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Artificial Biochemical Networks: A different Connectionist
paradigm

CHRISTOPHER MACLEOD and NICCOLO F. CAPANNI

School of Engineering, The Robert Gordon University, Aberdeen, UK
(Email: chris.macleod@rgu.ac.uk)

Abstract. Connectionist models are usually based on Artificial Neural Networks.

However, there is another route towards Parallel Distributed Processing. This is by

considering the origins of the intelligence displayed by the single celled organisms

known as Protoctists. Such intelligence arises by means of the biochemical

interactions within the animal. An artificial model of this might therefore be termed an

Artificial Biochemical Network or ABN. This paper describes the attributes of such

networks and illustrates their abilities in Pattern Recognition problems and in

generating Time-Varying signals of a type which can be used in many control tasks.

The flexibility of the system is explained using legged robots as an example. The

networks are trained using Back Propagation and Evolutionary Algorithms such as

Genetic Algorithms.

1. Introduction

Artificial Neural Networks (ANNs) are well-known connectionist models based on

the operation and behaviour of biological neurons. Such networks have proved useful

in several fields including Pattern Recognition and Control. However, they also have

several disadvantages, which are outlined later in this paper.

The system presented here is an alternative connectionist model. Just as Biological

Neural Networks produce complex behaviours in multicellular animals, this

alternative model is also biologically inspired, in this case by the complex behaviours

of single-celled animals (O’Shea, 2005). Similarly, just as the Neural Network is

based on the interactions between neurons - which results in multicellular intelligence,

this new model based on the interaction between proteins - which produces single-

celled intelligence. Such a network may therefore be termed an Artificial Biochemical

Network (ABN).
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The basic principle behind the network was first proposed by Capanni and MacLeod

et al (2005); in this paper it is expanded and results are presented which illustrate its

flexibility. In particular, the paper demonstrates that the network facilitates the simple

control of motors and other actuators, as well as pattern recognition. The simplicity

with which it achieves this, gives it an important advantage over other models in

practical systems.

To understand the model it is first necessary to review its inspiration and origins.

These are presented in the next sections.

2. Single-Celled Intelligence

Protoctists are remarkable organisms. They consist of nothing more than a single cell.

There are many species, the largest of which is just visible to the naked eye - the

smallest require microscopes to see (Curtis, 1969). This is a range of sizes greater then

the relative size difference between a Blue Whale and hen. These which behave like

animals are known as Protozoa, these which photosynthesise like plants are known as

algae and the fungi-like ones, moulds. Many display traits of all three groups - for

example, being able to both photosynthesise and hunt for food. One which is familiar

to many people is the archetypal amoeba Amoeba proteus, that often lives at the

bottom of ponds.

Protocists display an incredible variety of behaviours, lifestyles and habitats (Alberts

et al, 1994). Many hunt actively for food, following “scent trails” laid down by their

prey. Some “walk” on leg-like appendages. Still others have light sensitive spots

which can act like “eyes” or are sensitive to vibrations with delicate cilia “ears.” A

few not only hunt for food but have poison “darts” which they can shoot out at their

quarry to paralyse it before consumption. And some even build themselves shelters in

which to hide. Truly such organisms display many of the traits of intelligence.

One must remember in reading the paragraph above, that we are talking here about

Single-Celled Organisms. There is no neural network or any other similar system

directing their behaviour - the neuron is itself, after all, a single cell. The complex and
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interesting behaviour described above comes from another source - the biochemical

reactions which control the cell. How this comes about is considered in the next

section.

3. Biological and Artificial Biochemical Networks

The complex and interesting behaviours displayed by single cells occur because of

interactions within the cell, between proteins. Proteins are the true workhorses of the

cell. It is proteins which the cell’s DNA code specifies as is shown in figure 1. The

system shown in the figure is so fundamental to life (both single-celled and

multicellular) that it is often referred to as the Central Dogma of biology (Alberts et

al, 1994).

Figure 1. The Central Dogma of Biology - how the DNA code is used to make the

proteins which run the cell.

Proteins perform all the important functions within the cell - they make new material

and destroy old (such chemical processing proteins are called Enzymes), they sense

and signal changes in both the cell’s internal environment and its surroundings, and

can join together to make more complex structures. They do this by binding to each

other and to other chemicals. Importantly, when they interact with each other, they can

form complex signal processing networks in a similar way to a neural network. This is

best illustrated by a stylised example.

Cellular membrane

Nucleus and DNA

RNA copies DNA code

Ribosome translates RNA
code to make protein

Proteins in cell
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Figure 2. An imaginary cell displaying a protein network. The proteins detect an input

(the chemical “A”) and through a series of interactions produce an output (a

movement of the cell).

Consider a cell, as shown in figure 2. Outside the cell are molecules of a particular

substance A (for example, a food substance). Specialised proteins on the cell surface

B (known as receptors), which cross the cell membrane and are half-in, half-out of the

cell, are shaped in such a way that they can “mate” with A. The internal part of the

receptors is bound to another protein as at C. When A and B link, as shown at D, this

internal protein, E detaches from the receptor (this usually happens because the

receptor changes shape). All the free-floating proteins, like E, move around inside the

cell because they are being buffeted by thermodynamic forces (similar to the way

pollen grains are buffeted in Browian Motion). This free-floating protein eventually

meets another internal protein F, which is shaped to “mate” with it, it then links as

shown at G. This linked unit is shaped so that it can interact with a motor protein I as

at H. Motor proteins (a well known example of which is Actin) when stimulated in

this way contract and can move the cell - in this case (say) towards the stimulus A.

So a network of interactions exists between the input at A and the output at I. This

network is similar in concept to a neural network, but as will be shown, has some

advantages. Of course it may be represented in a stylised network diagram as shown in

figure 3 (Capanni, 2006).

A

B

C

D

E

F
G

H

I

Cell membrane

Input substance
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internal protein

Internal protein free
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Links with another
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Figure 3. The Biochemical network shown as a Connectionist network.

4. Operation of a basic ABN

If the basic network is as shown in figure 3, with nodes representing proteins and

weights (which are simply positive or negative floating-point numbers, as in an ANN)

representing their interactions, then the next question is how do the nodes behave.

Figure 4 below shows two possible behaviours.

Figure 4. Each node produces an pulsed output.

In diagram i, time period A is the lag-time from stimulation of the node by an

incoming signal, to the protein appearing. Period B is the time during which the

protein is present (the amount of protein present denoted by the amplitude). Period C

is the time required after protein production before the node can be re-triggered again.

Period D is the total cycle time for the node.

A B C

D
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C
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Time Time
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Nodes represent
proteins

Proteins are connected together to form a
network. As in a neural network connections
represent excitatory or inhibitory weights
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It is possible to simplify this scheme by combining the “off” times (A and C in

diagram i) into a single period. This is shown as A in diagram ii. The reason for

showing two diagrams will become apparent in the next section - however, for the

moment, we will only consider diagram i.

It is possible to train a network containing such nodes (like the network shown in

figure 3) like an Neural Network. Periods A and C of each node and the weights of the

network can be fixed using a Genetic Algorithm and the Period B then depends of the

activation of the unit. One simple way to calculate the activation is to use a Weighted

Sum and Leaky Integrator as shown in the equation below:

A i w At n n
n

m

t 



1

1

Where At is the activation at the present time (t), in is the nth input to the node, wn is

the nth weight of m total inputs and weights (as in an ANN). At-1 is the activation at

the previous time step and  is a constant between 0 and 1 which may be set by the

Genetic Algorithm. The Leaky Integrator (Gurney, 1997) term ( At-1 ), is widely used

in pulsing networks, to compensate for the absence of input for time periods during

the system.

The length of time period B in figure 4, diagram i, can then be set using a simple

relationship:

B At 

Where  is another evolvable parameter. Generally, once the node has triggered and

started its cycle, it cannot be interrupted and re-triggered until it has finished.

Such networks (in this simple form) have been programmed and trained using a

Genetic Algorithm in Pattern Recognition, Control and Waveform Generation tasks.

However, before going on to discuss results and how such networks may be used, it is

worth pausing to consider how their operation and application may be made more

universal.
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5. Analysing and Extending the basic ABN

The diagram shown in figure 4 opens up another interesting possibility. Dropping the

whole idea of biologically plausibility for a moment, let us adopt an engineering

viewpoint. If a network similar to this were trained using, for example, an

Evolutionary Algorithm, then it would be possible to choose which of the parameters -

A, B, C or D, varies with the activation of the node. Such a unit might then be more

flexible (Capanni, 2006).

Consider that, in such a situation, each of the parameters (A, B, C and D) might have

one of three behaviours (chosen by the EA). Firstly, the parameter might vary with the

unit’s activation. Secondly, it might have a fixed value (chosen by the Evolutionary

Algorithm). Finally, it might have a complementary value - that is, it might reduce as

the parameter which varies with the unit’s activation increases (so leaving the total

time D constant).

If such reasoning is applied to figure 4, diagram i, then the unit may have one of 81

different behaviours. However, a great number of these are contradictory or

nonsensical, and cannot be fulfilled - for example, A, B and C being of fixed duration

and D being variable. The others all fall into three basic categories. These are: Firstly,

units which behave in a Pulse-Width Modulated way; Secondly, units which behave in

a Pulse-Frequency Modulated manner; finally, those which behave as Pulse-Position

Modulated units. Examples of all three of these are shown in figure 5.
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Figure 5. Examples of the three type of behaviour which can be exhibited by the unit

shown in figure 4, diagram i.

In fact, a unit with only three parameters, as shown in figure 4 diagram ii, can achieve

all these behaviours with the exception of the Pulse-Position Modulated ones. Here

there are a possible 27 different behaviours; but again, many of these are not

consistent and can be ignored. The remaining behaviours are shown in figure 6.

A

B

C

Standard pulse. A, B and C
are all the same length

Pulse width modulated neuron. A is a
fixed value, B varies as the activation of
neuron and C is complimentary to B

Pulse frequency modulated neuron.
A varies as the activation of the
neuron, B is fixed and C is fixed
(equal to zero in this case).

Pulse position modulated neuron.
A varies as the activation of the
neuron, B is fixed and C is
complimentary to A.
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Figure 6. The behaviours which the unit in figure 4, diagram ii can display.

Referring to the periods A, B and C shown in figure 4 (2), it is straightforward to put

mathematical detail behind these behaviours. In each case the activation is given by

eqn 1 and the parameters are weighted by a constant as shown in eqn 2.

Case (i): The length C of the pulse is given by the weighted activation C = At where

 and the mark to space ratio A/B are parameters evolved in the Evolutionary

Algorithm.

Case (ii): This is similar to case (i) except that C is a parameter fixed by the

Evolutionary Algorithm and the pulse is not effected by activation but simply repeats

continuously.

Case (iii): Here B = At and A = C - B. The upper value of B is hard limited to C (if

At  C, then B = C, A = 0). In the case of this pulse,  and C are evolved.

Case (iv): In the final case, A = At and B is fixed period which may be either one

unit or fixed by the Evolutionary Algorithm. The total period C is variable C = A + B.

A and B fixed, C can vary - entire pulse
stretches.

A, B and C fixed - invariable pulse. A
sub-category are pulses which are always
high and always low.

Pulse-Width Modulated pulse. In this case
B varies with activation, A is
complementary and C fixed. To get the
opposite effect, swap A and B

Pulse Frequency Modulated pulse. In this
case A varies with activation, B is fixed
and D varies with activation. Two other
possibilities are to fix the off period,
rather then the on and to let the variable
parameters be the inverse of the activation
(frequency goes up with activation, rather
then down).
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6. The practical motivation behind the ABN

It may seem inefficient to imbue a network with all the parameters described above,

when an alternative such as a Multilayer Perceptron or Radial Basis network functions

with fewer. However, the motivation behind the ABN is not simply to show that there

are alternative paradigms to neural connectionism, it is also because the ABN offers

additional functionality.

Biological neurons produce time-varying signals in the form of Action Potentials - in

contrast to the amplitude coded response of a Perceptron. This is considered important

at several levels. Firstly, many researchers consider that such time-dependent

behaviour is significant in the neural processes which ultimately produce

consciousness (Hopkin, 1996). Secondly and more importantly from a practical

engineering point of view, the configuration of certain systems can be made much

more simply with a time-varying output. Example of such systems include DC motor

controllers. These normally use a pulse-width modulated signal and are difficult to

implement using McCulloch-Pitts or Perceptron type units as such networks require

potentially unstable feedback loops to produce such behaviour.

The advantages of such time-varying units has led workers to produce several

biologically plausible “Spiking” models (Gerstner, 2002). However, these are difficult

and complex to implement and program and further more cannot produce the range of

outputs (like pulse-width responses) required. One of the principle advantages of this

new method is its simplicity and elegance in contrast with these alternatives.

7. Some Illustrative Results

In the sections below some illustrative results are reported showing the ABN in both

Pattern Recognition mode (where it’s acting as an “input” network - recognising and

processing patterns) and in Waveform Generation Mode (acting as an “output”

network - generating patterns for use in various actuators). One of the major benefits

of the network is that it can act as either or both of these simply - and is therefore a

“universal solution.” Such flexibility is particular useful in Evolutionary and Robotic

systems where the ability to perform in any place in the network saves the



MacLeod and Capanni. Artificial Biochemical Networks. AI review
11

programmer having to design different unit types or resort to other technologies when

the network cannot handle particular functions.

7.1 Network Setup

In the examples below, the ABN is used in both Pattern Recognition and Control

tasks. To illustrate its versatility, the emphasis is on showing how both Pulse-Width

and Pulse-Frequency units, of the type described above, can perform such functions.

Of course, the ABN working in its most flexible form may adopt either or both of

these in its structure. The unit activation is calculated as shown previously. In the case

of some inputs - for example, some images, it is necessary to convert the pixel values

(which are in grey scale format) into suitable pulses to be fed into the networks. This

may also be applied to other inputs, for example from sensors and is done as shown in

figure 7 for a Pulse-Width Modulated case.

Figure 7. Converting analogue inputs to pulse trains.

In this scheme, the inputs are feed into a Sigmoidal “Squashing” function:

Sq
e in

 

1

1

Where in is the input and sq is the “squashed” function.

0

0.5

1

INPUTS

Amplitude

Amplitude

Amplitude

Time

Time

Time

1cycle off
9 cycles on

5 cycles off
5 cycles on

9 cycles off
1 cycle on

“Squashed”
values

OUTPUTS

-4 0 +4
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The output from this function is between 0 and 1 and is converted into a repeating

pulse as shown. Value 0 corresponds to a pulse with a duty cycle of 10%, value 1 to a

pulse of duty cycle 90%, the other pulses are in-between. The same system can be

used for the Pulse-Frequency case. The graph may also be used in reverse - that is, to

read out a pulse train and convert it to a simple number. It may also be used internally,

within the unit, to convert a summed input to a pulse output instead of using the term

 in the previous formulae (although this is not the method which was used to obtain

these results).

7.2 Pattern recognition problems

To test the pattern recognition abilities of the network and provide a good comparison

with a traditional Multi-Layer Perceptron (MLP), the problem was kept as simple as

possible. The network was trained to recognise four, four pixel patterns. Having four

inputs, four outputs (one for each pattern) and three hidden layer units. An MLP of

exactly the same topology was also set up.

Networks containing only Pulse-Width and only Pulse-Frequency units were tested to

establish whether there was any difference in performance. The Pulse-Width network

was also trained using unmodified Back-Propagation to see whether such training was

feasible. In this case the Target waveform was subtracted from the output waveform,

time slice by time slice and the resulting errors added up over 100 time steps to give a

total error for that output. Figure 8 shows the program interface for the Back-

Propagation set up; the others were similar.
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Figure 8. Screenshot of Program interface for Pulse-Width Back-Propagation

Network.

The error profile for the Back Propagation Network is shown in figure 9. It may be

seen that the network trained in 496 cycles. The network was trained to an absolute

error of 0.05 and easily recognised all the patterns.



MacLeod and Capanni. Artificial Biochemical Networks. AI review
14

Figure 9. Error verses Epoch for a Back-Propagation trained Pulse-Width Modulated

Network.

Similarly, both this network and the Pulse-Frequency Modulated Network were

trained on the same task using a Genetic Algorithm (GA). The GA had a population

size of 50, and a 1% mutation rate. The mutation size was the parameter size being

mutated, using a uniformly distributed random number. Selection was by roulette and

each gene in the string had a 50% chance of crossing over with its mate. Figure 10

shows the error profile of the training. A similar graph was obtained for the Pulse-

Frequency Network.

Figure 10. Error Verses Epoch for a Genetic Algorithm trained Pulse-Width

Modulated Network.

Finally, these results were compared to those generated by a MLP of exactly the same

size. The comparison was done by adding noise to the patterns and observing the

network response. This is shown in figure 11 (x axis – added noise, y axis – error).
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Figure 11. Comparison of MLP and ABN (Pulse-Width Modulated).

The slight differences between the networks can be accounted for in two ways. Firstly,

because of their different (random) initial weights and secondly because the ABN

signals are quantised into ten time periods - which limits their resolution (see figure

7).

7.3 Waveform generation

As mentioned above, not only can the ABN networks provide Pattern Recognition,

they can also generate waveforms. A good illustration of such a facility is the

production of locomotive gait patterns for legged robots. Such patterns are used to

drive the legs of the robot in the correct order to produce movement and are produced

by networks termed Central Pattern Generators or CPGs. A number of ABNs were set

up to fulfil this function and trained with simple user-selected GAs. The waveforms

produced are self generated by the network - no external clock is required. Figure 12a

shows a walking gait generated in this way using Pulse-Width Modulated Neurons

arranged in a two-layer feedforward structure with 4 neurons in the first layer and 2 in

the second. Figure 12b, is the same gait but generated in a network using both Pulse-

Width and Pulse-Frequency Modulated units. This network required 4 further units

and has the advantage that it controls not only the phase and stride length of the legs,

but also their stride speed as well.
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Figure 12a,b. Example of a Walking Gait.

a) Pulse - Width neurons

b) Pulse - Frequency neurons

All the common quadruped gaits were generated in this way including Pace, Gallop

and Pronk. Figure 13a and 13b demonstrate a trotting gait as a further illustration.

This network required 4 neurons

Figure 13a, b. Example of a Trotting Gait.

a) Pulse- Width neurons

b) Pulse- Frequency neurons

One interesting observation made during these experiments was that, although such

gaits can be produced by the ABN units alone, using the scheme outlined above,
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smaller networks generally result if simple AND and OR units are also allowed. This

allows the pulse-width units to gate the pulse-frequency units and so produce the type

of cyclical combination pulses shown above more easily.

7.4 Modular networks

As a final test of the ABNs flexibility, the outputs of the Pattern Recognition Network

was used to trigger the CPG network. The idea of this was that different patterns could

be programmed to correspond to different gaits. It also allowed the network to behave

in a modular fashion (Muthurman, 2005; Macleod, 2009) and demonstrated the ability

of the networks to behave as the “input” or “output” types mentioned above, using a

single flexible unit type. This experiment worked well and four gaits could be

triggered by the four different trained patterns. Figure 14 shows this structure.

Figure 14. A modular combination of the networks.

8. Discussion and Conclusions

It should be apparent, from the examples shown above, that the ABN network is

capable of exactly the same mappings and transformations (in the mathematical sense)

as a similar Perceptron Network. Like the Perceptron, it may also be trained using an

unmodified Back-Propagation Algorithm. In simple pattern recognition tasks there

would seem to be little advantage, therefore, in using it. It requires the inputs to be

converted into time-varying signals and, similarly, for the outputs to be read in this

manner.

However, Pattern Recognition is only half the story. In many control and other

engineering systems (for example, a DC motor controller or other, similar, actuators)

the pulse-width or frequency modulated outputs of the network may be directly

interfaced to the system. It is effectively operating in these engineering systems’

“native language.” The time varying nature of its operation also has similar

advantages when dealing with time-varying input signals.

Pattern Recognition
Network module

Gait Generation
Network Module

Input pattern
Output to robot legs
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Of course, some other models, most obviously Spiking Neuron models, are also used

to achieve similar ends. However, these models are based strongly on biological

systems. They are therefore computationally and conceptually complex and difficult to

program (Capanni, 2006) and also lack the flexibility required, in terms of producing

flexible pulse-width and pulse-frequency signals, of useful engineering system

(spiking models generally only produce inverse frequency modulated outputs).

These advantages are perhaps best illustrated in robot systems. This is a model which

can be used for the sensory system (as a pattern recogniser), to generate the

appropriate gait patterns for the robot’s legs (as part of a CPG network) and finally to

control the motors moving these legs. Such flexibility means that the designer does

not have to choose different neuron models for different subsystems. The advantages

of this are obvious and may also be seen when considering recent advances in modular

evolution, where new modules build up automatically on older ones (Muthuraman,

2005; MacLeod, 2009), this work uses the models described above. Again, there are

great advantages in having a neuron type which can handle complex mapping

scenarios in such a situation.
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