the metaheuristic using a sample of training data which satisfies the
specification; this is a very common practice in machine learning. Again, the problem has
been presented to the metaheuristic in a way which does not respect the structure of the
problem.

For example, consider a metaheuristic learning to solve a control problem for some
industrial plant, where there is a safety constraint on the temperature of some component:
for example, it should never have a temperature greater than 60°C.. The data-defined way
to deal with this would be to check whether this constraint is satisfied each time a test
case is run. A better way, which would be of particular relevance to safety-critical systems,
would be to (automatically) analyse the model to ensure that the constraint always holds;
this is an example of what we mean by specification-defined.

It would seem to be ideal to present both data-defined and specification-defined problems
to the metaheuristic in a way which retains this structure. How this can be achieved is
discussed below.

A third type of problem which doesn’t fit naturally into either the specification-defined
or data-defined category the class of problems which are interactively-defined. Attempts at
the “solution” of such “problems” (those terms are rather problematic in this context) are
defined not with respect to a predefined notion of quality, but defined via interaction with
an operator as the individuals are generated.

There are a number of reasons why this interaction might be a core part of how success
is defined. One reason, as demonstrated by the examples in recent books by Bentley and
Corne (Bentley, 1999; Bentley and Corne, 2002) is that an aesthetic judgement needs to
be made about the objects generated: are they beautiful, are they engaging, do they blend
harmoniously with other objects? For example, an algorithm that is meant to evolve a
picture or a musical melody.

A second, related, kind of search is a search for individuals which have some subjectively-
assessed quality. For example a metaheuristic applied to music synthesis may have the aim of
producing a sound which is melancholy in quality. Finally the aim of a particular application
may be to exploit the ability of humans to pick out patterns in complex environments. This
idea has been applied by Venturini et al. (1997) in data mining, where various views on a
dataset are provided to a human user and the user interactively evolves those which pick
out particular interesting features of the dataset.

Again there are problems if problems which are naturally interactively-defined are pre-
sented to metaheuristics in a different way. An interactively-defined problem can be forced
through a specification bottleneck. For example the user might try and define what a
melancholy melody might be: slow, in a minor key, et cetera. Or in can be forced through a
data bottleneck, for example by giving lots of examples and training the machine via some



measure of similarity to those examples. However neither of these seem to get at the core
of what an interactively-defined problem is.

The discussion of problem types has been concerned with problems which are defined
directly by the user of the system (whether in advance or interactively). A further class
of problems can be defined via interaction amongst a set of agents. A good example of
this is the use of genetic algorithms in a coevolutionary framework where the fitness of one
individual depends on the state of others (Hillis, 1990; Potter and De Jong, 1994; Paredis,
1996; Olsson, 1998; Rosin and Belew, 1996). Another related class of problems is given by
work on endogenous fitness (Menczer et al, 1994; Menczer and Belew, 1996), where there is
no explicit fitness function but individuals interact within a complex environment related
to the problem.

We have defined three problem-types: data-defined, specification-defined, and interactively-
defined. Some problems may involve aspects of each. To summarize this section so far here
are examples of each of the problem types and combinations thereof, drawn from mobile
robotics.

Pure specification A robot should move from point A to point B, without hitting any
obstacles.

Pure data The robot should move towards a particular person, regardless of where they
are in the room.

Pure interactive The robot should trace out an interesting pattern with the pen attached
to it.

Specification and data The robot should chase another robot, whilst not leaving a pre-
defined area.

Specification and interactive The robot should trace out an interesting pattern, but
never move further than one metre in each minute.

Data and interactive The robot should recognize another robot in its environment and
interact with that robot in a style which engages the attention of an audience.

Specification, data and interactive The robot should recognize another robot in its
environment and interact with that robot in a style which engages the attention of an
audience, whilst not moving out of a metre-wide square on the floor.

It would seem natural that in introducing such problems to metaheuristics each of these
three problem-types need to be treated in a way which is natural for that particular problem.
Moreover it is important that combinations of these problem-types can be processed by the
metaheuristic in a way which allows the various aspects to be processed in the way that
is most natural to them. This is one of the reasons why the various bottlenecks are often
resorted to: for example a metaheuristic is designed to take problems in the form of training
data, so when a user wants to specify something which is naturally a piece of specification
(e.g. a safety constraint) they translate that into the input language of the metaheuristic
by providing a set of examples.

It is in the assessment of putative solutions to problems by the metaheuristic that these
different problem types become important. Such an assessment is part of most metaheuristic
approaches, for example the calculation of fitness in genetic algorithms. These assessments
typically offer a numeric quality score or (for population-based methods) a ranking of the
current solution-attempts in the population.



Data-defined problems fit most naturally into this framework. The data used in defining
the problem provides a natural set of “fitness cases” against which the solution-attempt can
be assessed.

Specification-defined problems fit less naturally. Traditionally such problems are pre-
sented to metaheuristics by creating a number of fitness cases which are compatible with
the specification. For example, in a safety-critical system, solutions generated by the meta-
heuristic might be tested against a sample of safe and unsafe scenarios, rather than being
verified for safety directly against the specification.

This leads to a number of problems; in particular the solutions can become overfitted
to the fitness cases and not generalize, and there is no guarantee given to the user that the
specification is satisfied outside of the particular fitness cases (Johnson, 2002b). Instead we
need to find ways of assessing directly whether a solution-attempt satisfies the specification
or not.

One approach to this is through the use of computational techniques such as static
program analysis (Nielson et al, 1999) (which checks that certain properties of a program
are satisfied regardless of input data) or model checking (Clarke Jr. et al, 1999; Huth and
Ryan, 2000) (which checks whether certain logical formulae about the entities in the solution
and their relationships over time are always satisfied) in the determination of fitness. That
is, instead of running the generated program on a set of test cases, the fitness is assessed by
running an analysis on the program which checks whether the program is compatible with
statements in the specification, regardless of input data. Thus the specification is never
driven through the data bottleneck in being assessed. Such techniques have been applied
in the evolution of sorting algorithms (Huelsbergen, 2000), robot control systems (Johnson,
2004) and layout problems (Johnson, 2002a).

This technique allows the specification-defined problem to be handled naturally, that is a
direct check is made on whether the program satisfies the specification rather than this being
checked indirectly. Nonetheless there are problems with this approach. Firstly there is the
problem that specification-satisfaction is very often a binary true-false condition: either the
program satisfies the condition or it does not. This could potentially make it difficult for a
search algorithm within a metaheuristic to get a grip on how close a particular attempt is to
satisfying the specification. There are a number of approaches to this; for example for some
problems there may be many small, easy-to-satisfy-individually specification statements,
and it is bringing all of these together into a single satisfactory specification which is the
difficulty. In these cases a count of the number of specification statements provides a fitness
measure. Secondly it may be possible to devise weaker specification which smooth out the
fitness landscape, e.g. by breaking down a complex specification statement into a number
of sub-statements. An example of work similar to this is the recent work by Harman et
al. (2002) on evolutionary testing which smoothes out the fitness landscape by ensuring
that rarely visited areas of code are visited more frequently by adjusting the input space.
Thirdly some of the analysis approaches give additional information when they fail to be
satisfied. For example a failed attempt at model-checking provides a counter-example to
the set of logical statements being checked; these could be subsequently analysed to guide
the search.

Finally, interactively-defined problems are superficially easy to fit into a framework of
fitness-assessment, but there are a number of issues which need to be considered more
carefully. The previous two problem-types were consistent in their fitness evaluation, in
the sense that the same individual presented to the fitness-evaluation algorithm would be
scored the same (or ranked the same relative to others). This is not true for interactively-
defined problems. In these problems the whim of the human assessor or the context of a
particular individual in a population can change the assessment of its fitness. Indeed there
is some evidence (May, 2000) for an implicit fitness scaling effect in such systems; initially



the user will give a high fitness score to anything that is vaguely like a desired/desirable
output. However as the population becomes occupied by “better” individuals, individuals
which scored highly early may be scored less well relative to the more converged population.
These are interesting issues, but they are not difficulties with the use of metaheuristics for
interactively-defined problems. Indeed they are natural ways of interacting with individ-
uals in this situation. For example it is more natural to make aesthetic judgements in a
comparative fashion (A is better/more exciting/more beautiful/more interesting than B)
than to give absolute ratings. Indeed it seems reasonable to say that the above issues are
advantages, because they deal with these interactively-defined problems in a natural way,
rather than forcing them to be dealt with using concepts such as consistency of evaluation
which are more suited to the other two types of problems.

Nonetheless there are difficulties with using metaheuristics for interactively-defined prob-
lems. One difficulty, notable particularly with population-based approaches, is that users
become bored with making appraisals of many different individuals. One possible solution
to this is to embed the evolutionary within a natural context such as a virtual environ-
ment (Rowland and Biocca, 2002) or a performance setting (Biles and Eign, 1995; Biles,
1998). This could be enhanced by the use of affective computing techniques (Picard, 1997)
to directly assess user’s affective response to individuals.

As briefly discussed earlier, some problems have aspects which belong to more than
one category. For example a problem can easily have its task specified in a data-defined
fashion whilst also needing to satisfy some constraints which are given in a specification-
defined way. This is where the use of metaheuristics in the way described above can do
things which are difficult for other methods. Typically methods of creating software are tied
closely to problem type. So for example specifications can be converted into programs which
satisfy that specification using a formal method such as refinement (Morgan, 1994; Derrick
and Boiten, 2001). However once we have committed to developing a piece of software in
that fashion, it becomes difficult to incorporate aspects of the problem which are naturally
defined e.g. in a data-defined way. The metaheuristic approach makes combination of
methods much easier to achieve. For example, such techniques have been applied (Johnson,
2004) in using evolutionary computing to automatically generate programs which solve a
robot control task whilst also guaranteeing that the robot will operate within a safe region.
This is done by evolving programs using a genetic programming-style system, where the
fitness of a program is a combination (in this case a weighted sum, though potentially any
multi-criterion optimization method could be used) of a data-driven test for the control
task, together with a calculation as to whether the program always stays within a safety
bound.

This section has introduced the idea that there are natural ways of describing prob-
lems, and given three examples of such descriptions (data-defined, specification-defined and
interactively-defined) which cover a wide range of real-world problems. The disadvantages
of solving problems by putting them through a bottleneck and forcing them into a different
framework has been outlined and examples given. This classification of problem types has
then been placed into the context of metaheuristics, and the way in which such metaheuris-
tics can treat problems of different kinds has been discussed. In particular it is argued
that metaheuristics provide a natural framework in which to solve problems which have a
number of aspects which are naturally defined in different ways.

This choice between the various problem-types, and the different ways of evaluating
fitness which fit naturally with those problem types, will form the first component of the
design framework.



4 Measuring Fitness and Moving Through the Search Space

The previous section discussed how problems can be presented to metaheuristics, in par-
ticular focusing on the idea that metaheuristics can be applied in a way which respects
the structure of the problem. This argument can be extended from the initial setup of the
problem to the way in which the metaheuristic progresses from initialization to solution.

A metaheuristic improves the solution-attempts in its population (which might be a
degenerate population with one member as in hillclimbing algorithms) by moving that
population to areas of the search space which are inferred to be likely to be better than the
current position of the population in search space. The processes which effect these changes
can be called moves (Tuson, 1999) in the search space.

These moves can take a number of forms. Some move-types consist of changing a sin-
gle individual. For example in steepest-ascent hillclimbing (Winston, 1992), the individual
solution-attempt will be moved by sampling a number of points in its neighbourhood and
moving to the point which gives the largest fitness improvement. In genetic algorithms the
mutation operator can be seen as a move which makes a number of random changes to
the genotype of individuals in the population with the aim of exploring local changes in
phenotype space (amongst other things; mutation has a role in ensuring that total conver-
gence at an allele cannot occur, for example). For example, if we consider a system for
timetabling within a school or university, a mutation operator would make small changes to
the timetable: swapping two classes, exchanging one tutor for another qualified in the same
subject. These small changes only affect a small number of students and tutors, and so can
be used for “local” exploration. By contrast, sometimes small changes in the representation
can make a large change to the result. For example, if the solution to a problem is encoded
as a number, then flipping the most significant bit can change the number encoded by the
population member hugely (hence the motivation to use representations that have a more
uniform effect, such as Gray-coded numbers).

Other move-types involve the combination of information from multiple members of the
population. A canonical example here is the recombination move in genetic algorithms,
which takes the genotypic representation of one individual and exchanges parts of it with
that of another individual. In population-based incremental learning and similar meth-
ods (Baluja, 1994; Baluja and Caruna, 1995; Abbattista and Dalbis, 1998; Robillard and
Fonlupt, 2000) the whole population is involved in moves: the population is summarized as
a vector of weights and new individuals created by regeneration from that vector to give a
new population with statistical properties the same as the original population. For exam-
ple, consider the application of a metaheuristic to design a mechanical device such as a flow
nozzle, where the representation is by a sequence of floating-point numbers representing the
diameter at n positions along the tube. Each individual population member would be a
vector of floating-point numbers; the population summary would be of the same type, with
each number representing the average of the diameters at that position across the popu-
lation members, with perhaps a second vector to represent the variance at each position.
This distribution would then be used to recreate a new population of vectors.

It would seem to be important to choose these move operators carefully. Is there a
way of doing this so that the moves work well, without needing to design problem-specific
moves for each new problem (or at least a way of assessing automatically-generated move
operators)?

An important distinction in this discussion is the relationship between the action of
a move in the space of encodings of the problem (what in genetic algorithms is called
genotype-space) versus the effects of that move on the underlying problem (phenotype-
space). Sometimes the mapping from one to the other is simple, in other cases the connection
between the two can be complicated, with e.g. multiple regions of genotype-space mapping

9



to the same point in phenotype-space. A number of ways of measuring this have been
explored by Rothlauf (2002).

Generic move operators such as mutation and crossover in genetic algorithms are de-
fined in genotype space. However it seems implicit that there is some connection between
these genotype-space moves and how they transform the population phenotypically. This
is reflected in the following description by Goldberg of crossover:

“Thus, the action of crossover with previous reproduction speculates on new
ideas constructed from the high-performance building-blocks (notions) of past
trials.” (Goldberg, 1989, p. 13)

It is interesting here to note the implied equivalence between the genotypic concept of
“building-blocks” and the phenotypic concept of “notions”. He goes on to describe the
crossover process as “exchanging of notions to form new ideas” (Goldberg, 1989, p. 14).
There is an implication here that the genotypically-defined crossover process implies some
kind of exchange of ideas in the phenotype—though it is recognised that this may happen
in “highly nonlinear and complex ways” (Goldberg, 1989, p. 13).

A similar idea can be found for the concept of mutation. Goldberg describes mutation
as “an insurance policy against premature loss of important notions” (Goldberg, 1989, p.
14). Another example is given by Rothlauf: “[m]utation operators are important for local
search” (Rothlauf, 2002, p. 18). Again mutation is being described in terms of a desired
phenotypic trait (avoiding loss of “notions”, “local search”) as well as in terms of the direct
effect it has on the genotype of individuals.

If we want to make a design framework for making problem-centered choices for applying
a metaheuristic to a particular problem, then it would seem to be important to consider the
effect of the move operators chosen on the phenotype (typically this effect will be indirect,
because the moves will be defined genotypically). If this is not considered the statement at
the beginning of this paragraph seems meaningless: the problem at hand is defined by the
structure of the phenotype-space, and so to make a rational choice of how to move in a way
which respects the structure of the problem must involve some consideration of how the
moves affect points in phenotype-space. This is not to say that the moves must be defined
directly in phenotype-space. To the contrary, the moves will still typically be defined in
terms of transformations of the genotype; but the choice of which moves to use will be done
with respect to the changes the make on the phenotype.

Another way of phrasing the above discussion is in terms of syntax and semantics. As in
conventional programming, the work done by a metaheuristic is the the syntactic domain;
the individuals and moves are defined in syntactic terms. Nonetheless the reason for doing
this is to have a semantic effect, that is to find an individual which solves the problem at
hand. Therefore it seems reasonable that the syntactic representations and moves should
correlate with moves which are meaningful in terms of the semantics of the problem.

This emphasis on the semantics of move operators allows us to define those operators
primarily in terms of their phenotypic effect. So for example a mutation operator in ge-
netic algorithms can be defined (in a problem-free way) as an operator which makes small
exploratory changes to individuals. A recombination operator can be similarly defined as
one which brings together aspects of two distinct solutions

It is also important to note that the choices of move operators and the representation of
the solutions as members of genotype space are essentially two aspects of the same problem.
Any change in representation can be effected by retaining the original representation and
changing the move operators so that they have the same effect as the original move operators
would have on the new representation.

One way to make such choices is by reasoning about the problem domain and choosing
move operators which have a known effect onllﬁlembers of the phenotype. This can be found



e.g. in the work of Martin and Otto (1996) on the TSP, which incorporates local moves
known as 4-opt moves within a simulated annealing framework.

However for many problems this approach is not practical. This may be because the
relationship between the genotype and phenotype is complex, so it is difficult to predict
the effects of genotypically-defined moves on the phenotype. Alternatively this may be
a practical matter: there is not enough human effort available in order to design and test
such moves. For both of these reasons methods of automatically designing or choosing move
operators and representations is useful.

Three strategies can be employed. The first is statistical analysis of proposed indirect
fitness measurements. For example in recent work on metaheuristic counterexample-search
in pure mathematics (Johnson, 2003) the fitness cannot be measured directly. Instead it
must (by the nature of the problem) be assessed indirectly via the calculation of invariants
on members of the population (which consists of geometrical objects). There is a choice of
such invariants, and the problem at hand is a two-criteria optimization problem where the
alm is to minimize one fitness criterion whilst whilst maximizing another.

In order to choose between the invariants, each was applied to a large set of randomly
chosen examples from the search space. The two fitness criteria were then measured for
each of this set of randomly chosen invariants, and each of the two fitness measures cal-
culated for each example. For each invariant correlation coeflicient was then calculated
between the datasets corresponding to the two fitness measures, and the invariant chosen
which had the least correlation between the measures. This was chosen so that the search
algorithm can search for both criteria with as little interference as possible between them.
Such an approach has potential to be applied more broadly, for example in the choice of
representations for multi-criterion optimization problems.

The second strategy is a target analysis of proposed move operators and associated rep-
resentations. A target analysis (Laguna and Glover, 1993; Glover, 1986) is a way of tuning
(meta)heuristics to a particular problem or set of problems. The target analysis begins with
the construction of a target solution. If the aim is to solve many similar problems, then the
target solution might be a one example from that set of problems, which has been analysed
with more effort (computational or human) than can be applied normally. So for example
the target solution to the chosen problem might be created via an enumerative search, which
might be feasible for a single problem but not for day-to-day use. Alternatively there may
be some examples in the set of problems which are solvable using some analytic technique;
these solutions could then be used as target solutions. A third type of target solution are
solutions to a related, easier problem: for example, in choosing which operators to apply
for a hard problem involving a search space structured as a graph, simpler problems which
also involve searching a graph might be investigated.

This target solution is then used to tune a metaheuristic to the solution of that problem.
For example, the inverse of move operators might be tested on the target solution, to see if
the solution is likely to be found by making a move using that move operator. Essentially
the metaheuristic is “reverse engineered” from the target solution.

This tuned metaheuristic is then applied to the other problem(s). The hypothesis un-
derlying this is that the tuned metaheuristic will work better on such related problems
than an arbitrary metaheuristic would; we have added problem-specific information into
the metaheuristic, albeit indirectly and possibly imperfectly via related problems. This has
been shown empirically (Laguna and Glover, 1993; Glover, 1986) to have an effect on the
ability of metaheuristics to solve problems. Clearly there are a number of caveats to this
method—in particular the notion of “related problems” is a difficulty: problems which seem
related to the practitioner might not have an underlying structural similarity. Also, the tar-
get solution may be untypical, particularly if the reason it can be solved easily also implies

that it has some structural uniqueness within the problem-set which is also exploited in
11



its solution by the metaheuristic—but overall it seems to be a valuable method of putting
problem-specific information into a metaheuristic.

A third, more formal, approach is to develop problem-specific operators by exploiting the
results of forma analysis of heuristics. These ideas have been applied to hillclimbing Tuson
(1999), evolutionary Gong and Tuson (2006, 2007) and particle-swarm Gong and Tuson
(2008) search methods.

The idea of forma analysis Radcliffe (1991, 1994) is to describe the search space for a
particular problem in terms of a set of equivalence relations, that is, subsets of the search
space that have a feature in common. A search space can then be described by a set of
these equivalence relations, called a basis. Such a basis provides a way of describing points
in the search space using problem-relevant features.

Radcliffe Radcliffe (1994) describes a number of generic operators that can be combined
with a basis to form a problem-specific operator. For example, he defines a mutation
operator in terms of a basis that makes a change to the minimum-possible change in the
number of equivalence classes that are changed by the operator. Other such operators are
provided for moves such as recombination of two individuals. By combining the problem-
specific information encoded in the choice of basis with the generically defined operators,
problem-specific operators can be automatically generated.

These three techniques—choice of indirect fitness measures, target analysis, and con-
struction of operators via techniques based on forma analysis—provide the beginnings of a
rational approach to operator design. Combined with ad hoc ideas for operator design

This section has given us another contribution towards a design framework for meta-
heuristics based on using information about problems and their encodings to guide the
choice of moves make by the metaheuristic in its search.

5 Solution Types

An earlier section of the paper discussed the different ways in which problems can be
presented to metaheuristics. In this section the final part of the framework is introduced:
the choice of the kinds of solution which will be obtained from the metaheuristic.

In the discussion of problem types we discussed the notion of a bottleneck. In the problem
context a bottleneck is the conversion of a problem into a problem of a different type so
that it can be approached via a metaheuristic method. We have argued above that this is
a bad thing, and that a preferable alternative is to adapt the metaheuristic so that it more
naturally accepts problems of that type.

A similar argument can be made for the output of the process as well as the input. A
metaheuristic should deliver the type of solution which is natural for the problem, rather
than forcing the user to reorganize the type of solution they require so that it is forced into
a particular solution framework.

An example of this is the dominance of optimization as a solution-type. Many solutions
are optimization-defined: the natural expression of the solution is as an optimal value of
some quantity. However many problems are not; nonetheless it is common, when approach-
ing a problem with a metaheuristic such as a genetic algorithm, to ask “what needs to be
optimized?”.

Nonetheless constructing an entirely new solution-type for every problem is excessive;
there is a lot of commonality between problems. At the input end we dealt with this by defin-
ing a number of broad problem-types: data-defined, specification-defined, and interactively-
defined (leaving scope for additional types to be defined; there is no argument that this is
an exhaustive list). Similarly with solution-types we can say that problems can be placed
into a number of solution-types: e.g. optimization, search, multimodal optimization. This
list is short: would it be possible to add newlgolution—types to this list which provide good



natural representations for the types of solutions required by some real-world problems? Is
it then possible to adapt metaheuristics so that they can hunt for solutions of this type
without forcing the solution through a bottleneck?

An example of a new generic solution-type is qualitative example finding or coverage
(Johnson, 2001b,a). The aim of this is to find one concrete example for each value of some
property within a large space; for example one route to each of many exits in a complex
maze, or one example of each environment which causes an autonomous agent to exhibit
one of a range of behaviours. This is not a problem which can be naturally solved using
optimization (because as soon as an example as been found there is nothing to optimize) or
a focused search (we are looking to cover the search space not narrow down on one solution).
For example, such a metaheuristic solution-type could be used to generate test-suites for
software, a web-search technique that looked for qualitatively different examples of objects
represented by a common search term, or a range of qualitatively different features to use
in a classification algorithm.

This ties in with ideas which emphasise that evolutionary algorithms are not primarily
optimization algorithms per se but are exploration/exploitation algorithms which can search
a space in a robust fashion (De Jong, 1993; Harvey, 1997).

This idea of choosing solution-types provides the final part of our design framework.
The availability of a number of other “generic” solution types, as typified by the coverage
example above, would increase the applicability of metaheuristic methods.

6 Summary and Conclusions

A simplistic view of metaheuristics is that they are automatic problem solving machines.
In this view, problems are fed into the metaheuristic which processes the problem and gives
an output.

The discussion above has shown that this is an owversimplistic view of metaheuristics.
However this additional thinking about how the user of a metaheuristic can involve them-
selves in the various processes has the potential to improve the performance of those meta-
heuristics by putting more information about the problem into the process.

This meta-level discussion of metaheuristics has illustrated that the application of a
metaheuristic to a particular problem can be seen as involving a number of choices. A
guiding principle in the above has been to say that these choices should reflect aspects of the
problem being solved; the metaheuristic should come to the problem rather than the problem
being twisted to fit the metaheuristic. Careful use of a framework for making these choices
can avoid the problem of bottlenecking where a problem is forced into a representation which
is not natural for it before it is presented to the metaheuristic, make clearer the relationship
between moves in genotype-space and their consequences in phenotype-space, and broaden
the range of solution-types available to practitioners.

The broader scope which is available under this perspective can be applied to the var-
ious metaheuristic methods which are available. The influence of this larger view of the
possible choices in the context of genetic algorithms is illustrated via the example of genetic
algorithms in figure 1. This shows the change from a “traditional” perspective on genetic
algorithms to a perspective based on a larger number of choices, allowing the algorithm to
be more carefully tuned to the problem at hand.

References

Abbattista F, Dalbis D (1998) The scout algorithm to explore unknown spaces. In: IEEE
International Conference on Evolutionary Computation, IEEE Press, pp 705-708

13



Problem
¢ Data-defined
ypes
Fitness By measuring the perfor-
assess- mance of test-runs of individ-
ment uals against training data
Moves G ically-defined
in search 'enotyplca y- EE ne' muta-
tion and recombination.
space
Soluti N
otution Optimization or search.
types
Problem Data-defined, s_pe(nﬁca‘.clon—
types defined and interactively
defined
By measuring the perfor-
mance of test-runs of individ-
Fitness uals against t'raining data, in-
ASSESS teractively with the user, by
checking how well the output
ment . .
matches the specification, by
making one of a number of in-
direct measures of the fitness.
Moves Genotyplcally defined opera-
. tors which may have been tar-
in search
geted carefully at the prob-
space
lem.
Solution Optimization, search, cover-
types age, other types of solution

Figure 1: Broadening the scope of metaheuristics and clarifying design decisions through a
design framework, using genetic algorithms as an example.

14



Baluja S (1994) Population-based incremental learning. Tech. Rep. CMU-CS-94-163,
Carnegie Mellon University

Baluja S, Caruna R (1995) Removing the genetics from the standard genetic algorithm. In:
Twelfth International Conference on Machine Learning, Morgan Kaufmann, pp 38-46

Belton V, Stewart T (2002) Multiple Criteria Decision Analysis. Kluwer Academic Publish-
ers

Bentley PJ (ed) (1999) Evolutionary Design by Computers, Morgan Kaufmann
Bentley PJ, Corne DW (eds) (2002) Creative Evolutionary Systems, Morgan Kaufmann

Biles JA (1998) Interactive GenJam: Integrating real-time performance with a genetic al-
gorithm. In: Proceedings of the 1998 International Computer Music Conference

Biles JA, Eign W (1995) GenJam Populi: Training an IGA via audience-mediated perfor-
mance. In: Proccedings of the 1995 International Computer Music Conference

Blum C (2005) Ant colony optimization: Introduction and recent trends. Physics of Life
Reviews 2:353-373

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence. Oxford University Press
Clarke Jr EM, Grumberg O, Peled DA (1999) Model Checking. MIT Press
De Bono E (1990) Lateral Thinking. Penguin

de Castro LN, Timmis J (2002) Artificial Immune Systems: A New Computational Intelli-
gence Approach. Springer

De Jong K (1993) Genetic algorithms are NOT function optimizers. In: Whitley L (ed)
Foundations of Genetic Algorithms 2, Morgan Kaufmann, pp 5-17

Derrick J, Boiten E (2001) Refinement in Z and Object-Z. Springer
Dorigo M, Stiitzle T (2004) Ant Colony Optimization. MIT Press

Freuder E, Wallace R (1992) Partial constraint satisfaction. Artificial Intelligence 58(1—
3):21-70

Glover F (1986) Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research 13:533-549

Glover F (1989) Tabu search—part I. ORSA Journal on Computing 1(3):190-206
Glover F (1990) Tabu search—part II. ORSA Journal on Computing 2(1):4-32

Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley

Goldberg DE (2002) The Design of Innovation. Kluwer

Gong T, Tuson A (2006) Formal descriptions of real parameter optimisation. In: Proceedings
of the 2006 IEEE Congress on Evolutionary Computation, IEEE Press, pp 2119-2126

Gong T, Tuson AL (2007) Enhanced forma analysis of permutation problems. In: Proceed-
ings of the Ninth Annual Genetic and Evolutionary Computation Conference (GECCO),

pp 923-930 15



Gong T, Tuson AL (2008) Forma analysis of particle swarm optimisation for permutation
problems. Journal of Artificial Evolution and Applications 2008, article ID 587309

Harman M, Hu L, Hierons R, Baresel A, Sthamer H (2002) Improving evolutionary testing
by flag removal. In: Langdon WB, Cantu-Paz E, Mathias K, Roy R, Davis D, Poli
R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA, Schultz
AC, Miller JF, Burke E, Jonoska N (eds) Proceedings of the Genetic and Evolutionary
Computation Conference, Morgan Kaufmann

Harvey I (1997) Cognition is not computation: Evolution is not optimisation. In: Gerstner
W, Germond A, Hasler M, Nicoud JD (eds) Proceedings of the Seventh International
Conference on Artificial Neural Networks, Springer-Verlag, Lecture Notes in Computer
Science 1327, pp 685-690

Hillis WD (1990) Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42:228-234

Huelsbergen L (2000) Abstract program evaluation and its application to sorter evolution.
In: Proceedings of the 2000 Congress on Evolutionary Computation, IEEE Press, pp
1407-1414

Huth M, Ryan M (2000) Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press

Johnson CG (2001a) Finding qualitative examples with genetic algorithms. In: John R,
Birkenhead R (eds) Developments in Soft Computing, Springer, pp 92-99

Johnson CG (2001b) Understanding complex systems through examples: a framework for
qualitative example-finding. Systems Research and Information Systems 10:239-267

Johnson CG (2002a) Deriving genetic programming fitness properties by static analysis.
In: Foster J, Lutton E, Ryan C, Tettamanzi A (eds) Proceedings of the 2002 European
Conference on Genetic Programming, Springer, pp 298-307

Johnson CG (2002b) What can automatic programming learn from theoretical computer
science? In: Yao X, Shen Q, Bullinaria J (eds) Proceedings of the 2002 UK Workshop on
Computational Intelligence, pp 89-95

Johnson CG (2003) A design framework for evolutionary algorithms. PhD thesis, University
of Kent

Johnson CG (2004) Genetic programming with guaranteed constraints. In: Lotfi A,
Garibaldi JM (eds) Applications and Science in Soft Computing, Springer, pp 95-100

Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan Kaufmann

Laguna M, Glover F (1993) Integrating target analysis and tabu search for improved schedul-
ing systems. Expert Systems with Applications 6:287-297

Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling salesman prob-
lem. Operations Research 21:498-516

Martin O, Otto S (1996) Combining simulated annealing with local search heuristics. Annals
of Operations Research 63:57-75

May TD (2000) Music and computers: The design and implementation of a musical genetic
algorithm. Master’s thesis, University of I%%nt



Menczer F, Belew RK (1996) Latent energy environments. In: Belew RK, Mitchell M (eds)
Adaptive Individuals in Evolving Populations, Addison-Wesley, Santa Fe Institute Studies
in the Sciences of Complexity, pp 191-208

Menczer F, Willuhn W, Belew RK (1994) An endogenous fitness paradigm for adaptive
information agents. In: Proceedings of the Third International Conference on Information
and Knowledge Management

Mitchell M (1996) An Introduction to Genetic Algorithms. Series in Complex Adaptive
Systems, Bradford Books/MIT Press

Morgan C (1994) Programming from Specifications, 2nd edn. Prentice Hall
Nielson F, Nielson HR, Hankin C (1999) Principles of Program Analysis. Springer

Olsson B (1998) A host-parasite genetic algorithm for asymmetric tasks. In: Nédellec C,
Rouveroi C (eds) Machine Learning : ECML-98, Springer

Osman I (1996) Meta-heuristics. Kluwer Academic Publishers

Papadimitriou CH, Steiglitz K (2000) Combinatorial Optimization: Algorithms and Com-
plexity. Dover Publications

Paredis J (1996) Coevolutionary computation. Artificial Life 2(4):355-375
Partridge D (1992) Engineering Artificial Intelligence Software. Intellect Books, Oxford
Partridge D (1997) The case for inductive programming. IEEE Computer pp 36-41

Partridge D, Galton A (1995) The specification of ‘specification’. Minds and Machines
5(2):243-255

Partridge D, Yates W (1997) Data-defined problems and multiversion neural-net systems.
Journal of Intelligent Systems 7(1-2):19-32

Picard R (1997) Affective Computing. MIT Press

Polya G (1945) How to Solve It: A New Aspect of Mathematical Method. Princeton Uni-
versity Press

Potter MA, De Jong KA (1994) A cooperative coevolutionary approach to function opti-
mization. In: Parallel Problem Solving from Nature III, Springer, pp 249-257

Radcliffe NJ (1991) Equivalence class analysis of genetic algorithms. Complex Systems
5(2):183-205

Radcliffe NJ (1994) The algebra of genetic algorithms. Annals of Mathematics and Artificial
Intelligence 10:339-384

Robillard D, Fonlupt C (2000) A shepherd and a sheepdog to guide evolutionary compu-
tation. In: Fonlupt C, Hao JK, Lutton E, Ronald E, Schoenhauer M (eds) Artificial
Evolution 1999, Springer, pp 277-291, Lecture Notes in Computer Science 1829

Rosin CD, Belew RK (1996) New methods for cooperative coevolution. Evolutionary Com-
putation 5:1-30

Rothlauf F (2002) Representations for Genetic and Evolutionary Algorithms.

Springer /Physica-Verlag 17



Rowland D, Biocca F (2002) Cooperative design methodology: Genetic sculpture park.
Leonardo 35(2):193-196

Saaty TL (1980) The Analytic Hierarchy Process. McGraw-Hill

Tuson AL (1999) No optimisation without representation. PhD thesis, University of Edin-
burgh

Venturini G, Slimane M, Morin F, Asselin de Beauville JP (1997) On using interactive
genetic algorithms for knowledge discovery in databases. In: Béck T (ed) Proceedings

of the Seventh International Conference on Genetic Algorithms, Morgan Kaufmann, pp
696-703

Williams HP (1999) Model Building in Mathematical Programming, fourth edition edn.
Wiley

Wilson R (1996) Introduction to Graph Theory. Addison-Wesley-Longman, fourth Edition

Winston PH (1992) Artificial Intelligence. Addison-Wesley

18



