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Abstract Medical imaging is an invaluable resource in medicine as it enables to peer inside the human
body and provides scientists and physicians with a wealth of information indispensable for understand-
ing, modelling, diagnosis, and treatment of diseases. Reconstruction algorithms entail transforming
signals collected by acquisition hardware into interpretable images. Reconstruction is a challenging
task given the ill-posed of the problem and the absence of exact analytic inverse transforms in prac-
tical cases. While the last decades witnessed impressive advancements in terms of new modalities,
improved temporal and spatial resolution, reduced cost, and wider applicability, several improve-
ments can still be envisioned such as reducing acquisition and reconstruction time to reduce patient’s
exposure to radiation and discomfort while increasing clinics throughput and reconstruction accuracy.
Furthermore, the deployment of biomedical imaging in handheld devices with small power requires
a fine balance between accuracy and latency. The design of fast, robust, and accurate reconstruction
algorithms is a desirable, yet challenging, research goal. While the classical image reconstruction algo-
rithms approximate the inverse function relying on expert-tuned parameters to ensure reconstruction
performance, deep learning (DL) allows automatic feature extraction and real-time inference. Hence,
DL presents a promising approach to image reconstruction with artifact reduction and reconstruction
speed-up reported in recent works as part of a rapidly growing field. We review state-of-the-art image
reconstruction algorithms with a focus on DL-based methods. First, we examine common reconstruc-
tion algorithm designs, applied metrics, and datasets used in the literature. Then, key challenges are
discussed as potentially promising strategic directions for future research.
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iterative approach · limited data representation.

H. Ben Yedder
E-mail: hbenyedd@sfu.ca

B. Cardoen
E-mail: bcardoen@sfu.ca

G. Hamarneh
E-mail: hamarneh@sfu.ca
School of Computing Science, Simon Fraser University, Canada

ar
X

iv
:2

00
2.

12
35

1v
1 

 [
ee

ss
.I

V
] 

 2
6 

Fe
b 

20
20



2 Hanene Ben Yedder et al.

Fig. 1 Data flow in a medical imaging and image interpretation system. Forward model encodes the physics of the
imaging system. The inverse model transforms the collected signals by the acquisition hardware into a meaningful
image. The success of a diagnosis, evaluation, and treatment rely on accurate reconstruction, image visualization and
processing algorithms.

1 Introduction

Biomedical image reconstruction translates signals acquired by a wide range of sensors into images
that can be used for diagnosis and discovery of biological processes in cell and organ tissue. Each
biomedical imaging modality leverages signals in different bands of the electromagnetic spectrum,
e.g. from gamma rays ( Positron emission tomography PET/SPECT)), X-rays (computed tomog-
raphy (CT)), visible light (microscopy, endoscopy), infrared (thermal images), and radio-frequency
(Nuclear magnetic resonance imaging (MRI)), as well as pressure sound waves (in ultrasound (US)
imaging) (Webb and Kagadis 2003). Reconstruction algorithms transform the collected signals into a
2, 3 or 4-dimensional image.

The accuracy of each reconstruction is critical for discovery and diagnosis. Robustness to noise and
generalization cross modality specifications’ (e.g., sampling pattern, rate, etc.) and imaging devices
parameters’ allow a reconstruction algorithm to be used in wider applications. The time required for
each reconstruction determines the number of subjects that can be diagnosed as well as the suitability
of the technique in operating theatres and emergency situations. The number of measurements needed
for a high quality reconstruction impacts the exposure a patient or sample will have to endure. Finally,
the hardware requirements define whether a reconstruction algorithm can be used only in a dedicated
facility or in portable devices thus dictating the flexibility of deployment.

The study of image reconstruction is an active area of research in modern applied mathematics,
engineering and computer science. It forms one of the most active interdisciplinary fields of sci-
ence (Fessler 2017) given that improvement in the quality of reconstructed images offers scientists and
clinicians an unprecedented insight into the biological processes underlying disease. Fig. 1 provides an
illustration of the reconstruction problem and shows a typical data flow in a medical imaging system.

Over the past few years, researchers have begun to apply machine learning techniques to biomedical
reconstruction to enable real-time inference and improved image quality in a clinical setting. Here,
we first provide an overview of the image reconstruction problem and outline its characteristics and
challenges (Section 1.1) and then outline the purpose, scope, and the layout of this review (Section 1.2).
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1.1 Inverse Problem and Challenges

1.1.1 From Output to Input

Image reconstruction is the process of forming an interpretable image from the raw data (signals)
collected by the imaging device. It is known as an inverse problem where given a set of measurements,
the goal is to determine the original structure influencing the signal collected by a receiver given
some signal transmission medium properties (Fig. 2). Let y represent a set of raw acquired sensor
measurements and subject to some noise N intrinsic to the acquisition process. The objective is to
recover the spatial-domain (or spatio-temporal) image x such that:

y = A(F(x),N ) (1)

where F(·) is the forward model operator that models the physics of image-formation, which can
include signal propagation, attenuation, scattering, reflection and other transforms, e.g. Radon or
Fourier transform. F(·) can be a linear or a nonlinear operator depending on the imaging modality. A
is an aggregation operation representing the interaction between noise and signal, in the assumption
of additive noise A = +.

While imaging systems are usually well approximated using mathematical models that define the
forward model, an exact analytic inverse transform A−1(·) is not always possible. Reconstruction
approaches usually resort to iteratively approximate the inverse function and often involve expert-
tuned parameters and prior domain knowledge considerations to optimize reconstruction performance.

1.1.2 An Ill-Posed Problem

Image reconstruction is an ill-posed problem as there may be significantly fewer measurements (M)
than the number of unknowns (N). Mathematically, the problem is highly under-determined as there
would be fewer equations to describe the model than unknowns (M � N) and therefore, there may
be infinite consistent images that map to the same measurements (Fig. 3). Thus, one challenge for
the reconstruction algorithm is to select the best solution among a set of potential solutions (McCann
and Unser 2019). One way to reduce the solution space is to leverage domain specific knowledge by
encoding priors, i.e. regularization.

Reducing data representation, such as sub-sampling in MRI or sparse-view, limited-angle data
in CT, to accelerate acquisition or reduce radiation dose typically decreases the size N of the mea-
sured signal y while increasing its sparsity and noise level. As a consequence the ill-posedness and
complexity of the reconstruction problem increase. This brings up the need for sophisticated recon-
struction algorithms with high feature extraction power to make the best use of the collected signal,
capture modality-specific imaging features, and leverage prior knowledge. Furthermore, developing
high-quality reconstruction algorithms requires not only a deep understanding of both the physics of
the imaging systems and the biomedical structures but also specially designed algorithms that can
account for the statistical properties of the measurements and tolerate errors in the measured data.

1.2 Scope of this survey

The field of biomedical image reconstruction have undergone significant advances over the past few
decades and can be broadly classified into two categories: conventional methods (analytical and op-
timization based methods) and data-driven or learning-based methods. Conventional methods (dis-
cussed in section 2) are the most dominant and have been extensively studied over the last few decades
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Fig. 2 Propagation of signals from sender to receiver. While passing through a transmission channel, signals s pick
up noise (assuming additive) along the way, until a measurement M = s+N reaches the receiver. The properties
of the received signal may, via a feedback loop, affect properties of future signal transmission. Sender and receiver
modeling differ within modalities. For example the lower figure illustrates in the left ultrasound probe used to send
and collect signals (S=R); in the middle: X-ray signal propagates through subject toward detector (S → R); and in
the right the laser power is tuned on a feedback loop during acquisition in super resolution microscopy (S ↔ R)

with a focus on how to improve their results (Vandenberghe et al. 2001; Jhamb et al. 2015; Assili 2018)
and reduce their computational cost (Despres and Jia 2017).

Researchers have recently investigated deep learning (DL) approaches for various biomedical image
reconstruction problems (discussed in section 3) inspired by the success of deep learning in computer
vision problems. This topic is relatively new and has gained a lot of interest over the last few years,
as shown in Fig. 4-A and listed in Table 1, and forms a very active field of research with numerous
special journal issues (Wang 2016; Wang et al. 2018; Ravishankar et al. 2019). MRI and CT received
the most attention among studied modalities, as illustrated in Fig. 4-B, given their widespread clinical
usage, the availability of analytic inverse transform and the availability of public (real) datasets.

To date, few surveys on machine learning-based image reconstruction approaches have been con-
ducted. Fessler (2017) wrote a brief chronological overview on image reconstruction methods high-
lighting an evolution from basic analytical to data-driven models. Recently, McCann et al. 2019 wrote
a survey on image reconstruction approaches where they presented a toolbox of operators that can
be used to build imaging systems model’s and showed how forward model and sparsity-based regu-
larization can be used to solve reconstruction problems. While their review is more focused on the
mathematical foundations of conventional methods, they briefly discussed data-driven approaches,
their theoretical underpinning, and performance. As illustrated in Fig. 5 since its publication a great
deal of work has been done warranting a review. Similarly, Zhang et al. (2019) provided a concep-
tual review of some recent DL-based methods for CT with a focus on methods inspired by iterative
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Fig. 3 (A) A problem is ill-conditioned when two different objects produce very close observed signals. When
the observed signals are identical and hence identical reconstructed images, inverse solution is non-unique. Prior
knowledge can be leveraged to rules out certain solutions that conflict with the additional knowledge about the
object beyond the measurement vectors. (B) A use case toy example of two objects with the same acquired signals.
Prior knowledge about homogeneity of object rules out the second object.

Fig. 4 (A) Number of studies, covered in this survey, on the topic of machine learning for biomedical image recon-
struction versus year of publication. (B) The pie chart represents the number of studies per modality.

optimization approaches and their theoretical underpinning from the perspective of representation
learning and differential equations.

This survey provides an overview of biomedical image reconstruction methods with a focus on DL-
based strategies, discusses their different paradigms (e.g., image domain, sensor domain (raw data) or
end to end learning, architecture, loss, etc. ) and how such methods can help overcome the weaknesses
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of conventional non-learning methods. The theoretical foundation was not emphasized in this work
as it was well investigated in the aforementioned surveys. Common evaluation metrics and training
dataset challenges are also discussed.

Fig. 5 The marked increase in publications on biomedical image reconstruction and deep learning in the past 10
years (Results obtained by PubMed query that can be found at: http://bit.ly/image_recon).

The remainder of this paper is organized as follows: in Section 2 we give an overview of conventional
methods discussing their advantages and limitations. We then introduce the key machine learning
paradigms and how they are being adapted in this field complementing and improving on conventional
methods. A review of available data-sets and performance metrics is detailed in Section 3. Finally, we
conclude by summarizing the current state-of-the-art and outlining strategic future research directions
(Section 6).

2 Conventional Image Reconstruction Approaches

A wide variety of reconstruction algorithms have been proposed during the past few decades, having
evolved from analytical methods to iterative or optimization-based methods that account for the sta-
tistical properties of the measurements and noise as well as the hardware of the imaging system (Fessler
2017). While these methods have resulted in significant improvements in reconstruction accuracy and
artifact reduction, are in routine clinical use currently, they still present some weaknesses. A brief
overview of these methods’ principles is presented in this section outlining their weaknesses.

2.1 Analytical Methods

Analytical methods are based on a continuous representation of the reconstruction problem and use
simple mathematical models for the imaging system. Classical examples are the inverse of the Radon

http://bit.ly/38ELjuz
http://bit.ly/image_recon
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transform such as filtered back-projection (FBP) for CT and the inverse Fourier transform (IFT) for
MRI. These methods are usually computationally inexpensive (in the order of ms) and can generate
good image quality in the absence of noise and under the assumption of full sampling/all angles pro-
jection (McCann and Unser 2019). They typically consider only the geometry and sampling properties
of the imaging system while ignoring the details of the system physics and measurement noise (Fessler
2017).

When dealing with noisy or incomplete measured data e.g., reducing the measurement sampling
rate, analytical methods results are highly deteriorated as the signal becomes weaker. Thus, the
quality of the produced image is compromised. Thaler et al. (2018) provided examples of a CT image
reconstruction using the FBP method for different limited projection angles and showed that analytical
methods are unable to recover the loss in the signal, resulting in compromised diagnostic performance.

2.2 Iterative Methods

Iterative reconstruction methods, based on more sophisticated models for the imaging system’s physics,
sensors and noise statistics, have attracted a lot of attention over the past few decades. They combine
the statistical properties of data in the sensor domain (raw measurement data), prior information
in the image domain, and sometimes parameters of the imaging system into their objective func-
tion (McCann and Unser 2019). Compared to analytical methods iterative reconstruction algorithms
offer a more flexible reconstruction framework and better robustness to noise and incomplete data
representation problems at the cost of increased computation (Ravishankar et al. 2019).

Fig. 6 Iterative image reconstruction workflow example. (A) Diffuse optical tomography (DOT) fibers brain probe
consisting of a set of fibers for illumination and outer bundle fibers for detection. (B) Probe scheme and light prop-
agation modelling in the head, used by the forward model. (C) Iterative approach pipeline. (D) DOT reconstructed
image shows the total Hemoglobin (Hb) concentrations in the brain. (Figure licensed under CC-BY 4.0 Creative
Commons license.)
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Iterative reconstruction methods involve minimizing an objective function that usually consists of
a data term and a regularization terms imposing some prior:

x̂∗ = argmin
x̂
‖F(x̂)− y‖+ λR(x̂) (2)

where ||F(x̂) − y‖ is a data fidelity term that measures the consistency of the approximate solution
to the measured signal y, R(·) is a regularization term encoding the prior information about the
data, and λ is a hyper-parameter that controls the contribution of the regularization term. The
reconstruction error is minimized iteratively until convergence. The regularization term is often the
most important part of the modeling and what researchers have mostly focused on in the literature
as it vastly reduces the solution space by accounting for assumptions based on the underlying data
(e.g., smoothness, sparsity, spatio-temporal redundancy). The interested reader can refer to (Dong
and Shen 2015; McCann and Unser 2019) for more details on regularization modeling. Fig. 6 shows
an example of an iterative approach workflow for diffuse optical tomography (DOT) imaging.

Several image priors were formulated as sparse transforms to deal with incomplete data issues. The
sparsity idea, representing a high dimensional image x by only a small number of nonzero coefficients,
is one dominant paradigm that has been shown to drastically improve the reconstruction quality
especially when the number of measurements N or theirs signal to noise ratio (SNR) is low. Given the
assumption that an image can be represented with a few nonzero coefficients (instead of its number
of pixels), it is possible to recover it from a much smaller number of measurements. A popular choice
for a sparsifying transform is total variation (TV) that is widely studied in academic literature. The
interested reader is referred to Rodriguez et al. (Rodŕıguez 2013) for TV based algorithms modeling
details. While TV imposes a strong assumption on the gradient sparsity via the non-smooth absolute
value that is more suited to piece-wise constant images, TV tends to cause artifacts such as blurred
details and undesirable patchy texture in the final reconstructions. Recent work aimed at exploiting
richer feature knowledge overcomes TV’s weaknesses, for example TV-type variants (Zhang et al.
2016a), non-local means (NLM) (Zhang et al. 2016b), wavelet approaches (Gao et al. 2011), and
dictionary learning (Xu et al. 2012). Non-local means filtering methods, widely used for CT (Zhang
et al. 2017), are operational in the image domain and allow the estimation of the noise component
based on multiple patches extracted at different locations in the image (Sun et al. 2016).

Overall, although iterative reconstruction methods showed substantial accuracy improvements
and artifact reductions over the analytical ones, they still face three major weaknesses: First, iterative
reconstruction techniques tend to be vendor-specific since the details of the scanner geometry and
correction steps are not always available to users and other vendors. Second, there are substantial
computational overhead costs associated with popular iterative reconstruction techniques due to the
load of the projection and back-projection operations required at each iteration. The computational
cost of these methods is often several orders of magnitude higher than analytical methods, even when
using highly-optimized implementations. A trade-off between real-time performance and quality is
made in favor of quality in iterative reconstruction methods due to their non-linear complexity of
quality in function of the processing time. Finally, the reconstruction quality is highly dependent on
the regularization function form and the related hyper-parameters settings as they are problem-specific
and require non-trivial manual adjustments. Over-imposing sparsity (L1 penalties) for instance can
lead to cartoon-like artifacts. Proposing a robust iterative algorithm is still an active research area (Sun
et al. 2019c; Moslemi et al. 2020).
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Fig. 7 Visualization of common deep learning-based reconstruction paradigms from raw sensor data. (A) A two-step
processing model is shown where deep learning complements conventional methods (Section 3.1). A typical example
would be to pre-process the raw sensor data using a conventional approach and enhance the resulting image with
a deep learning model or vise versa. (B) An end-to-end model is shown: The image is directly estimated from the
raw sensor data with a deep learning model (Section 3.2).(C) Task results can be directly inferred with or without
explicit image reconstruction (Section 3.3).

3 Deep Learning Based Image Reconstruction

To further advance biomedical image reconstruction, a more recent trend is to exploit deep learning
techniques for solving the inverse problem to improve resolution accuracy and speed-up reconstruction
results. As a deep neural network represents a complex mapping, it can detect and leverage features
in the input space and build increasingly abstract representations useful for the end-goal. Therefore, it
can better exploit the measured signals by extracting more contextual information for reconstruction
purposes. In this section, we summarize works using DL for inverse problems in imaging.

Learning-based image reconstruction is driven by data where a training dataset is used to tune
a parametric reconstruction algorithm that approximates the solution to the inverse problem with a
significant one-time, offline training cost that is offset by a fast inference time. There is a variety of
these algorithms, with some being closely related to conventional methods and others not. While some
methods considered machine learning as a reconstruction step by combining a traditional model with
deep modeling to recover the missing details in the input signal or enhance the resulting image (Sec-
tion 3.1, some others considered a more elegant solution to reconstruct an image from its equivalent
initial measurements directly by learning all the parameters of a deep neural network, in an end-to-end
fashion, and therefore approximating the underlying physics of the inverse problem (Section 3.2), or
even going further and solving for the target task directly (Section 3.3). Fig. 7 shows a generic example
of the workflow of these approaches. Table 1 surveys various papers based on these different paradigms
and provides a comparison in terms of used data (Table 1-Column ”Mod.”,”Samp.”,”D”), architecture
(Table 1-Column ”TA”,”Arch.”), loss and regularization (Table 1-Column ”Loss”,”Reg.”), augmen-
tation (Table 1-Column ”Aug.”), etc .
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3.1 Deep Learning as Processing Step: Two Step Image Reconstruction Models

Complementing a conventional image reconstruction approach with a DL-model enables improved
accuracy while reducing the computational cost. The problem can be addressed either in the sensor
domain (pre-processing) or the image domain (post-processing) (Fig. 7-A, Table 1-Column ”E2E”).

3.1.1 A Pre-Processing Step (Sensor Domain)

The problem is formulated as a regression in the sensor domain from incomplete data representation
(e.g., sub-sampling, limited view, low dose) to complete data (full dose or view) using DL methods
and has led to enhanced results (Hyun et al. 2018; Liang et al. 2018; Cheng et al. 2018). The main goal
is to estimate, using a DL model, missing parts of the signal that have not been acquired during the
acquisition phase in order to input a better signal to an analytical approach for further reconstruction.

Hyun et al.(2018) proposed a k-space correction based U-Net to recover the unsampled data
followed by an IFT to obtain the final output image. They demonstrated artifact reduction and
morphological information preservation when only 30% of the k-space data is acquired. Similarly,
Liang et al. (2018) proposed a CT angular resolution recovery based on deep residual convolutional
neural networks (CNNs) for accurate full view estimation from unmeasured views while reconstructing
images using filtered back projection. Reconstruction demonstrated speed-up with fewer streaking
artifacts along with the retrieval of additional important image details. Unfortunately, since noise is
not only present in the incomplete data acquisition case, but also in the full data as well, minimizing
the error between the reference and the predicted values can cause the model to learn to predict the
mean of these values. As a result, the reconstructed images can suffer from lack of texture detail.

Huang et al. (2019b) argue that DL-based methods can fail to generalize to new test instances
given the limited training dataset and DL’s vulnerability to small perturbations especially in noisy and
incomplete data case. By constraining the reconstructed images to be consistent with the measured
projection data, while the unmeasured information is complemented by learning based methods,
reconstruction quality can be improved. DL predicted images are used as prior images to provide
information in missing angular ranges first followed by a conventional reconstruction algorithm to
integrate the prior information in the missing angular ranges and constrain the reconstruction images
to be consistent to the measured data in the acquired angular range.

Signal regression in the sensor domain reduces signal loss enabling improved downstream results
from the coupled analytic method. However, the features extracted by DL methods are limited to the
sensor domain only while analytical methods’ weaknesses are still present in afterword processing.

3.1.2 A Post-Processing Step (Image Domain)

The regression task is to learn the mapping between the low-quality reconstructed image and its high-
quality counterpart. Although existing iterative reconstruction methods improved the reconstructed
image quality, they remain computationally expensive and may still present reconstruction artifacts
in the presence of noise or incomplete information, e.g. sparse sampling of data. The main difficulty
arises from the non-stationary nature of the noise and serious streaking artifacts due to information
loss (Chen et al. 2012; Al-Shakhrah and Al-Obaidi 2003). These noise and artifacts are challenging
to isolate as they may have strong magnitudes and do not obey specific model distributions in the
image domain (Wang et al. 2016). The automatic learning and detection of complex patterns offered
by deep neural networks offers a clear advantage in this use case over handcrafted filters.

Given an initial reconstruction estimate from a direct inverse operator e.g., FBP (Sun et al. 2018;
Gupta et al. 2018; Chen et al. 2017a), IFT (Wang et al. 2016), or few iterative approach steps (Jin
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et al. 2017; Cui et al. 2019; Xu et al. 2017), deep learning is used to refine the initialized reconstruction
and produce the final reconstructed image. For example, Chen et al. (2017b) used an autoencoder to
improve FBP results on a limited angle CT projection. Similarly, Jin et al. (2017) enhanced a direct
inversion formula extracted from a spectral iterative algorithm via subsequent filtering by a U-Net to
reduce artifacts. These architectures are feasible ways to capture images structure as dimensionality
reduction.

Generative adversarial networks (GAN) (Goodfellow et al. 2014) were leveraged to improve the
quality of reconstructed images. Wolterink et al. (2017) proposed to train an adversarial network
to estimate full-dose CT images from low-dose CT ones and showed empirically that an adversarial
network improves the model’s ability to generate images with reduced aliasing artifacts. Interestingly,
they showed that combining squared error loss with adversarial loss can lead to a noise distribution
similar to that in the reference full-dose image even when no spatially aligned full-dose and low dose
scans are available.

Yang et al. (2017a) proposed a deep de-aliasing GAN (DAGAN) for compressed sensing MRI
reconstruction that resulted in reduced aliasing artifacts while preserving texture and edges in the
reconstruction. Remarkably, a combined loss function based on content loss ( consisting of a pixel-wise
image domain loss, a frequency domain loss and a perceptual VGG loss) and adversarial loss were
used. While frequency domain information was incorporated to enforce similarity in both the spatial
(image) and the frequency domains, a perceptual VGG coupled to a pixel-wise loss helped preserve
texture and edges in the image domain.

Combining DL and conventional methods reduce the computational cost but has its own down-
sides. For instance, the features extracted by DL methods are highly impacted by the results of the
conventional methods, especially in case of limited measurements and the presence of noise where the
initially reconstructed image may contain significant and complex artifacts that may be difficult to
remove even by DL models. In addition, the information missing from the initial reconstruction is
challenging to be reliably recovered by post-processing like many inverse problems in the computer
vision literature such as image inpainting. Furthermore, the number of iterations required to obtain
a reasonable initial image estimate using an iterative method can be hard to define and generally
requires a long run-time (in the order of several min) to be considered for real-time scanning. There-
fore, the post-processing approach may be more suitable to handle initial reconstructions that are of
relatively good quality and not drastically different from the high-quality one.

3.2 End-to-End Image Reconstruction: Direct Estimation

An end-to-end solution leverages the image reconstruction task directly from sensor-domain data using
a deep neural network by mapping sensor measurements to image domain while approximating the
underlying physics of the inverse problem. (Fig. 7-B). This direct estimation model may represent
a better alternative as it benefits from the multiple levels of abstraction and the automatic feature
extraction capabilities of deep learning models.

Given pairs of measurement vectors y and their corresponding ground truth images x (that produce
y), the goal is to optimize the parameters θ of a neural network in an end-to-end manner to learn
the mapping between the measurement vector y and its reconstructed tomographic image x, which
recovers the parameters of underlying imaged tissue. Therefore, we seek the inverse function A−1(·)
that solves:

θ∗ = argmin
θ
L
(
A−1(y, θ), x

)
+ λR(A−1(y, θ)) (3)
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where L is the loss function of the network that, broadly, penalizes the dissimilarity between the
estimated reconstruction and the ground truth. The regularization term R is often introduced to
prevent over-fitting with L1 or L2 norms being the most common choices.

Recently, several paradigms have emerged for end-to-end DL-based reconstruction the most com-
mon of which are generic DL models and DL models that unroll an iterative optimization.

3.2.1 Generic Models

Although some proposed models rely on multilayer perceptron (MLP) feed-forward artificial neural
network (Pelt and Batenburg 2013; Boublil et al. 2015; Feng et al. 2018; Wang et al. 2019), CNNs
remain the most popular generic reconstruction models mainly due to their data filtering and features
extraction capabilities. Specifically, encoder-decoder (Nehme et al. 2018; Häggström et al. 2019), U-
Net (Waibel et al. 2018), ResNet (Cai et al. 2018) and decoder like architecture (Yoon et al. 2018;
Wu et al. 2018; Zhu et al. 2018) are the most dominant architectures as they rely on a large number
of stacked layers to enrich the level of features extraction. A set of skip connections enables the later
layers to reconstruct the feature maps with both the local details and the global texture and facilitates
stable training when the network is very deep.

The common building blocks of neural network architectures are convolutional layers, batch nor-
malization layers, and rectified linear units (ReLU). ReLU is usually used to enforce information
non-negativity properties, given that the resulting pixels values represent tissue properties e.g., chro-
mophores concentration maps (Yoo et al. 2019), refractive index (Sun et al. 2016), and more examples
in Table 1. Batch normalization is used to reduce the internal covariate shift and accelerates conver-
gence. The resulting methods can produce relatively good reconstructions in a short time and can
be adapted to other modalities but require a large training dataset and good initialization parame-
ters. Table 1-Column ”E2E” (check-marked) surveys many papers with various architecture, loss, and
regularization for 2D,3D and 4D different modalities.

Zhu et al.(2018) proposed a manifold learning framework based decoder neural network to emulate
the fast-Fourier transform (FFT) and learn an end-to-end mapping between k-space data and image
domains where they showed artifact reduction and reconstruction speed up. However, when trained
with an L1 or L2 loss only, a DL-based reconstructed image still exhibits blurring and information loss,
especially when used with incomplete data. Similarly, Ben Yedder et al. (2018) proposed a decoder
like model for DOT image reconstruction. While increased reconstruction speed and lesion localization
accuracy are shown, some artifacts are still present in the reconstructed image when training with L2
loss only. This motivated an improved loss function in their follow-up work (Yedder et al. 2019) where
they suggested combining L2 with a Jaccard loss component to reduce reconstructing false-positive
pixels.

Thaler et al. (Thaler et al. 2018) proposed a Wasserstein GAN (WGAN) based architecture for
improving the image quality for 2D CT image slice reconstruction from a limited number of projection
images using a combination of L1 and adversarial losses. Similarly, Ouyang et al. (2019) used a GAN
based architecture with a task-specific perceptual and L1 losses to synthesize PET images of high
quality and accurate pathological features.

To further enhance results and reduce artifacts due to motion and corruption of k-space signal,
Clough et al. (2019) proposed a recurrent convolutional neural network (RCNN) to reconstruct high
quality dynamic cardiac MR images while automatically detecting and correcting motion-related arti-
facts and exploiting the temporal dependencies within the sequences. Proposed architecture included
two sub-networks trained jointly: an artifact detection network that identifies potentially corrupted
k-space lines and an RCNN for reconstruction.
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To relax the requirement of a large number of training samples, a challenging requirement in a
medical setting, simulating data was proposed as an alternative source of training data. However,
creating a realistic synthetic dataset is a challenging task in itself as it requires careful modeling of
the complex interplay of factors influencing real-world acquisition environment. To bridge the gap
between the real and in silico worlds, transfer learning provides a potential remedy as it helps transfer
the measurements from the simulation domain to the real domain by keeping the general attenuation
profile while accounting for real-world factors such as scattering, etc.

Ben Yedder et al.(2019) proposed a supervised sensor data distribution adaptation based MLP to
take advantage of cross-domain learning and reported accuracy enhancement in detecting tissue abnor-
malities. Zhou et al. (2019) proposed unsupervised CT sinograms adaptation, based on CycleGAN and
content consistent regularization, to further alleviate the need for real measurement-reconstruction
pairs. Interestingly, the proposed method integrated the measurement adaptation network and the
reconstruction network in an end-to-end network to jointly optimize the whole network.

Although several generic DL architectures and loss functions have been explored to further enhance
reconstruction results in different ways (resolution, lesion localization, artifact reduction, etc.), a DL-
based method inherently remains a black-box that can be hard to interpret. Interpretability is key not
only for trust and accountability in a medical setting but also to correct and improve the DL model.

3.2.2 Unrolling Iterative Methods

Unrolling conventional optimization algorithms into a DL model has been suggested by several
works (Qin et al. 2018; Schlemper et al. 2017a; Würfl et al. 2018; Sun et al. 2016; Adler and Öktem
2018) in order to combine the benefits of traditional iterative methods and the expressive power
of deep models (Table 1-Column ”E2E”). Rajagopal et al.(2019) proposed a theoretical framework
demonstrating how to leverage iterative methods to bootstrap network performance while preserving
network convergence and interpretability featured by the conventional approaches.

Deep ADMM-Net (Sun et al. 2016) was the first proposed model reformulating the iterative re-
construction ADMM (alternating direction method of multipliers) algorithm into a deep network for
accelerating MRI reconstruction, where each stage of the architecture corresponds to an iteration
in the ADMM algorithm. In its iterative scheme, the ADMM algorithm requires tuning of a set of
parameters that are difficult to determine adaptively for a given data set. By unrolling the ADMM
algorithm into a deep model, the tuned parameters are now all learnable from the training data. The
ADMM-Net was later further improved to Generic-ADMM-Net (Yang et al. 2017b) where a different
variable splitting strategy was adopted in the derivation of the ADMM algorithm and demonstrated
state-of-the-art results with a significant margin over the BM3D-based algorithm (Dabov et al. 2007).

Similarly, the PD-Net (Adler and Öktem 2018) adopted neural networks to approximate the prox-
imal operator by unrolling the primal-dual hybrid gradient algorithm (Chambolle and Pock 2011) and
demonstrated performance boost compared with FBP and handcrafted reconstruction models.

In like manner, Schlemper et al. (2017a) proposed a cascade convolutional network that embeds the
structure of the dictionary learning-based method while allowing end-to-end parameter learning. The
proposed model enforces data consistency in the sensor and image domain simultaneously, reducing
the aliasing artifacts due to sub-sampling. An extension for dynamic MR reconstructions (Schlemper
et al. 2017b) exploits the inherent redundancy of MR data.

While, the majority of the aforementioned methods used shared parameters over iterations only,
Qin et al. (2018) proposed to propagate learnt representations across both iteration and time. Bidi-
rectional recurrent connections over optimization iterations are used to share and propagate learned
representations across all stages of the reconstruction process and learn the spatiotemporal depen-
dencies. The proposed deep learning based iterative algorithm can benefit from information extracted
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at all processing stages and mine the temporal information of the sequences to improve reconstruc-
tion accuracy. The advantages of leveraging temporal information was also demonstrated in single
molecule localization microscopy (Cardoen et al. 2019). An LSTM was able to learn an unbiased
emission density prediction in a highly variable frame sequence of spatio-temporally separated flu-
orescence emissions. In other words, joint learning over the temporal domain of each sequence and
across iterations leads to improved de-aliasing.

Fig. 8 (A) Biomedical image processing workflow usually involves two steps optimized independently (reconstruc-
tion and image analysis) for diagnosis purposes. (B) Jointly solving these tasks using a unified model allows joint
parameters tuning and feature sharing.

3.3 Raw-to-task Methods

Typical data flow in biomedical imaging involves solving the image reconstruction task followed by
preforming an image processing task (e.g., segmentation, classification) (Fig 8-A). Although each of
these two tasks (reconstruction and image processing) is solved separately, the useful clinical informa-
tion extracted for diagnosis by the second task is highly dependent on the reconstruction results. In
the raw-to-task paradigm, task results are directly inferred from raw data, where image reconstruc-
tion and processing are lumped together and reconstructed image may not be necessarily outputted
(Fig. 7-C, Fig 8-B)

Jointly solving for different tasks using a unified model is frequently considered in the computer
vision field, especially for image restoration (Sbalzarini 2016), and has lead to improved results than
solving tasks sequentially (Paul et al. 2013). The advantages explain the recent attention this approach
received in biomedical image reconstruction (Sun et al. 2019a; Huang et al. 2019a). For instance, a
unified framework allows joint parameters tuning for both tasks and feature sharing where the two
problems regularize each other when considered jointly. In addition, when mapping is performed
directly from the sensor domain, the joint task can even leverage sensor domain features for further
results enhancing while it can be regarded as a task-based image quality metric that is learned from
the data. Furthermore, Sbalzarini (2016) argues that solving ill-posed problems in sequence can be
more efficient than in isolation. Since the output space of a method solving an inverse problem is
constrained by forming the input space of the next method, the overall solution space contracts.
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Computational resources can then be focused on this more limited space improving runtime, solution
quality or both.

4 Medical Training Datasets

The performance of learning-based methods is dictated to a large extent by the size and diversity
of the training dataset. In a biomedical setting, the need for large, diverse, and generic datasets is
non-trivial to satisfy given constraints such as patient privacy, access to acquisition equipment and the
problem of divesting medical practitioners to annotate accurately the existing data. In this section,
we will discuss how researchers address the trade-offs in this dilemma and survey the various publicly
available dataset type used in biomedical image reconstruction literature.

Table 1-Columns ”Data”, ”Site” and ”Size” summarise details about dataset used by different
surveyed papers, which are broadly classified into clinical (real patient), physical phantoms, and
simulated data. The sources of used datasets have been marked in the last column of Table 1-Columns
”Pub”. Data” in case of their public availability to other researchers. Since phantom data are not
commonly made publicly available, the focus was mainly given to real and simulated data whether
they are publicly available or as part of challenges. Used augmentation techniques have been mentioned
in Table 1-Columns ”Aug”. Remarkably, augmentation is not always possible in image reconstruction
task especially in sensor domain given the non-symmetries of measurements in some case, the nonlinear
relationship between raw and image data, and the presence of other phenomena(e.g., scattering). We
herein survey the most common source of data and discuss their pros and cons.

4.1 Real-World Datasets

Some online platforms (e.g., Lung Cancer Alliance, Mridata, MGH-USC HCP (2016), and Biobank)
made the initiative to share datasets between researchers for image reconstruction task. Mridata, for
example, is an open platform for sharing clinical MRI raw k-space datasets. The dataset is sourced
from acquisitions of different manufacturers, allowing researchers to test the sensitivity of their meth-
ods to overfitting on a single machine’s output while may require the application of transfer-learning
techniques to handle different distributions. As of writing, only a subset of organs for well known
modalities e.g., MRI and CT are included (Table 1-Columns ”Site”). Representing the best recon-
struction images acquired for a specific modality, the pairs of signal-image form a gold standard for
reconstruction algorithms. Releasing such data, while extremely valuable for researchers, is a non-
trivial endeavour where legal and privacy concerns have to be taken into account by, for example,
de-anonymization of the data to make sure no single patient or ethnographically distinct subset of
patients can ever be identified in the dataset. Source of real-word used datasets on surveyed papers
has been marked in Table 1-Columns ”Pub. Data” where they sizes remain relatively limited to allow
a good generalization of DL-based methods.

4.2 Physics-Based Simulation

Physics-based simulation (Schweiger and Arridge 2014; Harrison 2010; Häggström et al. 2016) pro-
vides an alternative source of training data that allows generating a large and diversified dataset.
The accuracy of a physical simulation with respect to real-world acquisitions increases at the cost
of an often super-linear increase in computational resources. In addition, creating realistic synthetic
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datasets is a nontrivial task as it requires careful modeling of the complex interplay of factors in-
fluencing real-world acquisition environment. With a complete model of the acquisition far beyond
computational resources, a practitioner needs to determine how close to reality the simulation needs
to be in order to allow the method under development to work effectively. Transfer learning provides
a potential remedy to bridge the gap between real and in silico worlds and alleviates the need for a
large clinical dataset (Zhu et al. 2018; Yedder et al. 2019). In contrast, the approach of not aiming for
complete realism but rather using the simulation as a tool to sharpen the research question can be
appropriate. Simulation is a designed rather than a learned model. For both overfitting to available
data is undesirable. The assumptions underlying the design of the simulation are more easily verified
or shown not to hold if the simulation is not fit to the data, but represents a contrasting view. For
example, simulation allows the recreation and isolation of edge cases where a current approach is
performing sub-par. As such simulation is a key tool for hypothesis testing and validation of methods
during development. For DL-based methods the key advantage simulation offers is the almost unlim-
ited volume of data that can be generated to augment limited real-world data in training. With the
size of datasets as one of the keys determining factors for DL-based methods leveraging simulation
is essential. Surveyed papers that used simulated data as a training or augmentation data have been
marked in Table 1-Columns ”Pub”.

4.3 Challenge Dataset

There are only a few challenge (competition) datasets for image reconstruction task e.g., LowDo-
seCT (2014) FastMRI (Zbontar et al. 2018), Fresnel (Geffrin et al. 2005) and SMLM challenge (Holden
and Sage 2016) that includes raw measurements. Simulating incomplete signals by degrading the
high-quality acquired signals while keeping their corresponding high-quality images pair was also ex-
plored. Alternatively, researchers collect high-quality images from other medical imaging challenges,
e.g., segmentation (MRBrainS challenge (Mendrik et al. 2015), Bennett and Simon (2013)), and use
simulation, using a well known forward model, to generate full and/or incomplete sensor domain pairs.
Here again, only a subset of body scans and diseases for well-studied modalities are publicly available
as highlighted in Table 1-Columns ”Site” and ”Pub. Data” .

5 Reconstruction Evaluation Metrics

5.1 Quality

Measuring the performance of the reconstruction approaches is usually performed using three metrics,
commonly applied in computer vision, in order to access the quality of the reconstructed images.
These metrics are the root mean squared error (RMSE) or normalized mean squared error, structural
similarity index (SSIM) or its extended version multiscale structural similarity (Wang et al. 2003),
and peak signal to noise ratio (PSNR).

While RMSE measures the pixel-wise intensity difference between ground truth and reconstructed
images by evaluating pixels independently, ignoring the overall image structure, SSIM, a perceptual
metric, quantifies visually perceived image quality and captures structural distortion. SSIM combines
luminance, contrast, and image structure measurements and ranges between [0,1] where the higher
SSIM value the better and SSIM = 1 means that the two compared images are identical.

PSNR (Eq. 4) is a well-known metric for image quality assessment which provides similar infor-
mation as the RMSE but in units of dB while measuring the degree to which image information rises
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above background noise. Higher values of PSNR indicate a better reconstruction.

PSNR = 20.log10

(
Xmax√
MSE

)
(4)

where Xmax is the maximum pixel value of the ground truth image.
Illustrating modality specific reconstruction quality is done by less frequently used metrics such

as contrast to noise ratio (CNR) (Wu et al. 2018) for US. Normalized mutual information (NMI)
is a metric used to determine the mutual information shared between two variables, in this context
image ground truth and reconstruction (Wu et al. 2018; Zhou et al. 2019). When there is no shared
information NMI is 0, whereas if both are identical a score of 1 is obtained. To illustrate NMI’s value,
consider two images X, Y with random values. When generated from two different random sources,
X and Y are independent, yet RMSE(X,Y) can be quite small. When the loss function minimizes
RMSE, such cases can induce stalled convergence at a suboptimal solution due to a constant gradient.
NMI, on the other hand, would return zero (or a very small value), as expected. The intersection over
union, or Jaccard index, is leveraged to ensure detailed accurate reconstruction (Yedder et al. 2018;
Sun et al. 2019a). In cases where the object of interest is of variable size and small with respect to the
background, an RMSE score is biased by matching the background rather than the target of interest.
In a medical context, it is often small deviations (e.g. tumors, lesions, deformations) that are critical
to diagnosis. Thus, unlike computer vision problems where little texture changes might not alter the
overall observer’s satisfaction, in medical reconstruction, further care should be taken to ensure that
practitioners are not misled by a plausible but not necessarily correct reconstruction. Care should be
taken to always adjust metrics with respect to their expected values under an appropriate random
model (Gates and Ahn 2017). The understanding of how a metric responds to its input should be a
guideline to its use. As one example, the normalization method in NMI has as of writing no less than
6 (Gates and Ahn 2017) alternatives with varying effect on the metric. Table 1-Columns ”Metrics”
surveys the most frequently used metrics on surveyed papers.

5.2 Inference Speed

With reconstruction algorithms constituting a key component in time-critical diagnosis or intervention
settings, the time complexity is an important metric in selecting methods. Two performance criteria
are important in the context of time: Throughput measures how many problem instances can be
solved over a time period, and latency measures the time needed to process a single problem instance.
In a non-urgent medical setting, a diagnosing facility will value throughput more than latency. In an
emergency setting where even small delays can be lethal, latency is critical above all. For example, if
a reconstruction algorithm is deployed on a single device it is not unexpected for there to be waiting
times for processing. As a result latency, if the waiting time is included, will be high and variable,
while throughput is constant. In an emergency setting there are limits as to how many devices can be
deployed, computing results on scale in a private cloud on the other hand can have high throughput,
but higher latency as there will be a need to transfer data offsite for processing. In this regard
it is critical for latency sensitive applications to allow deployment on mobile (low-power) devices.
To minimize latency (including wait-time), in addition to parallel deployment, the reconstruction
algorithm should have a predictable and constant inference time, which is not necessarily true for
iterative approaches.

Unfortunately, while some papers reported their training and inference times, (Table 1-Columns
”Metrics-IS”) it is not obvious to compare their time complexity given the variability in datasets,
sampling patterns, hardware, and DL frameworks. Overall, the offline training of DL methods bypasses
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the laborious online optimization procedure of conventional methods, and has the advantage of lower
inference time over all but the simplest analytical.

6 Conclusion, Discussion and Future Direction

Literature shows that DL-based image reconstruction methods have gained popularity over the last
few years and demonstrated image quality improvements when compared to conventional image re-
construction techniques especially in the presence of noisy and limited data representation. DL-based
methods address the noise sensitivity and incompleteness of analytical methods and the computational
inefficiency of iterative methods.

6.1 Discussion

Learning: Unlike conventional approaches that work on a single image in isolation and require
prior knowledge, DL-based reconstruction methods leverage the availability of large-scale datasets
and the expressive power of DL to impose implicit constraints on the reconstruction problem. While
DL-based approaches do not require prior knowledge, their performance can improve with it. By not
being dependent on prior knowledge, DL-based methods are more decoupled from a specific imaging
(sub)modality and thus can be more generalizable. Real-time reconstruction is offered by DL-based
methods by performing the optimization or learning stage offline, unlike conventional algorithms
that require iterative optimization for each new image. The diagnostician can thus shorten diagnosis
time increasing the throughput in patients treated. In operating theatres and emergency settings this
advantage can be life saving.

Interpretability: While the theoretical understanding and the interpretability of conventional
reconstruction methods are well established and strong (e.g., one can prove a method’s optimality
for a certain problem class), it is weak for the DL-based methods (due to the black-box nature of
DL) despite the effort in explaining the operation of DL-based methods on many imaging processing
tasks. However, one may accept the possibility that interpretabilty is secondary to performance as
fully understanding DL-based approaches may never become practical.

Complexity: On the one hand, conventional methods can be straightforward to implement, albeit
not necessarily to design. On the other, they are often dependent on parameters requiring manual
intervention for optimal results. DL-based approaches can be challenging to train with a large if not
intractable hyper-parameter space (e.g., learning rate, initialization, network design). In both cases,
the hyper-parameters are critical to results and require a large time investment from the developer
and the practitioner. In conclusion, there is a clear need for robust self-tuning algorithms, for both
DL-based and conventional methods.

Robustness: Conventional methods can provide good reconstruction quality when the measured
signal is complete and the noise level is low, their results are consistent across datasets and degrade
as the data representation and/or the signal to noise ratio is reduced by showing noise or artifacts
(e.g., streaks, aliasing). However, a slight change in the imaging parameters (e.g., noise level, body part,
signal distribution, adversarial examples, and noise) can severely reduce the DL-based approaches’
performances and might lead to the appearance of structures that are not supported by the measure-
ments (Antun et al. 2019; Gottschling et al. 2020). DL based approaches still leave many unsolved
technical challenges regarding their convergence and stability that in turn raise questions about their
reliability as a clinical tool. A careful fusion between DL-based and conventional approaches can help
mitigate these issues and achieve the performance and robustness required for biomedical imaging.
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Speed: DL-based methods have the advantage in processing time over all but the most simple
analytical methods at inference time. As a result, latency will be low for DL-based methods. However,
one must be careful in this analysis. DL-based methods achieve fast inference by training for a long
duration, up to weeks, during development. If any changes to the method are needed and retraining is
required, even partial, a significant downtime can ensue. Typical DL-based methods are not designed
to be adjusted at inference time. Furthermore, when a practitioner discovers that, at diagnosis time,
the end result is sub-par, an iterative method can be tuned by changing its hyper-parameters. For a
DL-based approach, this is non-trivial if not infeasible.

A final if not less important distinction is adaptive convergence. At deployment, a DL-based
method has a fixed architecture and weights with a deterministic output. Iterative methods can be
run iterations until acceptable performance is achieved. This is a double-edged sword as convergence
is not always guaranteed and the practitioner might not know exactly how many more iterations are
needed.

Training Dataset: Finally, the lack of large scale biomedical image datasets for training due to
privacy, legal, and intellectual property related concerns, limits the application of DL-based methods
on health care. Training DL-based models often require scalable high performance hardware provided
by cloud based offerings. However, deploying on cloud computing and transmitting the training data
risks the security, authenticity, and privacy of that data. Training on encrypted data offers a way to
ensure privacy during training Gilad-Bachrach et al. (2016). More formally a homomorphic encryption
algorithm Rivest et al. (1978) can ensure evaluation (reconstruction) on the encrypted data results
are identical after decryption to reconstruction on the non-encrypted data. In practice, this results
in an increase in dataset size as compression becomes less effective, a performance penalty is induced
by the encryption and decryption routines, and interpretability and debugging the learning algorithm
becomes more complex since it operates on human unreadable data.

The concept of federated learning, where improvements of a model (weights) are shared between
distributed clients without having to share datasets, has seen initial success in ensuring privacy while
enabling improvements in quality Geyer et al. (2017). However a recent work Zhu et al. (2019) has
shown that if an attacker has access to the network architecture and the shared weights, the training
data can be reconstructed with high fidelity from the gradients alone. Data sharing security in a
federated setting still presents a concern that requires further investigations.

Simulating a suitable training set also remains a challenge that requires careful tuning and more
realistic physical models to improve DL-based algorithm generalization.

6.2 Future Directions

The future of the field will be to produce higher quality images given the most limited resource budget
such as radiation dose, scanning time, and scanner complexity as well as from online real patient inputs
using algorithms with the fewest hand-tuned parameters and lowest power consumption.

There remain a vast range of challenges and opportunities in the field. So far, most approaches focus
on CT and MR image reconstruction while only a handful of approaches exist for the reconstruction
of the remaining modalities. Hence, the applicability of deep learning models to these problems is
yet to be fully explored. In addition, proposed deep learning architectures are often generic and are
not fully optimized for specific applications. For instance, how to optimally exploit spatio-temporal
redundancy, or how to exploit multi-spectral data. By addressing these core questions and designing
network layers to efficiently learn such data representation, the network architecture can gain a boost
in performance and reliability.



20 Hanene Ben Yedder et al.

Joint multi-modal image reconstruction, such as DOT/CT (Baikejiang et al. 2017) and PET/
MRI (Wang et al. 2015), has been proposed on several iterative approaches to take advantage of both
imaging modalities and led to improving the overall imaging performance, especially avoiding the
spatio-temporal artifacts due to the scanning with different devices at different times and positions.
The idea relies on leveraging the information provided by feature similarity between multiple modali-
ties. While this direction has great interest, it has only just begun to receive consideration (Cui et al.
2019) and remains a direction for further exploration. Collecting suitably calibrated and registered
data on hybrid multi-modality imaging systems remains a key challenge as well.

Attention driven sampling received increasing interest recently especially in a limited data rep-
resentation context. While adapting the sampling to the reconstruction algorithm showed improved
image quality compared to conventional sampling strategies (Jin et al. 2019), it could be computa-
tionally more expensive with unknown convergence behavior. The development of efficient sampling
learning algorithms would be a promising research direction. In optical coherence tomography the
application of wavelet based compressive sensing has been shown capable to reconstruct with a little
as 20% of the samples (Lebed et al. 2013). The potential demonstrated through handcrafted sampling
strategies indicates that DL-based methods could also exploit this opportunity.

Deep learning models require computationally powerful machines (GPU) to provide online re-
construction and achieve promised performance. Network pruning and sparsifying, recently proposed
for computer vision tasks (Alford et al. 2018; Aghasi et al. 2017; Huang and Wang 2018), present
a promising direction yet to be explored on image reconstruction tasks in order to allow DL-based
model processing on CPU and mobile devices. This will be of great interest to emergent mobile scan-
ners (e.g., DOT (Shokoufi and Golnaraghi 2016), US (Georgeson and Safai 2017),CT (Rykkje et al.
2019)).

Reducing the encoding size in bits of network weights without altering the quality of the prediction
has been demonstrated on several references deep learning image processing networks Sun et al.
(2019b). A reported decrease in training time of 30-60% is only one benefit. By reducing network
weights from 64 or 32 bits to 8 or smaller (i.e., weights quantization) the network requires a smaller
memory footprint. As a result, networks that are at the time of writing too large to fit on a single
GPU can be reduced to fit on a single GPU. Conversely, networks too large to deploy on edge devices
(handheld scanner, mobile phones, etc.) can become easily deployable in the field without changing
their architecture. Finally and not least important, the reduction in training time results in a significant
reduction in the environmental impact of the training procedure.

Finally, as performance evaluation metrics are more computer vision task-oriented, they tend
to be insufficient in the biomedical imaging context as they do not provide real diagnostic accuracy
significance. We advocate a shift toward task-oriented evaluations given that reconstructed images are
usually used for a specific diagnosis or treatment purpose. While such a measure may be expensive,
especially if they require human experts’ feedback, they will be critical in creating algorithms that
can advance the biomedical imaging practice.



Deep Learning for Biomedical Image Reconstruction: A Survey 21

T
a
b
le

1
C

o
m

p
a
ri

so
n

b
et

w
ee

n
d

iff
er

en
t

p
a
p

er
s

th
a
t

h
a
v
e

a
p

p
li

ed
m

a
ch

in
e

le
a
rn

in
g

to
th

e
b

io
m

ed
ic

a
l

im
a
g
e

re
co

n
st

ru
ct

io
n

p
ro

b
le

m
.

M
o
d

.:
m

o
d

a
li
ty

;
S

a
m

p
.:

si
g
n

a
l

sa
m

p
li
n

g
(F

:
fu

ll
sa

m
p

li
n

g
,

S
S

:
su

b
-s

a
m

p
li
n

g
,

L
A

:
li
m

it
ed

a
n

g
le

d
a
ta

,
S

V
:

sp
a
rs

e
v
ie

v
,

L
D

:
lo

w
d

o
se

d
a
ta

);
M

S
:

m
u

lt
i-

sp
ec

tr
a
l

in
p

u
t

si
g
n

a
l;

T
A

:
co

n
si

d
er

a
ti

o
n

o
f

te
m

p
o
ra

l
a
sp

ec
t;

D
:

d
im

en
si

o
n

(P
C

:
p

o
in

t
cl

o
u

d
s)

;
S

it
e:

ty
p

e
o
f

ti
ss

u
e

(s
o
ft

ti
ss

u
e

li
k
e

b
ra

in
a
n

d
b

re
a
st

,
m

ix
:

d
iff

er
en

t
p

a
rt

o
f

th
e

b
o
d

y,
A

b
d

o
m

:
a
b

d
o
m

in
a
l

a
re

a
,

B
io

S
a
m

p
:

b
io

lo
g
ic

a
l

sa
m

p
le

s,
S

im
:

si
m

u
la

te
d

d
a
ta

);
A

rc
h

:
a
rc

h
it

ec
tu

re
m

o
d

el
;

E
2
E

:
w

h
et

h
er

th
e

a
p

p
ro

a
ch

is
en

d
-t

o
-e

n
d

o
r

co
m

b
in

ed
(P

o
s:

D
L

a
s

p
o
st

-p
ro

ce
ss

in
g
,

P
re

:
D

L
a
s

p
re

-p
ro

ce
ss

in
g
,

R
2
T

:
R

a
w

-t
o
-t

a
sk

);
L

o
ss

:
u

se
d

lo
ss

fu
n

ct
io

n
(C

o
m

b
.l

o
ss

:
co

m
b

in
ed

lo
ss

,
P

er
c:

p
er

ce
p

tu
a
l

lo
ss

,
A

d
v
er

:
a
d

v
er

sa
ri

a
l

lo
ss

,
C

E
:

cr
o
ss

en
tr

o
p
y,

J
a
cc

:
J
a
cc

a
rd

lo
ss

,
M

M
D

:
m

a
x
im

u
m

m
ea

n
d

is
cr

ep
a
n

cy
);

R
eg

:
re

g
u

la
ri

za
ti

o
n

;
In

p
:

in
p

u
t

d
a
ta

(M
.S

p
ec

M
ea

s:
m

u
lt

i-
sp

ec
tr

a
l
m

ea
su

re
m

en
ts

,
R

F
:
ra

d
io

fr
eq

u
en

ci
es

m
ea

su
re

m
en

ts
,
P

A
M

ea
s:

p
h

o
to

-a
co

u
st

ic
m

ea
su

re
m

en
ts

);
O

u
t:

o
u

tp
u

t
d

a
ta

(C
h

ro
m

M
a
p

s:
ch

ro
m

o
p

h
o
re

co
n

ce
n
tr

a
ti

o
n

m
a
p

,
R

ef
in

d
ex

:
re

fr
a
ct

iv
e

in
d

ex
,

Im
g
:

in
te

n
si

ty
im

a
g
e,

S
eg

:
se

g
m

en
ta

ti
o
n

m
a
sk

);
M

et
ri

cs
:

ev
a
lu

a
ti

o
n

m
et

ri
cs

(M
:

M
S

E
o
r

R
M

S
E

,
P

:
P

S
N

R
,

S
:

S
S

IM
,

D
:

le
si

o
n

d
et

ec
ti

o
n

m
et

ri
c

li
k
e

D
ic

e
a
n

d
J
a
cc

a
rd

,
C

:
co

n
tr

a
st

to
n

o
is

e
ra

ti
o

a
n

d
IT

:
re

co
n

st
ru

ct
io

n
in

fe
re

n
ce

sp
ee

d
)

A
u

g
:

u
se

d
a
u

g
m

en
ta

ti
o
n

te
ch

n
iq

u
e

(A
:

a
ffi

n
e,

E
:

el
a
st

ic
,

R
:

ro
ta

ti
o
n

tr
a
n

sf
o
rm

a
ti

o
n

s)
;

D
a
ta

:
u

se
d

tr
a
in

in
g

d
a
ta

(S
im

:
si

m
u

la
te

d
d

a
ta

,
C

li
n

i:
cl

in
ic

a
l

d
a
ta

,
P

h
a
n

:
p

h
a
n
to

m
d

a
ta

)
P

u
b

.
D

a
ta

:
p

u
b

li
c

d
a
ta

u
se

d
.

R
e
f

M
o
d
.

Y
e
a
r

S
a
m

p
.

M
S

T
A

D
S
it

e
A

rc
h
.

E
2
E

L
o
ss

R
e
g
.

In
p
.

O
u
t.

A
u
g
.

M
e
tr

ic
s

M
|P
|S
|D
|C
|I

S
D

a
ta

S
iz

e
P

u
b
.

D
a
ta

C
a
i

e
t

a
l.

P
A

2
0
1
8

F
X

2
D

M
ix

R
e
sU

-N
e
t

X
M

S
E

M
.S

p
e
c

M
e
a
s

C
h
ro

m
M

a
p
s

X
|X
|

-|
-|

-|
X

S
im

∼
2
0
0
0

Y
o
o
n

e
t

a
l.

U
S

2
0
1
9

S
S

3
D

A
b

d
o
m

D
e
c
o
d
e
r

X
M

S
E

L
2

R
F

Im
g

-|
X
|

-|
-|

-|
X

C
li
n
i

5
0
0

W
u

e
t

a
l.

U
S

2
0
1
8

F
X

2
D

M
ix

C
N

N
X

M
A

E
R

F
E

la
st

d
is

t
X
|X
|

-|
-|
X
|

-
S
im

P
h
a
n

C
li
n
i

∼
1
0
0

G
u
p
ta

e
t

a
l.

C
T

2
0
1
8

S
V

2
D

M
ix

C
N

N
P

o
s

C
o
m

b
.

lo
ss

F
B

P
Im

g
-|
X
|X
|-
|-
|-

C
li
n
i

∼
1
0
0
0

L
o
w

D
o
se

C
T

S
u
n

e
t

a
l.

M
u
lt

.
S
c
a
t

2
0
1
8

F
2
D

B
io

S
a
m

p
.

R
e
sU

-N
e
t

P
o
s

M
S
E

F
B

P
R

e
f

in
d
e
x

-|
X
|

-|
-|

-|
-

S
im

P
h
a
n

1
5
5
0

F
re

sn
e
l

Z
h
u

e
t

a
l.

M
R

I
2
0
1
8

S
S

2
D

B
ra

in
D

e
c
o
d
e
r

X
M

S
E

L
2

k
-s

p
a
c
e

Im
g

A
X
|X
|

-|
-|

-|
-

Im
a
g
N

e
t

C
li
n
i

∼
1
0
K

M
G

H
-U

S
C

H
C

P

C
h
e
n

e
t

a
l.

C
T

2
0
1
7

L
D

2
D

M
ix

R
e
si

d
u
a
l

A
E

P
o
s

M
S
E

F
B

P
Im

g
A

+
R

X
|X
|X
|

-|
-|

-
S
im

C
li
n
i

∼
1
0
K

L
o
w

D
o
se

C
T

W
ü
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