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Abstract
Sensory processing relies on efficient computation driven by a combination of low-level 
unsupervised, statistical structural learning, and high-level task-dependent learning. In the 
earliest stages of sensory processing, sparse and independent coding strategies are capable 
of modeling neural processing using the same coding strategy with only a change in the 
input (e.g., grayscale images, color images, and audio). We present a consolidated review 
of Independent Component Analysis (ICA) as an efficient neural coding scheme with the 
ability to model early visual and auditory neural processing. We created a self-contained, 
accessible Jupyter notebook using Python to demonstrate the efficient coding principle for 
different modalities following a consistent five-step strategy. For each modality, derived 
receptive field models from natural and non-natural inputs are contrasted, demonstrating 
how neural codes are not produced when the inputs sufficiently deviate from those ani-
mals were evolved to process. Additionally, the demonstration shows that ICA produces 
more neurally-appropriate receptive field models than those based on common compres-
sion strategies, such as Principal Component Analysis. The five-step strategy not only pro-
duces neural-like models but also promotes reuse of code to emphasize the input-agnostic 
nature where each modality can be modeled with only a change in inputs. This notebook 
can be used to readily observe the links between unsupervised machine learning strategies 
and early sensory neuroscience, improving our understanding of flexible data-driven neural 
development in nature and future applications.

 * Namratha Urs 
 namrathaurs@my.unt.edu

 Sahar Behpour 
 sahar.behpour@unt.edu

 Angie Georgaras 
 aggeorgaras1@gmail.com

 Mark V. Albert 
 mark.albert@unt.edu

1 Department of Computer Science and Engineering, University of North Texas, Denton, TX, US
2 Department of Information Science, University of North Texas, Denton, TX, US
3 Department of Neuroscience, Loyola University Chicago, Chicago, IL, US
4 Department of Biomedical Engineering, University of North Texas, Denton, TX, US

http://orcid.org/0000-0001-6217-6376
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-021-10047-7&domain=pdf


112 N. Urs et al.

1 3

Keywords Neural coding · Efficient coding principle · Sensory processing

1 Introduction

Bridging the gap between neuroscience and computational approaches presents a mutual 
benefit to both neuroscientists and computer scientists. The nature of biological systems 
to perform with high accuracy and extraordinary efficiency in complicated and uncer-
tain environments has led brain-inspired modeling to be a natural frame of reference for 
advances in Artificial Intelligence (AI) (Fong et al. 2018). Conversely, computational strat-
egies can test and validate intuitions about brain structure and activity by explicitly mod-
eling those intuitions. For example, early visual and auditory neural responses can be pre-
dicted using receptive field models based on stimulus–response pairs, but an understanding 
of the role of that receptive field model as an efficient coding strategy requires using a 
computational paradigm.

Receptive field models in early sensory neuroscience help understand the response 
properties of sensory neurons (Sherrington 1906). However, such images explain “what” 
stimulus drives a particular neuron’s response, but not necessarily “why” neurons would 
be guided by evolution and adaptation to respond this way. Early measurements of primary 
visual cortex (V1) simple cell responses to stimuli demonstrate response properties that 
can be approximated by a 2D Gabor wavelet code (Fig. 1) (Hubel and Wiesel 1962, 1968; 
Jones and Palmer 1987b), but why such a code among all the alternative coding strate-
gies? The efficient coding hypothesis proposes that the goal of early sensory processing 
is to reduce redundancy (Barlow 1961; Field 1987). However, several objectives can be 
formulated from this belief. A sparse coding of grayscale natural images (Olshausen and 
Field 1996) first demonstrated how these early visual codes can be produced through unsu-
pervised machine learning (Fig. 2). Furthermore, independent coding through Independent 
Component Analysis (ICA) (Bell and Sejnowski 1997) on natural images created similar 
receptive fields. In particular, only efficient encoding objectives which are appropriate for 
neural representations have been found to produce more efficient representations; such rep-
resentations can be contrasted to compact efficient codes such as PCA or other traditional 
factor analysis techniques (Field 1994). It is only these neurally-appropriate efficient strate-
gies, such as sparse coding or ICA, applied to natural images that yield filters resembling 
the 2D Gabor functions seen in early sensory processing. 

One of the powerful aspects of the efficient coding hypothesis, and its subsequent appli-
cation to derive neural receptive fields directly from sensory data, is the universal nature 
across a variety of modalities. Grayscale natural images encoded with a sparse coding or 
independent coding objective produce grayscale luminance filters, however, animals expe-
rience the world also in color, over time, and even binocularly. Uniquely from a compu-
tational standpoint, each of these visual modalities can be approached by only a change 
in input. The application of ICA on natural video sequences results in qualitatively simi-
lar spatio-temporal properties to primary visual cortex receptive fields (van Hateren and 
Ruderman 1998). For example, the derived filters at low spatial frequencies were more 
sensitive to rapid movement than those at high spatial frequencies, which has been demon-
strated in the distribution of spatio-temporal neural receptive fields in animals. Similarly, 
by applying ICA on color natural images as opposed to grayscale, resulting filters are color 
selective in similar distributions to what is observed in experimentally measured receptive 
fields (Fig. 3). There were more achromatic filters which have higher spatial frequencies. 
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Color opponency also followed a pattern observed in neural receptive fields with distinctly 
separated red-green, blue-yellow, and bright-dark channels as observed in the distribution 
of receptive fields representing color (Hoyer and Hyvärinen 2000). Likewise, if binocu-
lar images are used as input to ICA, binocular receptive fields are produced (Hoyer and 
Hyvärinen 2000). The distribution of receptive field properties resembles what is observed 
in nature, including a variety of filters primarily on one of the two eyes (ocular dominance) 
as well as a variety of disparity shifts between the left and right eyes, representing the 
presence of binocular disparity. Through grayscale, video, color, and binocular representa-
tions—and potential combinations—efficient coding techniques can derive representations 
of receptive fields resembling those measured experimentally. 

Notably, this flexibility of efficient coding strategies to derive neural receptive fields 
also extends to auditory processing (Lewicki 2002). Gammatone filters are a parametric 
model which can be used to characterize the receptive fields of spiral ganglion cells in 
the cochlea, similar to how 2D Gabor filters resemble V1 receptive fields. By efficiently 
encoding a variety of natural sounds, ICA can produce linear filters resembling gamma-
tone filters observed in nature (Fig. 4). In this way, the same coding strategy can explain 
responses in a variety of visual modalities and in the auditory system as well, with only 
a change in input data.

V1 Simple Cell
Receptive Fields

2D Gabor Functions

(a) (b) (c) (d)

Spiral Ganglion Cell
Receptive Fields

Gammatone 
Functions

Fig. 1  Experimentally measured models of visual (left panel) and auditory (right panel) receptive fields 
compared to equivalent 2D gabor wavelets and gammatone functions, respectively. Left panel: Simple cell 
receptive fields of neurons in the primary visual cortex (V1) of cats (a) and two-dimensional (2D) Gabor 
functions (b) (Jones and Palmer 1987a). 2D Gabor functions are capable of precisely capturing the spatial 
aspects of simple cell receptive fields. Right panel: Receptive fields of spiral ganglion cells in the cochlea 
of cats (c) and fit gammatone functions (d) (de Boer and de Jongh 1978). Gammatone functions precisely 
capture the response properties of primary auditory neurons, i.e., aspects of frequency selectivity and tem-
porality
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Evolution and adaptation developed sensory systems where the same computation is 
performed in both visual and auditory systems. Despite the existence of numerous stud-
ies about efficient coding applied to natural sensory data, the use of efficient coding to 
provide a common computational framework across modalities is not prevalent. Here, 
we further establish the connection between efficient coding strategies and neural recep-
tive fields using a self-contained, easily accessible Jupyter Notebook to enable research-
ers from both fields.

In the available notebook, we demonstrate how the same efficient coding scheme can 
be used to model early sensory processing regardless of the modality (e.g., grayscale 
images, color images, and audio). We employ unsupervised machine learning techniques, 

(a) (b)

Fig. 2  Observations of sparse coding and compact coding strategies on grayscale natural scenes. Recep-
tive fields derived from compact coding are not localized and do not resemble the known receptive fields. 
Sparse coding for natural scenes yields filters that not only resemble simple-cell receptive fields but also 
develop their characteristic properties (i.e., spatially localized, oriented, and bandpass). (a) 192 basis func-
tions as a result of training on 16 × 16 monochromatic image patches from natural scenes (after preprocess-
ing). (b) Principal components calculated on 8 × 8 monochromatic image patches extracted from natural 
scenes (Olshausen and Field 1996)

(a) (b)

Fig. 3  Derived basis functions resulting from efficient coding of color images. The grayscale image model 
is extended to include colors. (a) Independent components (filters) derived from ICA are similar to recep-
tive fields observed in grayscale images, most of which are achromatic, and a few others consist of low spa-
tial frequency red-green and blue-yellow patches. (b) 160 principal components of the data bear no resem-
blance to neural receptive field-like filters (Hoyer and Hyvärinen 2000)
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specifically Independent Component Analysis (ICA) and Principal Component Analysis 
(PCA), to simulate a neural efficient coding objective and contrast it with a non-neural effi-
cient coding objective, respectively. Similarly, linear filters are generated using both natural 
and non-natural input data to demonstrate that neural codes are a result of a neural coding 
objective and an appropriate natural data set, similar in structure to the sensory data that 
animals have evolved and adapted to process.

2  Neural efficient coding objectives

In a statistical sense, neural efficient coding entails transforming multivariate input data 
into a new, efficient representation that is able to reconstruct as much information as pos-
sible from the essential structure of the data. A code is said to be “efficient” when the new 
representation of the data also satisfies additional criteria beyond reconstructing a signal, 
such as reducing the size or statistical redundancy of the representation. From a computa-
tional standpoint, such representations can be derived by learning from raw data without 
respect to the tasks of the system, commonly known as unsupervised machine learning. 
This section provides an overview of unsupervised learning strategies that have been used 
in the context of neural coding; however, we begin this overview with a clear contrast to 
compact coding which is a common objective in applied efficient coding but does not rep-
resent the goals of most neural codes.

(a) (b)

Fig. 4  Auditory filters resulting from the efficient coding of natural sounds. (a) A representative subset of 
ICA-derived filters for speech in increasing order of peak resonance frequency. This representation is found 
to be between that of environmental sounds and animal vocalizations since speech contains both harmonic 
and anharmonic sounds. Efficient coding applied to a sound ensemble of environmental sounds and animal 
vocalizations in a 2:1 proportion yielded similar filters (like those for speech). (b) Representative subset of 
PCA-derived filters, in decreasing order of captured variance, for the same (2:1) ensemble. These filters are 
not localized in time with only the largest components being sinusoidal, thereby having very little relevance 
to physiological filters as found in the auditory system (Lewicki 2002)
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2.1  Compact coding, for comparison

Compact coding removes redundancy in the input data by reducing its dimensionality in a 
manner that yields minimal information loss. The input data is transformed into a represen-
tation whose dimensionality is less than the original data. For example, with binary data, 
the goal would be to reduce the numbers of 0’s and 1’s to represent the original data—a 
common goal in applied computing. Such compact codes can be obtained from a Principal 
Component Analysis (PCA) of the data. PCA is a highly versatile, unsupervised learning 
technique with a variance maximization criterion where the goal is to find potentially rel-
evant factors, i.e., linear combinations of features, that best explains the variance in the 
data. In other words, PCA seeks to find the “hidden factors”, also known as latent vari-
ables, which would allow us to predict the feature values for individual samples if these 
factors were known to us. Mathematically, PCA learns a small set of components to repre-
sent the input data meaningfully, albeit these components can represent only a subset of the 
inputs due to the reduced dimensionality. Due to its ability to uncover structures inherent 
in data, PCA has been a common technique for applications such as image compression, 
noise reduction, visualization, and feature engineering tasks for supervised machine learn-
ing, however, as we will see the goals of compact coding differ from the objectives of most 
neural codes.

2.2  Sparse coding

The objective behind sparse coding is to represent information with as few simultaneously 
active neurons as possible in a large population. In a binary coding scheme, the goal would 
be to reduce the number of 1’s in the code, rather than both 0’s and 1’s as in compact 
coding. This is justified biologically in part as neural spiking is metabolically expensive. 
Unlike compact codes, sparse codes are capable of producing a number of components 
greater than the dimensionality of the data to effectively capture higher-order statistics 
inherent in the data.

2.3  Independent coding

One important goal in encoding schemes is to identify the underlying cause or latent vari-
ables that account for variability present in the data. While compact codes such as PCA 
attempt this, minimizing the size of the representation creates constraints, such as forced 
orthogonality, that reduce the interpretability of the components and introduce high-order 
statistical dependence. However, unsupervised learning objectives that attempt to maxi-
mize statistical independence can be more successful and create interpretable and useful 
components. Independent codes can be produced using the unsupervised learning tech-
nique of Independent Component Analysis (ICA) (Comon 1994). ICA was originally 
developed to address the blind source separation problem (Jutten and Herault 1991) and 
has been particularly useful for problems with linear mixing, such as the classic cocktail 
party problem (Bronkhorst 2015; Cherry 1953; Haykin and Chen 2005). ICA creates com-
ponents through linear combinations of features with responses that are maximally statisti-
cally independent under a specific set of assumptions. Notably, as will be discussed, ICA 
also commonly produces codes that are sparse, depending on the data.
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2.4  Slow feature analysis/temporal coherence

Statistical regularities in sensory input arise as a consequence of the persistence of objects 
around us. Individual pixels change drastically over short time spans with typical variations 
such as lighting, translation, rotation, etc., however, our internal representation of the world 
does not vary as dramatically or quickly. A reasonable objective for coding our natural 
sensory experience is to bias toward more stable representations to match this reality. Since 
invariant aspects are critical for survival, finding meaningful representations that are not 
influenced by fast-changing, irrelevant information becomes crucial. Slow Feature Analy-
sis (SFA) is an unsupervised learning algorithm with a goal to maximize the invariance 
in the representation over time by extracting those components that vary slowly over time 
from multivariate data (Wiskott and Sejnowski 2002). The resulting filters derived by SFA 
resemble the simple cell responses of neurons, thereby suggesting its comparability with 
ICA. Additionally, SFA-derived filters exhibit interesting non-linear response properties 
such as direction selectivity and inhibition, which are similar to the response behavior of 
complex cells in V1 (Berkes and Wiskott 2005). Further, under temporal constraints, SFA 
shares common properties with ICA (Blaschke et al. 2006).

2.5  Why is sparse coding more neurally appropriate?

Empirically, natural images and sounds contain many statistical dependencies beyond lin-
ear correlations, and compact coding strategies, such as PCA, do not adequately account 
for that higher-order statistical structure (Field 1994). PCA is limited to deriving compo-
nents by maximizing the variance and successively removing the maximum variance com-
ponent by forced orthogonality, but there are other useful metrics for identifying latent 
variables. Two latent underlying variables may be moderately correlated but PCA would 
be unable to capture the two latent variables without additional steps. Due to orthogonality 
between components and earlier components capturing the most information, interpreting 
and utilizing the later PCA components becomes a challenge. Additionally, these orthogo-
nal components identified by PCA can be highly statistically dependent despite zero corre-
lation. These concerns suggest that compact codes, such as from PCA, may not be as useful 
for capturing low-level statistical redundancy.

On the contrary, encoding information with sparsity brings several advantages. Individ-
ual neuronal firing is metabolically expensive, albeit common and typical. Task-level neu-
ronal engagement becomes critical in analyzing the encoding strategy adopted by the pri-
mary visual cortex. With less than 1% of concurrently active neurons, representations that 
use fewer active neurons to encode sensory information become essential (Lennie 2003). 
Sparser codes lead to activation of a minimal number of neurons at a time which lowers 
energy consumption and improves metabolic efficiency while still yielding a reliable repre-
sentation of the signal.

Empirical demonstrations of sparse and independent coding have been successful in 
creating neural receptive fields on natural images and sounds (Field 1994; Lewicki 2002). 
Sparse representations have succinctly accounted for receptive field properties and exhib-
ited a higher degree of statistical independence (Olshausen and Field 1996). Resembling 
2D Gabor filters, the derived sparse codes were found to be selective to location, orien-
tation, and spatial frequency identical to the response properties of simple cell receptive 
fields.
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Independent coding through ICA also results in linear codes that resemble neural recep-
tive fields in the primary visual cortex (Bell and Sejnowski 1997). Notably, these receptive 
fields yield sparse neural responses as expected due to the similar receptive field profiles in 
sparse codes. ICA and sparse coding are considered to be equivalent with sparse sources; 
the demonstration that follows assumes sparse sources. More technically, ICA yields a 
model similar to sparse coding only with a super-Gaussian prior since super-Gaussian dis-
tribution is sparse. ICA produces components that are not required to be orthogonal and 
does not have a strict ordering as in the case of PCA. Additionally, the resulting sparse 
responses enable the reduction of the high metabolic cost associated with the spiking activ-
ity of a single neuron. ICA can be used to represent the goals of the first linear stage of 
visual and auditory processing in the brain. With the statistical independence assumption, 
ICA itself is a linear modeling strategy, however, there are a number of non-linear encod-
ing strategies related to ICA; for example, topographic independent component analysis 
(Hyvärinen et al. 2001; Hyvärinen and Hoyer 2001).

In practice, the efficient coding strategies which create V1-like receptive fields may have 
differing objective functions, but the end result produces filters which satisfy the goals of 
the other objectives. For this reason, we are not suggesting one objective above the other 
objectives, but rather use one of these objectives, namely ICA, as a stand-in for neural 
efficient coding objectives. We also contrast this objective with common efficient coding 
objectives that are non-neural, namely PCA, to emphasize that the precise concept of “effi-
ciency” is critical in relating to neural coding.

3  Steps of efficient coding

We have made the following demonstration of the efficient coding principle accessible 
through a self-contained, publicly available Jupyter Notebook. In this notebook we model 
the sensory processing of visual and auditory modalities; specifically, grayscale images, 
color images, and audio. Since the efficient coding hypothesis utilizes the same algorithm 
regardless of the input, the computational strategy for efficient encoding remains identical 
irrespective of the modality being modeled. This strategy is formulated as a five-step pro-
cedure (Fig. 5) and is described below. The notebook demonstration is designed for anyone 
to gain direct, introductory experience in neural efficient coding.

1. Collection of sensory data
  As a first step, we collect data pertaining to different sensory modalities, i.e., visual 

and auditory. Further, for each modality, we collect natural and non-natural inputs 
to demonstrate the impact of the data on the presence or absence of neural codes as 
observed in animals. In the context of this work, the term natural refers to stimuli that 
occur in our environment and also share similar statistical properties with each other. 
Natural scenes are images of the visual environment in which the artifacts of civilization 
do not appear (Olshausen and Field 2000). For example, visual scenes such as rocks, 
trees, mountains, bushes, prairies, flowers, and water are considered natural. Similarly, 
a bird’s song, rustling leaves, and human speech are examples of natural sounds and 
portray the characteristics of being harmonic, anharmonic, or both, respectively. Inter-
estingly, images of human-made structures such as buildings and man-made sounds do 
have similar underlying statistical structures but do not qualify as being natural since our 
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definition of “natural” is based on the statistical properties that leads to the robustness 
of data and not strictly defined by the statistics inherent in the data itself.

Fig. 5  A five-step modality-agnostic computational strategy to model efficient coding with only a change in 
inputs. (1) Collect “natural” sensory data (grayscale images, color images, and audio). (2) Extract random 
patches from the data. (3) Apply a neurally appropriate encoding algorithm, i.e., ICA. (4) Visually tile the 
derived filters from the algorithm. (5) Compare the derived encodings with their corresponding experimen-
tally measured receptive fields: grayscale (Jones and Palmer 1987a), color (Johnson et  al. 2008; Shapley 
and Hawken 2011), and audio (de Boer and de Jongh 1978)
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  On the other hand, non-natural inputs are stimuli that our sensory system does not 
commonly observe from the environment, such as psychedelic visuals and white noise. 
Note that the concept of non-natural generally does not exist but is a construct we have 
used to refer to the category of inputs that are not considered natural.

  For the purposes of our demonstration, we collected a small sample of high resolu-
tion grayscale and color images as natural visual scenes while considering psychedelic 
images as non-natural visual scenes. With respect to the auditory stimuli, we used a 
recorded version of human speech and a dog barking as natural sounds whereas we used 
white noise recordings as non-natural sounds. Of the many non-natural sounds possible, 
we selected white noise recordings for the purposes of this demonstration; colored noise 
is another type. Regardless of the type of non-natural auditory stimulus chosen, it is 
not the pairwise correlations that are important but rather the higher order statistics in 
the data. Colored noise does not yield Gabor-like filters with ICA, however, other non-
natural patterns can. For example, amorphous blob-like patterns that resemble sponta-
neous neural activity in the developing visual system (Albert et al. 2008). Although the 
study demonstrates ICA-like results on images, the same principle applies for auditory 
stimuli.

2. Extraction of random samples (patches)
  Upon gathering data for each modality and before applying an encoding algorithm, 

the sensory data is preprocessed to extract smaller subsamples. For each modality, 
samples are randomly extracted across the dataset with a number of samples per image. 
Image patches and sound samples are extracted, and multidimensional samples, such 
as 2D image patches, or 3D image patches with color layers, are flattened into 1D vec-
tor representations to create a single samples x features matrix. We use 100K 
and 500K samples for our experiments with each modality. For the visual modality, 
patch widths of size 8x8 pixels and 16x16 pixels are used for both grayscale and color 
images. Additionally, we also specify channel information for color images (8x8x3 and 
16x16x3).

  Each of these pixel patches are then reshaped to a 64- or 256-dimensional vector for 
each grayscale image patch (alternatively, a 192- or 768-dimensional vector for each 
color image patch). These smaller patch sizes were chosen to keep the required computa-
tions fast and efficient to run the Jupyter Notebook with minimal memory usage on vari-
ous computer platforms. Images were normalized to zero mean and unit variance before 
extracting pixel patches. Blank patches, as a result of random sampling of patches, were 
discarded. Extracted image patch samples were also normalized to zero mean and unit 
variance. For the audio modality, we extract 100K and 500K smaller sound clips of 
100 dimensions from a sampling frequency of 44.1 kHz with downsampling at a rate 
of 3:1, therefore the sound clips represent approximately 7ms in length.

3. Application of encoding algorithms
  To contrast neurally with non-neural efficient codes, we applied two unsupervised 

machine learning algorithms. Specifically, we use the FastICA algorithm (Hyvärinen 
1999) to perform Independent Component Analysis (ICA) and Principal Component 
Analysis (PCA) to model the efficient coding of sensory data. The implementations of 
FastICA and PCA are available in scikit-learn, a machine learning library for Python 
(https:// www. scikit- learn. org). We varied the number of components for ICA and PCA 
with the optimal value for the number of components determined on an ad hoc basis.

https://www.scikit-learn.org
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4. Display of resulting filters
  The encoding algorithm, when applied to the collected data, yields filters. The goal 

of this step is to display these filters for visual inspection. In the visual tiling, the rows 
and columns represent the derived Gabor-like and gammatone-like filters (Fig. 5, step 
4). Irrespective of the modality, the (Python) code for displaying the original extracted 
patches is reused for visually portraying the derived filters.

5. Comparison with physiological filters
  In the last step, we perform a visual comparison of the derived filters against experi-

mentally measured receptive fields from physiology (Fig. 5, step 5). The physiological 
standards for receptive fields (see Fig. 6) are obtained from prior experimental neu-
roscience research measuring neural receptive fields. Receptive fields of simple cells 
in the primary visual cortex resembling 2D Gabor wavelets were found for grayscale 
images (Jones and Palmer 1987a). Similar 2D Gabor filters with additional red-green, 
yellow-blue opponents were observed for color images (Johnson et al. 2008; Shapley and 
Hawken 2011). Auditory receptive fields resembling gammatone filters were recorded 
from spiral ganglion cell axons that make up the auditory nerve (de Boer and de Jongh 
1978).

4  Neural filters produced from natural scenes and sounds and neural 
efficient coding objectives

Figures 7, 8, and 9 illustrate the filters derived from applying ICA and PCA to natural and 
non-natural data from visual and auditory modalities. Upon visual comparison with physi-
ological receptive fields (see Fig. 5, step 5), we observe that ICA-encoded filters qualita-
tively resemble experimentally measured physiological receptive fields. For natural scenes, 
ICA produces Gabor-like filters comparable with the neural receptive fields of V1 simple 

(a) (b) (c)

Fig. 6  Experimentally measured filters from physiology, corresponding to simple cell receptive fields and 
spiral ganglion cell receptive fields, for visual and auditory modalities, respectively. (a) 2D Gabor filter for 
grayscale vision (Jones and Palmer 1987a). (b) 2D Gabor filter for color vision (Johnson et al. 2008; Shap-
ley and Hawken 2011). (c) Gammatone filter for auditory signals (de Boer and de Jongh 1978)
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cells. For natural sounds, ICA yields filters similar to gammatone filters found in the audi-
tory system. In contrast, PCA fails to produce models analogous to the empirical filters 
in physiology for natural inputs. We also observe that ICA-modeled filters, when applied 
to non-natural inputs, do not exhibit neural-like properties, like those from natural inputs. 
These observations suggest that ICA is more capable of producing neural codes than PCA. 
Further, the same five-step coding strategy has been demonstrated for both modalities, with 
the only change being the inputs passed to the unsupervised learning algorithm as shown 
in Fig. 10.    

(a) (b) (c)

Fig. 7  ICA- and PCA-derived visual filters for grayscale vision with natural and non-natural scenes 
(images). (a) PCA-encoded filters for natural grayscale images yield neurally inappropriate filters. (b) Effi-
cient coding of natural grayscale images using ICA produces neurally appropriate filters. (c) Efficient codes 
of non-natural grayscale images do not produce neurally appropriate filters with ICA

(a) (b) (c)

Fig. 8  ICA- and PCA-derived visual filters for color vision with natural and non-natural scenes (images). 
(a) PCA-encoded filters for natural color images yield neurally inappropriate filters. (b) Efficient coding 
of natural color images using ICA produces neurally appropriate filters. (c) Efficient codes of non-natural 
color images do not produce neurally appropriate filters with ICA



123Unsupervised learning in images and audio to produce neural…

1 3

(a) (b) (c)

Fig. 9   ICA- and PCA-derived auditory filters with natural and non-natural audio signals. (a) PCA-encoded 
filters for natural sounds yield neurally inappropriate filters. (b) Efficient coding of natural sounds using 
ICA produces neurally appropriate filters. (c) Efficient codes of non-natural sounds do not produce neurally 
appropriate filters with ICA

Fig. 10  The self-contained, accessible Jupyter Notebook demonstrating the efficient coding principle using 
the five-step computational strategy with unsupervised learning. (a) Step-by-step application of PCA and 
ICA to natural grayscale images (vision). (b) The same stepwise application of PCA and ICA to natural 
sounds (audio). Irrespective of the modality, the same five-step coding strategy is used to efficiently code 
the inputs, with the only change being the inputs passed to the unsupervised learning algorithm
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5  Discussion

With a systematic demonstration of neural efficient coding for different modalities, 
notebook users are readily able to observe that natural scenes and sounds have sufficient 
statistics to create receptive fields resembling those in the early visual and auditory 
systems. Similarly, the concept of efficiency is necessary and must match neural cod-
ing objectives—sparse or independent coding rather than compact coding, for example. 
Across all modalities for natural inputs, ICA-encoded filters (illustrated in Figs.  7, 8, 
and 9 as the convergence of natural inputs and ICA across all modalities) closely resem-
ble experimentally measured receptive fields from physiology (Fig. 6). On the contrary, 
PCA-encoded filters did not produce neural-like receptive field models.

However, this notebook stresses the need for not only proper coding objectives but 
also appropriate input data such as natural scenes and natural sounds. For example, 
ICA-encoded filters from non-natural inputs are not comparable with physiologically 
measured receptive fields, while those made with natural inputs are comparable. This 
is understandable as “natural” scenes and sounds are more closely related in statisti-
cal structure to the images and sounds that animals have evolved and adapted to over 
time.  In terms of the effect of parameters in the code, the size of the pixel patches or 
the length of the audio snippets is less significant to the running time of the code than 
the number of ICA components selected since dimensionality reduction is performed 
internally (data whitening step of FastICA). The amount of data required to produce 
quality filters increases substantially as the number of ICA dimensions increases. This 
in conjunction with the running time of the code is a limiting factor for readily acces-
sible demonstrations.

One of the primary outcomes of this work is the availability of a self-contained, acces-
sible notebook demonstrating neural efficient coding as a form of unsupervised learning. 
Although there have been previous studies related to efficient coding, this work provides an 
integrated, easy-to-follow notebook of the tools and techniques discussed here. Despite the 
distinction in neuroscience and computational curricula of different modalities, our note-
book brings them together in a systematic fashion. The produced notebook uses the same 
five-step efficient coding strategy to model the neural receptive fields, emphasizing that 
each modality can be modeled with only a change in inputs (Fig. 10). Additionally, this 
notebook serves as an educational medium illustrating the power of computational princi-
ples like efficient coding to a broader audience of neuroscientists.

Through our work, we exemplify ICA as a good representative for creating efficient, 
neural-like representations of sensory data. Besides computational efficiency, the neu-
ronal plausibility of ICA from a biological standpoint is of equal importance. For natu-
ral images, ICA yields neural-like filters that exhibit the same properties as the recep-
tive fields of V1 simple cells. However, the algorithmic implementations of ICA can 
vary, thereby influencing their biological plausibility. For instance, the learning rule in 
the infomax network is highly non-local since neurons rely on the feedback information 
from neurons in the output layer, resulting in a biologically implausible system (Bell 
and Sejnowski 1997). More biologically plausible mechanisms have been proposed 
which suggest ICA-like learning in the brain. Some of the earliest methods introduced 
a local algorithm where each neuron utilizes the connection information local to itself 
(Cichocki et  al. 1999; Földiák 1990; Linsker 1997). Another mechanism involved a 
model that uses spiking neurons and intrinsic plasticity to maximize information trans-
mission (Savin et al. 2010). A more recent improvement towards biological plausibility 



125Unsupervised learning in images and audio to produce neural…

1 3

has been a learning rule, called Error-Gated Hebbian Rule or EGHR, that requires only 
synaptic-level local information (Isomura and Toyoizumi 2016). In spite of such biolog-
ically realistic learning improvements, there is no clear consensus on the brain’s encod-
ing strategy(ies) or how these unfold over development (Avitan and Goodhill 2018).

Although ICA is highlighted as a way to efficiently encode sensory data, compact 
coding can also be essential for the brain. Especially when sensory data needs to be 
compressed, even in the early processing stage of the brain, a dimensionality reduction 
technique such as PCA becomes useful. For instance, PCA-like learning becomes cru-
cial in object perception since visual inputs are extremely high-dimensional (DiCarlo 
et al. 2012). Another example is the cocktail party problem (Cherry 1953) where data 
pertaining to the speaker gets compressed into fewer dimensions due to the structural 
differences between the eye and the brain. However, the non-locality aspect of PCA 
algorithms (Oja 1989), like that of ICA, constrained the understanding of neuronal 
mechanisms that might be responsible for PCA-like learning. One such local learning 
rule called EGHR-β has been proposed to perform PCA and ICA simultaneously using 
a single-layer feedforward neural network (Isomura and Toyoizumi 2018). β is an inter-
polation parameter taking on a value of either zero or one. While β = 0 enables separa-
tion of independent sources as per the ICA rule (Bell and Sejnowski 1997) regardless of 
the dimensionality of input and output neurons, β = 1 allows extraction of the subspace 
containing the principal components along the lines of PCA rule (Oja 1989). The aspect 
of locality is vital to the biological plausibility of a neuronal mechanism that performs 
neuronally plausible efficient coding (ICA) and dimensionality reduction (PCA).

Certain limitations have been identified through this work which can be addressed as 
part of future work. For instance, the demonstration of efficient coding using unsuper-
vised learning to create receptive field models has been carried out using a relatively 
small data set of images from the internet which can bias the results. Further, our model 
of evaluation has been a mere visual comparison with physiologically-measured neural 
filters; an empirical or statistical approach to evaluate the derived filters would provide a 
stronger correlation with physiology. Additionally, for demonstration purposes and sim-
plicity, we only use grayscale, color, and audio, however, video and binocular modali-
ties will also be added in future versions of the notebook. Such additions can further 
emphasize the principle that the same encoding objective can model neural receptive 
fields with only a change in inputs.

Though the emphasis of our work has been the unsupervised aspect of learning, the ulti-
mate role of these encodings, in both nature and computational applications, is to improve 
task-oriented behavior. In this regard, from an applied computational perspective, the influ-
ence of unsupervised learning during pre-training for deep learning based vision tasks 
sounds promising for better generalization from the training data (Erhan et al. 2010). Fur-
ther, a biologically plausible implementation of ICA-like learning in a neural network has 
been proposed demonstrating system robustness with respect to the parameters analogous 
to how biological networks function (Gerhard et al. 2009). Additionally, we explored the 
combination of innate learning hypotheses (Albert et al. 2008) and efficient coding using 
ICA on images of spontaneous activity patterns (Behpour et al. 2020). ICA was found to 
produce filters similar to those produced for natural images which further suggests the use-
fulness of ICA during model training for vision tasks. Another possible direction is the use 
of efficiently coded ICA filters as pre-trained features in the early layers of a deep learning 
model. This is clear as many deep learning convolutional neural network strategies pro-
duce linear filters in the first layer of processing that moderately resemble the neural filters 
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described here, further complicating the potential for identifying a single computational 
objective for these neurons.

6  Conclusion

This work presents a parsimonious view of the connection between neurally appropriate 
efficient coding of the natural environment and developing sensory systems. By build-
ing a self-contained Jupyter Notebook, we demonstrated the efficient coding princi-
ple in a systematic way for different visual and auditory modalities. Our experiments 
support that independent, sparse coding objectives, such as ICA, create filters that are 
more similar to physiological receptive fields than compact codes, such as PCA. Thus, 
with a change in the inputs, the same five-step computational strategy can be used to 
model early sensory processing regardless of the modality (i.e., grayscale images, color 
images, and audio).

The Jupyter Notebook is intended for introductory computational neuroscience research 
and general outreach to understand the power of unsupervised learning principles, such as 
the efficient coding principle, to those with general neuroscience interests. This consoli-
dated review illustrates the power of computational principles like efficient coding and can 
be utilized by those interested in efficient coding or neuroscience regardless of one’s pro-
gramming knowledge. Understanding the principle of efficient coding on early visual and 
auditory systems could provide insights into the more complex sensory systems such as 
olfaction and somatosensation. Integrating prior works of using efficient coding principle 
for different sensory modalities, our objective is to make this demonstration accessible to 
facilitate future research on multimodal integration.

The Jupyter Notebook and the documentation concerning its environment setup is pub-
licly available at https:// www. biomed- ai. com/ apps.
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