Artif Intell Rev @ CrossMark
DOI 10.1007/s10462-016-9521-7

A metamodeling approach for the identification of
organizational smells in multi-agent systems: application
to ASPECS

Pedro Araujo! - Sebastian Rodriguez! -
Vincent Hilaire?

© Springer Science+Business Media Dordrecht 2016

Abstract Software Quality is one of the most important subjects in the Process Development
Software, especially in large and complex systems. Much effort has been devoted to the
development of techniques and concepts to improve software quality over the years. We are
especially interested on smells, which represent anomalies or flaws in the design/code that
can have serious consequences in maintenance or future development of the systems. These
techniques have a strong development in the Object Oriented paradigm, however, very few
studies were conducted in the agent oriented paradigm. In this paper we focus on the detection
of design smells applied to multi-agent systems models based on the organizational approach,
named Organizational Design Smells (ODS). Early and automatic detection of these ODS
allows reducing the costs and development times, while increasing the final product’s quality.
To achieve this objective, validation rules were defined based in the EVL language. The
approach is illustrated with two examples, their validation rules, and the refactoring solutions
proposed.

Keywords Agent Oriented Software Engineering - Design smells - Validation rules -
Organization approach

B Pedro Araujo
pedro.araujo @gitia.org

Sebastidn Rodriguez
sebastian.rodriguez @gitia.org

Vincent Hilaire
vincent.hilaire @utbm.fr

GITIA, Universidad Tecnolégica Nacional - Facultad Regional Tucumadn, Rivadavia 1050,
San Miguel de Tucumdn, Tucumén, Argentina

2 IRTES-SeT, Université de Technologie Belfort-Montbéliard, Rue Ernest Thierry-Mieg,
90010 Belfort cedex, France

Published online: 20 October 2016 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-016-9521-7&domain=pdf

P. Araujo et al.

1 Introduction

As stated in Cossentino et al. (2014), “Designing a multi-agent system (MAS) is not an
easy task: creating agents, environments, norms, organizations, and making them cooper-
ate in order to solve a collective task is both an art and a science”. Indeed, the underlying
features of MAS, namely openness, autonomy, reactivity, interactions with other agents and
pro-activity, give way to the absence of centralized control on the whole system. This issue
has given birth to the prolific field of Agent Oriented Software Engineering (AOSE). There
were many contributions of AOSE to the analysis and design of MAS problems. Among
these contributions, one can cite definitions of specific MAS concepts, methodologies and
software tools that support analysis and design called Computer Assisted Software Engi-
neering (CASE) in classical Software Engineering. The idea underlying these tools is to
support the analyst/designer by providing automatic or semi-automatic services during the
analysis/design phases. The contribution of this paper consists in defining an approach and a
software tool for the identification of the so-called smells within MAS analysis and design.

Among the AOSE community research works, many efforts have been done in order to
propose concepts and methodology for MAS engineering. Among these methodologies, one
can cite, ADELFE (Picard and Gleizes 2004), ASPECS (Cossentino et al. 2010), Ingenias
(Pavon and Gémez-Sanz 2003), GAIA (Zambonelli et al. 2003), ROMAS (Garcia et al.
2015), O-MaSE (DeLoach and Garcia-Ojeda 2010), PASSI (Cossentino and Potts 2002),
Prometheus (Padgham and Winikoff 2003), ROADMAP (Juan et al. 2002) and TROPOS
(Bresciani et al. 2004). As a result of a standardization effort, these methodologies are based
on different metamodels, and each one of these metamodels lists its corresponding concepts
and their relationships. One of the advantages of a metamodeling approach is that it allows
using the numerous results from the Model Driven Engineering field.

The approach proposed in this paper is based on Model Driven techniques for a specific
methodology, namely ASPECS (Cossentino et al. 2010). We use a companion CASE tool,
named Janeiro Studio (Araujo and Rodriguez 2013), which was conceived as multiplatform,
free distributed, and open-source, and that aims at supporting analysts and designers using
ASPECS. It is an EMF-Based tool that offers a modeling framework and a validation module
and which is implemented using different Eclipse frameworks such as: (i) RCP (McAffer
et al. 2010), to be used in a wide range of end-user applications facilitating the development
of these through the intensive use of components’ reusing; (ii) EMF (Budinsky et al. 2003),
that allows defining a model of structured data called Ecore; and finally (iii) GMF,! used
to build editors that allow manipulating the instances of Ecore (or part of them). That is, it
permits defining the graphic metaphor of each of the concepts defined in a metamodel.

Janeiro Studio provides two kinds of support. Firstly, it eases the graphical representation
of the diagrams defined by the ASPECS notation and used within ASPECS activities. The idea
is to help the modeler to produce syntactically correct diagrams with respect to the restrictions
defined by ASPECS. Model Driven techniques allow the deployment of graphical editors,
and the manipulation and transformation facilities due to the use of model elements as first
class entities.

Secondly, Janeiro Studio provides guidance and advice concerning the produced diagrams.
Indeed, even if a diagram is syntactically correct, the analyst/designer cannot be sure of its
inherent quality, for example, in terms of coherence, efficiency, robustness, among others.
The presented approach for this second point is inspired by the works that took place some
decades ago for the object-oriented paradigm in order to ease project development and quality

1 Graphical Modeling Framework, http://www.eclipse.org/modeling/gmp.

@ Springer

http://www.eclipse.org/modeling/gmp

A metamodeling approach for the identification...

management. Different techniques and concepts have been proposed to tackle these issues.
Among them, we find design patterns, micro-patterns, design and codification standards,
good practices, and finally code smells. All the techniques mentioned above are widely used
for the object-oriented paradigm. However, if someone is interested in agents and multi-agent
systems, these techniques and their tools cannot be reused directly since MAS are built on
different abstractions and technologies. So, it is imperative to refine or re-define many of
these techniques for MAS development.

The starting point of the presented work is the ASPECS metamodel, named CRIO
(Rodriguez et al. 2007), and more specifically the part that concerns the analysis in terms of
organizational concepts. The contribution of this work is twofold. On the one hand, based on
the ASPECS metamodel an EMF model is proposed, which is the main core of Janeiro. The
goal of the latter metamodel is to enable the use of the Eclipse modeling suite that allows
deploying graphical editors and manipulating operations on ASPECS models. On the other
hand, models’ instances of this metamodel are studied to define, with the help of the EVL2
language, rules that detect potential situations that lead to organizational smells.

This paper is structured as follows: Section 2 introduces the concept of smell, the model
driven engineering background used in the rest of the paper and the organizational approach
(CRIO) used for this paper; Sect. 3 defines the corresponding metamodels; In Sect. 4 the
proposed assistance approach is detailed; Sect. 5 illustrates the previously described approach
with examples; Sect. 6 presents some related works; and Sect. 7 presents lines of future works
and the conclusions.

2 Background
2.1 Smells

Generally speaking, a smell represents a potential problem in the system under study. The
implementation level (or code smell) has traditionally taken a great deal of attention. However,
what we propose is to abstract the concept or principles and use them at the analysis and
design stages. Indeed, many code smells are inherited from design issues (Khomh et al. 2009;
Moha et al. 2010). In this sense, a design smell represents a poor or bad design that does not
fulfill the standards and/or good practices of the field.

Code Smells were firstly introduced by Fowler et al. (1999). The authors presented a list of
22 low-level code smells with a description about how to identify them. This novel technique
was widely accepted by the software industry and it was object of further research in the
years that followed.

A code smell indicates a poor codification structure or a bad design that does not fulfill
the modeling or codification standards and that can have negative impacts in the future,
particularly in the maintainability stage. One of such impacts causes a slow and ineffective
development environment thus increasing the effort and the costs to add new functionalities
or make a corrective maintenance. In addition to this, the identification of several code smells
could be an indicator of the need to start a refactoring process. Refactoring means to introduce
modifications in the internal structure without altering the behavior exhibited by the system,
making it easier to understand and extend (Fowler et al. 1999).

God Class and Feature envy are two classical smells defined by Fowler and Beck. The
first term “refers to those classes that tend to centralize the intelligence of the system. An

2 Epsilon Validation Language, www.eclipse.org/epsilon/doc/evl/.

@ Springer

www.eclipse.org/epsilon/doc/evl/

P. Araujo et al.

instance of a God Class performs most of the work, delegating only minor details to a set of
trivial classes and using the data from other classes” (Lanza and Marinescu 2006). This type
of smells tend to be very large blocks of code with a high degree of responsibilities in the
system, which may make the system more difficult to understand and maintain.

The Feature Envy term is to indicate if we are in the presence of a method in a class that
uses primarily data and methods from another class to perform its work. This is due to either
a lack of a clear separation of concerns or to an abstraction fault.

The mentioned smells can be related to the design of the system itself. Therefore, it would
be better to detect them at the early stages of the software process. It is important to mention
that not all code smells can be derived from design smells. However, we propose to tackle
those that are related to analysis and design earlier in the process.

There are two main types of techniques that can be used to detect code smells:

e In the first one proposed by Fagan (1976), the verification of the code is performed
manually by a process called code inspection. This process carries issues related to
planning, measurement, functions control, etc. People in charge of this task must be
meticulous and able to spend hours at the computer reading the code line by line in
search for defects. Besides this, they must have thorough knowledge of the norms and
their flexibility to adapt to different aspects of the projects. The process involves certain
difficulties as it is error-prone, time-expensive, non-repeatable and non-scalable (Mantyla
et al. 2004).

e The second one is based on automatic tools (Carneiro et al. 2010) and is the most used one
nowadays. It consists on formalizing each smell in semi-formal or formal rules using a
validation language. Generally, automatic tools are modules or extensions of applications
that not only allow managing the rules, but also allow automatically executing a list of
rules on the models in a sequential manner. As (Emden and Moonen 2002) points out,
this process is not error-free since the list of rules that must be applied to the system of
interest is never complete. Every new project requires a new set of rules. Besides, the
definition of code smells is a subjective process based on the expertise and opinions of
the developers involved.

2.2 Validation language

While defining smells for agent design is a significant step forward, our intention is to provide
the means to automatically detect these issues during the process of design. To this end, a
language should be used to continuously apply the validations rules and notify the designer
of possible problems.

The language selected to validate models is the Epsilon Validation Language (EVL from
now on) (Rose et al. 2008). We chose EVL instead of OCL (Object Constraint Language)
(OCL 2012), which is the facto and most used language for model validation, since it has
several practical advantages, some of which are:

e It allows defining constraints that can be dependent on other ones defined by users.

e It supports statements sequence. Thus, it permits a decomposition of complex queries
into simpler ones, which promotes the modularization increasing readability and main-
tainability.

e It provides programming constructs (while and for loops, statement sequencing, variables
etc.) as well as support for handy first-order logic OCL functions (select, reject, collect
etc.).

e It provides support for user interaction.

@ Springer

A metamodeling approach for the identification...

e [t allows creating and calling methods of Java objects.
e It supports the users’ input and output operations.
e It enables to dynamically repair the inconsistencies found.

Besides the ones already mentioned, there are three mechanisms we consider of paramount
importance for our work and which were determining factors in our preference for this
language. The first deals with the possibility of personalizing the messages when an invariant
was not satisfied, and it is a most significant characteristic since the feedback to the users
in OCL is limited to show only the name of the invariant. Another important characteristic
is that it allows the differentiation of feedback types. Two types are possible. The first is
Error; which, as OCL, indicates an invariant violation stopping the validation’s execution
and indicating that this critical problem has to be immediately tackled. This is, according to
us, a rather extreme characteristic for the purpose of our work. Yet, in EVL there is another
type of feedback, Warning, which allows continuing with the system validation’s execution
despite the fact that the constraint is no longer true. We use this mechanism simply to send
warnings that there is a problem in Janeiro’s diagrams, thus letting the designer choose
whether to solve it or not.

Third, as we want to look for structural defects in the diagrams taking more than just one
perspective, EVL allows us to express inter-model restrictions through which rules that cover
multiple models can be defined.

Finally, the combination of EVL, EMF Models, and the Eclipse RCP framework pro-
vide a high expressiveness which enables the designer to formulate additional properties
(validations) that cannot be expressed through the graphic notation.

2.3 Organizational metamodel

The organizational approach promotes a new way to deal with complex problems. This
approach consists in focusing on the organizational structure of a system-to-be. This orga-
nizational structure is defined in terms of abstract behaviors, positions, norms and abstract
interactions between these behaviors. These organizational structures allow decomposing a
system into smaller parts, offering several interaction contexts specific to a set of goals or
objectives the system has to fulfill.

As stated in Ferber et al. (2004), there are two levels: organizational and agent level. The
organizational or social level (called “what”), where the dynamic and structural aspects of a
MAS organization can be observed. This level describes the expected relation and the activity
pattern that should occur at the agent level. Furthermore, it is common to find concepts such as
roles, groups, communities, tasks, and interactions. The agent level (named “how”’) describes
the agent’s behavior. In other words, it details an agent’s internal architecture, its mental states,
describing beliefs, desires, intentions and goals, and if it is reactive or intentional.

Furthermore, adopting the organizational approach permits designers to deal with prob-
lems through two possible strategies: vertical and horizontal decompositions. The vertical
decomposition allows the behavior that represents the organization to be decomposed in a
set of sub-organizations of lower abstraction level. The horizontal one models the existing
interaction between the entities present at the same level of abstraction, which is necessary
to reach the required objectives.

Although different Organizational models have been proposed over the years, the present
work aims at providing a modeling approach that will assist MAS analysts while applying
the ASPECS Methodology, which was considered in Isern et al. (2011) to be one of the
methodologies with the best organizational structure support.

@ Springer

P. Araujo et al.

UML aLibrary::C i | l UML:: ibrary::Core::Abstracti ioralFeatur i e |
o1 " : + scenarii <<abstract>>
’ > |_Scenario
* 1.%
A provides partipants / _ Parfipants
Signal , - llumberOfRolePlalyers : MultiplityElement
- content : String 1.°¢ roles 1.4
Capacity Role
po— +!“d,,(|dm,y5|g,,d|§_ Signall*]) + obtainConditions : Conditions[+]

RoleType +ing :] . drequires 1 + leaveConditions : Conditions[*] |z behavioll <o e fos
Yp! + outputParameters : Parameters[+] + type : RoleType Behavior
1

+ BOUNDARY + preconditions : Conditions[*] + attributes : Property[+]
+ COMMON + postconditions : Conditions[+] + stimulli : Signal[+]
Interaction V.L‘ 1
| UML::InfrastructureLibrary::Core:Construcs::Relationship |<] Interaction | 1..* Protocol

{sequence of}

|UML::InfrastructureLibrary::Core::constructs::Expression |

Fig.1 CRIO metamodel

ASPECS uses the CRIO Metamodel as support for describing the systems model. There-
fore, this work is based on this metamodel for the analysis and validation of MAS Models.

Multiple methodologies for MAS have been proposed by the community over the years,
each one with its own advantages and features. Many of them have embraced an organizational
approach, like O-MaSE or ASPECS. We base this work on the ASPECS methodology. A
detailed description of this methodology can be found in Cossentino et al. (2010), and a
comparison of different methodologies can be found in Cossentino et al. (2014).

As mentioned before, ASPECS is based on the CRIO metamodel in order to define the
models of the system. Every activity of the methodology extends, transforms or generates
new elements expressed into the model of the system based on this metamodel. Therefore, a
validation approach should concentrate on defining it in a way that can be clearly interpreted
and analyzed by automated tools. CRIO is an extension of the UML metamodel. This choice
was made for two reasons. First, the initial notation proposed within ASPECS was based on
UML profiles. Second, the extension of the UML metamodel allows the reuse of existing
frameworks and tools developed within the Model Driven Engineering community.

In this section, we briefly introduce CRIO, whose name is an acronym formed by its four
principal concepts Capacity, Role, Interaction and Organization, see Fig. 1.

A Capacity is a description of a know-how/service. In other words, it is the specification
of a transformation of a part of the designed system or its environment. It is a high-level
abstraction that promotes reusability and modularity and in this sense can be considered as a
basic design component. In addition to this, a Capacity allows the definition of a role without
making assumptions on the architecture of the agent that may play it.

Role is an expected behavior (a set of role tasks ordered by a plan) and a set of rights
and obligations in the organization context. The goal of each Role is to contribute to the
fulfillment of (a part of) the requirements of the organization within which it is defined.
There are two types of roles: Common and Boundary roles. Common means that it is a role
located inside the designed system and interacting with either Common or Boundary roles.
Boundary represents a role located at the boundary between the system and its outside and
it is responsible for the interaction happening at this border.

Interaction is a dynamic, not a priori known sequence of events (a specification of some
occurrence that may potentially trigger effects on the system) exchanged among roles, or
between roles and entities outside the agent system to be designed.

@ Springer

A metamodeling approach for the identification...

<<organization>> "
Organizationl <<<:caa[;acci|£y;>
<<requpe>> B Y
A
<<capacity>> . <<role>> <<role>> |.---7 =
Capacityl <_<_<_r e RoleA RoleB
T ~<<reqfire>>
"~ <Y <<capacity>>
Capacity3
Organization Level
Agent Level
Agentl Agent2

Fig. 2 Simple organization example

Organization is defined by a collection of roles that take part in systematic institutionalized
patterns of interactions with other roles in a common context.

This metamodel design is composed of the graphical representations of all the differ-
ent components that this metamodel holds. The formalism used is strongly inspired by
the UML graphical notation. The organization is defined as a package stereotyped with
«organization>>. Just under this stereotype, a label corresponding to the name of this orga-
nization is also written. To be conceptually valid, an organization needs to contain at least
one role that interacts with itself; this means that the organization’s package needs to contain
a role that is linked with itself (source and target connected to that same role). A role is
represented by a class box with the «role>> stereotype, drawn inside an organization. The
type of the role is written under the stereotype in a label within chevron (<) and a label
corresponding to the name of the role is written under the type. A role that communicates
with another role (or itself) is linked with a UML association, assuming that the association
can be n-ary as defined in the UML Infrastructure Specification (uml 2011). Each association
is the graphical representation of a protocol, and the roles are the participants to this protocol.
Each end of a protocol association may specify the number of players who are involved in the
protocol for the connected role. In Fig. 2 we define an organization, namely Organizationl,
which has two roles. One of them named RoleA and the other RoleB. RoleA requires Capac-
ityl and RoleB requires both Capacity2 and Capacity3. Thus, in order to play, RoleA requires
an agent to have the capacity implementation Capacityl. In the same way, RoleB requires
both capacities implementations Capacity2 and Capacity3. A Capacity is also represented by
a class box with the «capacity>> stereotype and is drawn outside but near the organization
box. A label corresponding to the name of the Capacity is written under the stereotype. A
capacity may be linked to one or more role boxes inside the organization package. A role
that requires a capacity is linked to the graphical representation of that capacity (described
later) by a straight dashed arrow which has a sterotype «require>> on it.

3 EMF metamodeling of CRIO

Eclipse Modeling Framework (EMF) is an important part of a large family of projects called
Eclipse Modeling Project (EMP).3 It is a library that enables experts to build their own

3 Eclipse Modeling Project, www.eclipse.org/modeling/.

@ Springer

www.eclipse.org/modeling/

P. Araujo et al.

parameters
0.

£ Parameter

© name : EString .

© dataType : EString |
paramete

E Precondition
© name : EString

postconditions
[Postcondition 0--*
© name : EString

[Attribute
© name : EString
© dataType : EString 0--*

attributes

0..* preconditions

1.1
H Signal
© content : EString < RoleType
© name : EString El CRIOMetamodel - COMMON
— - BOUNDARY
capacities
0.4 0.4
rs signals o o organizations
e 1.4 contributesTo

B Capacity
© name : EString
& description : EString

o"’:"’id“ [Organization
- ©= name : EString
o description : EString

[1.1

require roles

participants
0.4
[Participant
= number : ElntegerObject

1.0
E Role
© name : EString
= description : EString
= type :RoleType roleParticipant 0..* | = upperbound : ElntegerObject
= obtainCondition : EObject 1.4
= leaveCondition : EObject

1..participantRole

Constrairt: {ordered}

contains

= lowerbound : ElntegerObject | protocolParticipant

contains

< ParameterType
= input

- output

- inputoutput

protocols

participantProtocol

1.1 |E Protocol
© name : EString

= description : EString
interactions

H interaction

1.1
behaviour © name : EString .
0.1 participantinstances onSignals
E Behaviour
transitions © name : EString callCapacityActions
0.4 :
0.4 [Participantinstance -1 "
abstractstate represents !
E Transition out 0.1 - = name : EString
— = stateCompartment 1.1 dest
= condition : EString £ Abstractstate = [StateCompartment 0.4
= action : Estring . 1A 0.2 0. 11 1A R orig
& event : EString
hasSomeState P - .
dest orig 1.1 _— £ OnSignal
= name : EString
| CallCapacityAction
] Initialstate [F] State & Finalstate

© name : EString

Fig. 3 CRIO metamodel adaptation using EMF

tools based on structural data metamodels named Ecore. An Ecore simplifies the definition
of a metamodel facilitating the required programming for the implementation of a Domain
Specific Modeling. Moreover, the use of EMF permits modeling hierarchies where a model
in a higher level is the metamodel of the model beneath it.

The concepts used in this framework are simpler than those defined by the Object Man-
agement Group (OMG).* This is due to the fact that the intention is to rapidly obtain an
executable code. The principal concepts are EPackage (Package), Eclass (Class), EDataType
(Data type), EEnum (Enumeration), and EObject (Object). There is also the possibility of
representing, through the concept of EReference, association and aggregation relations. In
Fig. 3, the adaptation of CRIO on EMF is shown. This metamodel is named problemMeta-
model. It is the metamodel for the graphical representation of the abstract elements of the
organizational approach. Based on this metamodel, three different views were created. The
first is the organizational view, which serves to capture the static and structural aspects of
the model. The other two, the interaction view and behavior view, represent the dynamic
aspects, like the interaction between roles as the defined behavior for each role. With these
three views and the metamodel one can support the three “classical” aspects present in MAS:
structural, interactional, and behavioral.

The remaining of this section will be devoted to explain each view, including their goals
and the metamodel elements that compose them.

3.1 Organization view

The main goal of the organizational view is to identify, for each requirement, a global behavior
embodied in an organization. With the organization, it is possible to capture the static and

4 Object Management Group, www.omg.org.

@ Springer

www.omg.org

A metamodeling approach for the identification...

structural aspects of the organizational approach. This view takes as input what has been
done in the Domain Requirements Description activity, which is defined as one of the steps
of ASPECS. From the analysis of the use cases and the ontology structure, the view can
identify a group of organizations, each of which is associated with at least one use case.

In our adaptation of the metamodel, CRIOMetamodel is the root element of the orga-
nization diagram. It contains Organization and Capacity. Organization has the following
attributes: (i) name, a must for every organization to have, and optionally (ii) a description,
which is a brief description of the purpose of the organization. Besides, the Organization
concept is composed by Role, Protocol, and Participant.

In Role, both name and description attributes have the same meaning as in Organiza-
tion. Apart from this, Role has an attribute of type RoleType, an enumeration that can be
either Common or Boundary, concepts which have already been mentioned. Furthermore,
the Role contains two additional concepts (obtainCondition and leave Condition) that will be
represented as sections in the graphical editor. For each role, it is possible to define several
Attributes (specifying name and datatype) and just one behavior, which will be explained
later in this article.

A Protocol describes how these roles are interacting by following a sequence of interac-
tions. The organization diagram illustrates these high-level interactions by drawing a circle
which represents an association between two or more roles. Participant is used to link role
and protocols and also permits to specify the number of roleplayers that can play the role.

The Capacity concept embraces the idea of the agent’s possibility of completing a task
or reaching a goal. In other words, it represents the competences or skills that an agent must
have in order to play the role. It was created to promote reusability and modularity. It is
composed by four elements, each of which represent a section in the graphical editor. In
the first place, Parameter represents the capacity’s input values necessary for the services
that implement the capacity. Secondly, Signal represents an event fired by the roleplayer
notifying the finalization of a task. These signals have a name and, possibly, a collection of
return values. Lastly, pre- and post- conditions are logical constraints defined for input and
output values, respectively.

3.2 Interaction view

The interaction view makes it possible to capture one of the dynamic aspects of the organi-
zational approach, particularly that of the interaction between roles. This view’s challenge is
to describe the information exchange sequence among roles involved in each scenario. These
scenarios are deduced from a group of textual descriptions: of the system’s scenario, of the
outputs of the organization’s identification activities, and of the roles and their interactions.

Back to our metamodel, it is important to mention the Protocol concept is the root element
of the Interaction view. The protocol itself is composed of Interaction, ParticipantInstance,
CallCapacityAction and onSignal. As regards Interaction, there must be at least one inter-
action between roles for each diagram. All interactions must have a name and two other
attributes. These attributes, orig and dest, represent respectively the source and target of the
current interaction. The Participantinstance concept represents the role in the interaction
view. It has two attributes. The first is name of the EString type. The second is the name
of the role it stands for in the organizational view, which is done through the concept of
represents shown in the metamodel. ParticipantInstance exists because no concept in the
metamodel, in this case Role, can be used in two different views, even if they have different
graphical metaphors in each diagram.

@ Springer

P. Araujo et al.

CallCapacityAction represents an asynchronous self-message. It has an attribute of the
Capacity type named contains and it is the role’s possibility to invoke and interact with its
player. The last concept, onSignal, represents an event fired by the roleplayer notifying the
finalization of a task. One of its attributes is contains of the Signal type. Both CallCapacity-
Action and onSignal represent the role’s self-messages. For this reason, there is a condition
that verifies that the source and target belong to the same role.

3.3 Behavior view

As it has been already mentioned, the role concept allows meeting the requirements of the
organization within which it is defined. It is for this reason that the behavior view allows
representing the dynamics of the instances. The role’s behavior is thus described in terms of
states and transitions.

All roles present in the model must have a behavior diagram attached to them. The authors
of the CRIO metamodel recommend the use of a state-transition diagram. As Fig. 3 shows,
the root element of the diagram is the Behavior concept, which consists of AbstractState
and Transition. The first concept is a generalization of the pseudo-states: Initial and Final as
of the regular states. The concept of StateCompartment, related with AbstractState, permits
the diagramming of nested states. That is, the view allows the designer to expand a state by
adding more details to depict complex states.

4 Modelling assistance approach

Nowadays, models validation is a mandatory characteristic in the process of software devel-
opment since it allows designers to verify that the model is conceptually valid. Two levels
of validation are possible: syntactically and semantically. The detection of these problems
force restructuring the system to improve it and this approach supports that decision. The
remainder of this section shows the mentioned levels.

4.1 Syntax validation

Syntax validation rules are critical to achieve the user model specifications at an early stage in
the software development process. This mechanism enables designers to tackle the problems
immediately.

Currently, Janeiro Studio provides a set of syntax validation rules. For example, there are
rules that establish that capacity, organization, protocol, and role concepts must have a name.
In the same way, other rules do not allow name duplication in concepts of the same type.
There are other defined rules, but due to space concerns, they are not presented in this article.
In fact, only two simple validation rules are presented as example.

The first one (Listing 1) detects the presence of at least one reference in all and each of
the capacities.

Listing 1 EVL Constraint for Isolated Capacity.

1| context Capacity {

2| constraint IsolatedCapacity {

3 check {

4 var capacityList : Set(Capacity);
5 for (r in Role.alllnstances) {

6 capacityList.addAll(r.require);
7 }

@ Springer

A metamodeling approach for the identification...

8 return capacityList.includes(self);

9 }

10 message : “All capacities must be referenced’
11 }

12}

The second one (Listing 2) detects duplicated parameters in the definition of the capacity
concept.

Listing 2 EVL Constraint for Duplicated Parameters.

1| context Capacity {

2| constraint HasADuplicatedParameter {

3 check {

4 var parameterList : Set(Parameter);

5 parameterList.addAll(self . parameters);

6 var duplicatedParameter : Boolean = false;

7 while ((not parameterList.isEmpty()) and duplicatedParameter = false) {

8 var parameter : Parameter = parameterList. first();

9 parameterList.remove(parameter);

10 if (parameterList—>exists(n | n.name = parameter.name and n.dataType = parameter.dataType)){
11 duplicatedParameter = true;

12 }

13 }

14 return not duplicatedParameter;

15 }

16 message : 'The Capacity
17 }

18] }

s

+ self.name + ’ has a duplicated parameter’

4.2 Semantic validation: organizational design smells

Smells theory for the object oriented paradigm has a wide variety of approaches including
the study of techniques for the detection of Fowler’s proposals, the identification of the
most recurring smell, the hardest smell to detect, the determination of the maintainability
techniques, the refactoring techniques and/or strategies, among others. However, we consider
that many of the works can be applied to the MAS paradigm (with certain redefinitions due to
the concepts underlying both paradigms) since most of them apply their proposed techniques
on the final product of a traditional process of software development, which is the system’s
code (or part of it). This conclusion arises after analyzing the most outstanding multi-agent
system frameworks in the literature, like JADE (Bellifemine et al. 2001), MadKit (Gutknecht
and Ferber 2000a, b), Jack (Busetta et al. 1999) or Janus (version 1.0) (Galland et al. 2010).
These are APIs that extend from an object oriented language, usually Java, and that do not
provide first-class abstractions at language level.

Besides our interest in the social/organizational approach and its advantages (presented
in Sect. 2.3), our work is focused on a particular type of systems: the complex systems. On
these, a large number of components are involved, which are mostly autonomous entities that
can interact between themselves to achieve global objectives. Because of this, it is not worth
considering using techniques and/or concepts of agile methodologies, in which person-to-
person communication is prioritized over generating the documentation associated with the
system. In other words, the complex systems reinforce the need to do a good modeling before
producing any code, so as to have a clearer understanding of the problem to be dealt with.
Considering that, in some cases, design smells are symptoms of code smells, we believe that
certain defects can be found in the analysis and design stages, thus avoiding transferring them
into the code.

@ Springer

P. Araujo et al.

In this work, we propose to analyze the organizational design of an agent-based system
to find structural and dynamic indicators of ill-designed parts of the system that we called
Organization Design Smells (ODS from now on). They may indicate poor or bad design
that does not fulfill the modeling standards or/and good practices. This situation can have a
negative impact in the future either in the maintainability stage or in the system’s execution
performance.

As Fowler and Beck’s code smells, ODS are intended to analyze the structure and relations
between different modeling concepts as independently as possible from the final goal (eg.
task distribution, memento, resource management, etc). Most organizational metamodels are
composed of four basic concepts, which are named differently according to the metamodel
in which they are used, but the initial idea is the same. Although, the notion of agent is
represented and used in all the metamodels, it will not be discussed here as we are focused
on the organization at dimension part. The basic concepts are:

e Organization/Group: The concept that represents any set of agents that interact among
each other towards an objective. They act in order to reach a specific goal that can be
global (common) or local (private). This concept is used under different names in several
metamodels, for example: Groups in AGR (Ferber et al. 2004); Society in SODA (Omicini
2000); Organizational Unitin VOM (Criado et al. 2010) and ROMAS (Garciaet al. 2015);
Organization in MOCA (Ferber and Gutknecht 1998), CRIO (Rodriguez et al. 2007),
GAIA (Zambonelli et al. 2003), O-MaSE (Garcia-Ojeda et al. 2008), MOISE+ (Hiibner
et al. 2002) and Ingenias (Pavén and Gémez-Sanz 2003).

e Role/Behavior: The abstract representation of a desired or expected behavior for a specific
agent. Itis named Role in CRIO, AGR, GAIA, VOM, O-MaSE, PASSI MMM, ROMAS,
Ingenias, SODA, MOISE+, and ELDA MMM (Fortino and Russo 2012), Behaviour in
ADELFE (Picard and Gleizes 2004).

e Interaction: It represents the communication mechanisms used by agents to share specific
information in order to achieve their goals. This information can be transmitted via
different forms: events, signals, structured messages, or ACL messages as defined in
FIPA. This concept is known as Interaction in ROMAS, SODA, and Ingenias; Event in
VOM and ELDA MMM,; Protocol in CRIO, GAIA, and O-MaSE; Communication in
PASSI MMM; Dependency in TROPOS; Role Interaction in MOISE+.

e Skill/capacity: The concept that embraces the idea of what an agent is capable to do or
what services it can provide, to complete a task or reach a goal. It can be found under
different names: Skills in ADELFE, Capacity in CRIO; Service in GAIA and PASSI
MMM,; Service Profile in VOM and ROMAS, Capability in O-MaSE and TROPOS.

Moreover, we propose the concepts, aspects, and/or characteristics of the model on which
designers must focus because these are where some indicators of the presence of problems
can be found. They should also evaluate the possibility of formalizing them as smells. A
subset of these smells can be grouped into building blocks and considered as a category of
ODS. We define four categories, namely Organization Smells, Interaction Smells, Behavior
Smells, and finally Skill Smells.

4.2.1 Organization smells
The organizational approach provides a way of decomposing a system into groups in which all
agents cooperate in order to achieve a goal/task. It also permits a description of the structure

and the interaction that takes place in MAS. Each organizational group constitutes a common
context, which may consist of shared knowledge, common language, social rules, etc.

@ Springer

A metamodeling approach for the identification...

An organization should have well-defined objectives. Yet, when defining an organization
it is possible to find flawed designs, which can lead to different problems:

e Multiple contexts. It can be observed that in the same organization there are several
contexts. In other words, the organization can be represented by different ontologies,
divergent communication mechanisms, etc. This means that, with a detailed analysis,
multiple organizations can be identified within a single one.

e Divergent/conflicting objectives. Roles that form an organization must focus on com-
mon or coherent objectives. Nonetheless, in some cases there are antagonistic objectives
whose presence can cause problems, making the introduction of modifications in the
organization a difficult task.

4.2.2 Interaction smells

In order to achieve a collective task in an organization, the interaction among agents is
mandatory. Although every member is free to interact with each other, there exists com-
munication patterns in the organization that represent the most frequent interactions among
the agents. These interactions are sequences of events or actions whose consequences affect
role’s behaviors. Also, the interactions’ context is provided by the organization.

The second category is Interaction Smells and it focuses on everything related to the
information exchanges among agents.

e Throughput issues: An organization that has a high message exchange among agents.

e Bottleneck: If the capability to process the messages an agent has is lower than the number
of messages it receives, it can lead to a bottleneck situation. This causes the other agents
to be blocked, waiting either for a service or to resend the message.

e Message complexity: An exceedingly large message can affect the performance of the
implementation.

4.2.3 Behavior smells

As we mentioned before, a role is an expected behavior whose objective is to help meet goals
of the organization to which it belongs. A role has a set of skills / capacities associated to it
that can be regarded as a notion of competence that an agent must have in order to play it. In
this category what we define as Behavior represents the problems associated to the definition
of the role’s behavior. In some cases, the behavior can be excessively complex turning the
role into an interactions centralizer which entails a high degree of interaction with the other
roles that conform the organization. To avoid this, complex behaviors must be fragmented
into simpler ones until reaching a role design with a unique function behavior.

4.2.4 Skills smells

The last category of this taxonomy is related to the skill, service or competence of the agents.
It can be seen in the modeling that some agents/roles have skills that are too complex or
too difficult to implement. We can also mention the misuse of the concept of skill as an
abstraction. By this we mean that there is a tendency to turn some functions into skills or to
inaccurately distinguish the skills associated to the agent from those linked with the abstract
behavior.

@ Springer

P. Araujo et al.

5 Examples

In the following, we present a list of nine smells with a brief description of each of them
(Araujo et al. 2015). These have been detected following some of the criteria defined in the
previous section, and are applied in multi-agent models based on the CRIO metamodel. They
were obtained from various studies of the models that arose from diverse projects and that
represent the most common mistakes made by designers.

Bureaucracy role: At times a role receives messages that are not used by it or by any of
its associated capacities. It then acts as a centralizer or hub that later distributes information
to its final recipients. This has a negative effect on the performance of the system, it not only
introduces an unnecessary latency, in which the message recipient has to wait for that unused
message, but also burdens the role with the responsibility of resending the message to the
appropriate addressee.

Promiscuous role: It describes arole that sends the same message to different roles without
using the broadcast communication type. That is, a role which knows all other roles in the
organization. This may lead to the emergence of complex behavior components (a statechart
plagued with functions for the sending of messages) and a costly and tedious implementation
of the system, as well as, a reduction in the role s performance. This last is due to the fact
that the role dedicates most of its processing to the sending of the message instead of doing
the tasks that were delegated to it within the organization.

Bottleneck situation: It describes a role that receives multiple messages from different
roles. This causes complex representations of both the receiver role’s behavior and the inter-
action diagrams between the receiver role and the sender’s, making both diagrams hard to
read. Besides, this smell could reduce overall system’s performance, because when a role
receives more messages than it can process, the messages queue could become too long
causing other roles’ blocking waiting for its services.

Blocked-role situation: It identifies a role with a capacity that needs different messages
from different roles. These messages must be present at the same time for the capacity’s
execution to avoid a possible block of the role.

Selfish-role behavior: It is a role that has a number of capacities that exceed a criterion
established by the software architect, for example by having a larger number of capacities
than the average per role. This leads to an overload in the representation of the behavior,
making it difficult to understand and extend. Besides this, the role can become a service
centralizer, making it necessary for most of the organization roles to communicate with it to
obtain any service. This could increase the requirements an agent must have in order to play
that role (all the capacities required by the role must be present in the agent). In other words,
this role acts as a Single Point of Failure, which means that if this part of the organization
fails, it will compromise the organization s objectives.

Different context: It can be observed that in the same organization there is not a unique
context, it may have different defined ontologies, different communication mechanisms, etc.
In other words, it is possible to detect subgroups with strong interactions among the roles
within them but little interaction among subgroups. It would be ideal to have organizations
with a unique context since it gives a clear separation of concerns.

Conflicting objective: Similar to Different Context yet with roles with antagonistic
objectives. Detecting these differences is important since in the organizational theory the
organizations are generally formed by roles that collaborate with each other to achieve goals
that are common to all. It is important to note that the mentioned objectives are not of the
agent and are not its subgroups, but the organization’s general objectives.

@ Springer

A metamodeling approach for the identification...

Table 1 Proposed ODS classification

Category Design smell

Organization smells Different Context, Conflicting Objective.

Interaction smells Bottleneck Situation, Blocked-Role Situation.

Behavior smells Bureaucracy Role, Promiscuous Role, Selfish-role Behavior.
Skills smells Capacity Abuse, Capacity Chain.

Capacity Abuse: The capacity may have different implementations associated to it. This
smell describes those capacities which have only one implementation since the problems
they solve have a single solution. There is a tendency of declaring any function or operation,
however simple, as a capacity. In the codification there are more lines for the calls to capacities
and signals than for the body of such operations.

Capacity chain: This smell tries to identify capacities that are related by their input, as
well as by the signals parameters. It is important to note that, in a model, there can be a set
of capacities making a chain, in which outputs of one are used as inputs in another. In this
situation, the set of capacities can be replaced by only one capacity where the inputs of the
first and the outputs of the last are the respective inputs and outputs of the new capacity. In
addition, another condition is that these capacities must not be required by any other role.
This smell is also related to Capacity Abuse in that capacities offering trivial services can
be replaced by a single capacity, saving code lines in the calls to capacities and signals. The
implementation is thus simplified avoiding an unnecessary modularization of the system.

Table 1 shows a proposed ODS classification, where each category clusters smells with
similar characteristics, based on the criteria defined in Sect. 4.2. This type of taxonomy is
useful to gain a better understanding of different ODS and the relationships between them, as
expressed by Mantyla in Mantyla et al. (2003). This proposed ODS classification is neither
exhaustive nor definitive, and it could be enhanced with new ODS or a new categories.

This section presents a set of simple examples to illustrate the proposed concepts. Due to
space concerns, the rest of this section focuses on only two smells (Selfish-Role Behavior and
Bottleneck Situation) and provides a validation rule and a possible solution for each example.

5.1 Selfish-role behavior example

This design smell describes how to identify a role in the model that has too many capacities
associated with it (as shown in Figs. 4 and 5), which could represent an anomaly in the model.
In some cases, this unnecessarily increases the complexity of the role’s behavior (modeled
as a statechart in CRIO), turning it into a services centralizer within the organization. For
the reason we mentioned above this causes that too many roles must communicate with it
to obtain any service. This could increase the requirements that an agent must have in order
to play that role (all the capacities required by the role must be present in the agent). In
other words, this role acts as a Single Point of Failure, which means that if this part of the
organization fails, it will compromise the organization’s objectives. Therefore an important
point is to detect when a role is a selfish-role. Based on our experience, we propose different
subjective criteria that are useful for detecting a selfish-role:

e Drawing an average calculation of the capacities associated with each role and then
considering as selfish-roles those that widely surpass this average.

@ Springer

P. Araujo et al.

<<capacity>>

Capacity1
Parameters
< msg1: MSG
<<Capacity>>
<<organization>> Capacity2
GenericOrg <<require>> Parameters
4 msg1:MSG
' y <<rEquire>;
<<role>> <<role>> .
<<COMMON>> <<protocol>> <<COMMONS>> <<capac.| y>>
RoleA 1.1 et RoleB <<fequire>> Capacity3
Attributes Attributes Parameters
. 4 msg2 : MSG
<<require>>)
<<require>> <<Capacity>>
Capacity4
P Parameters
<<Capacity>>
: 4 msg2 : MSG
Capacitys g
Parameters

4 msg2 : MSG
Fig. 4 Behavior smells: Selfish-Role requires an excessive amount of capacities

<<participant>> <<participant>>
roleA : RoleA roleB : RoleB

msg1:MSG

call(Capacity1, msg1)

call(Capacity2, msg1)
msg2:MSG

call(Capacity3, msg2)
call(Capacity4, msg2)

call(Capacitys, msg2)

Fig. 5 Behavior smells: Selfish-Role— interaction diagram

e Detecting a role that has capacities that can represent disjoint subsets. This conclusion
can be reached because there is no communication among disjoint capacities.
e Finding Capacities that require a lot of processing.

How to identify it?. Methodological steps.

Step 1. Determine the average number of role capacities. (Another criteria could be used).
Step 2. Consider as Selfish-role those roles that widely surpass the average.

@ Springer

A metamodeling approach for the identification...

Listing 3 EVL Constraint for Selfish-Role.

operation Organization numberOfRoles() : Integer {
return self.roles.size();

}

return self.require.size();

}

1
2
3
4
5| operation Role numberOfCapacities() : Integer {
6
7
8
9

operation Organization averageCapacitiesPerRole() : Real {

10 var nbCapacities : Real = 0.0;

11 for (role in self.roles) {

12 nbCapacities = nbCapacities + role.numberOfCapacities();
13 }

14 return nbCapacities / self.numberOfRoles();

16| }

18| operation CRIOMetamodel averageCapacitiesPerOrganization() : Real {

19 var average : Real = 0.0;

20 for (organization in self.organizations){

21 average = average + organization.averageCapacitiesPerRole();
22 }

23 return average / self.organizations.size();

24|}

26| context Role {

27 critique selfishRole {
28 check : self.require.size() < self.eContainer().eContainer().averageCapacitiesPerOrganization ()
29 message : "This role could potentially be a Selfish Role"

3}

Listing 3 shows the proposed validation rule that serves to detect the smells described
in the previous paragraph. This validation rule has four operations defined. The operations,
numberOfRole() (see in line 1) and numberOfCapacities() (line 5), both are quite similar.
The first one returns the total number of roles associated to an organization, meanwhile the
second one returns the total number of capacities associated to each role.

Line 9 begins the definition of averageCapacitiesPerRole() operation. The purpose of this
operation is to calculate for each organization the number of capacities per role. The for
block between lines 11 and 13 iterates through all the defined roles in the organization accu-
mulating them in the nbCapacities variable. Finally, the nbCapacities variable is averaged
with the number of roles calculated for that organization.

Line 18 begins with the definition of the averageCapacitiesPerOrganization() operation.
The main objective is to compute the average of capacities present in all the organizations
involved in the model.

In line 26 the rule’s general context is defined, in which, through the check function, it
is evaluated if the number of capacities related to each role is less than the average number
of capacities per role. For this operation, role instances uses eContainer() function, which
is provided by EMF framework and return the object’s parent element. In this line, two
chained eContainer() functions are used: first one retrieves the organization (whom the role
belongs), and the second one retrieves CRIO metamodel (organization’s parent element and
also metamodel’s root element).

The solution presented in Figs. 6,7 and 8 consists in forming subgroups identifying related
capacities and associating them to different roles. It would be ideal to have roles only with
related capacities. This proposal provides a simplification of role behaviors, it reduces the
complexity of the statechart representation, making it easier to read and understand. Besides,
in order to play a role, an agent requires fewer services or skills.

@ Springer

P. Araujo et al.

<<Capacity>>
Capacity1
Parameters
4 msg1: MSG

<<organization>> .
<<require>>

GenericOrg
<<role>>
<<protocol>> <<COMMON>>
Ui RoleB
1.1 Attributes
<<role>>
<<COMMON>>
RoleA
Attributes <<role>>
<<COMMON>>
<<protocol>>
g RoleB'
Attributes
i) 1.4

<<require>>

<<capacity>>
Capacity5s
Parameters
< msg2 : MSG

Fig. 6 Proposed solution for the Behavior Skill smell

<<participant>> <<participant>>
roleA : RoleA roleB : RoleB

msg1:MSG

<<Capacity>>
Capacity2
Parameters

<<require>> 4 msg1:MSG

<<Capacity>>
Capacity3
Parameters

<<require>> ¢ msg2:

<<capacity>>
Capacity4
<<require> Parameters
4 msg2 : MSG

call(Capacity1, msg1)

call(Capacity2, msg1)

Fig. 7 Protocol between RoleA and RoleB

How to fix it?. Refactoring steps.

Step 1. In the selfish role, identify related capacities (the capacity outputs are inputs to

another capacity and so on) and form subgroups.

Step 2. Create a number of roles that are at least equal to the number of detected subgroups

and name them.

Step 3. Take each subgroup of the capacities and relate it with one of the new roles.

@ Springer

A metamodeling approach for the identification...

<<participant>> <<participant>>
roleA : RoleA roleB' : RoleB'

msg2:MSG

call(Capacity3, msg2)

call(Capacity4, msg2)

call(CapacityS, msg2)

Fig. 8 Protocol between RoleA and RoleB’

<<organization>>

GenericOrg
<<role>> | <<role>>
<<COMMON>> <<COMMON>>
RoleA RoleB
Attributes Attributes
<<protocol>>
1.1 1.1
1.1 1.1
<<role>> | <<role>> | <<capacity>>
<<COMMON>> <<COMMON>> Capacity1
RoleC RoleD Parameters
Attributes Attributes <<require>> 4 msq1:MSG
4 msg2 : MSG
4 msg3 : MSG

Fig. 9 Interaction smells: Bottleneck Situation—it is a role that receives more messages than it can process

5.2 Bottleneck situation example

This design smell, shown in Figs. 9 and 10, describes a role which receives different messages
from different role emitters. These messages are required by only one capacity. Furthermore,
given the asynchronous nature of the message exchange among agents, sometimes it can hap-
pen that a capacity cannot start its execution because it is waiting for all the input parameters
necessary to carry on with the task. In other words, all the roleplayers are blocked in a state
of the role waiting for all the messages.

How to identify it?. Methodological steps.

Step 1. In the receiving role, identify all the messages (link) that come from different
role emitters.
Step 2. Compare messages with the capacities’ input parameters associated with the
receiver role.

If we want to define a rule to identify the Bottleneck Situation with EVL, it can be done as
shown in Listing 4. The context of this rule is provided by the concept of Role (see line 29).

@ Springer

P. Araujo et al.

<<participant>> <<participant>> <<participant>> <<participant>>
rolaA : RoleA roleB : RoleB roleC : RoleC roleD : RoleD
msg1:MSG
msg2:MSG
msg3:MSG

call(Capacity1, msg1, msg2, msg3)

Fig. 10 Interaction smells: Bottleneck Situation—interaction diagram

Within the check body of this rule all instances of participantInstance correspondent to the
role are ran through. With findMatches(), which will be explained later, the presence of this
design smells is determined.

The operation getParameterNames(), defined in line 1, has the purpose of recovering a
list with the names of the capacity’s parameters.

The operation getInteractionNames() (see line 9) has the purpose of returning a list with
the names of the interactions. This list will be conformed only by the messages that have the
participantlnstance as recipient, passing as parameters in the operation.

The purpose of the function defined in line 17, findMatches(), is to verify the existence of a
coincidence between the names of the capacity’s parameters and the names of the messages.
Finding the first coincidence will suffice to consider link for as finished. This is due to the
fact that if this ill design is identified, one must resolve it first and then execute the validation
rule again.

Listing 4 EVL Constraint for Bottleneck Situation.

operation Capacity getParameterNames() : Set(String) {

1
2 var parameterNames : Set(String);

3 for (n in self.parameters.select(m | m.type.asString() = ’input’)) {

4 parameterNames.add(n.name);

5 }

6 return parameterNames;

70}

8

9| operation Protocol getInteractionNames(rs : ParticipantInstance) : Set(String) {
10 var interactionMessages : Set(String);

11 for (n in self.interactions.select(n | n.dest = rs)) {

12 interactionMessages .add(n.name);

13 }

14 return interactionMessages;

15) }

17| operation ParticipantInstance findMatches() : Boolean {

18 var isMatchFound : Boolean = false;

19 var interactionNames : Set(String);

20 interactionNames = self.eContainer (). getInteractionNames(self);
21 for (n in self.represents.require) {

22 if (interactionNames.includesAll(n.getParameterNames())) {
23 isMatchFound = true;

24 }

25 }

26 return isMatchFound;

271 }

2
=3

context Role {
30 critique WaitingForAllMessage {

@ Springer

A metamodeling approach for the identification...

31 check {

32 var isBottleneck : Boolean = false;

33 var participantInstance : ParticipantInstance;

34 for (p in ParticipantInstance.alllnstances()—>select(rs | rs.represents = self)) {
35 if (p.findMatches()) {

36 isBottleneck = true;

37 participantInstance = p;

38 }

39 }

40 return not isBottleneck;

41 }

42 message : 'Multiple interactions which can be combined in a single one. Role name: ’ +
43 participantInstance .name

44 }

45| }

The solution proposed on Figs. 11, 12 and 13 is about creating a new role that acts as
intermediary between the message sender roles and the recipient. This new role will receive
the messages and each time it gets a set (equal in number and type of entry to those of the
Capacity), it will resend it to the consumer role. One important advantage to note is the
fact that the consumer role receives, always and once and for all, the messages its capacity
needs, and at the same time avoids getting blocked in waiting for some messages while new
messages arrive.

How to fix it?. Refactoring steps.

Step 1. Create a new role and name it.

Step 2. Redirect all the links related to the design smells to the new role.

Step 3. Add a new link between the new role a role receiver of messages. This new role
will be responsible for collecting all the messages and sending them together.

6 Related work

There have been many researches concerning bad-smells/code-smells in the object-oriented
literature. Emden and Moonen (2002) presents an empirical approach for the automatic
detection of smells. These (smells) are characterized and identified through their aspects.
This author proposes a tool called jCosmo that indicates which smells were found, which
parts of the system are affected, and their concentration. Mantyla et al. (2003) noted that there

<<organization>>

GenericOrg
<<role>>
<<COMMON>> 1.-1
RoleA
<<capacity>>
<<prokocol>> . <<protocol>> S Capacity1
<<role>> 1.1 <<role>> Tt i <<role>> <<require>> 5 ;
<<COMMON>> 1.-1 <<COMMON>> <<COMMORN>> arameters
RoleB RoleE RoleD 4 msg1: MSG
. < msg2 : MSG
\ 4 msg3 : MSG
<<role>> 1.1
<<COMMON>>
RoleC

Fig. 11 Proposed solution for the Bottleneck Situation smell

@ Springer

P. Araujo et al.

<<participant>> <<participant>> <<participant>> <<participant>>
roleA : RoleA roleB : RoleB roleC : RoleC roleE : RoleE

msg1:MSG
msg2:MSG

msg3:MSG

Fig. 12 Protocol among RoleA, RoleB, RoleC, and RoleE

<<participant>> <<participant>>
roleE : RoleE roleD : RoleD

(msg1,msg2,msg3:MSG)

call(Capacity1, msg1, msg2, msg3)

Fig. 13 Protocol between RoleE and RoleD

are relations between the smells and thus proposed grouping the smells in a six-category tax-
onomy (Bloaters, Object-Orientation Abusers, Change Preventers, Dispensables, Couplers,
and Others). The author also carried out studies of the existing correlations between the
smells, something done by Fontana and Zanoni (2011) too, but while looking for a direct or
indirect relationship among smells. Counsell et al. (2010) conducts a study trying to deter-
mine to which extent the developers understand the smells themselves and to determine
which smells are harder to eradicate. For smells eradication, a certain amount of refactoring
is necessary. Yamashita and Moonen (2012) claims that smells identification is useful for
doing a more precise evaluation of the maintainability factors, such as understandability and
changeability. He also notes that some of these factors cannot be identified by the smells and
that it is necessary to look for other ways to evaluate them. The smells are an alternative to
the software metrics since they are always accompanied by the necessary refactoring strate-
gies to eradicate them. Guo et al. (2010) takes into account the specific characteristics of a
particular domain and states that smells definitions should be more precise, so they can adapt
themselves to include information of such domains (for example, the GUI usually have too
many public members and thus they should not be considered God Class).

As regards the agent oriented paradigm, Tiryaki et al. (2008) presents an approach to
detect a series of smells and a set of refactoring patterns for their eradication. His work is
based on an agile, iterative and incremental methodology with a testing framework support,
called AOTDD? (Tiryaki et al. 2007). From our point of view, our proposal has three important
differences from his approach. The firstis the methodology used as basis. Here, Tyriaky adopts
a process oriented to the agile development of multi-agent systems, which, as most of this
kind of methodologies, focuses on two of its main pillars: Test-driven Development (TDD)
and the refactoring techniques. We, on the other hand, adopt ASPECS, which is a software
process for the engineering of open, complex, and distributed systems. Such methodology
is strongly structured and provides step by step guidelines from the requirements to the
generation of code for a specific platform. It also makes it possible to create models with
different levels of abstraction (Hierarchical Models), thus providing support to one of the

5 Agent Oriented Test Driven Development.

@ Springer

A metamodeling approach for the identification...

most promising approaches of software engineering. The second difference lies in the phase—
-within the development process- where the smells are found. In AOTDD the smells can only
be found at the end of the iteration of the development cycle. However, we consider that it is
possible to detect smells in the early stages, such as phases analysis and design, so they can
be addressed immediately in the cases this is feasible.

The third is the type of smells to be analyzed. Tyriaky has a generic approach; in fact, the
authors propose a metamodel with the most recurring abstractions in the MAS development
methodologies. For this reason, a three leveled classification of smells is done : (i) role level,
(ii) plan task, and (iii) action level. The smells proposed by Tyriaky are a redefinition of
those done by Fowler and only focus on matters related to the role, particularly in the final
details like finding duplication of actions, parameters, plan and codes structures, input and
output long lists, and bad allocation of responsibilities, among others. Our approach, however,
aims at the structural aspects of organizational modelling and its functioning (except from
Selfish-role that could be regarded as an Overloaded Role Bad Smells).

In the agent oriented literature there is a large number of proposed development tools.
The list comprises tools for academic projects as for commercial applications, for example
the authors of Nunes et al. (2009) study tools for code generation. Unlike the object oriented
paradigm, which reached a high level of maturity, this number of tools reflects the evolution
as well as the number of concepts and techniques that have been proposed by the agent
technology.

Nowadays, there are must-have features for every tool, such as project management,
creation and edition of files, simplification of the refactoring stage, build and run processes,
code generation, testing and so on. Likewise, tools must also allow to transmit, as fast as
possible, the stakeholders’ intentions through a combination of graphic and textual notations
that represent a specific language shared by the development team. Generally, and according
to the maturity and correct use of the tools, it is possible to increase the development teams’
productivity, reducing time and costs. Moreover, they improve the system documentation,
the maintainability parameters, the precision in the requirements and, at the same time, they
improve the quality of the delivered software.

Given the vast diversity of the metaphors used for the modeling of multi-agent systems, it
is impossible to compare them all in this paper. For this reason, we focused on the tools that
are based on the organizational approach (Organizations Centered Multi-Agent Systems,
OCMAS). The main goal is to highlight the similarities and differences between Janeiro
and some of the most well-known tools for the organizational approach. The results of this
comparative analysis are summarized in Table 2, which focuses on the primary objective of
this article: models validation. What follows is a brief explanation of the columns:

Tool Name and Methodology. Here, the name of the tool and the methodology it supports
are specified. It is important to note that, in the literature, there is at least one tool for each
methodology.

Supported Diagram. Tools like aT> (also know as AgentTool III) (Garcia-Ojeda and
DeLoach 2009), GAIA4E (Cernuzzi and Zambonelli 2009), PTK (Passi ToolKit) (Chella
et al. 2004), OpenTool (Picard and Gleizes 2004), TAOMA4E (Tool for Agent Oriented visual
Modeling for the Eclipse platforms) (Morandini et al. 2011) and Romas modeling tool (Gar-
cia et al. 2009) provide a complete coverage over the defined diagrams of their respective
methodologies. Whereas applications like IDK (Ingenias Development Kit) (Gomez-Sanz
et al. 2008), PDT (Prometheus Design Tool) (Thangarajah et al. 2005), Rebel (Roadmap
Editor Built for Easy Development) (Al-Hashel et al. 2007) and Janeiro only have a partial
coverage of the methodologies (denoted by P in Table 2); that is, not all of their diagrams
have been developed. In the case of Janeiro, this is due to the fact that the tool is a prototype

@ Springer

P. Araujo et al.

Table 2 Organizational CASE tools

Methodology All sup- Cross- Syntax Semantic Code Active
ported checking validation validation generation
diagrams

aT3 O-MaSE v v v X v v
GaiadE GAIA v - - - X -
IDK Ingenias P v v X v v
PDT Prometheus P v v X v -
PTK PASSI v P v X v X
OpenTool Adelfe v = - X = X
Rebel ROADMAP P X X X X X
TAOM4E Tropos v X v v
Romas Romas v v v v v v
Janeiro Aspecs P X v v X v

Studio

Legend: v: fully supported; X: the tool does not have this feature; P: Partial coverage of the feature

that is still in its developmental stages, thus only covers the principal diagrams defined for
the first phase of the ASPECS methodology, Problem Domain.

The following three criteria indicate whether the tools implement processes for the veri-
fication of the completeness, correctness and coherence of the designed model.

Cross-checking. In the Model Driven Development (MDD) approach, all the users’
requirements are translated in a set of artifacts that represent the problem and its solution.
This is why it is better for the concepts to be consistent with the different artifacts that supply
the different perspectives of the model. This criteria highlights those applications that can find
inconsistencies that may appear in the same concept in the different artifacts that compose
the model. In our analysis, this characteristic is offered by aT3, IDK, PDT, and Romas.

Syntax Validation. The concept of syntactic validation refers to the possibility of looking
for certain expression errors in the diagrams. For example, concepts that have not been
named, name duplication, or the bad use of some concepts. This is one of the most common
characteristics of development tools, with the exception of Rebel that does not do these
types of validations. Cross-Checking and Syntax Validation are considered as mandatory
characteristics in tools nowadays.

Semantic Validation. The criterion presents those tools that can interpret the model for the
detection of certain properties that conceptually invalidate it. This situation is only contem-
plated by two tools: Romas and Janeiro Studio. Roma looks for potential conflicts related to
the templates of the designed contracts and the norms of the organization. Janeiro Studio, on
the other hand, looks for situations that can be detrimental for the model and cause a misuse
of the resources or a rise in the maintaining efforts.

Code Generation. It is expected for all tools to allow generating code for a specific lan-
guage. This generated code is, in most cases, a skeleton on which designers can start to
work, adding the most desired features by users. It is expected since most methodologies
have an implementation platform and/or a specific language. Almost all tools described pro-
vide a code generating module for a specific framework; such as aT> for JADE platform
(Bellifemine et al. 2001; TAOMA4E, also for JADE and JADEX (Pokahr et al. 2005); Romas
for THOMAS (Criado et al. 2011) and Electronic Institutions (Sierra et al. 2004) platforms.

@ Springer

A metamodeling approach for the identification...

The case of IDK, thanks to its integrated plugin Ingenias Agent Framework (Gémez-Sanz
et al. 2010), not only generates code for JADE, but also has a series of templates based on a
proprietary mechanism that allows automatically generating code for any language. The rest
of the tools do not have an extension for the generation of code, or are being developed, as
in the case of Janeiro Studio.

Active. Last but not least, this column indicates if the project is being developed or is
updated by its creators. We use a subjective criterion for the comparison; we consider dates
of the last update in their official sites and some articles published from the release of the
application. There are many which are still being improved, such as Janeiro, Romas and
aT3, while there are others which seem to have been abandoned. The reason behind this
abandonment is, in some cases, that there have not been significant conceptual advances in
the methodologies used as basis or that the authors are engaged in other activities.

7 Conclusion and future works

This work is an additional contribution to the work currently being done on one of the
most complete methodologies of multi-agent systems based on the organizational approach,
called ASPECS (Isern et al. 2011). In fact, this paper poses a double contribution. First, it
has introduced an adaptation of the theoretical metamodel CRIO using an EMF model. This
is a core part of a CASE environment called Janeiro Studio which provides support to the
diagrams defined in the ASPECS methodology. The aim is to make, through the graphic
editors, the manipulation of the model instances easier for the designers. It is important to
mention that Janeiro is available under an open source license at http://repo.gitia.org/janeiro/
studio/.

Secondly, it has described the Organizational Design Smells as an important technique
for the detection of anomalies that may be present in the models during the analysis stage.
For such purpose, a set of validation rules was defined, with the help of EVL, which enables
organizational smells detection. Additionally, a module which allows the automatic execution
and validation of models based on those rules was also developed and integrated as part of
Janeiro Studio. The automatic validation mechanism is important as it helps engineers to
identify this kind of design smells and tackle them, in some cases, immediately. Moreover,
we present two examples, their justification and how to detect them. Early detection of these
flaws brings about many advantages: a correct balance of behavior skills, an adequate size
of the skill, and a proper definition of interactions for an optimal performance of the systems
and a good use of the resources.

In our future work, we will analyze the possibility of having many of the proposed solutions
for smells serve as basis for the definitions of design patterns. We will also evaluate the
possibility of integrating a design patterns repository in Janeiro Studio to develop a multi-
agent system based on patterns. With this, it will be possible to have better quality in the
system and a high degree of reuse of tested components, thus reducing time.

Acknowledgments Authors would like to thank Gilda Moreno and Nicolds Majorel Padilla for their reviews
and suggestions to this paper.

@ Springer

http://repo.gitia.org/janeiro/studio/
http://repo.gitia.org/janeiro/studio/

P. Araujo et al.

References

Al-Hashel E, Balachandran BM, Sharma D (2007) A comparison of three agent-oriented software development
methodologies: roadmap, prometheus, and mase. In: Apolloni B, Howlett RJ, Jain L (Eds.) Knowledge-
based intelligent information and engineering systems, no. 4694. Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2007, pp. 909-916. http://link.springer.com/chapter/10.1007/978-3-540-
74829-8_111

Araujo P, Lizondo D, Rodriguez S, Hilaire V (2015) An approach for organizational design smells identification
within multi-agent systems. In: International workshop on coordination, organisation, institutions and
norms in multi-agent systems

Araujo P, Rodriguez S (2013) Janeiro studio. In: Congreso Nacional de Ingenierfa Informatica/Sistemas de
Informacién, Cérdoba, Argentina, 2013

Bellifemine F, Poggi A, Rimassa G (2001) Jade: a fipa2000 compliant agent development environment.
Proceedings of the fifth international conference on Autonomous agents, ACM 2001:216-217

Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J (2004) Tropos: an agent-oriented software
development methodology. Auton Agents Multi-Agent Syst 8(3):203-236

Budinsky F, Brodsky SA, Merks E (2003) Eclipse modeling framework. Pearson Education, Upper Saddle
River

Busetta P, Ronnquist R, Hodgson A, Lucas A (1999) Jack intelligent agents-components for intelligent agents
in java. AgentLink News Lett 2(1):2-5

Carneiro GdF, Silva M, Mara L, Figueiredo E, Sant’ Anna C, Garcia A, Mendonca M (2010) Identifying code
smells with multiple concern views. In: 2010 Brazilian symposium on software engineering (SBES),
2010, pp. 128-137. doi:10.1109/SBES.2010.21

Cernuzzi L, Zambonelli F (2009) Gaiade: a tool supporting the design of mas using gaia. In: ICEIS (4),
Citeseer, 2009, pp. 82-88

Chella A, Cossentino M, Sabatucci L (2004) Tools and patterns in designing multi-agent systems with passi.
WSEAS Trans Commun 3(1):352-358

Cossentino M, Gaud N, Hilaire V, Galland S, Koukam A (2010) Aspecs: an agent-oriented software process
for engineering complex systems. Auton Agents Multi-Agent Syst 20(2):260-304. doi:10.1007/s10458-
009-9099-4

Cossentino M, Hilaire V, Molesini A, Seidita V (2014) Handbook on agent-oriented design processes. Springer,
Berlin

Cossentino M, Potts C (2002) PASSI: a process for specifying and implementing multi-agent systems Using
UML

Counsell S, Hamza H, Hierons R (2010) The ‘deception’ of code smells: an empirical investigation. In: 2010
32nd international conference on information technology interfaces (ITI), 2010, pp. 683—-688

Criado N, Argente E, Botti V (2011) Thomas: an agent platform for supporting normative multi-agent systems,
J Log Comput 23(11):309-333. doi:10.1093/logcom/exr025

Criado N, Julidn V, Botti V, Argente E (2010) A norm-based organization management system. In: Padget J,
Artikis A, Vasconcelos W, Stathis K, Silva VTd, Matson E, Polleres A (Eds.) Coordination, organizations,
institutions and norms in agent systems V, no. 6069. Lecture notes in computer science, Springer Berlin
Heidelberg, 2010, pp. 19-35. http://link.springer.com/chapter/10.1007/978-3-642-14962-7_2

DeLoach SA, Garcia-Ojeda JC (2010) O-mase: a customisable approach to designing and building complex,
adaptive multi-agent systems. Int J Agent-Oriented Softw Eng 4(3):244-280

Emden Ev, Moonen L (2002) Java quality assurance by detecting code smells. In: Ninth working conference
on reverse engineering, 2002. Proceedings, 2002, pp. 97-106. doi:10.1109/WCRE.2002.1173068

Fagan M (1976) Design and code inspections to reduce errors in program development, IBM Syst 15(3):182—
211

Ferber J, Gutknecht O, Michel F (2004) From agents to organizations: an organizational view of multi-agent
systems. In: Giorgini P, Miiller J, Odell J (eds) Agent-oriented software engineering IV, vol 2935. Lecture
notes in computer scienceSpringer, Berlin Heidelberg, pp 214-230

Ferber J (1998) Gutknecht O (1998) A meta-model for the analysis and design of organizations in multi-agent
systems. Proceedings of the 3rd international conference on multi agent systems, ICMAS *98. IEEE
Computer Society, Washington, DC, USA, p 128

Fontana F, Zanoni M (2011) On investigating code smells correlations. In: 2011 IEEE fourth international
conference on software testing, verification and validation workshops (ICSTW), 2011, pp. 474-475.
doi:10.1109/ICSTW.2011.14

Fortino G, Russo W (2012) Eldameth: an agent-oriented methodology for simulation-based prototyping of
distributed agent systems. Inf Softw Technol 54(6):608-624. doi:10.1016/j.infsof.2011.08.006http://
www.sciencedirect.com/science/article/pii/S0950584911001960

@ Springer

http://link.springer.com/chapter/10.1007/978-3-540-74829-8_111
http://link.springer.com/chapter/10.1007/978-3-540-74829-8_111
http://dx.doi.org/10.1109/SBES.2010.21
http://dx.doi.org/10.1007/s10458-009-9099-4
http://dx.doi.org/10.1007/s10458-009-9099-4
http://dx.doi.org/10.1093/logcom/exr025
http://link.springer.com/chapter/10.1007/978-3-642-14962-7_2
http://dx.doi.org/10.1109/WCRE.2002.1173068
http://dx.doi.org/10.1109/ICSTW.2011.14
http://dx.doi.org/10.1016/j.infsof.2011.08.006
http://www.sciencedirect.com/science/article/pii/S0950584911001960
http://www.sciencedirect.com/science/article/pii/S0950584911001960

A metamodeling approach for the identification...

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of existing code,
1st Edition, Addison-Wesley Professional, Boston. http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20&path=ASIN/0201485672

Galland S, Gaud N, Rodriguez S, Hilaire V (2010) Janus: another yet general-purpose multiagent platform. In:
7th agent-oriented software engineering technical forum (TFGAOSE-10), Agent Technical Fora, 2010

Garcia E, Argente E, Giret A (2009) A modeling tool for service-oriented open multiagent systems. In: Yang
J-J, Yokoo M, Ito T, Jin Z, Scerri P (Eds.) Principles of practice in multi-agent systems, no. 5925. Lecture
notes in computer science, Springer Berlin Heidelberg, 2009, pp. 345-360. http:/link.springer.com/
chapter/10.1007/978-3-642-11161-7_24

Garcia E, Giret A, Botti V (2015) Romas methodology. In: Regulated open multi-agent systems (ROMAS),
Springer International Publishing, 2015, pp. 51-95. http://link.springer.com/chapter/10.1007/978-3-
319-11572-6_6

Garcia E, Giret A, Botti V (2015) Romas modeling language. In: Regulated open multi-agent systems
(ROMAS), Springer International Publishing, 2015, pp. 43-49. http://link.springer.com/chapter/10.
1007/978-3-319-11572-6_5

Garcia-Ojeda JC, DeLoach SA (2009) Robby, agenttool iii: From process definition to code generation. In:
Proceedings of the 8th international conference on autonomous agents and multiagent systems - Volume
2, AAMAS ’09, international foundation for autonomous agents and multiagent systems, Richland, SC,
2009, pp. 1393-1394. http://dl.acm.org/citation.cfm?id=1558109.1558311

Garcia-Ojeda J, DeLoach S, Robby Oyenan W, Valenzuela J (2008) O-mase: a customizable approach to
developing multiagent development processes. In: Luck M, Padgham L (eds) Agent-oriented software
engineering VIII, vol 4951. Lecture notes in computer scienceSpringer, Berlin Heidelberg, pp 1-15

Gomez-Sanz JJ, Fernéndez CR, Arroyo J (2010) Model driven development and simulations with the inge-
nias agent framework. Simul Modell Pract Theory 18(10):1468-1482. doi:10.1016/j.simpat.2010.05.
012http://www.sciencedirect.com/science/article/pii/S1569190X 10001024

Gomez-Sanz JJ, Fuentes R, Pavon J, Garcifa-Magarifio I (2008) Ingenias development kit: a visual multi-
agent system development environment. In: Proceedings of the 7th international joint conference on
autonomous agents and multiagent systems: Demo Papers, AAMAS ’08. International foundation for
autonomous agents and multiagent systems, Richland, SC, 2008, pp. 1675-1676. http://dl.acm.org/
citation.cfm?id=1402744.1402760

Guo Y, Seaman C, Zazworka N, Shull F (2010) Domain-specific tailoring of code smells: an empirical study.
In: 2010 ACM/IEEE 32nd international conference on software engineering, Vol. 2, 2010, pp. 167-170.
doi:10.1145/1810295.1810321

Gutknecht O, Ferber J (2000a) Madkit: a generic multi-agent platform. In: Proceedings of the fourth interna-
tional conference on autonomous agents, AGENTS *00, ACM, New York, NY, USA, 2000, pp. 78-79.
doi:10.1145/336595.337048

Gutknecht O, Ferber J (2000b) The madkit agent platform architecture. In: Wagner T, Rana OF (Eds.),
Infrastructure for agents, multi-agent systems, and scalable multi-agent systems, no. 1887. Lecture notes
in computer science, Springer Berlin, 2000, pp. 48-55. http://link.springer.com/chapter/10.1007/3-540-
47772-1_5

Hiibner JF, Sichman JS, Boissier O (2002) Moise+: towards a structural, functional, and deontic model for
mas organization. In: Proceedings of the first international joint conference on autonomous agents and
multiagent systems: part 1, AAMAS *02, ACM, New York, NY, USA, 2002, pp. 501-502. doi: 10.1145/
544741.544858

Isern D, Sdnchez D, Moreno A (2011) Organizational structures supported by agent-oriented methodologies. J
Syst Softw 84(2):169-184. doi:10.1016/j.jss.2010.09.005http://www.sciencedirect.com/science/article/
pii/S0164121210002451

Juan T, Pearce AR, Sterling L (2002) ROADMAP: extending the gaia methodology for complexopen systems.
In: AAMAS, ACM, 2002, pp. 3—-10. http://doi.acm.org/10.1145/544741.544744

Khombh F, Vaucher S, Gueheneuc Y-G, Sahraoui H (2009) A bayesian approach for the detection of code and
design smells. In: 9th international conference on quality software, 2009. QSIC ’09, 2009, pp. 305-314.
doi:10.1109/QSIC.2009.47

Lanza M, Marinescu R (2006) Object-oriented metrics in practice, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2006. http://link.springer.com/10.1007/3-540-39538-5

Mantyla MV, Vanhanen J, Lassenius C (2004) Bad smells—humans as code critics. In: 20th IEEE international
conference on software maintenance, 2004. Proceedings, 2004, pp. 399—408. doi: 10.1109/ICSM.2004.
1357825

Mantyla M, Vanhanen J, Lassenius C (2003) A taxonomy and an initial empirical study of bad smells in
code. In: International conference on software maintenance, 2003. ICSM 2003. Proceedings, 2003, pp.
381-384. doi:10.1109/ICSM.2003.1235447

@ Springer

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201485672
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201485672
http://link.springer.com/chapter/10.1007/978-3-642-11161-7_24
http://link.springer.com/chapter/10.1007/978-3-642-11161-7_24
http://link.springer.com/chapter/10.1007/978-3-319-11572-6_6
http://link.springer.com/chapter/10.1007/978-3-319-11572-6_6
http://link.springer.com/chapter/10.1007/978-3-319-11572-6_5
http://link.springer.com/chapter/10.1007/978-3-319-11572-6_5
http://dl.acm.org/citation.cfm?id=1558109.1558311
http://dx.doi.org/10.1016/j.simpat.2010.05.012
http://dx.doi.org/10.1016/j.simpat.2010.05.012
http://www.sciencedirect.com/science/article/pii/S1569190X10001024
http://dl.acm.org/citation.cfm?id=1402744.1402760
http://dl.acm.org/citation.cfm?id=1402744.1402760
http://dx.doi.org/10.1145/1810295.1810321
http://dx.doi.org/10.1145/336595.337048
http://link.springer.com/chapter/10.1007/3-540-47772-1_5
http://link.springer.com/chapter/10.1007/3-540-47772-1_5
http://dx.doi.org/10.1145/544741.544858
http://dx.doi.org/10.1145/544741.544858
http://dx.doi.org/10.1016/j.jss.2010.09.005
http://www.sciencedirect.com/science/article/pii/S0164121210002451
http://www.sciencedirect.com/science/article/pii/S0164121210002451
http://doi.acm.org/10.1145/544741.544744
http://dx.doi.org/10.1109/QSIC.2009.47
http://link.springer.com/10.1007/3-540-39538-5
http://dx.doi.org/10.1109/ICSM.2004.1357825
http://dx.doi.org/10.1109/ICSM.2004.1357825
http://dx.doi.org/10.1109/ICSM.2003.1235447

P. Araujo et al.

McAffer J, Lemieux J-M, Aniszczyk C (2010) Eclipse rich client platform, 2nd edn. Addison-Wesley Profes-
sional, Upper Saddle River, NJ

Moha N, Gueheneuc YG, Duchien L, Meur AFL (2010) Decor: a method for the specification and detection
of code and design smells. IEEE Trans Softw Eng 36(1):20-36. doi:10.1109/TSE.2009.50

Morandini M, Nguyen DC, Penserini L, Perini A, Susi A (2011) Tropos modeling, code generation and testing
with the taomd4e tool. In: CEUR proceedings of the 5th international i* workshop (iStar 2011), Citeseer,
2011, pp. 172-174

Nunes I, Cirilo E, de Lucena CJ, Sudeikat J, Gomez-Sanz CHJJ (2009) A survey on the implementation of
agent oriented specifications. In: Gleizes MP, Gomez-Sanz JJ (Eds.) AOSE, Vol. 6038 of lecture notes
in computer science, Springer, 2009, pp. 169—179. http://dx.doi.org/10.1007/978-3-642-19208- 1

Object Constraint Language (OCL) 2.3.1 Specification, version 2.3.1 (ja 2012)

Omicini A (2000) Soda: societies and infrastructures in the analysis and design of agent-based systems. In
this volume, Springer-Verlag 2000:185-193

Padgham L, Winikoff M (2003) Prometheus: a methodology for developing intelligent agents. In: Giunchiglia
F, Odell J, Weil G (eds) Agent-oriented software engineering III, vol 2585. Lecture notes in computer
scienceSpringer, Berlin Heidelberg, pp 174185

Pavén J, Gomez-Sanz J (2003) Agent oriented software engineering with ingenias, In: Maiik V, Péchoucek M,
Miiller J (Eds.) Multi-agent systems and applications III, no. 2691. Lecture notes in computer science,
Springer Berlin Heidelberg, 2003, pp. 394—403. http://link.springer.com/chapter/10.1007/3-540-45023-
838

Picard G, Gleizes M-P (2004) The adelfe methodology, In: Bergenti F, Gleizes M-P, Zambonelli F(Eds.)
Methodologies and software engineering for agent systems, no. 11 in multiagent systems, artificial
societies, and simulated organizations, Springer US, 2004, pp. 157-175. http://link.springer.com/chapter/
10.1007/1-4020-8058-1_11

Pokahr A, Braubach L, Lamersdorf W (2005) Jadex: a bdi reasoning engine. Multi-agent programming,
Springer 2005:149-174

Rodriguez S, Gaud N, Hilaire V, Galland S, Koukam A (2007) An analysis and design concept for self-
organization in holonic multi-agent systems. In: Proceedings of the 4th international conference on
Engineering self-organising systems, ESOA’06, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 15-27

Rose LM, Paige RF, Kolovos DS, Polack FA (2008) The epsilon generation language. Model driven
architecture-foundations and applications, Springer 2008:1-16

Sierra C, Rodriguez-Aguilar JA, Noriega P, Esteva M, Arcos JL (2004) Engineering multi-agent systems as
electronic institutions. Eur J Inform Prof 4(4):33-39

Thangarajah J, Padgham L, Winikoff M (2005) Prometheus design tool. In: Proceedings of the fourth interna-
tional joint conference on autonomous agents and multiagent systems, AAMAS ’05, ACM, New York,
NY, USA, 2005, pp. 127-128

Tiryaki AM, Ekinci EE, Dikenelli O (2008) Refactoring in multi agent system development. In: Bergmann R,
Lindemann G, Kirn S, Péchoucek M (Eds.) Multiagent system technologies, no. 5244. Lecture notes in
computer science, Springer Berlin Heidelberg, 2008, pp. 183—194. http://link.springer.com/chapter/10.
1007/978-3-540-87805-6_17

Tiryaki AM, Oztuna S, Dikenelli O, Erdur RC (2007) Sunit: a unit testing framework for test driven development
of multi-agent systems. In: Padgham L, Zambonelli F(Eds.) Agent-oriented software engineering VII,
no. 4405. Lecture notes in computer science, Springer Berlin Heidelberg, 2007, pp. 156—173. http://link.
springer.com/chapter/10.1007/978-3-540-70945-9_10

Unified modeling language (uml), infrastructure, version 2.4.1 (aug 2011)

Yamashita A, Moonen L (2012) Do code smells reflect important maintainability aspects?. In: 2012 28th IEEE
international conference on software maintenance (ICSM), 2012, pp. 306-315. doi:10.1109/ICSM.2012.
6405287

Zambonelli F, Jennings NR, Wooldridge M (2003) Developing multiagent systems: the gaia methodology.
ACM Trans Softw Eng Methodol (TOSEM) 12(3):317-370

@ Springer

http://dx.doi.org/10.1109/TSE.2009.50
http://dx.doi.org/10.1007/978-3-642-19208-1
http://link.springer.com/chapter/10.1007/3-540-45023-8_38
http://link.springer.com/chapter/10.1007/3-540-45023-8_38
http://link.springer.com/chapter/10.1007/1-4020-8058-1_11
http://link.springer.com/chapter/10.1007/1-4020-8058-1_11
http://link.springer.com/chapter/10.1007/978-3-540-87805-6_17
http://link.springer.com/chapter/10.1007/978-3-540-87805-6_17
http://link.springer.com/chapter/10.1007/978-3-540-70945-9_10
http://link.springer.com/chapter/10.1007/978-3-540-70945-9_10
http://dx.doi.org/10.1109/ICSM.2012.6405287
http://dx.doi.org/10.1109/ICSM.2012.6405287

	A metamodeling approach for the identification of organizational smells in multi-agent systems: application to ASPECS
	Abstract
	1 Introduction
	2 Background
	2.1 Smells
	2.2 Validation language
	2.3 Organizational metamodel

	3 EMF metamodeling of CRIO
	3.1 Organization view
	3.2 Interaction view
	3.3 Behavior view

	4 Modelling assistance approach
	4.1 Syntax validation
	4.2 Semantic validation: organizational design smells
	4.2.1 Organization smells
	4.2.2 Interaction smells
	4.2.3 Behavior smells
	4.2.4 Skills smells

	5 Examples
	5.1 Selfish-role behavior example
	5.2 Bottleneck situation example

	6 Related work
	7 Conclusion and future works
	Acknowledgments
	References

