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A survey on independence-based Markov networks learning
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Abstract The problem of learning the Markov network structure from data has become increas-
ingly important in machine learning, and in many other application fields. Markov networks are
probabilistic graphical models, a widely used formalism for handling probability distributions in in-
telligent systems. This document focuses on a technology called independence-based learning, which
allows for the learning of the independence structure of Markov networks from data in an efficient
and sound manner, whenever the dataset is sufficiently large, and data is a representative sample
of the target distribution. In the analysis of such technology, this work surveys the current state-
of-the-art algorithms, discussing its limitations, and posing a series of open problems where future
work may produce some advances in the area, in terms of quality and efficiency.
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1 Motivation

Nowadays intelligent systems have to reason in realistic domains, storing knowledge of the world,
and supporting efficient inference, even when exceptions occur. This is referred to in the literature
as reasoning under uncertainty. A popular approach taken for reasoning under uncertainty is the use
of probabilistic models, a statistical analysis tool for statistical inference. The statistical inference
process is used for drawing conclusions from data by calculating the probability of propositional
sentences. An example of a probabilistic model is the tabular probabilistic model, a function rep-
resented as a table that assigns a probability to every possible complete assignment in a domain,
so that the sum of the probabilities adds up to 1. Figure 1 illustrates an abstract tabular model
for a domain with n binary variables V = {X0, ..., Xn−1}, consisting on 2n tuples, one per possible
configuration of variables.

However, the tabular model presents computational and semantic limitations. First, its storage
requirements are exponential in the number of variables, and the size of its respective domains.

F. Schlüter
E-mail: federico.schluter@frm.utn.edu.ar
Home page: http://dharma.frm.utn.edu.ar/fschluter/
Lab. DHARMa of Artificial Intelligence,
Dept of Information Systems, Facultad Regional Mendoza, National Technological University, Argentina.

http://arxiv.org/abs/1108.2283v2


2 Federico Schlüter

X0 X1 ... Xn−1 Pr(X0, ..,Xn−1)
0 0 ... 0 0.121
0 0 ... 1 0.076
. . ... . .
. . ... . .
. . ... . .
1 1 ... 0 0.21
1 1 ... 1 0.12

Fig. 1 An example tabular model over n binary random variables, with 2n numerical parameters.

When domains of variables are continuous, such tables are infinite, and in practice some mathe-
matical functions can be used. Nonetheless, in this work the attention is restricted only to discrete
distributions, so continuous variables may be considered as discrete variables. Second, queries of
interest usually do not involve all the variables, and the cost of computing marginal and condi-
tional probabilities would result in exponential summations of variable combinations. Third, such
representation has no clear semantics for humans. The common pattern of human knowledge has
probabilistic judgments for a small number of propositions. Therefore, conditional independences
are a natural way of representing probability distributions. It is common for people to judge a
three-place relationship of conditional dependency, i.e., X influences Y , given Z.

Using independences may reduce the exponential requirements of the tabular model. For exam-
ple, making the simple assumption that all the n variables in Figure 1 are mutually independent
allows decomposing the joint probability distribution as

Pr(X0, ..., Xn−1) =

n−1∏

i=0

Pr(Xi).

Such decomposition requires a polynomial number (n) of exponentially smaller tables with only two
rows. Figure 2 illustrates a model assuming that all the binary variables are mutually independent,
consisting only of n tables with 2 tuples each.

X0 Pr(X0)
0 0.21
1 0.79

,

X1 Pr(X1)
0 0.45
1 0.55

...

Xn−1 Pr(Xn−1)
0 0.42
1 0.58

Fig. 2 An example model assuming that all the variables of the domain are mutually independent, with n tables of
only 2 numerical parameters each.

To address all these problems, namely the exponential storage requirements, the exponential
cost of computing marginal and conditional probabilities, and the lack of explicitness of the model,
several researchers in the late 80’s created probabilistic graphical models, or simply, graphical models,
a well-established formalism for representing compactly joint probability distributions. They are
composed of an independence structure, and a set of numerical parameters. The structure encodes
the independences present in the distribution, and then defines a family of probability distributions.
The set of numerical parameters defines a unique distribution among this family and quantifies the
relationships in the structure. Such representation is explained in more detail in Section 2.
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The most important types of graphical models are Bayesian networks and Markov networks
Pearl (1988). The well-known Bayesian networks are graphical models for encoding distributions
where dependencies are representable by a directed acyclic graph. Markov networks (also known as
Markov Random Fields, undirected graphical models, or simply undirected models) encode distribu-
tions where dependencies are representable by an undirected graph. Three of the most influential
textbooks on this topic published in the last three decades are Pearl (1988), Lauritzen (1996) and
Koller and Friedman (2009).

There have been many applications of graphical models in a wide range of fields during recent
years. Some examples are present in the areas of computer vision and image analysis. Besag et al
(1991) gives two examples, one in archeology, the other in epidemiology; in Anguelov et al (2005),
addressing the problem of segmenting 3D scan data into objects or object classes; or Li (2001),
a complete textbook that presents an exposition of Markov Random fields to image restoration
and edge detection in the low-level domain, and object matching and recognition in the high-level
domain. More examples are present in the area of spatial data mining and geostatistics, as those
presented in the textbook of Cressie (1992), where Markov Random Fields are emphasized for mod-
eling spatial lattice data; or more recently, the work of Shekhar et al (2004) that presents spatial
analysis methods and applications for Markov Random Fields in a wide range of fields, includ-
ing biology, spatial economics, environmental and earth science, ecology, geography, epidemiology,
agronomy, forestry and mineral prospection. There are also examples for disease diagnosis, such as
Schmidt et al (2008) that presents a Markov Random Fields based method for detecting coronary
heart disease processing ultrasound images of echocardiograms. Also in the area of computational
biology, Friedman et al (2000) proposes the use of Bayesian networks for discovering interactions
among genes. More applications of graphical models are present for evolutive optimization search-
ing, as Larrañaga and Lozano (2002) that describes the use of Bayesian networks for modeling the
probability distribution of individuals with high fitness in evolutive algorithms, or more recently,
Alden (2007) and Shakya and Santana (2008) proposing Markov networks for the same purpose.
Further examples are shown for Information Retrieval by Metzler and Croft (2005) and Cai et al
(2007), to model term dependencies using Markov Random Fields; and for malware propagation,
Karyotis (2010) analyzes the spatial and contextual dependencies of malware propagation, also us-
ing Markov Random Fields. There are many other interesting examples that could be included in
this list. Table 1 summarizes all these examples in order to help the readers to choose which method
can be a better solution for a certain application.

The framework provided by probabilistic graphical models supports three critical capabilities of
intelligent systems, as highlighted in the textbook of Koller and Friedman (2009):

– Representation: a compact and declarative model of the knowledge based on graphs. On the one
hand, such models are compact, providing a representation of conditional independences present
in a probability distribution which is efficient and computationally tractable. The compact
representation of graphical models is achieved by exploiting a principle property present in
many distributions: variables tend to interact directly with very few others. On the other hand,
since the models are graphical, they are declarative, and a human expert can understand and
evaluate their semantics and properties.

– Inference: given a graphical model, the most fundamental and yet highly non-trivial task is to
compute marginal distributions of one or a few variables. This task is usually called inference.
Through marginalization it is possible to compute conditionals and posteriors, and to make
predictions. Inference is also a sub-routine of learning tasks, and is therefore the most elemen-
tary sub-routine of graphical models. However, as proven by Cooper (1990), exact inference
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Table 1 Some example Probabilistic Graphical Models applications.

Application Reference

– Computer vision, and image analysis, with examples in archeology and epidemiology Besag et al (1991)

– Segmentition of 3D scan data into objects Anguelov et al (2005)

– Markov Random Fields for image restoration, edge detection and object matching Li (2001)

– Markov Random Fields for spatial data minging and geostatistics Cressie (1992)

– Markov Random Fields for spatial spatial analysis methods in biology, spatial eco-
nomics, environmental and earth science, ecology, geography, epidemiology, agronomy,
forestry and mineral prospection.

Shekhar et al (2004)

– Markov Random Fields method for detecting coronary heart disease. Schmidt et al (2008)

– Computational biology. Learning of Bayesian networks
for discovering interactions among genes.

Friedman et al (2000)

– Bayesian networks for evolutive optimization search. Larrañaga and Lozano
(2002)

– Markov networks for evolutive optimization search. Alden (2007);
Shakya and Santana
(2008)

– Information Retrieval. Markov Random Fields for modeling terms dependency. Metzler and Croft
(2005); Cai et al (2007)

– Malware propagation. Markov Random Fields for modeling spatial and contextual
dependencies.

Karyotis (2010)

is NP-hard in general. There are several methods for working directly with the structure of
graphical models, that are in practice orders of magnitude faster than manipulating explicitly
the joint probability distribution. The textbook of Koller and Friedman (2009) provides an ex-
tensive discussion on this topic, and describes the most popular methods used, such as variable
elimination, Monte Carlo methods, and loopy belief propagation. Other recent works are tree-
reweighted message-passing of Wainwright et al (2003), Power EP of Minka (2004), generalized
belief propagation of Yedidia et al (2004), and Variational message-passing of Winn and Bishop
(2005). A free and open source library, providing implementations of various exact and approx-
imate inference methods for graphical models, was published recently by Mooij (2010).

– Learning: constructing graphical models can be done either by a human expert or by learning
it automatically from data. There are many algorithms that model the probability distribution
of historical data, returning a graphical model as the solution. They are really useful, since
experts knowledge is not always enough to design a proper model. Therefore, some authors
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consider these algorithms a tool for knowledge discovery. Moreover, when constructing models
for a specific problem, it is possible to use the data-driven approach, using some part of the
model provided by an expert and filling the details automatically, by fitting the model to data.
The large number of success stories claimed using this approach in recent years has resulted in
some authors, such as Koller and Friedman, claiming that models produced by this process are
usually much better than those purely hand constructed.

In this work, the specific problem of learning the independence structure of Markov networks
is reviewed. This is an interesting problem that has resulted in important contributions to this
domain in recent years, although many of its core challenges remain unresolved and are under
intense deliberation. This work focuses on a technology called independence-based learning, which
allows one to infer the independence structure of Markov networks from data in an efficient and
sound manner, whenever data is sufficient and a representative sample of the target distribution.
An analysis of the current state-of-the-art algorithms for learning Markov networks structure using
such technology is presented, discussing its current limitations, and its potential for improving the
quality and the efficiency of current approaches.

The rest of the document is structured as follows: Section 2 presents an overview of Markov
networks representation. Section 3 discusses the problem of learning Markov networks from data.
Section 4 provides a review of current independence-based Markov network structure learning algo-
rithms. Finally, Section 5 analyzes the surveyed independence-based algorithms and discusses their
relative advantage as well as disadvantages, concluding with a series of open problems that remain
in the domain of independence-based structure learning for Markov networks.

2 Markov networks representation

This section provides an overview of the representation of a specific type of graphical models:
Markov networks. Graphical models in general consist of a qualitative and a quantitative compo-
nent for representing a probability distribution P . Such distribution is given over a domain of n
variables, denoted V = {X0, ..., Xn−1}. The qualitative component is the independence structure G

(also known as the network, or the graph) of the model, that represents conditional independences
among the domain variables, and then defines a family of probability distributions. The quantitative
component is a set of numerical parameters θ, that defines a unique distribution among this family
and quantifies the relationships in the structure.

2.1 The independence structure

The independence structure is a compact representation of conditional independences present in the
underlying distribution P . Two variables X and Y are independent conditioned in a set of variables
Z when knowing the value of Y tells me nothing new about X , if I already know the values of
variables in Z. In this work, conditional independence is denoted as (X⊥⊥Y|Z), and (X 6⊥⊥Y|Z)
denotes conditional dependence.

The structure G of a Markov network is an undirected graph with n nodes, each one representing
a random variable in the domain. The edges in the graph encode conditional independences among
the variables. Figure 3 shows two examples of undirected structures, both representing domains
with n = 12, and variables V = {X0, . . . , X11}. The first example in Figure 3 (a) is an irregular
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Fig. 3 Two examples of undirected independence structure: (a) an irregular graph with different grade of connec-
tivity for distinct nodes, and (b) a regular lattice where variables belong to a domain in a spatial problem.

graph with different grade of connectivity for distinct nodes. The second in Figure 3 (b) is a regular
lattice where variables belong to a domain in a spatial problem, as typically used for representing 2D
images, or for two dimensional Ising spin glasses models (mathematical models of ferromagnetism
in statistical mechanics).

The independence structure is a map of the independences in the underlying distribution, and
such independences can be read from the graph through vertex separation, considering that each
variable is conditionally independent of all its non-neighbor variables in the graph, given the set
of its neighbor variables. This is called the Local Markov property. For example, in Figure 3 (a)
variables X0 and X3 are conditionally independent, given the set of variables {X1, X2}. In the
toroidal lattice of Figure 3 (b), X5 is conditionally independent of all the non-adjacent variables,
given its neighbor variables {X1, X4, X6, X9}.

2.1.1 Correctness of the structure

For correctly representing a probability distribution P by a Markov network, G must be a map of
the independences present in P . As proved in Pearl (1988), a graph G is called an independence-map
(or I-map, for short) of a distribution P when all the independences encoded in the graph exist in
the underlying distribution P .

Definition 1 I-map Pearl (1988)[p.92].
A graph G is an I-map of a distribution P if for all disjoint subsets of variables X, Y and Z,

the following is satisfied:
(X⊥⊥Y|Z)G ⇒ 〈X,Y,Z〉P , (1)

where (X⊥⊥Y|Z)G are the independences encoded by G, and 〈X,Y,Z〉P are the independences
existent in the underlying distribution P .

Similarly, G is a dependency-map (D-map) when

(X⊥⊥Y|Z)G ⇐ 〈X,Y,Z〉P . (2)
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Using a graph G that is an I-map guarantees that nodes found to be separated correspond to
independent variables, but does not guarantee that all those showed to be connected are dependent.
Conversely, when G is a D-map it is guaranteed that the nodes connected in G are dependent in the
distribution P . Fully-connected graphs are trivial I-maps, and empty graphs are trivial D-maps. A
distribution P is said to be a perfect-map of P if it is both an I-map and a D-map.

An axiomatic characterization of the family of relations that are isomorphic to vertex separation
in graphs is given by the concept of graph-isomorphism. Basically, a distribution P is a graph-
isomorph when its independences among variables can be encoded by an undirected graph.

Definition 2 Graph-isomorphism Pearl (1988)[p.93].
A distribution is said to be a graph-isomorph if there exists an undirected graph G that is a

perfect-map of P , i.e., for every three disjoint subsets X, Y and Z, we have

(X⊥⊥Y|Z)G ⇐⇒ 〈X,Y,Z〉P . (3)

A necessary and sufficient condition for a distribution P to be a graph-isomorph is that 〈X,Y,Z〉P
satisfies the following axioms of independences, introduced by Pearl and Paz (1985). There is an-
other set of axioms for learning Bayesian networks, but it is omitted here.

Symmetry (X⊥⊥Y|Z) ⇔ (Y⊥⊥X|Z)

Decomposition (X⊥⊥Y ∪ W|Z) ⇒ (X⊥⊥Y|Z) & (X⊥⊥W|Z)

Transitivity (X⊥⊥Y|Z) ⇒ (X⊥⊥λ|Z) or (λ⊥⊥Y|Z) (4)

Strong union (X⊥⊥Y|Z) ⇒ (X⊥⊥Y|Z ∪W)

Intersection (X⊥⊥Y|Z ∪ W) & (X⊥⊥W|Z ∪ Y) ⇒ (X⊥⊥Y ∪ W|Z),

where X, Y, Z and W are all disjoint subsets of the set of all the variables in the domain V,
and λ stands for a single variable, not in X ∪Y ∪ Z ∪W. The intersection axiom is valid only for
strictly positive probability distributions. This list of axioms represents the relationships that hold
among the independences encoded by the graph.

In summary, when the distribution P is a graph-isomorph, there exists a graph G that is a
perfect-map for P . For representing a distribution P , any graph G which is an I-map of P may
be used. However, the more independences of the underlying distribution encoded in the graph,
the better the model is in complexity and accuracy when used for inference. Assuming graph-
isomorphism is an important decision, since not all the existent distributions may be represented
by an undirected graph. For example, there are distributions that may be represented by an acyclic
directed graph, and in this case, Bayesian networks are the correct model to use. There are also
other distributions that cannot be encoded by a graph.

2.1.2 The Markov blanket concept

This section describes the concept of Markov blanket, a central theoretical concept in the represen-
tation of distributions, introduced by Pearl (1988). The Markov blanket of a variable is the only
knowledge needed to predict the behavior of that variable. Hence, this concept holds relevance for
a wide variety of applications where local relationships to some variables are significant.
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Definition 3 The Markov blanket concept.
The Markov blanket of a variable X is a minimal set, denoted here MB

X , conditioned on which
all other nodes in the domain of variables V are independent of X , that is,

∀Y ∈ V − {MB
X}, (X⊥⊥Y |MB

X). (5)

That is, the Markov blanket of a variable is the smallest set of variables that shields it from the
probabilistic influence of the variables not in the blanket. From a graphical view point, the Markov
blanket of a variable X is identical to its neighbors in the graph.

In the textbook of Pearl (1988), it is proved formally that, for strictly positive distributions,
the independence structure can be constructed by piecing together the Markov blanket of all the
variables of the domain, connecting with an edge every two variables X and Y , such that X belongs
to the Markov blanket of Y . There is also a proof stating that every variable X ∈ V in a distribution
that is a graph isomorph, and therefore satisfies the Pearl’s axioms, has a unique Markov blanket. As
only strictly positive distributions satisfy the Intersection axiom, this mechanism for constructing
the structure only holds for positive distributions.

2.2 Parameterization

This section explains how to quantify the relationships encoded in G. Although this work only
addresses the problem of structure learning, the quantitative aspects of Markov networks are briefly
explained for better clarifying our work. Below is described a factorization method for constructing
the Gibbs distribution for an arbitrary undirected graph G, provided in Pearl (1988):

– Identification of the maximal subgraphs whose nodes are all adjacent to each other, called the
maximal cliques of G. For example, the graph in Figure 3 (a) shows a maximal clique of size 4
among the nodes corresponding to variables {7, 8, 10, 11}, two maximal cliques of size 3 among
nodes {2, 3, 5} and {8, 9, 11}, and the rest of edges are maximal cliques of size 2. In Figure 3 (b)
the size of all the cliques is 2.

– For each clique c ∈ C in the set of all the cliques in the graph, assign a non-negative potential
function gc(Xc) (where Xc is the set of variables that belong to the clique c) measuring the
relative degree of compatibility associated with each possible configuration of Xc. Usually each
potential function is represented by a table with a numerical parameter assigned to each possible
complete assignment of the variables that compose the clique, like the tabular model showed
in Figure 1, but including only the variables that compose the clique c. A difference with the
tabular model is that here the parameter values are not normalized.

– Form the product
∏
c∈C

gc(Xc) of the potential functions over all the cliques.

– Construct the Gibbs distribution by normalizing the product over all possible value combinations
of the variables in the system

P (X0, .., Xn−1) =
1

Z

∏

c∈C

gc(Xc), (6)

where Z is the partition function, or normalization constant, computed as

Z =
∑

X0,..,Xn−1

∏

c∈C

gc(Xc). (7)
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Using the Hammersley-Clifford theorem it is possible to prove that the general form of the Gibbs
distribution of Equation (6) embodies all the conditional independences encoded in the graph G.
Such form of the Gibbs distribution presents some difficulties. First, it is difficult to discern the
meaning of the potential functions. Second, the computational cost of calculating the partition
function Z is exponential, as it requires an exponential sum over all possible assignments of the
complete set of variables.

3 The Markov networks learning problem

This section discusses the difficulties that arise in the task of learning Markov networks from his-
torical information. This task is only possible whenever the size of the input dataset D is sufficient,
and the data is a representative sample of the underlying distribution P . When these conditions are
satisfied, it is possible that some algorithms learn a model for representing P by exploring and an-
alyzing D. The input dataset D contains historical information commonly structured in the tabular
format, a standard format in machine learning. This is a file that contains a table with a column
per random variable in P , and the rows are the datapoints, each one being a complete assignment
for all the variables. For example, a datapoint for a domain with n = 4 random binary variables
V = {X0, X1, X2, X3} may be (X0 = 0, X1 = 1, X2 = 1, X3 = 0). The algorithms discussed in
this work ignore the problem of missing values, which is solved by known, yet computationally
challenging, statistical techniques.

Learning a Markov network from data is a problem that consists in learning both the structure
G and the parameters θ. Of course, the best possible structure learned is a perfect-map, that is,
a model that contains a structure encoding all the dependences and the independences present in
P . However, every model containing a structure which is an I-map of P is a good solution. The
closer to a perfect-map, the better is the structure learned, and the better is the resulting Markov
network for representing P . When learning a model for large domains, a desirable property of the
model is the sparsity, since densely connected models require too many parameters, and make exact
and even approximate inferences computationally intractable.

3.1 Goals of Markov networks learning

For evaluating the merits of a model learning method, it is important to consider the goal of learning.
Clearly, learning the complete model (structure plus parameters) is the ideal method, but due to
computational, spatial or sampling limitations, it may not be possible in practice. For that reason,
other less ambitious goals are often considered in practice, such as the three main goals of learning
discussed by Koller and Friedman (2009):

– Density estimation: A common reason for learning a Markov network is to use it for some
inference task. When formulating the goal of learning as one of density estimation, the goal is to
construct a model M so that the defined distribution is “close” to the underlying distribution P .
A common metric for evaluating the quality of such approximation is the use of the likelihood
of the data Pr(D | M). However, this goal assumes that the overall distribution P is needed.

– Specific prediction tasks: The goal is predicting the distribution of a particular set of
variables Y, given certain set of variables X. When the model is used only to perform a particular
task, if the model is never evaluated on predictions of the variables X, it is better to optimize
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the learning task for improving the quality of its answers to Y. This has been the goal of a
large fraction of the work in machine learning. For example, consider the problem of documents
classification for a given set of relevant words of a document, and a variable that labels the topic
of the document. Another well-known example is the task of image segmentation, where the
goal of the task is the prediction of class labels for all the pixels in the image, given the image
features.

– Knowledge discovery: The goal of knowledge discovery is to learn the correct structure of
the underlying distribution. There are some cases when the learned structure can reveal some
important unknown properties of the domain. It is a very different motivation for learning the
distribution. An examination of the learned structure can show dependences among variables as
positive or negative correlations. In a knowledge discovery application, it is far more critical to
assess the confidence in a prediction, taking into account the extent to which it can be identified
given the available data, and the number of hypotheses that would cause similar observed
behavior. For example, in a medical diagnosis domain, we may want to learn the structure of
the model to discover which predisposing factors lead to certain diseases, and which symptoms
are associated with different diseases.

3.2 Parameters estimation

Markov network parameters estimation is usually used to choose the value of the parameters by
fitting the model to data, because tuning parameters manually is often difficult, and learned models
often exhibit better performance. This task has shown to be an NP-hard problem by Barahona
(1982).

For estimating the parameters, the most common method proposed is maximum-likelihood es-
timation, potentially using some regularization as an additional parameter prior. Unfortunately,
evaluating the likelihood of a complete model requires, for every set of parameters proposed during
the maximum-likelihood estimation process, the computation of the partition function Z, which is
used for normalizing the product over all possible value combinations of the variables of the domain,
as showed in Equation (7). Although it is not possible to optimize the maximum-likelihood in a
closed form, it is guaranteed that the global optimum can be found, because it is a concave function.
As a result, some approximations and heuristics in the literature are introduced in Minka (2001);
Vishwanathan et al (2006), for reducing the cost of parameters estimation, using iterative methods
such as simple gradient ascent, or other sophisticated optimization algorithms. Unfortunately, this
problem remains intractable in practice, because the use of the partition function couples all the
parameters across the network, requiring several inference steps on the network (iterative methods
with interleaved inference).

For reducing the cost of parameters estimation, other solutions have been proposed. Pseudolike-
lihood by Besag (1977), and Score Matching by Hyvärinen and Dayan (2005) are some tractable
approximate alternatives. The loopy belief propagation method proposed in Pearl (1988) and later
in Yedidia et al (2005), and some variants introduced in Wainwright and Jordan (2008), uses an
approximate inference technique for approximating the gradient of the maximum likelihood func-
tion. Another solution for outperforming the robustness of loopy belief propagation is provided in
Ganapathi et al (2008).

For avoiding overfitting, many of these scoring methods commonly need the use of a regular-
ization term adding an extra hyper-parameter, whose best value has to be found empirically. For
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example, it can be found by running the training stage for several values of the hyper-parameter,
potentially using cross-validation.

3.3 Structure learning approaches

The two broad approaches for learning the structure of Markov networks from data are score-
based and independence-based approaches. The former is intractable in practice, and the latter is
efficient but presents quality problems. Both approaches have been motivated by distinct learn-
ing goals (those described in Section 3.1). Generally, score-based approaches may be better suited
for the density estimation goal, that is, tasks where inferences or predictions are required. As ex-
plained below in Section 3.3.1, score-based methods learn the complete Markov network (structure
and parameters). There is an overwhelmingly use of Markov networks for such settings, including
image segmentation and others, where there exists a particular inference task in mind. Instead,
independence-based methods are better suited for the remaining goals, that is, for specific predic-
tion tasks, and knowledge discovery. On one hand, independence-based algorithms are commonly
used for tasks such as feature selection for classification, since it is possible to perform local dis-
covery for a particular set of variables of interest (more details in Section 3.3.2). On the other
hand, independence-based algorithms are suited for knowledge discovery tasks, that is, tasks where
understanding the interactions among variables in a domain carries the greatest importance, or
where the structure is viewed purely as a predictive tool, for example, econometrics, psychology, or
sociology.

Since this work focuses on the independence-based approach to Markov networks structure
learning methods, Sections 4 and 5 only discuss in detail the state-of-the-art independence-based
algorithms.

3.3.1 Score-based approach

Score-based algorithms were proposed for learning the structure of Bayesian networks, in the works
of Lam and Bacchus (1994) and Heckerman et al (1995), and later proposed for learning the struc-
ture of Markov networks, in the works of Della Pietra et al (1997) and McCallum (2003). Such
algorithms approach the problem as an optimization over the space of complete models, looking
for the one with maximum score. The goal of score-based algorithms is to find the model that
maximizes its score. Traditional score-based algorithms perform a global search to learn a set of po-
tential functions that accurately captures high-probability regions of the instance space of complete
models.

The standard approach for learning the structure of Markov networks with a score-based ap-
proach is the Della Pietra et al. algorithm. This algorithm learns the structure by inducing a set
of potential functions from data. Its strategy is based on a top-down search, that is, a general-
to-specific search. This algorithm starts with a set of atomic potentials (that is, exclusively the
variables of the domain). Then, it creates a set of candidate potentials in two ways. First, each po-
tential currently in the model is conjoined (i.e., associated) with every other potential in the model.
Second, each potential in the model is composed with each atomic potential. Then, for efficiency
reasons, the parameters are learned for each candidate potential, assuming that the parameters of
all other potentials remain unchanged. When setting the parameters, it uses the Gibbs sampling
for inference. Then, for each candidate potential, the algorithm evaluates how much adding such
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potential would increase the log-likelihood, which is the score used by this algorithm. The potential
that maximizes this measure is added. When no one candidate potential improves the score of the
model, the procedure ends. Another algorithm using the same approach is proposed in McCallum
(2003). It is a similar algorithm to the one proposed by Della Pietra, but performing an efficient
heuristic search over the space of candidate structures, for automatically inducing potentials that
most improve the conditional log-likelihood. However, as reported by Davis and Domingos (2010),
such general-to-specific search methods are inefficient, because they test many potential variations
with no support in the data, and because they are highly prone to local optima.

Recently, other alternative approaches have been considered. The approach of Lee et al (2006),
Höfling and Tibshirani (2009), and Ravikumar et al (2010) propose to couple parameters learning
and potentials induction into one step, by using L1-regularization, which forces most numerical
parameters to be zero. They approach the problem as an optimization problem, providing a large
initial potential set, with all the possible potentials of interest. Then, after learning, model selection
occurs by selecting those potentials with non-zero parameters. For efficiency reasons, the approaches
of Höfling and Tibshirani, and Ravikumar et al., only construct pairwise networks (networks involv-
ing only cliques of size two or one for factorization). Instead, the algorithm of Lee et al., can learn
arbitrarily long potentials. In practice, however, it has been evaluated only for inducing potentials
of length two (that is, for learning pairwise networks).

A recent alternative approach was proposed by Davis and Domingos (2010), called the Bottom-
up Learning of Markov Networks (BLM) algorithm. BLM starts with each complete training exam-
ple as a long potential in the Markov network. Then, the algorithm iterates through the potential
set, generalizing each potential to match its k-nearest previously unmatched examples by dropping
variables. When the new generalized potential improves the score of the model, it is incorporated
to the model. The loop ends when no generalization can improve the score.

However, all these approaches are often slow for two reasons. First, the size of the search space
of structures is intractable in the number of variables. Second, for evaluating the score at each
step, it is necessary to compute the score, requiring the estimation of the numerical parameters (an
NP-hard task, as explained in Section 3.2).

3.3.2 Independence-based approach

Independence-based (also known as constraint-based) algorithms work by performing a succession
of statistical independence tests for discovering the independence structure of graphical models.
These algorithms exploit the semantics of the independence structure, casting the problem of struc-
ture learning as an instance of the constraint satisfaction problem, where the constraints are the
independences present in the input dataset (and therefore, in the underlying distribution), and the
goal is to find a structure encoding all such independences.

Each independence test consults the data for responding to a query about the conditional
independence among some input random variables X and Y , given some conditioning set of variables
Z, resulting in an independence assertion (X⊥⊥Y |Z), or (X 6⊥⊥Y |Z) for a dependence assertion. The
computation cost of statistical tests is proportional to the number of rows in the input dataset D,
and the number of variables involved. Examples of independence tests used in practice are Mutual
Information in Cover and Thomas (1991), Pearson’s χ2 and G2 in Agresti (2002), the Bayesian test
in Margaritis (2005), and for continuous Gaussian data the partial correlation test in Spirtes et al
(2000). Such independence tests compute a statistical value for a triplet of variables 〈X,Y,Z〉,
given an input dataset, and decide independence or dependence comparing it with a threshold.
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For instance, χ2 and G2 use the p-value, which is computed as the probability of obtaining a test
statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis
is true (that is, variables are dependent). The null hypothesis is rejected when the p-value is less
than the significance level α, which is often 0.05 or 0.01. When the null hypothesis is rejected, the
result is said to be statistically significant.

An elegant, efficient and scalable strategy used by several independence-based algorithms in the
literature is called the local-to-global strategy, presented in a recent work of Aliferis et al (2010b).
This is a generalization of previous algorithms using such strategy. Algorithm 1 shows the outline of
this theoretically sound and straightforward procedure, omitting the third step of edges orientation,
used for learning Bayesian networks .

Algorithm 1 LGL for Markov networks

1: Learn MB
Xi for every variable Xi ∈ V.

2: Piece-together the global structure using an “OR rule”.

Such a strategy suggests to construct the independence structure by dividing the problem into
n different Markov blanket learning problems, that is, the Markov blanket is learned for each vari-
able of the domain V. The learning of Markov blanket is generalized by Aliferis et al., for learning
Bayesian networks, in the Generalized Local Learning (GLL) framework Aliferis et al (2010a). Al-
gorithms using a local-to-global strategy learn locally the Markov blanket of every variable in the
domain, and then construct a global structure linking each of these variables with every member
of its Markov blanket, using an “OR rule” (an edge exists between two variables X and Y when
X ∈ MB

Y or Y ∈ MB
X).

For learning the Bayesian networks structure, independence-based algorithms first arose in 1993,
when Spirtes et al (2000) published the well-known algorithms SGS and PC, in the first edition of
such textbook. Then, other independence-based algorithms appeared in works about feature selec-
tion via the induction of Markov blanket, and works about Bayesian and Markov networks structure
learning. For that reason, a series of independence-based algorithms for Markov blanket learning
of Bayesian networks appeared, such as the Koller-Sahami (KS) algorithm in Koller and Sahami
(1996), the Grow-Shrink (GS) algorithm in Margaritis and Thrun (2000), the Incremental Associa-
tion Markov Blanket (IAMB) algorithm and its variants in Tsamardinos et al (2003) , the Max-Min
Parents and Children Markov Blanket (MMPC/MB) algorithm in Tsamardinos et al (2006), the
HITON-PC/MB algorithm in Aliferis et al (2003), the Fast-IAMB algorithm in Yaramakala and Margaritis
(2005), the Parent-Children Markov Blanket (PCMB) algorithm in Peña et al (2007) and the Iter-
ative Parent and Children Markov Blanket (IPC-MB) in Fu and Desmarais (2008). A summary of
the most important aspects of such algorithms is shown in Table 2, reproduced from the conclusions
of a recent review of Markov blanket based feature selection written by Fu and Desmarais (2010).

For learning the Markov networks structure, independence-based algorithms arose later in 2006,
when Bromberg et al (2006, 2009) published the Grow-Shrink Markov Network (GSMN) algo-
rithm and the Grow-Shrink Inference-based Markov Network (GSIMN) algorithm. Then, other
independence-based algorithms appeared for Markov networks structure learning, such as the Parti-
cle Filter Markov Network (PFMN) algorithm in Bromberg and Margaritis (2007); Margaritis and Bromberg
(2009), and the Dynamic Grow Shrink Inference-based Markov Network (DGSIMN) algorithm in
Gandhi et al (2008). Another approach is proposed in Bromberg (2007); Bromberg and Margaritis
(2009), as a framework based on argumentation for improving reliability of tests. In Section 4, all
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Table 2 Summary of Markov blanket learning algorithms for Bayesian networks.

Name Reference Comments

KS Koller and Sahami
(1996)

– Not Sound
– The first one of this type
– Requires specifying MB size in advance

GS Margaritis and Thrun
(2000)

– Sound in theory
– Proposed to learn Bayesian network via the induction

of neighbors of each variable
– First proved such kind of algorithm
– Works in two phases: grow and shrink

IAMB and
its variants

Tsamardinos et al
(2003)

– Sound in theory
– Actually variant of GS
– Simple to implement
– Time efficient
– Very poor on data efficiency
– IAMB’s variants achieve better performance on data

efficiency than IAMB

HITON-
PC/MB

Aliferis et al (2003)

– Not sound
– Another trial to make use of the topology

information to enhance data efficiency
– Data efficiency comparable to IAMB
– Much slower compared to IAMB

Fast-IAMB Yaramakala and Margaritis
(2005)

– Sound in theory
– No fundamental difference as compared to IAMB
– Adds candidates more greedily to speed up the learning
– Still poor on data efficiency performance

MMPC/MB Tsamardinos et al
(2006)

– Not sound
– The first to make use of the underling topology information
– Much more data efficient compared to IAMB
– Much slower compared to IAMB

PCMB Peña et al (2007)

– Sound in theory
– Data efficient by making use of topology information
– Poor on time efficiency
– Distinguish spouses from parents/children
– Distinguish some children from parents/children

IPC-MB Fu and Desmarais
(2008)

– Sound in theory
– Most data efficient compared with previous algorithms
– Much faster than PCMB on computing
– Distinguish spouses from parents/children
– Distinguish some children from parents/children
– Best trade-off among this family of algorithms

these independence-based algorithms for learning the structure of Markov networks are surveyed in
detail.

There are several advantages of independence-based algorithms. First, they can learn the struc-
ture without interleaving the expensive task of parameters estimation (contrary to score-based
algorithms, as explained before), reaching sometimes polynomial complexities in the number of
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statistical tests performed. If the complete model is required, the parameters can be estimated
only once for the given structure. Another important advantage of such algorithms is that they are
sound, that is, when statistical tests outcomes are correct, the structure found correctly represents
the underlying distribution. However, they are correct under the following assumptions:

– the distribution of data is a graph-isomorph
– the underlying distribution is strictly positive
– the outcomes of tests are reliable

The third condition for soundness is an important problem of independence-based algorithms.
When the dataset used for learning is not sufficiently large, or it is not a representative sampling
of the underlying distribution, the outcomes of tests are incorrect, and the structures learned are
deemed unreliable. This problem of statistical tests unreliability is exponentially exacerbated with
the number of variables involved (for some fixed size of dataset). For good quality, statistical tests
require enough counts in their contingency tables, and there are an exponentially number of those
(one per value assignment of all variables in the test). For example, Cochran (1954) recommends
that the χ2 test must be deemed unreliable when more than 20% of these cells have an expected
count of less than 5 data points.

Another disadvantage of independence-based algorithms is that there is no guarantee about the
quality of the complete model obtained by learning the structure first, and then fitting parameters
for such learned structure. This is an approximation, and there are no experimental results published
in the literature about independence-based methods for learning complete models.

4 Independence-based algorithms for learning the Markov networks structure

This section reviews the independence-based structure learning algorithms for Markov networks that
have appeared in the literature. The review on this section covers a series of published algorithms
that tackle such problem.

4.1 The Grow-Shrink Markov Network algorithm

The Grow-Shrink Markov Network (GSMN) algorithm was introduced in Bromberg et al (2006,
2009), as the first independence-based structure learning algorithm for Markov networks in the liter-
ature. This algorithm is an adaptation to Markov networks of the GS algorithm of Margaritis and Thrun
(2000) for learning the Markov blanket.

The GSMN algorithm learns the global structure of a Markov network following the simple
outline of local-to-global algorithms showed in Algorithm 1, and using the GS algorithm outlined
in Algorithm 2 for discovering the Markov blanket of the variables. GS maintains a set called S

(initialized empty in line 1) that contains the Markov blanket of the input variable X when the
algorithm terminates. First, in line 2, GS performs an initialization phase that sorts by increasing
association with X the rest of the variables of the domain V , using an unconditional test between
X and every variable Y ∈ V − {X}. Then, the algorithm proceeds in two stages, the grow and
shrink phases, using such ordering. During the grow phase (line 4) the algorithm increases the set S
with every variable Y that is found dependent on X conditioning on the current state of S. By the
end of this phase, the set S contains all members of the Markov blanket, but potentially includes
some false positives that are non-members. These false positives are removed during the shrink
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Algorithm 2 GS(X,V).

1: S←− ∅.
2: sort V − {X} by increasing association with X

3: /* Grow phase */
4: while ∃Y ∈ V − {X} s.t. (Y 6⊥⊥X| S), do S← S ∪ {Y }.

5: /* Shrink phase */
6: while ∃Y ∈ S s.t. (Y⊥⊥X| S− {Y }), do S← S− {Y }.
7: return S

phase (line 6), where variables found independent of X conditioning on the set S are removed from
S.

The main advantages of GSMN are i) it is sound, and ii) it is efficient. The soundness of GSMN
is proven theoretically by its authors, guaranteeing that a correct independence structure is found
when statistical tests are reliable. This algorithm is efficient because it is polynomial in the number
of independence tests for discovering the structure, each test requiring a polynomial time execution
with respect to the variables involved in the test, and the size of the input dataset. A disadvantage of
using GS is that unreliable statistical tests produce cascade errors, not only with incorrect outcomes,
but that also generate next incorrect tests during grow and shrink phases, producing cumulatively
errors, as stated in Spirtes et al (2000).

Two other important algorithms for learning the Markov blanket of a variable, for Bayesian
networks, are the Incremental Association Markov Blanket (IAMB) algorithm in Tsamardinos et al
(2003), and the HITON algorithm in Aliferis et al (2003). Both algorithms have been proven em-
pirically to be more resilient than GS to the errors of statistical tests, by introducing two simple
variants. On the one hand, the IAMB algorithm only introduce a modification by interleaving the
initialization step of ordering in the grow phase (i.e., interleaves lines 2 and 4 of Algorithm 2).
By interleaving the sorting step in the grow phase, IAMB maximizes the accuracy, reducing the
number of false positives in the grow phase. On the other hand, the HITON algorithm aims to
reduce the data requirements of IAMB, by introducing an additional modification in the criteria
used for testing independence. In both grow and shrink phases, instead of only conditioning on
its tentative Markov blanket S, HITON tests independence conditioning in any of the subsets of
S (that is, every set Z ⊆ S − {Y }). As statistical tests are more reliable while containing fewer
variables, such modification exploits the Strong union axiom of Pearl, for improving the quality of
independence tests when data is scarce. A disadvantage of the approach proposed by HITON is its
exponential cost in | S | (i.e., the size of S) , but in general | S | is comparatively smaller than the
size of the domain n. In summary, both algorithms are proven to be better in quality than GS, but
they were designed for learning the structure of Bayesian networks, and there are not any works in
the literature proposing a theoretical adaptation of such ideas for learning the complete structure
of a Markov network, or empirically evaluating its performance.

4.2 The Grow Shrink Inference Markov Network algorithm

The Grow Shrink Inference Markov Network (GSIMN) algorithm was presented in Bromberg et al
(2006, 2009). This algorithm works in a similar fashion to that of GSMN algorithm, using the
local-to-global strategy of Algorithm 1, and learning the Markov blanket of all the variables with
the GS algorithm, but interleaving an inference step to reduce the number of tests required to learn
the Markov blanket. By using a theorem for inference called the Triangle theorem by the authors,
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GSIMN reduces the number of tests performed on data, without adversely affecting the quality of
the learned structures. It may be useful when using large datasets, or in distributed domains, where
statistical tests are very expensive.

GSIMN introduces the Triangle theorem, based on the Pearl’s axioms showed in Section 2.1.1.
This is a sound theorem for allowing to infer unknown independences from those known so far.

Theorem 1 (Triangle theorem) Given Eqs. (4), for every variable X, Y , W and sets Z1 and
Z2 such that {X,Y,W} ∩ Z1 = {X,Y,W} ∩ Z2 = ∅,

(X 6⊥⊥W |Z1) ∧ (W 6⊥⊥Y |Z2) =⇒ (X 6⊥⊥Y |Z1 ∩ Z2)

(X⊥⊥W |Z1) ∧ (W 6⊥⊥Y |Z1 ∪ Z2) =⇒ (X⊥⊥Y |Z1).

The first relation is called the “D-triangle rule” and the second the “I-triangle rule.”

When GSIMN tests some independence on data, first applies the Triangle theorem to the tests
already done on data, in order to check if such independence assertion can be logically inferred. If
the test cannot be inferred, then this is done on data, and stored. For convenience, the algorithm
determines the visit ordering (the order for local learning) in an attempt to maximize the use of
inferences. The results obtained with GSIMN show savings up to a 40% in the running times of
GSMN, obtaining comparable qualities.

4.3 Particle Filter Markov networks algorithm

The Particle Filter Markov networks algorithm (PFMN) is presented in Bromberg and Margaritis
(2007); Margaritis and Bromberg (2009), as a novel independence-based approach for learning
Markov network structures. Previous independence-based algorithms reviewed, such as the GSMN
and GSIMN, use the local-to-global strategy. Instead, this algorithm learns directly a global struc-
ture as the solution.

PFMN was designed for improving the efficiency of the GSIMN algorithm. This algorithm works
performing statistical independence tests iteratively, by selecting greedily at each iteration the
statistical test that eliminates the major number of inconsistent structures. This decision is taken
by first modeling the learning problem with a Bayesian approach, selecting as the solution the
structure G that maximizes its posterior probability Pr(G | D). Since the direct computation of
such probability is intractable, PFMN propose a generative model with independence tests which is
an approximation to that posterior probability. With this model, it is possible to compute efficiently
such probability, given the information over a set of independences. Moreover, the authors claim
that it is possible to demonstrate that, under the assumption of correctness of tests, the distribution
of Pr(G | D) converges to a correct structure.

This approach is useful in domains where independence tests are expensive, such as cases of
very large data sets or in distributed domains. Results obtained by PFMN show improvements in
running times up to 90% with respect to GSIMN, and comparable qualities on structures found by
GSIMN and GSMN.

4.4 The Dynamic Grow Shrink Inference-based Markov Network algorithm

The Dynamic Grow Shrink Inference-based Markov Network (DGSIMN) algorithm was presented
in Gandhi et al (2008). This is an extension of the GSIMN algorithm which, in the same way than
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GSIMN, uses the Triangle theorem for avoiding unnecessary tests. The outline of DGSIMN is similar
to GSMN and GSIMN, using the local-to-global strategy of Algorithm 1, and the GS algorithm
showed in Algorithm 2 for learning the Markov blanket of the variables, but interleaving a different
inference step than GSIMN for reducing the number of tests performed.

DGSIMN improves the GSIMN algorithm by dynamically selecting the locally optimal test
that will increase the state of knowledge about the structure, estimating the number of inferred
independences that will be obtained after executing a test, and selecting the one that maximizes
such number of inferences. This helps decreasing the number of tests required to be evaluated on
data, resulting in an overall decrease in the computational requirements of the algorithm.

The results of experiments with the DGSIMN algorithm shows that it improves the fixed ordering
of variables in the Markov blanket learning subroutine, improving the running times of GSIMN up
to 85%, obtaining comparable qualities to GSMN.

4.5 Argumentation for improving reliability

Algorithms presented in previous sections are independence-based algorithms that focus on improv-
ing the efficiency, ignoring the important problems in the quality of learned structures that arises
when statistical tests are not reliable, due to data scarceness.

An independence-based approach for dealing with unreliable tests was presented in Bromberg
(2007); Bromberg and Margaritis (2009), by modeling the problem of low reliability of independence
tests as a knowledge base with independence assertions that may contain errors due to incorrect
statistical tests performed, and the Pearl’s axioms (directed or undirected axioms, depending on
the target model to learn). The advantage of this approach is its power for correcting errors of tests
by exploiting logically the independence axioms of Pearl. When exist independence assertions in
the knowledge base that are in conflict, it is clear that some independence assertions are incorrect,
and this approach proposes to resolve such conflicts through the argumentation framework, which
is a defeasible logic proposed by Amgoud and Cayrol (2002), to reason about and correct errors.

This approach was presented as a more robust conditional independence test called the argumen-
tative independence test, for learning both Bayesian and Markov networks. Experimental evaluation
shows significant improvements in the accuracy of the argumentative independence test over other
simple statistical tests (up to 13%), and improvements on the accuracy of Blanket discovery algo-
rithms such as PC and GS (up to 20%).

A disadvantage with this approach is that, as it is a propositional formalism, it requires to
propositionalizing the set of rules of Pearl, which are first-order. As these are rules for super-sets
and sub-sets of variables, its propositionalization involves an exponential number of propositions,
and then, the exact argumentative algorithm proposed is exponential. In this work, an approximate
solution is presented with polynomial running time, still improving the quality in the experimental
evaluation (up to 9%), but making a drastic and rather simplistic approximation that does not
provide theoretical guarantees.

5 Analysis and open problems

This section analyzes the independence-based algorithms surveyed, discussing their relative advan-
tages and disadvantages, and describes a series of open problems where future works may produce
some advances in the area.
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5.1 Analysis

The independence-based algorithms for learning Markov networks are able to learn the indepen-
dence structure efficiently, having the important advantage of being sound (i.e., they guarantee to
produce the true underlying distribution) when data is a sample of a Markov network, tests are re-
liable, and the underlying distribution is strictly positive. These algorithms perform a succession of
statistical independence tests to learn about the conditional independences present in the data, and
assume that those independences are satisfied in the underlying model. The structure is learned by
querying independences on data greedily, discarding all the structures that are inconsistent, until a
single structure is left. An important source of errors in some of this algorithms is the cascade errors
produced by erroneous statistical tests, that produces cumulatively errors. About their complexity,
some of them can learn the structure by performing a polynomial number of tests in the number
of variables n of the domain. This fact, together with the evidence that statistical tests may run
in a time proportional to the number of rows in the input dataset D, result in some algorithms,
e.g., GSMN, having a total execution time polynomial in n and D. When compared to score-based
algorithms, they can learn the structure without the need of an interleaved estimation of the numer-
ical parameters of the model, which is the main source of intractability of score-based algorithms
for Markov networks. The strength of independence-based algorithms is that they can learn cor-
rectly the structure under assumptions. However, there is no equivalent theoretical guarantee for
the correctness of the complete model resulting from learning the parameters for that structure.

The independence-based algorithms present in the literature for learning the structure of a
Markov network are GSMN, GSIMN, PFMN, DGSIMN. Related to structure learning is the argu-
mentative independence test, an approach for improving the quality of conditional independences
discovery. Table 3 shows a summary of the most important features of those approaches. The GSMN
algorithm is a direct extension of the GS algorithm for Markov networks structure learning, which
requires a polynomial number of tests in the number of variables of the domain n. This algorithm is
presented together with the GSIMN algorithm, which improves the efficiency of GSMN by exploiting
Pearl’s independence axioms to infer unknown independences from the independences observed so
far, avoiding the need of performing redundant statistical tests. This is important when datasets are
large, or when datasets are present in distributed environments. The results obtained for GSIMN
show savings up to a 40% in running times, obtaining comparable qualities to GSMN. The PFMN
algorithm was designed for improving the efficiency of GSIMN. This algorithm does not work in a
local-to-global fashion. Instead it uses a model for efficiently computing the approximate posterior
probability of structures Pr(G | D). The results obtained by PFMN show improvements in running
times up to 90% with respect to GSIMN, with equivalent quality of learned structures. Similarly,
the DGSIMN algorithm was designed for improving the efficiency of GSIMN, by enhancing the fixed
ordering of variables in the Markov blanket learning subroutine by a dynamic ordering mechanism.
Experiments published for DGSIMN show improvements over the running times of GSIMN up to
85%, still maintaining the quality of GSMN.

The most important problem of independence-based algorithms for learning the structure of
Markov networks is the problem of quality when statistical independence tests are not reliable.
Such a problem is not tackled by either GSMN, GSIMN, DGSIMN or PFMN. The only approach
presented for improving the quality under uncertainty of tests outcomes is the argumentative in-
dependence test. Experimental results using this approach show significant improvements over the
accuracy of the standard independence tests, but exact algorithms presented, while improving
quality by 13% have an exponential cost, and the approximate algorithm proposed make a drastic
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Table 3 Summary of independence-based Markov network approaches

Name Reference Comments

GSMN Bromberg et al (2006)

– Sound, under assumptions
– The first independence-based algorithm for Markov networks
– Use the local-to-global strategy
– Performs a polynomial number of tests in the number

of variables of the domain n

– Quality depends on sample complexity of tests

GSIMN Bromberg et al (2006).

– Sound, under assumptions
– Use the local-to-global strategy
– Use Triangle theorem for reducing number of tests performed
– Useful when using large datasets, or distributed domains
– Savings up to 40% in running times respect to GSMN
– Comparable quality respect to GSMN

PFMN Bromberg and Margaritis
(2007)

– Sound, under assumptions
– Does not use the local-to-global strategy
– Designed for improving efficiency of GSIMN
– Use an approximate method for computing the

posterior Pr(G | D) using independence-tests
– Useful when using large datasets, or distributed domains
– Savings up to 90% in running times respect to GSIMN
– Comparable quality respect to GSMN

DGSIMN Gandhi et al (2008)

– Sound, under assumptions
– Use the local-to-global strategy
– Designed for improving efficiency of GSIMN
– Use dynamic ordering for reducing number of tests performed
– Useful when using large datasets, or distributed domains
– Savings up to 85% in running times respect to GSIMN
– Comparable quality respect to GSMN

Argumentative
test

Bromberg and Margaritis
(2009)

– First approach for quality improvement
– Use argumentation to correct errors when tests are unreliable
– Use an independence knowledge base. The inconsistencies

are used to detect errors in tests
– Designed for learning Bayesian and Markov networks.
– Exact algorithm presented is exponential

(improving accuracy up to 13%)
– Approximate algorithm proposed is simplistic, and does not

provide theoretical guarantees
(improving accuracy up to 9%)

approximation that does not provide theoretical guarantees, still producing quality improvements,
up to 9%.

In summary, the advantages of independence-based algorithms for learning Markov networks are
overshadowed by the low quality of learned structures when data is scarce, or equivalently, when
the underlying network is highly connected. This is why independence-based algorithms are not
currently implemented in practice for learning Markov networks. However, this approach presents
important advantages that motivate further work in this area. First, independence-based algorithms
are sound (under assumptions) and efficient. Second, data availability is growing increasingly with
time. Third, there are several promising open problems (enumerated in the next section) whose
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solutions are expected to result in improvements in the quality of structures produced by this
technology.

5.2 Open Problems

Following the analysis of last section, this section discusses a series of open problems that remain in
the area. All the listed problems focus on the quality and the efficiency of the independence-based
approach for learning Markov networks.

Open Problem 1 Avoiding cascade errors.
Most independence-based algorithms surveyed (GSMN, GSIMN, DGSIMN) learn the Markov
blanket of variables using the GS algorithm. Learning the structure by using GS can be seen as
a greedy search over the space of structures, where the outcomes of tests are used for discarding
all those structures that are inconsistent with the independence indicated by the test. Therefore,
an important source of errors in GS is the cascade errors produced by erroneous statistical tests,
that produces cumulatively errors.

Is it possible to tackle the cascade effect, taking into account that tests are not

always reliable?

Open Problem 2 Independence-based quality measures. The PFMN algorithm uses the
particle filter approach for optimizing the selection of tests to perform. It utilizes a generative
model that computes approximately the posterior probability Pr(G | D) of independence struc-
tures given the data. Interestingly, this posterior probability can be efficiently computed, and can
be used as a quality measure of candidate structures in an optimization method. This measure
of structures quality has the advantage of avoiding cascade errors by assigning probabilities to
structures. This is an unexplored area for learning the structure of Markov networks.

Is it possible to adapt the structure posterior computation of PFMN into an

efficient and sound score, by relaxing the approximation? Would the optimization

of such score improve the quality of the structures learned?

Open Problem 3 Speeding up independence-based algorithms. Learning the structure un-
der the independence-based approach requires in some cases the execution of a massive amount
of statistical independence tests on data. An intermediate step in the computation of indepen-
dence tests is the construction of contingency tables from the dataset, that record the frequency
distribution of the variables involved in the test, resulting in running times linear in the size of
the dataset.

Can the contingency tables of some test be reused in the construction of

contingency tables for other tests? How can an independence-based algorithm use

such a mechanism for minimizing the number of whole readings of the dataset?

Under what conditions would this mechanism generate gains in runtime

complexity?

Open Problem 4 Inconsistencies in local-to-global algorithms. Independence-based algo-
rithms using the local-to-global strategy (e.g., GSMN and variants) decompose the problem of
learning a complete independence structure with n variables into n independent Markov blanket
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learning problems. On a second step, these algorithms piece together all the learned Markov blan-
kets into a global structure using an “OR rule”. Insufficient data may result in incorrect learning
of Markov blankets, with conflicts in their decision on edge inclusion when, for two variables X

and Y , X is found to be in the blanket of Y , but Y is found not to be in the blanket of X. In
such cases, the “OR rule” always decides to add the edge, making mistakes when such edge does
not exist.

Is it possible to design more robust rules for solving inconsistencies between two

learned Markov blankets?

Open Problem 5 Comparing independence-based and score-based approaches. There
are several experimental comparisons currently lacking in the literature:
– There are no experimental results published comparing the sample complexity of both ap-

proaches.
– There are no experimental results published comparing quality of structures learned by both

approaches.
– There are no experimental results published comparing quality of complete models: i) those

models learned by score-based approach (interleaving structure search and parameters estima-
tion) versus ii) models learned by independence-based approach (learning the structure and
then fitting the parameters only once for such structure).

Are the independence-based algorithms valid as a practical alternative to

score-based algorithms for learning the structure, and for learning the complete

model?

Open Problem 6 Adapting recent Bayesian network ideas to Markov networks. The
first independence-based algorithm proposed is GSMN, an adaptation to Markov networks of
the GS algorithm. In the literature there are several recently proposed ideas for improving the
efficiency, quality and sample complexity of GS, as those discussed by the authors of IAMB.
MMPC/MB, HITON-PC/MB, Fast-IAMB, PCMB and IPC-MB algorithms (see Section 3.3.2,
for more details). However, all these interesting ideas are originally developed and tested for
learning the structure of Bayesian networks.

Can this research be adapted to the Markov networks structure learning problem,

to generate some improvements in the area?

Open Problem 7 Independence knowledge bases. The argumentative independence test im-
proves the accuracy of tests significantly when data is scarce. However, the exact algorithm
proposed by this approach runs in exponential time, because Pearl’s axioms are in first-order
logics, and knowledge bases in argumentation are propositional (as detailed in Section 4.5). The
approximate solution presented is polynomial in running time, still improving the quality, but
making a drastic and rather simplistic approximation that does not provide theoretical guaran-
tees.

Can the Pearl’s axioms be exploited in a more efficient manner, through a better

approximation, by an alternative formalism for reasoning under inconsistencies?

Open Problem 8 Relating independence assertions. Statistical tests are procedures that run
independently to each other, and they are used as a black box by independence-based algorithms.
Each test responds to a conditional independence query only using the input dataset. Thus, an
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implicit assumption made by all the independence-based algorithms is that all the independences
queried by the algorithm are mutually independent to each other given the dataset. This assump-
tion is only true when data is sufficiently large for the test to determine the true underlying
independence, because in this case, information from other tests is irrelevant. However, when
data is not sufficient for correctly determining the independence, tests may become dependent
given the data, i.e., information from other tests may be useful for determining the value of a
test, and avoiding errors. An example shown in the literature for correcting errors when data
is insufficient is the argumentative independence test, that relates statistical tests through the
Pearl’s axioms, as additional information for improving the quality of tests when data is not
sufficient.

Besides Pearl’s axioms, are there other dependence relations governing

independence assertions? As in the case of Pearl’s axioms, can these relations be

used as additional information for improving the quality of independence-based

algorithms?

6 Conclusions

The present work discussed the most relevant technical aspects in the problem of learning the
Markov network structure from data, stressing on independence-based algorithms. Summarizing the
analysis of such technology, the advantages of independence-based algorithms for learning Markov
networks are overshadowed by the low quality of learned structures when data is scarce, or equiva-
lently, when the underlying network is highly connected. However, this approach presents important
advantages that motivate further work in this area. First, independence-based algorithms are sound
under assumptions, and efficient. Second, data availability is growing increasingly with time. There-
fore, it is expected that the solutions of the open problems posed in this work result in improvements
in the quality of structures produced by this technology.
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