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Abstract

Human activity recognition (HAR) has multifaceted applications due to its worldly usage
of acquisition devices such as smartphones, video cameras, and its ability to capture human
activity data. While electronic devices and their applications are steadily growing, the
advances in Artificial intelligence (AI) have revolutionized the ability to extract deep hid-
den information for accurate detection and its interpretation. This yields a better under-
standing of rapidly growing acquisition devices, Al, and applications, the three pillars of
HAR under one roof. There are many review articles published on the general character-
istics of HAR, a few have compared all the HAR devices at the same time, and few have
explored the impact of evolving Al architecture. In our proposed review, a detailed narra-
tion on the three pillars of HAR is presented covering the period from 2011 to 2021. Fur-
ther, the review presents the recommendations for an improved HAR design, its reliability,
and stability. Five major findings were: (1) HAR constitutes three major pillars such as
devices, Al and applications; (2) HAR has dominated the healthcare industry; (3) Hybrid
Al models are in their infancy stage and needs considerable work for providing the sta-
ble and reliable design. Further, these trained models need solid prediction, high accuracy,
generalization, and finally, meeting the objectives of the applications without bias; (4) little
work was observed in abnormality detection during actions; and (5) almost no work has
been done in forecasting actions. We conclude that: (a) HAR industry will evolve in terms
of the three pillars of electronic devices, applications and the type of Al (b) AI will pro-
vide a powerful impetus to the HAR industry in future.

Keywords Human activity recognition - Sensor-based - Vision-based - Radio frequency-
based identification - Device-free - Imaging - Deep learning - Machine learning - And
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Al Artificial intelligence

AP Average pooling

AUC Area under curve

BN Batch normalization

BS Batch size

CEL Cross entropy loss

CNN Convolution neural network
CONV  Convolution

Ccv Cross validation

DL Deep learning

DO Drop out

DTW Dynamic time warping

EER Equal error rate

FC Fully connected

GAN Generative adversarial n/w
GFLOP Giga floating point operations/sec
GPU Graphics processing unit
GRU Gated recurrent unit

HAR Human activity recognition
KL Kullback Lieblar

LOSO  Leave one subject out

LR Learning rate

LSTM  Long short-term memory
MAE Mean absolute error

mAPs Mean average precision

ML Machine learning

MP Max pooling

MSE Mean square error

PCA Principal component analysis
RFID Radio frequency identification
RNN Recurrent neural network
RSSI Received signal strength indicator
Sens Sensitivity

SGD Stochastic gradient descent
SGD Stochastic gradient descent
SM Softmax

Spec Specificity

SVM Support vector machine

TL Transfer learning

VAE Variational autoencoders

P Precision

R Recall

TP True positive

TN True negative

FP False positive

FN False negative

LHR Likelihood ratio
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1 Introduction

Human activity recognition (HAR) can be referred to as the art of identifying and nam-
ing activities using Artificial Intelligence (AI) from the gathered activity raw data by uti-
lizing various sources (so-called devices). Examples of such devices include wearable
sensors (Pham et al. 2020), electronic device sensors like smartphone inertial sensor (Qi
et al. 2018; Zhu et al. 2019), camera devices like Kinect (Wang et al. 2019a; Phyo et al.
2019), closed-circuit television (CCTV) (Du et al. 2019), and some commercial off-the-
shelf (COTS) equipment’s (Ding et al. 2015; Li et al. 2016). The use of diverse sources
makes HAR important for multifaceted applications domains, such as healthcare (Pham
et al. 2020; Zhu et al. 2019; Wang et al. 2018), surveillance (Thida et al. 2013; Deep and
Zheng 2019; Vaniya and Bharathi 2016; Shuaibu et al. 2017; Beddiar et al. 2020) remote
care to elderly people living alone (Phyo et al. 2019; Deep and Zheng 2019; Yao et al.
2018), smart home/office/city (Zhu et al. 2019; Deep and Zheng 2019; Fan et al. 2017), and
various monitoring application like sports, and exercise (Ding et al. 2015). The widespread
use of HAR is beneficial for the safety and quality of life for humans (Ding et al. 2015;
Chen et al. 2020).

The existence of devices like sensors, video cameras, radio frequency identification
(RFID), and Wi-Fi are not new, but the usage of these devices in HAR is in its infancy. The
reason for HAR’s evolution is the fast growth of techniques such as Al, which enables the
use of these devices in various application domains (Suthar and Gadhia 2021). Therefore,
we can say that there is a mutual relationship between the Al techniques or AI models and
HAR devices. Earlier these models were based on a single image or a small sequence of
images, but the advancements in Al have provided more opportunities. According to our
observations (Chen et al. 2020; Suthar and Gadhia 2021; Ding et al. 2019), the growth of
HAR is directly proportional to the advancement of Al which thrives the scope of HAR in
various application domains.

The introduction of deep learning (DL) in the HAR domain has made the task of mean-
ingful feature extraction from the raw sensor data. The evolution of DL models such as (1)
convolutional neural networks (CNN) (Tandel et al. 2020), (2) extending the role of trans-
fer weighting schemes (it allows the knowledge reusability where the recognition model
is trained on a set of data and the same trained knowledge can then be used by a different
testing dataset) such as Inception (Szegedy et al. 2015, 2016, 2017), VGG-16 (Simonyan
and Zisserman 2015), and Residual Neural Network (Resents)-50 (Nash et al. 2018), (3)
series of hybrid DL models such as fusion of CNN with long short-term memory (LSTM),
Inception with ResNets (Yao et al. 2017, 2019, 2018; Buffelli and Vandin 2020), (4) loss
function designs such entropy, Kaulback Liberal divergence, and Tversky (Janocha and
Czarnecki 2016; Wang et al. 2020a), (5) optimization paradigms such as cross-entropy,
stochastic gradient descent (SGD) (Soydaner 2020; Sun et al. 2020) has made the task
of HAR-based design plug-and-play based. Even though it is getting black-box oriented,
it requires better understanding to actually ensure that the 3-legged stool is stable and
effective.

Typically, HAR consists of four stages (Fig. 1) including (1) capturing of signal activity,
(2) data pre-processing, (3) Al-based activity recognition, and (4) the user interface for the
management of HAR. Each stage can be implemented using several techniques bringing
the HAR system to have multiple choices. Thus, the choice of the application domain, the
type of data acquisition device, and the processing of artificial intelligence (AI) algorithms
for activity detection makes the choices even more challenging.
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Fig. 1 Four stages of HAR process (Hx et al. 2017)

Numerous reviews in HAR have been published, but our observations show that
most of the studies are associated with either vision-based (Beddiar et al. 2020; Dhi-
man Chhavi 2019; Ke et al. 2013) or sensor-based (Carvalho and Sofia 2020; Lima et al.
2019), while very few have considered RFID-based and device-free HAR. Further, there
is no Al review article that covers the detailed analysis of all the four device types that
includes all four types of devices such as sensor-based (Yao et al. 2017, 2019; Hx et al.
2017; Hsu et al. 2018; Xia et al. 2020; Murad and Pyun 2017), vision-based (Feichten-
hofer et al. 2018; Simonyan and Zisserman 2014; Newell Alejandro 2016; Crasto et al.
2019), RFID-based (Han et al. 2014), and device-free (Zhang et al. 2011).

An important observation to note here is that technology has advanced in the field of
Al i.e., deep learning (Agarwal et al. 2021; Skandha et al. 2020; Saba et al. 2021) and
machine learning methods (Hsu et al. 2018; Jamthikar et al. 2020) and is revolution-
izing the ability to extract deep hidden information for accurate detection and inter-
pretation. Thus, there is a need to understand the role of these new paradigms that are
rapidly changing HAR devices. This puts the requirement to consider a review inclined
to address simultaneously changing Al and HAR devices. Therefore, the main objective
of this study is to better understand the HAR framework while integrating devices and
application domains in the specialized Al framework. What types of devices can fit in
which type of application, and what attributes of the Al can be considered during the
design of such (Agarwal et al. 2021) a framework are some of the issues that need to be
explored. Thus, this review is going to illustrate how one can select such a combination
by first understanding the types of HAR devices, and then, the knowledge-based infra-
structure in the fast-moving world of Al, knowing that some of such combinations can
be transformed into different applications (domains).

The proposed review is structured as follows: Sect. 2 covers the search strategy, and
literature review with statistical distributions of HAR attributes. Section 3 illustrates
the description of the HAR stages, HAR devices, and HAR application domains in the
Al framework. Section 4 illustrates the role of emerging Al as the core of HAR. Sec-
tion 5 presents performance evaluation criteria in the HAR and integration of Al in
HAR devices. Section 6 consists of a critical discussion on factors influencing HAR,
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benchmarking of the study against the previous studies, and finally, the recommenda-
tions. Section 7 finally concludes the study.

2 Search strategy and literature review

“Google Scholar” is used for searching articles published between the periods of
2011-present. The search included the keywords “human activity recognition” or
“HAR” in combination with terms “machine learning”, “deep learning”, ‘“sensor-
based”, “vision-based”, “RFID-based” and, “device-free”. Figure 2 shows the PRISMA
diagram showing the criteria for the selection of HAR articles. We identified around
1548 articles in the last 10 years period, which were then short-listed to 175 articles
based on three major assessment criteria: Al models used, target application domain,
and data acquisition devices which are the three main pillars of the proposed review.
In the proposed review we have formed two clusters of attributes based on three major
assessment criteria. Cluster 1 includes 7 HAR devices and applications-based attributes,
and cluster 2 includes 7 Al attributes. HAR devices and application-based attributes
are: data source, #activities, datasets, subjects, scenarios, total #actions and perfor-
mance evaluation, while the Al attributes includes: #features, feature extraction, ML/DL
model, architecture, metrics, validation and hyperparameters/optimizer/loss function.
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Fig.2 PRISMA model for the study selection
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The description of HAR devices and applications-based attributes is given in Sect. 3.2.
Further, the Tables A.1, A.2, A.3 and A.4 of "Appendix 1" illustrate these attributes for
various studies considered in the proposed review. The cluster 2’s Al attributes are dis-
cussed in Sect. 4.2 and Table 3, 4, 5 and 6 illustrate the insight about AI models adapted
by researchers in their HAR model. Apart from three major criteria, three exclusion,
and four inclusion criteria were also followed in research articles selection. Excluded
(1) articles with traditional and older AI techniques, (2) non-relevant articles, and (3)
articles with insufficient data. These exclusion criteria consisted of 991, 125, and 54
articles (marked as E1, E2, and E3 in PRISMA flowchart) that lead to the finalization
of the 175 articles. Included (1) non-redundant articles, (2) articles with the detailed
screening of abstract and conclusion, (3) articles based on eligibility criteria assessment
which includes advanced Al techniques, target domain, and device-type, and (4) arti-
cle’s qualitative synthesisation including impact factor of journal, and author’s contribu-
tion in HAR domain; (marked as I1, 12, I3, and 14 in PRISMA flowchart).

In the proposed review, we performed a rigorous analysis of the HAR framework in
terms of Al techniques, device types, and application domain. One of the major obser-
vations of the proposed study is the existence of a mutual relationship among HAR
device types and Al techniques. First, the analysis on HAR devices is presented in
Fig. 3a which is based on the articles considered between the periods of 2011 to 2021. It
shows the changing pattern of HAR devices over time. Secondly, the growth of ML and
DL techniques is presented in Fig. 3b which shows that the HAR is trending towards
the use of DL-based techniques. The HAR devices distribution is elaborated more in
Fig. 4a, in Fig. 4b we have shown the further categorization of sensor-based HAR into
the wearable sensor (WS) and smartphone sensor (SPS). Figure 4c shows the division
of vision-based HAR into video and skeleton-based models. Further, Fig. 4d shows the
types of HAR application domains.

Observation 1 In Fig. 3a, according to the device-wise analysis vision-based HAR was
popular between the period 2011-2016. But from the year 2017 sensor-based models’
growth is more prominent and this is the same time period when DL techniques entered the
HAR domain (Fig. 3b). In the period 2017-2021, Wi-Fi devices evolved as one of the data
sources for gathering activity.

Observation 2 Figure 3b shows the year-wise distribution of articles published using ML
and DL techniques. The key observation is the transition of Al techniques from ML to DL.
From the year 2011-2016, the HAR models with ML framework were popular, while the

(a) (b)
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Fig.3 a Changing pattern of HAR devices over time, b distribution of machine learning (ML) and deep
learning (DL) articles in last decade
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Fig.4 a Types of HAR devices, b sensor-based devices, ¢ vision-based devices, d HAR applications. WS:
wearable sensors, SPS: smartphone sensor, sHome: smart home, mHealthcare: health care monitoring,
cSurv: crowd surveillance, fDetect: fall detection, eMonitor: exercise monitoring, gAnalysis: gait analysis

HAR models using DL techniques started to evolve from the year 2014. In the last 3 years,
this growth has increased significantly. Therefore, after analysing graphs of Fig. 3a, b thor-
oughly, we can say that the HAR devices are evolving, as the trend is shifting towards the
DL framework. This combined analysis verifies our claim of the existence of the mutual
relationship between Al and device types.

Devices used in the HAR paradigm are the premier component of HAR by which
HAR can be classified. We observed a total of 9 review articles arranged in chronologi-
cal order (see Table 1). These reviews focused mainly on three sets of devices such as
sensor-based (marked in light shade color) (Carvalho and Sofia 2020; Lima et al. 2019;
Wang et al. 2016a, 2019b; Lara and Labrador 2013; Hx et al. 2017; Demrozi et al. 2020;
Crasto et al. 2019; De-La-Hoz-Franco et al. 2018) or vision-based (marked with dark shade
color) (Beddiar et al. 2020; Dhiman Chhavi 2019; Ke et al. 2013; Obaida and Saraee 2017;
Popoola and Wang 2012), device-free HAR (Hussain et al. 2020). Table 1 summarizes the
nine articles based on the focus area, keywords, number of keywords, research period, and
#citations. Note that sensor-based HAR captures activity signals using ambient and embed-
ded sensors, vision-based HAR involves 3-dimensional (3D) activity data gathering using
a 3D camera or depth camera. In device-free HAR, activity data is captured using Wi-fi
transmitter—receiver units.
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3 HAR process, HAR devices, and HAR applications in Al framework

The objective of developing HAR models is to provide information about human actions
which helps in analyzing the behavior of a person in a real environment. It allows com-
puter-based applications to help users in performing tasks and to improve their lifestyle
such as remote care to the elderly living alone, and posture monitoring during exercise.
This section presents about HAR framework that includes HAR stages, HAR devices, and
target application domains.

3.1 HAR process

There are four main stages in the HAR process: data acquisition, pre-processing, model
training, and performance evaluation (Figure S.1(a) in supporting document). In stage 1,
depending on the target application, a HAR device is selected. For example, in surveillance
application involving multiple persons, the HAR device for data collection is the camera.
Similarly, for applications where a person’s daily activity monitoring is involved, the data
acquisition source is sensor preferably. One can use a camera also, but it breaches the user’s
privacy and needs high computational cost. Table 2 illustrates the variation in HAR devices
according to the application domains. It elaborates the description of diverse HAR applica-
tions in terms of various data sources and Al techniques. Note that sometimes the acquired
data suffer from noise or other unwanted signals, and therefore offers challenges in post-
processing Al-based systems. Thus, it is very important to have a robust feature extraction
system with a robust network for better prediction. In stage 2, data cleaning is performed,
which involves low-pass or high-pass filters for noise suppression or image enhancement
(Suri 2013; Sudeep et al. 2016). This data undergoes regional and boundary segmentation
(Multi Modality State-of-the-Art Medical Image Segmentation and 2011; Suri et al. 2002;
Suri 2001). Our group has published several dedicated monograms on segmentation para-
digms and are available as ready reference (Suri 2004, 2005; El-Baz and Jiang 2016; El-
Baz and Suri JS 2019). This segmented data can now be used for model training. Stage 3
involves the training of HAR model using ML or DL techniques. When using hand-crafted
features, one can use ML-based techniques (Maniruzzaman et al. 2017). For automated
feature extraction, one can use the DL framework. Apart from automatic feature learning,
DL offers knowledge reusability by providing transfer learning models, exploration of huge
datasets (Biswas et al. 2018), and hybrid DL models usage which allows spatial as well as
temporal features identification and learning. After stage 3, the HAR model is ready to be
used for an application or prediction. Stage 4 is the most challenging part since the model
is applied to the real data, whose behavior varies depending on physical factors like age,
physique, and an approach for performing a task. An HAR model is efficient if its perfor-
mance is independent of physical factors.

3.2 HAR devices

The HAR device type depends on the target application. Figure S.1(b) (Supporting docu-
ment) presents the different sources for activity data: sensors, video cameras, RFID sys-
tems, and Wi-Fi devices.
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Sensors The sensors-based approaches can be categorized into wearable sensors and
device sensors. In wearable sensor-based approach, a body-worn sensor module is designed
which includes inertial sensors, environmental sensors units (Pham et al. 2017, 2020; Hsu
et al. 2018; Xia et al. 2020; Murad and Pyun 2017; Saha et al. 2020; Tao et al. 2016a, b;
Cook et al. 2013; Zhou et al. 2020; Wang et al. 2016b; Attal et al. 2015; Chen et al. 2021;
Fullerton et al. 2017; Khalifa et al. 2018; Tian et al. 2019). Sometimes the wearable sen-
sor devices can be stressful for the user, therefore the solution is the use of smart-device
sensors. In device sensor approach data is captured using smartphone inertial sensors (Zhu
et al. 2019; Yao et al. 2018; Wang et al. 2016a, 2019b; Zhou et al. 2020; Li et al. 2019;
Civitarese et al. 2019; Chen and Shen 2017; Garcia-Gonzalez et al. 2020; Sundaramoor-
thy and Gudur 2018; Gouineua et al. 2018; Lawal and Bano 2019; Bashar et al. 2020).
The most commonly used sensor for HAR is accelerometer and gyroscope. Table A.1 of
“Appendix 17, shows the types of data acquisition devices, activity classes, and scenarios
in earlier sensor-based HAR models.

Video camera It can be further classified into two types: 3D camera and depth camera.
3D camera-based HAR models uses closed-circuit television (CCTV) cameras in the user’s
environment for monitoring the actions performed by the user. Usually, the monitoring task
is performed by humans or some innovative recognition model. Numerous HAR models
were proposed by researchers, which can process and evaluate the activity video or image
data and recognize the performed activities (Wang et al. 2018; Feichtenhofer et al. 2018,
2017, 2016; Diba et al. 2016, 2020; Yan et al. 2018; Chong and Tay 2017). The accu-
racy of activity recognition of 3D camera data depends on physical factors such as lighting
and background color. The solution to this issue can be provided by using a depth camera
(like Kinect). The Kinect camera consists of different data streams such as depth, RGB,
and audio. Depth stream captures body joint coordinates, and based on joint coordinates,
a skeleton-based HAR model can be developed. The skeleton-based HAR models have
applications in domains that involve posture recognition (Liu et al. 2020; Abobakr et al.
2018; Akagiindiiz et al. 2016). Table A.2 of “Appendix 1” provides an overview of earlier
vision-based HAR models. Apart from 3D and depth cameras, one can use thermal cam-
eras but it can be expensive.

RFID tags and readers By installing RFID passive tags in close proximity of the user, the
activity data can be collected using RFID readers. As compared to active RFID tags, pas-
sive tags have more operational life as they do not need a separate battery. Rather it uses
the reader’s energy and converts it into an electrical signal for operating its circuitry. But
the range of active tags is more than passive tags. They both can be used for HAR models
(Du et al. 2019; Ding et al. 2015; Li et al. 2016; Yao et al. 2018; Zhang et al. 2011; Xia
et al. 2012; Fan et al. 2019). The further description of existing RFID-based HAR models
is provided in Table A.3 of “Appendix 1”.

Wi-Fi device: In the last 5 years, the device-free HAR has gained popularity. Research-
ers have explored the possibility of capturing activity signals using Wi-Fi devices. Channel
state information (CSI) from the wireless signal is used to acquire activity data. Many mod-
els were developed for fall detection and gait recognition using CSI (Yao et al. 2018; Wang
et al. 2019c, d, 2020b; Zou et al. 2019; Yan et al. 2020; Fei et al. 2020). The description of
some popular existing Wi-Fi device-based HAR is provided in Table A.4 of “Appendix 1”.
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Summary of challenges in HAR devices There are almost four types of HAR devices, and
researchers have proposed various HAR models with advanced Al techniques. Gradually,
the usage of electronic devices for gathering activity data in HAR domain is increasing,
but with this growth, the challenges are also evolving: (1) Video camera-based application
involves data gathering using a video camera, which results in the invasion of user’s pri-
vacy. It also requires high power systems to process large data produced by video cameras,
(2) In sensors-based HAR models, the use of wearable devices is stressful and inconven-
ient for the user, therefore smartphone sensors are more preferable. But the use of smart-
phone and smartwatch is limited to simple activities recognition such as walking, sitting,
and going upstairs, (3) In RFID tags and reader-based HAR models, the usage of RFID
in activity capturing is limited to indoor only. (4) Wi-Fi-based HAR models are new in
the HAR industry, but there are few issues with it. Moreover, it can capture activities per-
formed within the Wi-Fi range but cannot identify the movement in blind spot areas.

3.3 HAR applications using Al

In the last decade, researchers have developed various HAR models for different domains.
“What type of HAR device is suitable for which application domain and what is the suit-
able Al methodology” is the biggest question that pops into the mind, once developing the
HAR framework. The description of diverse HAR applications with data sources and Al
techniques is illustrated in Table 2. It shows the variation in HAR devices and Al tech-
niques depending on the application domain. The pie chart in Fig. 4d shows the distribu-
tion of applications based on existing articles. HAR is used in fields like:

e Crowd surveillance (cSurv): Crowd pattern monitoring and detecting panic situations
in the crowd.

e Health care monitoring (mHealthcare): Assistive care to ICU patients, Trauma resusci-
tation.

e Smart home (sHome): Care to elderly or dementia patients and child activity monitor-
ing.

e Fall detection (fDetect): Detection of abnormality in action which results in a person’s
fall.
Exercise monitoring (eMonitor): Pose estimation while doing exercise.
Gait analysis (gAnalysis): Analyze gait patterns to monitor health problems.

3.4 HAR applications with different activity-types

There is no predefined set of activities, rather the human activity type varies according
to the application domain. Figure S.2 (Supporting document) shows the activity type
involved in human activity recognition.

Single person activity Here the action is performed by a person. Figure S.3 (Support-
ing document) shows examples of single-person activities (jumping jack, baby crawling,
punching the boxing bag, and handstand walking). Single person action can be divided into
the following categories:
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e Behavior: The goal of behavior recognition is to recognize a person’s behavior from
activity data, and it is useful in monitoring applications: dementia patient & children
behavior (Han et al. 2014; Nam and Park 2013; Arifoglu and Bouchachia 2017).

e Gestures: It has application in sign language recognition for differently-abled persons.
Wearable sensor-based HAR models are more suitable (Sreekanth and Narayanan
2017; Ohn-Bar and Trivedi 2014; Xie et al. 2018; Kasnesis et al. 2017; Zhu and Sheng
2012).

e Activity of daily living (ADL) and Ambient assistive living (AAL): ADL activities are
performed in an indoor environment cooking, sleeping, and sitting. In smart home,
ADL monitoring for dementia patients can be performed using wireless sensor-based
HAR models (Nguyen et al. 2017; Sung et al. 2012) or RFID tags based HAR models
(Ke et al. 2013; Oguntala et al. 2019; Raad et al. 2018; Ronao and Cho 2016). AAL-
based models help elderly and disabled people by providing remote care, medication
reminder, and management (Rashidi and Mihailidis 2013). CCTV cameras are an ideal
choice but they have privacy issues (Shivendra shivani and Agarwal 2018). Therefore,
sensor or RFID-based HAR models (Parada et al. 2016; Adame et al. 2018) or wearable
sensor-based models are more suitable (Azkune and Almeida 2018; Ehatisham-Ul-Haq
et al. 2020; Magherini et al. 2013).

Multiple person activity The action is performed by a group of persons. Multiple person
movement is illustrated in Figure S.4 (Supporting document), depicts the normal human
movement on a pedestrian pathway and anomalous activity of cyclist and truck in a pedes-
trian pathway. It can belong to the following categories.

e [nteraction: There are human—object (cooking, reading a book) (Kim et al. 2019; Kop-
pula et al. 2013; Ni et al. 2013; Xu et al. 2017) and human-human (handshake) activi-
ties (Weng et al. 2021). A human—object interaction-based free weight exercise moni-
toring (FEMO) model using RFID devices that monitors exercise by installing a tag on
dumbbells (Ding et al. 2015).

e Group: It involves monitoring people’s count in an indoor environment like a museum
or crowd pattern monitoring (Chong and Tay 2017; Xu et al. 2013). To check the num-
ber of people in an area, we can use Wi-Fi units. Received signal strength can be used
for counting people as it is user-sensitive.

Observation 3: Vision-based HAR has broad application domains, but they have limi-
tations like privacy and the need for more resources (such as GPUs). These issues can
be overcome with sensor-based HAR but their applications domain is currently limited to
single-person activity monitoring.

4 Core of the HAR system design: emerging Al

The foremost goal of HAR is to predict the movement or action of a person based on the
action data collected from a data acquisition device. These movements include activities
like walking, exercising, and cooking. It is challenging to predict movements, as it involves
huge amounts of unlabelled sensor data, and video data which suffer from conditions like
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lights, background noise, and scale variation. To overcome these challenges Al framework
offers numerous ML, and DL techniques.

4.1 Artificial intelligence models in HAR

ML architectures: ML is a subset of Al, which aims at developing an intelligent model
which involves the extraction of unique features, that helps in recognizing patterns in the
input data (Maniruzzaman et al. 2018). There are two types of ML approaches: supervised
and unsupervised. In supervised approach, a mathematical model is created based on the
relationship between raw input data and output data. The idea behind the unsupervised
approach is to detect patterns in raw input data without prior knowledge of output. Fig-
ure S.5 (Supporting document) illustrates the popular ML techniques used in recognizing
human actions (Qi et al. 2018; Yao et al. 2019; Multi Modality State-of-the-Art Medical
Image Segmentation and 2011). Several applications of ML models in handling different
diseases have been developed by our group such as diabetes man(Maniruzzaman et al.
2018) liver cancer (Biswas et al. 2018), thyroid cancer (Rajendra Acharya et al. 2014),
ovarian cancer (Acharya et al. 2013a, 2015), prostate (Pareek et al. 2013) breast (Huang
et al. 2008), skin (Shrivastava et al. 2016), arrhythmia classification (Martis et al. 2013),
and recently in cardiovascular (Acharya et al. 2012; Acharya et al. 2013b). In the last 5
years, the researchers’ focus has been shifted to semi-supervised learning where the HAR
model is trained on labelled as well as unlabelled data. The semi-supervised approach
aims to label unlabelled data using the knowledge gained from the set of labelled data. In a
semi-supervised approach, the HAR model is trained on popular labelled datasets and the
new users’ unlabelled test data and classified into activity classes according to the knowl-
edge gained from training data (Mabrouk et al. 2015; Cardoso and Mendes Moreira 2016).

DL/TL Architectures: In recent years, DL has become quite popular due to its capability
of learning high-level features and its superior performance (Saba et al. 2019; Biswas et al.
2019). The basic idea behind DL is data representation, which enables it to produce opti-
mal features. It learns unknown patterns from raw data without human intervention. The
DL techniques used in HAR can be divided into three parts such as deep neural networks
(DNN), hybrid deep learning (HDL) models, and transfer learning (TL) based models
(Agarwal et al. 2021). (Shown in Figure S.5 of Supporting document) The DNN includes
the models like convolutional neural networks (CNN) (Deep and Zheng 2019; Liu et al.
2020; Zeng et al. 2014), recurrent neural networks (RNN) (Murad and Pyun 2017) and
RNN variants which include long short-term memory (LSTM) and gated recurrent unit
(GRU) (Zhu et al. 2019; Du et al. 2019; Fazli et al. 2021). In hybrid HAR models, the
combination of CNN and RNN models is trained on spatio-temporal data. Researchers
have proposed various hybrid models in the last 5 years, such as DeepSense (Yao et al.
2017) and DeepConvLSTM (Wang et al. 2019a). Apart from hybrid AI models, there are
various transfer learning-based HAR models which involves pre-trained DL architectures
like ResNet-50, Inceptionv3, VGG-16 (Feichtenhofer et al. 2018; Newell Alejandro 2016;
Crasto et al. 2019; Tran et al. 2019; Feichtenhofer and Ai 2019). However, the role of TL in
sensor-based HAR is still evolving (Deep and Zheng 2019).

Figure 5a depicts a representative CNN architecture for HAR, which shows the two con-
volution layers followed by a pooling layer for feature extraction for the activity image,
leading to dimensionality reduction. This is then followed by a fully connected (FC) layer
for iterative weight computations and a softmax layer for binary or granular decision mak-
ing. After that, the input image is classified into an activity class. Figure 5b presents the
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representative TL-based HAR model, which includes pretrained models such as VGG-16,
inception V3, and ResNet. The pre-trained model is trained on a large dataset of natural
images such as man, cat, dog, and food. These pre-trained weights are applied to the train-
ing data of the sequence of images using an intermediate layer. It forms the customized
fully connected layer. Further, the training weights are fine-tuned using the optimizer func-
tion. Next the retrained model is applied to testing data for the classification of the activity
into an activity class.

Miniaturized mobile devices are handy to use and offer a set of physiological sensors
that can be used for capturing activity signals. But the problem is the complex struc-
ture and strong inner correlation in captured data. The deep learning models which are
the combination of both CNN and RNN offer benefits to explore this complex data and
identify detailed features for activity recognition. One such model offered by Ordonez
et al. was DeepConvLSTM (Ordéfiez and Roggen 2016), where CNN works as feature
extractor and represent the sensor input data as feature maps, and LSTM layer explores
the temporal dynamics of feature maps. Yao et al. have proposed similar model named
as DeepSense in which two convolution layers (individual and merge conv layers) and
stacked GRU layers were used as main building blocks (Yao et al. 2017). Figure 5c
shows the representative hybrid HAR model with CNN-LSTM frameworks.

Loss function DL model learns by means of loss function. It evaluates how well an algo-
rithm models the applied data. If it deviates largely from actual output, the value of the
loss function will be very large. The loss function with the help of optimization function
learns gradually to reduce the prediction error. Mostly used loss functions in HAR models
are mean squared loss and cross-entropy (Janocha and Czarnecki 2016; Wang et al. 2020a).
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Mean absolute error (8): is calculated as the average sum of absolute differences
between predicted (y;) and actual (¥;) output. N is the number of training samples

N “
Zi=0 ly; = 3il
N

S =

Mean squared error (g): is calculated as the average of the squared difference between
the predicted (§;) and actual output (y;). N is the number of training samples

N N
_ Zizo(Yi - yi)2
N
Cross-entropy loss (n): evaluates the performance of a model whose output probability

ranges between 0 and 1. The loss increases if predicted probability (y;) diverges from
actual output (y;).

e Binary cross-entropy loss: predict the probability between two activity classes.
n=—(y;log (§;) + (1 —y;) log (1 -¥;)

® Multiclass cross-entropy loss: Multi-class CEL is the generalization of binary CEL
where each class is assigned a unique integer value range between O ton —1 (nis a
number of classes).

N
p=- Z yi,nlog(yi,n)
n=0

Kullback Lieblar-divergence (KL-divergence): is a measure of how a probability distri-
bution diverges from another distribution. For the probability distribution of P(x) and
Q(x), KL-divergence is defined as the logarithmic difference between P(x) and Q(x)
with respect to P(x).

P(x)

KL (PIIQ) = 2, P(o) log s

Hyper-parameters and optimization

Drop-out rate: regularization technique where few neurons are dropped to avoid over-
fitting.

Learning rate: it defines how fast parameters are updated in a network.

Momentum: it helps in the next step direction based on knowledge gained in previous
steps.

Number of hidden layers: number of hidden layers between input and output layers.

Optimization It is a method used for changing the parameters of neural networks. DL
provides a wide range of optimizers: gradient descent (GD), stochastic gradient descent
(SGD), RMSprop, and Adam optimizers. GD is a first-order optimization that relies on
the first-order derivative of the loss function. SGD is the variant of GD, which involves
frequent variation in a model’s parameter. It computes the loss for each training sample
and alters the model’s parameters. Further, the RMSprop optimizer lies in the domain of
adaptive learning. RMSprop deals with the vanishing/exploding gradient issue by using
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a moving average of squared gradients to normalize the gradient. The most powerful
optimizer is the Adam optimizer which has the strength of momentum of GD to hold the
gained knowledge of updates, adaptive learning of RMSprop optimizer, offers two new
hyper-parameters beta and beta 2 (Soydaner 2020; Sun et al. (2020).

Validation The most common validation strategies are K-fold cross validation and leave
one subject out (LOSO). In k-fold, the k-onefold is used for training and the remaining is
used for validation. A similar pattern is followed in k-fold variants such as twofold, three-
fold, and tenfold cross-validation. In LOSO, out of whole dataset, the data of one subject is
kept for validation and the rest is used for training.

4.2 Al models adapting HAR devices

There are various HAR devices for capturing human activity signals. The goal of HAR
devices is to capture activity signals with minimal distortion. For providing deeper insight
into the existing HAR models, we have identified seven Al attributes and used tabular
representation for better understanding. It consists of attributes such as #features, feature
extraction, Al model architecture, metrics, validation, hyper-parameters/optimizer/loss
function. For in-depth description of recent HAR models between 2019 and 2021, we have
made four tables for each HAR device: Table 3 (sensor), Table 4 (vision), Table 5 (RFID),
and Table 6 (device-free).

In Table 3, we have provided insight into Al techniques adopted in sensor-based HAR
models in the last two years. Apart from recent sensor-based HAR models, knowledge
about previous sensor-based HAR models published between 2011-2018 is provided
in Table S.1 (Supporting document) (Zhu et al. 2019; Ding et al. 2019; Yao et al. 2017,
2019; Hsu et al. 2018; Murad and Pyun 2017; Sundaramoorthy and Gudur 2018; Lawal
and Bano 2019). The sensor-based HAR is more dominated by DL techniques especially
CNN or the CNN’s combination with RNN or its variants. In sensor-based HAR the most
used hyper-parameters are learning rate, batch size, #layers, and drop out. Adam optimizer,
cross-entropy loss, and k-fold validation are dominant in sensor-based HAR. For example,
Table 3’s (R2, C4) presents the 3D CNN-based HAR model which includes 3 convolu-
tional layers of size (32, 64,128) followed by a pooling layer, then an FC layer of size
(128) and a softmax layer. Entry (R2, C6) illustrate the validation strategy (10% data was
used for validation) and entry (R2, C7) illustrates the hyperparameters (i.e., LR=0.001,
batch size=50) and selected optimiser (Adam) for performance fine-tuning. Table 4 illus-
trates the Al framework in vision-based HAR models published in recent 2 years. Further,
description of earlier vision-based HAR models published between 2011-2018 are pro-
vided in Table S.2 (Supporting document) (Qi et al. 2018; Wang et al. 2018; Thida et al.
2013; Feichtenhofer et al. 2018, 2017; Simonyan and Zisserman 2014; Newell Alejandro
2016; Diba et al. 2016; Xia et al. 2012; Vishwakarma and Singh 2017; Chaaraoui 2015).
Initial vision-based HAR models were dominated by ML algorithms such as support vec-
tor machine (SVM), k-means clustering with principal component analysis (PCA)-based
feature extraction. In the last few years, researchers have shifted to DL paradigm and the
most dominant DL techniques such as multi-dimensional CNN, LSTM, and a combi-
nation of both. In video camera-based HAR models, the incoming data is video stream
which needs more resources and processing time. This issue gives rise to the usage of
TL in vision-based HAR approaches. The hyper-parameters used in vision-based HAR
are drop-out rate, learning rate, weight decay, and batch normalization. The mean square
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loss and cross-entropy loss are the most used loss functions, while RMSProp and SGD
are the most dominant optimizers in vision-based HAR. For example, Table 4’s (R1, C3)
illustrates the description of 3DCNN based HAR model which includes input layer with
skeletal joints information split into coloured skeleton motion history images (Color-skl-
MHI), and relative joint images (RJI) followed by 3DCNN, then a fusion layer to combine
the o/p of both 3DCNN layers and last is the output layer. Table 5 shows the recognition
models using RFID devices published in the last 2 years, while details of the earlier RFID-
based HAR models are provided in Table S.3 (Supporting document) (Ding et al. 2015; Li
et al. 2016; Fan et al. 2017). RFID-based HAR is mostly dominated by ML algorithms like
SVM, sparse coding, and dictionary learning. Very few researchers have used DL tech-
niques. Some RFID-based HAR models used traditional approach in which received signal
strength indicator (RSSI) is used for data gathering and recognition task is performed by
calculating the similarity in dynamic time warping (DTW). Table 6 provides the overview
of device-free HAR models where Wi-Fi devices are used for collecting activity data. The
recognition approach is similar to RFID-based HAR. Further, ML approaches are more
dominant than DL.

Impact of DL on miniaturized mobile and wireless sensing HAR devices A visible
growth of DL in vision-based HAR devices is observed in terms of existing HAR models
mentioned in Table 4 where most of the recent work is done using advanced DL techniques
like TL using VGG-16, VGG-19, and ResNet-50. Apart from these TL-based models, there
are hybrid models using autoencoders as shown in row R8 of Table 4 which includes CNN,
LSTM, and autoencoder-based HAR model for extracting deep features from enormous
volumed video datasets. But the impact of advanced DL techniques in sensors-based HAR
and device-free HAR is not very powerful. Due to the compact size and versatility of min-
iaturized and wireless sensing devices, they are progressing to become the next revolution
in the HAR framework, and the key to their progress is the emerging DL framework. The
data gathered from these devices is unlabelled, complex, and has strong inter-correlation.
DL offers (1) advanced algorithms like TL, and unsupervised learning techniques such as
generative adversarial networks (GAN) and variational autoencoders (VAE), (2) fast opti-
mization techniques such as SGD, Adam, and (3) dedicated DL libraries like TensorFlow,
(Py) Torch, and Theano to handle complex data.

Observation 4: DL techniques are still in an evolving stage. Minimal work has been
done using TL in sensor-based HAR models. Most of the approaches are discriminative
where supervised learning is used for training HAR models. Generative models like VAE
and GAN have evolved in the computer vision domain but they are still new in the HAR
domain.

5 Performance evaluation in HAR and integration of Al in HAR devices
5.1 Performance evaluation

Researchers have adopted different metrics for evaluating the performance of HAR models,
and the most popular evaluation metric is accuracy. The most used metrics in sensor-based

HAR include accuracy, sensitivity, specificity, and F1-score. The evaluation metrics used
in existing vision-based HAR models were accuracy i.e., top-1, top-5, and mean average
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precision (mAPS). Metrics used in RFID-based HAR include accuracy, F1-score, recall,
and precision. The metrics used in Device-free HAR include F1-score, precision, recall,
and accuracy. “Appendix 2” shows the mathematical representations of the performance
evaluation metrics used in the HAR framework.

5.2 Integration of Al in HAR devices

In the last few years, a significant growth can be seen in the usage of DL in the HAR
framework, but there are challenges associated with DL models such as (1) Overfitting/
Underfitting: When the amount of activity data is limited, the HAR model learns too
well during training that it learns the irregularities and random noise as part of data. As a
result, it negatively impacts the model’s generalization ability. Underfitting is another nega-
tive condition where the HAR model neither models the new data nor generalizes to new
unseen data. Both overfitting and underfitting result in lower performance. By selecting
the appropriate optimizer, we can overcome the overfitting condition by tuning the right
hyperparameters or by increasing the size of training data, or using k-fold cross valida-
tion. The challenge is to select the correct range of hyperparameters that can work well
during training and testing protocols and works well when the HAR model is used in real-
life applications. (2) Hardware integration in HAR devices: In the last 10 years various
HAR models with high performance came into the picture, but the question is “how well
they can be used in real-environment without integrating specialized hardware like graph-
ics processing units (GPUs), and extra memory”. Therefore, the objective for designing a
HAR model is to design a robust and lightweight model which can run in real-environment
without the need for specialized hardware. For applications with huge data such as vid-
eos, we need GPUs for training the model. Python offers libraries (such as Keras, Tensor-
Flow) for implementing Al framework on a general-purpose CPU processor. For working
on GPUs, one needs to explore special libraries for implementing AI models. Sometimes, it
may result in specialized hardware integration need in the target application which makes it
expensive. Processing power and costs are interrelated i.e., one needs to pay more for extra
power.

6 Critical discussion

In the proposed review, we made four observations based on the tri-stool of HAR
which includes HAR devices, Al techniques, and applications. Based on these observa-
tions and challenges highlighted in Sects. 3 and 4, we have made three claims and four
recommendations.

6.1 Claims based on in-depth analysis of HAR devices, Al, and HAR applications

(i) Mutual relationship among HAR devices and Al framework: Our first claim is based on
the observation 1 and 2 where we illustrate that the advancement in Al directly affects the
growth of HAR devices. In Sect. 2, Fig. 3a presents the growth of HAR devices in the last
10 years. Further, Fig. 3b illustrates the advancement in Al, which shows how researchers
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have shifted to the DL paradigm from ML in the last 5 years. Therefore, from observations
1 and 2, we can rationalize that the advancement in Al is resulting in the growth of HAR
devices. Most of the earlier HAR models were dependent on cameras or customized wear-
able sensors data but in the last 5 years more devices like embedded sensors, Wi-Fi devices
came into the picture as prominent HAR sources.

(ii) Growth in HAR devices increases the scope of HAR in various application domains:
Claim 2 is based on observation 3, where we have shown that for the best results how a
target application is depending on a HAR device. For applications like crowd monitoring,
if we use sensor devices for gathering the activity data it will not be able to give promi-
nent results because sensors are best for single person applications. Similarly, if we use a
camera in a smart home environment, it will not be a good choice because cameras invade
user’s privacy and require a high computational cost.

Therefore, we can conclude that multi-person applications like surveillance video cam-
eras are proven best. However, for single-person monitoring applications smart device sen-
sors are more suitable.

(iii) HAR devices, Al, and target application domains are three pillars in HAR frame-
work: From all four observations and claims (1 and 2), we have proved that HAR devices,
Al, and application domains are three pillars in the success of a HAR model.

6.2 Benchmarking: comparison between different HAR reviews

The objective of the proposed review is to provide a complete and comprehensive review of
HAR based on the three pillars i.e., device-type, Al techniques, and application domains.
Table 7 provides the benchmarking of the proposed review with existing studies.

6.3 Ashort note on HAR datasets

The narrative review surely needs a special note on types of HAR datasets. (1) Sensor-
based: Researchers have proposed many popular sensor-based datasets. In Table A.5
(“Appendix 17), the description of sensor-datasets is illustrated with attributes such as data
source, #factors, sensor location, and activity type. It includes wearable sensor-based data-
sets (Alsheikh et al. 2016; Asteriadis and Daras 2017; Zhang et al. 2012; Chavarriaga et al.
2013; Munoz-Organero 2019; Roggen et al. 2010; Qin et al. 2019), as well as smart-device
sensor-based datasets (Ravi et al. 2016; Cui and Xu 2013; Weiss et al. 2019; Miu et al.
2015; Reiss and Stricker 2012a, b; Lv et al. 2020; Gani et al. 2019; Stisen et al. 2015;
Rocker et al. 2017; Micucci et al. 2017) Apart from datasets mentioned in Table A.5, there
are few more datasets worth mentioning such as Kasteren dataset (Kasteren et al. 2011;
Chen et al. 2017), which is also very popular. (2) Vision-based HAR: Devices for collect-
ing 3D data are CCTV cameras (Koppula and Saxena 2016; Devanne et al. 2015; Zhang
and Parker 2016; Li et al. 2010; Duan et al. 2020; Kalfaoglu et al. 2020; Gorelick et al.
2007; Mahadevan et al. 2010), depth cameras (Cippitelli et al. 2016; Gaglio et al. 2015;
Neili Boualia and Essoukri Ben Amara 2021; Ding et al. 2016; Cornell Activity Datasets:
CAD-60 & CAD-120 2021), and videos from public domains like YouTube and Holly-
wood movie scenes (Gu et al. 2018; Soomro et al. 2012; Kuehne et al. 2011; Sigurdsson
et al. 2016; Kay et al. 2017; Carreira et al. 2018; Goyal et al. 2017). The reason behind
using public domain videos is that they have no privacy issue, unlike with cameras.
Table A.6 (“Appendix 17 illustrates the description of vision-based datasets which includes
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data source, #factors, sensor location, and activity type. Apart from datasets mentioned in
Table A.6, there are few more publicly available datasets such as MCDS (Magnetic wall
chess board video) datasets (Tanberk et al. 2020), NTU-RGBD datasets (Yan et al. 2018;
Liu et al. 2016), VIRAT 1.0 (3 hour person vehicle interaction), and VIRAT 2.0 (8 hour
surveillance scene of school parking) (Wang and Ji 2014). (3) RFID-based: RFID-based
HAR is mostly used for smart home applications, where actions performed by the user
are monitored by RFID tags. To the best of our knowledge, there is hardly a public dataset
available for RFID-based HAR. Researchers have developed their own datasets for their
respective applications. One such dataset was developed by Ding et al. (Ding et al. 2015)
in 2015 which includes data of 10 exercises performed by 15 volunteers for 2 weeks with
a total duration of 1543 min. Similarly, Li et al. developed the dataset for trauma resuscita-
tion including the 10 activities and 5 resuscitation phases (Li et al. 2016). A similar strat-
egy was followed by Du et al. (2019), Fan et al. (2017), Yao et al. (2017, 2019), Wang et al.
(2019d). (4) Device-free: There are not many popular datasets that are publicly available.
However, researchers followed the same strategy which is adopted in RFID-based HAR.
Yan et al. included the data of 6 volunteers with 440 actions in their dataset with a total
of 4400 samples (Wang et al. 2019c). Similarly, Yan et al. (2020), Fei et al. (2020), Wang
et al. (2019d) have proposed their own datasets.

6.4 Strengths and limitations

Strengths This is the first review of its kind where we demonstrated the HAR system con-
sisting of three components such as HAR devices, Al models, and HAR applications. This
is the only review that considered all four kinds of HAR devices such as sensor-based,
vision-based, RFID-based, and device-free in the Al framework. The engineering perspec-
tive was discussed on Al in terms of architecture, loss function design, and optimization
strategies. A comprehensive and comparative study was conducted in the benchmark-
ing section. We also provided sources of datasets for the readers. Limitations: A signifi-
cant amount of work has been done in the HAR domain, but some limitations need to be
addressed. (1) Synchronised activities: According to earlier HAR models, researchers have
made this presumption that a person performs a single activity at a time. But it is not true,
in the real-world humans perform synchronized activities such as talking on smartphone
and walking or reading a book. As per our knowledge, there is hardly a HAR model that
considered synchronized activities in their recognition model. (2) Complex and compos-
ite activities: Various state-of-the-art results have been achieved by researchers with sim-
ple and atomic activities such as: running, walking, stairs-up, and down. But very lim-
ited work has been done with complex activities where an activity includes two or more
simple actions. For example, exercise monitoring where an exercise like burpees includes
jump, bending down, and extending legs. Such kind of complex and risky activity requires
attention for proper posture monitoring, but to the best of our knowledge, there is no HAR
model which can monitor exercise involving complex activity. (3) Future action forecast:
A significant amount of work has been done in HAR but most of the work is based on the
identification of action performed by a user like fall detection. There is no HAR model
which predicts the future action. For example, in a smart home environment if an elderly
person is doing exercise and there are chances of fall then it will be very helpful if there is
a smart system that can identify fall in advance and inform the person timely for necessary
precaution(s). (4) Lack of real-time validation of HAR models: In earlier HAR models, for
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validation researchers have used k-fold cross validation and LOSO, where a part on the
dataset is used for validation. However, most of the data in datasets are gathered in the
experimental setup, which lacks real-time flavour. Therefore, there is a need for a model
which can provide good results on experimental as well as real-time data without Al bias
(Suri et al. 2016).

Recommendations

1. Trending Al technique: the use of transfer learning had shown significant results with
vision-based HAR models. But there is very less work done on the sensor-based HAR
model. Sensor-based HAR with TL can be the next revolution in the HAR domain.

2. Trending device type: a decade before the most popular data capturing source for activity
signals were video cameras. But there are some major issues associated with vision-
based HAR such as user privacy and GPU requirements. The solution to these problems
is sensor-based HAR where a simple smartphone or smartwatch is used for capturing
activity signals. In the last 3 years, the sensor-based HAR is one of the most trending
HAR approach.

3. Dominant target domain in HAR: Although, HAR has multifaceted application domains
such as surveillance, healthcare, and fall detection. Healthcare is the most crucial
domain where HAR plays an important role which includes remote health monitoring
to patients, exercise monitoring, assistive care to the elderly living alone. In the current
COVID-19 pandemic scenario, the sensor-based HAR model with DL technique can be
used to provide assistive care to home-quarantined COVID-19 patients by monitoring
their health remotely.

4. Abnormal action identification and future action prediction: A significant amount of
work has been done in HAR, but most of the work revolves around the recognition of
simple activities. A very little amount of work has been done in finding the abnormali-
ties in actions. Abnormality conditions are categorized into two categories: physical
and non-physical. Under physical conditions, examples include (a) Fall detection in
normal conditions under activities of daily living (ADL), (b) Fall detection in elderly
health monitoring conditions, and (c) Fall detection in sports conditions. Only physical
abnormality can be detected under this paradigm. Under Non-physical abnormality,
examples include dizziness, headaches, vomiting feeling. These are not truly physical
parameters that can be detected via the camera. Note that these non-physical param-
eters can however be monitored via special sensor-based devices, such as hypertension
monitor, oximeter, etc. Further, to our knowledge, there are not many applications that
combine camera and sensor devices in non-physical frame. Apart from abnormality
identification, there is hardly any work done on the prediction of future action based on
current actions. For example, A person is running or walking and he is not focusing or
concentrating on the road on which he is travelling. Suddenly, there is an obstacle on
the road in his path. He trips and falls down. Such detections are forecasting actions and
happen suddenly. There is no application that can detect the obstacle and raise an alarm
in advance. Forecasting is more towards the projections at distant times, unlike nearly
current time spatial and temporal information. Similarly, forecasting is challenging in
the motion estimation for subsequent frames where data is not available and unseen.
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7 Conclusion

Unlike earlier review articles where researchers focus was on a single HAR device, we have
proposed the study that revolves around the three pillars of HAR i.e., HAR devices, Al, and
application domains. In the proposed review, we have hypothesized that the growth in HAR
devices is synchronized with the evolving Al framework, and the study rationalizes this by
providing evidence in terms of graphical representation of existing HAR models. Our second
hypothesis says the growth in Al is the core of HAR which makes it suitable for multifaceted
domains. We rationalized this by presenting representative CNN and TL architectures of HAR
models, and also discussed the importance of hyperparameters, optimizers, and loss functions
in the design of HAR models. A unique contribution is in the area of the role of the Al frame-
work in existing HAR models for each of the HAR devices. This study further surfaced out
(1) sensor-based HAR with miniaturizing devices will show the ground for opportunities in
healthcare application, especially remote care, and monitoring, and (2) device-free HAR with
the use of Wi-Fi device can make the usage of HAR as an essential part of human’s healthy
life. Finally, the study presented four recommendations that will expand the vision of new
researchers and help them in expanding the scope of HAR in diverse domains with evolving
Al framework for providing a quality of healthy life to human.

Appendix A
The type of HAR devices and applications are two main components of HAR. Table A.1,
A2, A3, and A4 illustrates the device wise description of existing HAR models in

terms of data source, #activities, #subjects, datasets, activity scenarios and performance
evaluation.
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Appendix B
The performance of HAR model is evaluated using metrics. Table B.1 illustrates various
evaluation metrics used in existing HAR models. But before the description of metrics,
some terms need to be understood:

Table B.1 Evaluation metrics

True positive (TP): no. of positive samples predicted correctly.

False positive (FP): no. of actual negative samples predicted as positive.
True negative (TN): no. of negative samples predicted correctly.

False negative (FN): no. of actual positive samples predicted as negative.

S. no. Metrics Description
1 Accuracy = —+TN__ Ratio of number of correct prediction and total number of input

TP+TN+FP+EN

samples

2 Precision = —%— It is the no. of correct positives divided by the predicted positives

TP +FP
3 Recall = —% It is the no. of correct positives divided by total no. of true positives

TP+FN and false negatives
4 Fl — score = 2s [I;i l;] Harmonic mean between precision and recall
5 Specificity = TNTNFP The proportion of actual negatives predicted as positives
+
6 Sensitivity = _TP_ The proportion of actual positives predicted as positives
TP +EN
7 Positive o LHR assess the goodness of fit of two competing statistical models
LHR = Sy _ based on their likelihoods
100—Specificity

. 100—Sensitivi
Negative LHR = £2>Xlvy

Sepcificity

P precision, R recall, TP true positive, TN true negative, FP false positive, and FN false negative, LHR like-
lihood ratio

@ Springer
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Supplementary Information The online version contains supplementary material available at https://doi.
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